
Reasoning with Forest Logic Programs Using Fully
Enriched Automata

Cristina Feier1 Thomas Eiter2

presenter: Mantas Šimkus2

1 FB 03, University of Bremen, Bremen Germany
2 Institute of Information Systems, Vienna University of Technology, Vienna Austria

13th International Conference on
Logic Programming and Nonmonotonic Reasoning

Lexington, Kentucky, US

Acknowledgement: This work is partially supported by the EPSRC grants Score!

and DBOnto and the Austrian Science Fund (FWF) grants P24090 and P25207

C. Feier and T. Eiter Reasoning with Forest Logic Programs Using Fully Enriched Automata 30.09.2015

Introduction

Forest Logic Programs:

decidable fragment of Open Answer Set Programming

non-monotonic language and rule-based syntax

open domain semantics

can simulate reasoning with the expressive DL SHOQ
Previous work:

non-deterministic tableau algorithms: 2NExpTime, NExpTime
running time

exact complexity characterization still open

Current work:

encoding of reasoning with FoLPs into emptiness checking of fully
enriched automata =⇒ ExpTime procedure =⇒ worst-case optimal

C. Feier and T. Eiter Reasoning with Forest Logic Programs Using Fully Enriched Automata 30.09.2015

Closed vs. Open World Reasoning

fail(X) ← not pass(X)
pass(john) ←

→ ground the program with all constants (john):

fail(john) ← not pass(john)
pass(john) ←

→ answer set: {pass(john)}.
→ fail is not satisfiable:

assume the presence of anonymous objects – open domains

e.g. with universe {john, x}, fail becomes satisfiable

C. Feier and T. Eiter Reasoning with Forest Logic Programs Using Fully Enriched Automata 30.09.2015

Open Answer Set Programming

Enhancing Answer Set Programming with open domains:

Syntax

same as the syntax of function-free Answer Set Programming

Semantics (OASP)

(U,M) is an open answer set of an OASP (FoLP) P, iff U ⊇ cts(P)
and M is an answer set of PU

When U = {john, x}, PU :

fail(john) ← not pass(john)
fail(x) ← not pass(x)

pass(john) ←

M = {pass(john), fail(x)} is an answer set of PU :
({john, x}, {pass(john), fail(x)}) is an open answer set!

C. Feier and T. Eiter Reasoning with Forest Logic Programs Using Fully Enriched Automata 30.09.2015

Forest Logic Programs

OASP is undecidable: syntactical restrictions to achieve decidability;

Forest Logic Programs

allow only for unary and binary predicates

tree-shaped rules: forest model property

a special type of unsafe rules: free rules

facts

r1 : LitLover(X) ← read(X ,Y1), read(X ,Y2),
Novel(Y1),Novel(Y2),Y1 6= Y2

r2 : Novel(X) ← wrBy(X ,Y),Novelist(Y)
r3 : Novelist(X) ← wrote(X ,Y),Novel(Y)
r4 : read(X ,Y) ∨ not read(X ,Y) ←
r5 : wrBy(X ,Y) ∨ not wrBy(X ,Y) ←
r6 : wrote(X ,Y) ∨ not wrote(X ,Y) ←
f1 : Novel(a) ←
f2 : Novelist(b) ←

C. Feier and T. Eiter Reasoning with Forest Logic Programs Using Fully Enriched Automata 30.09.2015

Forest model property

A unary predicate is satisfiable iff it is satisfied by a forest-shaped model

r1 : LitLover(X)← read(X ,Y1), read(X ,Y2),
Novel(Y1),Novel(Y2),Y1 6= Y2.

r2 : Novel(X)← wrBy(X ,Y),Novelist(Y).
r3 : Novelist(X)← wrote(X ,Y),Novel(Y).
r4 : read(X ,Y) ∨ not read(X ,Y)← .
r5 : wrBy(X ,Y) ∨ not wrBy(X ,Y)← .
r6 : wrote(X ,Y) ∨ not wrote(X ,Y)← .
f1 : Novel(a).
f2 : Novelist(b).

(U,M) with:

U = {ρ, ρ1, a, b}, and

M = {LitLover(ρ), Novel(a), read(ρ, ρ1), . . .}

is a forest model which satisfies LitLover
C. Feier and T. Eiter Reasoning with Forest Logic Programs Using Fully Enriched Automata 30.09.2015

ρ1

Novel

ρ

LitLover

a

Novel

b

Novelist

read

read

wrBy

Forest Models are Well-Supported

r1 : LitLover(X)← read(X ,Y1), read(X ,Y2),
Novel(Y1),Novel(Y2),Y1 6= Y2.

r2 : Novel(X)← wrBy(X ,Y),Novelist(Y).
r3 : Novelist(X)← wrote(X ,Y),Novel(Y).
r4 : read(X ,Y) ∨ not read(X ,Y)← .
r5 : wrBy(X ,Y) ∨ not wrBy(X ,Y)← .
r6 : wrote(X ,Y) ∨ not wrote(X ,Y)← .
f1 : Novel(a).
f2 : Novelist(b).

(U,M) with:

U = {ρ, ρ1, . . . , a, b}, and

M = {LitLover(ρ), Novel(a),Novelist(b) read(ρ, ρ1),Novel(ρ1), . . .}

is not a forest model!

C. Feier and T. Eiter Reasoning with Forest Logic Programs Using Fully Enriched Automata 30.09.2015

a

Novel
ρ

ρ1

LitLover

Novel

b

Novelist

ρ11

Novelist

. . .

read

read

wrBy

wrote

Constructing well-supported models

Done in the past using tableaux algorithms:

blocking mechanism incorporates a well-supportedness check

usually non-deterministic: 2NExpTime, NExpTime running times

worst-case optimal (ExpTime) AND/OR tableaux algorithm devised
for the case of CoLPs (FoLPs\constants)

AND/OR technique does not generalize to FoLPs

complexity gap: satisfiability checking w.r.t. FoLPs was known to be
ExpTime-hard

C. Feier and T. Eiter Reasoning with Forest Logic Programs Using Fully Enriched Automata 30.09.2015

Fully Enriched Automata

Run on labeled forests
Introduced as a device to reason with hybrid graded µ-calculus

A = 〈Σ, b,Q, δ, q0,F〉:
Σ is a finite input alphabet

b > 0 is a counting bound

Q is a finite set of states

δ : Q × Σ→ B+(Db × Q) - the transition function, where:
I B+(Y) is the set of positive Boolean formulas over Y
I Db = {〈0〉, 〈1〉, . . . , 〈b〉} ∪ {[0], [1], . . . , [b]} ∪ {−1, ε, 〈root〉, [root]}

q0 ∈ Q - the initial state

F = {F1,F2, . . . ,Fk}, where F1 ⊆ F2 ⊆ . . . ⊆ Fk = Q is a parity
acceptance condition

Emptiness checking for a FEA A as above with n states can be decided in
time (b + 2)O(n

3·k2·log k·log b2).
C. Feier and T. Eiter Reasoning with Forest Logic Programs Using Fully Enriched Automata 30.09.2015

Reasoning with FoLPs Using FEA

For every FoLP P and unary predicate p construct a class of FEA Ap,P
ρ,θ :

ρ is a designated constant or anonymous node

θ fixes a label for each root node of accepted forests

states of the form qt,a, qt,ra , etc. where t is a term pattern (a
designated constant or *), a is a unary predicate, ra is a unary rule,
etc.

number of states: polynomial in the size of P

parity acceptance condition: F = (F1,F2)
I F1 = {qt,a, qt1,t2,f | a/f a unary/binary predicate; t, t1 and t2 term

patterns },
I F2 = Q
I exploited for checking well-supportedness

For details about the encoding, please check the paper!

C. Feier and T. Eiter Reasoning with Forest Logic Programs Using Fully Enriched Automata 30.09.2015

Properties of the Encoding

For a FoLP P and a unary predicate symbol p, p is satisfiable w.r.t. P iff
there exists an automaton Ap,P

ρ,θ whose language is non-empty.

Satisfiability checking of unary predicates with respect to FoLPs is
ExpTime-complete.

f-hybrid KBs: pairs (Σ,P)

Σ a SHOQ kb, P a FoLP: no restriction on signature sharing

a unary predicate p is satisfiable w.r.t. (Σ,P) iff it is satisfiable w.r.t.
Θ(Σ) ∪ P, where Θ is a polynomial and modular translation from
SHOQ to FoLPs.

Satisfiability checking of unary predicates with respect to f-hybrid KBs is
ExpTime-complete.

C. Feier and T. Eiter Reasoning with Forest Logic Programs Using Fully Enriched Automata 30.09.2015

Conclusions

The result closes an open problem: exact complexity characterization of
FoLPs

FEAs - elegant device for encoding

accept forests as input

parity acceptance condition to check well-supportedness

additional addressing and term matching mechanisms needed

Existing work on AND/OR tableau reasoners for CoLPs (FoLPs minus
constants):

how can it be lifted to FoLPs?

C. Feier and T. Eiter Reasoning with Forest Logic Programs Using Fully Enriched Automata 30.09.2015

Questions?

C. Feier and T. Eiter Reasoning with Forest Logic Programs Using Fully Enriched Automata 30.09.2015

