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Introduction

Forest Logic Programs:

decidable fragment of Open Answer Set Programming

non-monotonic language and rule-based syntax

open domain semantics

can simulate reasoning with the expressive DL SHOQ
Previous work:

non-deterministic tableau algorithms: 2NExpTime, NExpTime
running time

exact complexity characterization still open

Current work:

encoding of reasoning with FoLPs into emptiness checking of fully
enriched automata =⇒ ExpTime procedure =⇒ worst-case optimal
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Closed vs. Open World Reasoning

fail(X ) ← not pass(X )
pass(john) ←

→ ground the program with all constants (john):

fail(john) ← not pass(john)
pass(john) ←

→ answer set: {pass(john)}.
→ fail is not satisfiable:

assume the presence of anonymous objects – open domains

e.g. with universe {john, x}, fail becomes satisfiable
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Open Answer Set Programming

Enhancing Answer Set Programming with open domains:

Syntax

same as the syntax of function-free Answer Set Programming

Semantics (OASP)

(U,M) is an open answer set of an OASP (FoLP) P, iff U ⊇ cts(P)
and M is an answer set of PU

When U = {john, x}, PU :

fail(john) ← not pass(john)
fail(x) ← not pass(x)

pass(john) ←

M = {pass(john), fail(x)} is an answer set of PU :  
({john, x}, {pass(john), fail(x)}) is an open answer set!
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Forest Logic Programs

OASP is undecidable: syntactical restrictions to achieve decidability;

Forest Logic Programs

allow only for unary and binary predicates

tree-shaped rules: forest model property

a special type of unsafe rules: free rules

facts

r1 : LitLover(X ) ← read(X ,Y1 ), read(X ,Y2 ),
Novel(Y1 ),Novel(Y2 ),Y1 6= Y2

r2 : Novel(X ) ← wrBy(X ,Y ),Novelist(Y )
r3 : Novelist(X ) ← wrote(X ,Y ),Novel(Y )
r4 : read(X ,Y ) ∨ not read(X ,Y ) ←
r5 : wrBy(X ,Y ) ∨ not wrBy(X ,Y ) ←
r6 : wrote(X ,Y ) ∨ not wrote(X ,Y ) ←
f1 : Novel(a) ←
f2 : Novelist(b) ←
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Forest model property

A unary predicate is satisfiable iff it is satisfied by a forest-shaped model

r1 : LitLover(X )← read(X ,Y1), read(X ,Y2),
Novel(Y1),Novel(Y2),Y1 6= Y2.

r2 : Novel(X )← wrBy(X ,Y ),Novelist(Y ).
r3 : Novelist(X )← wrote(X ,Y ),Novel(Y ).
r4 : read(X ,Y ) ∨ not read(X ,Y )← .
r5 : wrBy(X ,Y ) ∨ not wrBy(X ,Y )← .
r6 : wrote(X ,Y ) ∨ not wrote(X ,Y )← .
f1 : Novel(a).
f2 : Novelist(b).

(U,M) with:

U = {ρ, ρ1, a, b}, and

M = {LitLover(ρ), Novel(a), read(ρ, ρ1), . . .}

is a forest model which satisfies LitLover
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Forest Models are Well-Supported

r1 : LitLover(X )← read(X ,Y1), read(X ,Y2),
Novel(Y1),Novel(Y2),Y1 6= Y2.

r2 : Novel(X )← wrBy(X ,Y ),Novelist(Y ).
r3 : Novelist(X )← wrote(X ,Y ),Novel(Y ).
r4 : read(X ,Y ) ∨ not read(X ,Y )← .
r5 : wrBy(X ,Y ) ∨ not wrBy(X ,Y )← .
r6 : wrote(X ,Y ) ∨ not wrote(X ,Y )← .
f1 : Novel(a).
f2 : Novelist(b).

(U,M) with:

U = {ρ, ρ1, . . . , a, b}, and

M = {LitLover(ρ), Novel(a),Novelist(b) read(ρ, ρ1),Novel(ρ1), . . .}

is not a forest model!
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Constructing well-supported models

Done in the past using tableaux algorithms:

blocking mechanism incorporates a well-supportedness check

usually non-deterministic: 2NExpTime, NExpTime running times

worst-case optimal (ExpTime) AND/OR tableaux algorithm devised
for the case of CoLPs (FoLPs\constants)

AND/OR technique does not generalize to FoLPs

complexity gap: satisfiability checking w.r.t. FoLPs was known to be
ExpTime-hard
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Fully Enriched Automata

Run on labeled forests
Introduced as a device to reason with hybrid graded µ-calculus

A = 〈Σ, b,Q, δ, q0,F〉:
Σ is a finite input alphabet

b > 0 is a counting bound

Q is a finite set of states

δ : Q × Σ→ B+(Db × Q) - the transition function, where:
I B+(Y ) is the set of positive Boolean formulas over Y
I Db = {〈0〉, 〈1〉, . . . , 〈b〉} ∪ {[0], [1], . . . , [b]} ∪ {−1, ε, 〈root〉, [root]}

q0 ∈ Q - the initial state

F = {F1,F2, . . . ,Fk}, where F1 ⊆ F2 ⊆ . . . ⊆ Fk = Q is a parity
acceptance condition

Emptiness checking for a FEA A as above with n states can be decided in
time (b + 2)O(n

3·k2·log k·log b2).
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Reasoning with FoLPs Using FEA

For every FoLP P and unary predicate p construct a class of FEA Ap,P
ρ,θ :

ρ is a designated constant or anonymous node

θ fixes a label for each root node of accepted forests

states of the form qt,a, qt,ra , etc. where t is a term pattern (a
designated constant or *), a is a unary predicate, ra is a unary rule,
etc.

number of states: polynomial in the size of P

parity acceptance condition: F = (F1,F2)
I F1 = {qt,a, qt1,t2,f | a/f a unary/binary predicate; t, t1 and t2 term

patterns },
I F2 = Q
I exploited for checking well-supportedness

For details about the encoding, please check the paper!
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Properties of the Encoding

For a FoLP P and a unary predicate symbol p, p is satisfiable w.r.t. P iff
there exists an automaton Ap,P

ρ,θ whose language is non-empty.

Satisfiability checking of unary predicates with respect to FoLPs is
ExpTime-complete.

f-hybrid KBs: pairs (Σ,P)

Σ a SHOQ kb, P a FoLP: no restriction on signature sharing

a unary predicate p is satisfiable w.r.t. (Σ,P) iff it is satisfiable w.r.t.
Θ(Σ) ∪ P, where Θ is a polynomial and modular translation from
SHOQ to FoLPs.

Satisfiability checking of unary predicates with respect to f-hybrid KBs is
ExpTime-complete.
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Conclusions

The result closes an open problem: exact complexity characterization of
FoLPs

FEAs - elegant device for encoding

accept forests as input

parity acceptance condition to check well-supportedness

additional addressing and term matching mechanisms needed

Existing work on AND/OR tableau reasoners for CoLPs (FoLPs minus
constants):

how can it be lifted to FoLPs?
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Questions?
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