
Performance Tuning in
Answer Set Programming

Matt Buddenhagen and Yuliya Lierler

University of Nebraska at Omaha

Matt Buddenhagen and Yuliya Lierler Performance Tuning in Answer Set Programming



Motivation and Questions to Address

2011: inception of ASP-based application parser (Lierler
and Schüller, 2012)

2012: performance of parser is manually tuned using
“hints on modeling” by Gebser, Kaminski, Kaufmann, and
Schaub (2011): ×4 faster

⇒ What is performance tuning in ASP?
⇒ Are “hints on modeling” reasonable ground for establishing

performance tuning methodology within ASP?

2012: Automatic configuration tools were used to find best
performing clasp configuration for parser: ×3 faster

⇒ What is the true role of these tools: can they “replace”
manual processes?

Matt Buddenhagen and Yuliya Lierler Performance Tuning in Answer Set Programming



Outline

Features of ASP shaping “non-imperative” performance
tuning

“Hints on modeling” (Gebser et al., 2011)

Reconstruct manual performance tuning process for
parser

Review experiments with automated configuration tools for
performance tuning on parser

Conclude by drawing on the experimental findings

Matt Buddenhagen and Yuliya Lierler Performance Tuning in Answer Set Programming



Performance Tuning in ASP Software Engineering

In ASP, first:

tools for processing problem encodings are called solvers,

connection between the encoding and solver’s execution is
very subtle

⇒ performance analysis methods of imperative programming
are not applicable

Second:

applications in ASP are often NP complete resulting in
significant computational effort by solvers

typically a variety of ways to encode the same problem

solvers offer different heuristics, expose numerous
parameters, and are sensitive to these

? What is Performance Tuning for ASP?

Matt Buddenhagen and Yuliya Lierler Performance Tuning in Answer Set Programming



“Hints on modeling” (Gebser et al., 2011)

1 Keep the grounding compact:
(i) If possible, use aggregates; (ii) Try to avoid
combinatorial blow-up; (iii) Project out unused variables;
(iv) But don’t remove too many inferences!

2 Add additional constraints to prune the search space:
(i) Consider special cases; (ii) Break symmetries; (iii) Test
whether the additional constraints really help

3 Try different approaches to model the problem

4 It (still) helps to know the systems:
(i) gringo offers options to trace the grounding process;
(ii) clasp offers many options to configure the search

? n-queens problem as illustration

⇒ Performance Guidelines

Matt Buddenhagen and Yuliya Lierler Performance Tuning in Answer Set Programming



Case Study: Overview

1 Reconstruct a way from parser-0.1 to parser-0.2

comprised 20 encodings
Performance Guidelines (PG) items 1 and 2 are followed

? keep the grounding compact
? add additional constraints to prune the search space

no change in model of a problem (no PG item 3)
grounding size and solving time: primary performance
measures

⇒ significant performance change: ×4 faster

⇒ ontology of rewriting techniques
⇒ performance tuning methodology

2 An automated configuration tool smac is used along the
way from parser-0.1 to parser-0.2 for tuning the
parameters of clasp: PG item 4.

⇒ additional performance change: ×3 faster

Matt Buddenhagen and Yuliya Lierler Performance Tuning in Answer Set Programming



parser Tuning: Ontology of Rewriting Techniques

Concretion (C) replaces overly general rules by their
effectively used, partial instantiations.

Projection (P) reduces the number of variables in a rule
to produce a fewer number of ground instances.

Simplification (S) eliminates some rules of a program
that are “entailed” by the rest of the program.

Equivalence (E) replaces some rules of the program by
strongly equivalent rules.

Auxiliary Signature Reduction (A) reduces the
program’s signature by reformulating problem
specifications by means of fewer predicates.

Output Signature Change (O) changes the output
signature of a program to allow different sets of predicates
to encode the solution.

Matt Buddenhagen and Yuliya Lierler Performance Tuning in Answer Set Programming



parser Tuning: Manual Process Methodology

Smallest possible change per encoding revision was
attempted

? e.g., in case of Auxiliary Signature Reduction only one
predicate symbol at a time was eliminated

Set of random 30 problem instances (Penn Treebank)

Parameters used to evaluate the quality of each encoding:

? number of time or memory outs
? avg ground size
? avg solving time (clasp-default)
? avg grounding time (gringo-default)

Matt Buddenhagen and Yuliya Lierler Performance Tuning in Answer Set Programming



parser Encoding Tree I

Nodes’ form:

id[timeout,solving:grounding,ground-size]

Encoding tree:
1[6,301:13,14] 2[5,275:35,4]

3[5,138:3,4] 6[5,138:3,4] 4[2,137:77,4] 5[2,119:77,4]

7[5,138:3,4] 8[2,142:76,4]

9[2,202:7,4] 10[2,227:7,4] 11[2,183:7,4] 12[2,116:5,8] 13[3,188:12,8] 14[4,141:4,7]

15[3,241:4,7]16[4,194:4,7]

17[2,139:13,18] 18[2,128:5,8] 19[2,134:4,8] 20[3,69:15,13]

E

P
S P P

S

P

C
C P P A E

P
EA

P

A O

Better, when:

number of timeouts is smaller, otherwise if

avg ground size is smaller, otherwise if

avg solving time is smaller, otherwise if

avg grounding time is smaller.
Matt Buddenhagen and Yuliya Lierler Performance Tuning in Answer Set Programming



parser Encoding Tree II

1[6,301:13,14] 2[5,275:35,4]

3[5,138:3,4] 6[5,138:3,4] 4[2,137:77,4] 5[2,119:77,4]

7[5,138:3,4] 8[2,142:76,4]

9[2,202:7,4] 10[2,227:7,4] 11[2,183:7,4] 12[2,116:5,8] 13[3,188:12,8] 14[4,141:4,7]

15[3,241:4,7]16[4,194:4,7]

17[2,139:13,18] 18[2,128:5,8] 19[2,134:4,8] 20[3,69:15,13]

E

P
S P P
S
P

C
C P P A E

P
EA

P

A O

⇒ Projection P is most occurring rewriting technique

⇒ Output Signature Change O occurs only once,
Simplification S and Concretion C occur twice each

⇒ P and C cause greatest changes for good

⇒ S seems fruitless

⇒ Equivalence E is ambivalent

Matt Buddenhagen and Yuliya Lierler Performance Tuning in Answer Set Programming



parser Tuning: Automatic Algorithm Configuration

In manual tuning only single clasp-default was assumed

? but what about clasp sensitivity to parameters?

To answer this question, we consider

Automatic configuration system smac by Hutter, Hoos,
and Leyton-Brown (2011)

? apply smac to clasp on each parser encoding
? a held-out set of 60 problem instances and a training set of

300 instances from PennTreebank of controlled hardness
? cutoffTime is 300 seconds
? wallclock-limit is 480000 seconds (5.56 days)
? run-objective is RUNTIME.

22 weeks to complete on a cluster with 24 virtual cores

Matt Buddenhagen and Yuliya Lierler Performance Tuning in Answer Set Programming



parser Tuning: Results I

? Curve of a tuned version is similar to that of default.

? The winner identified by “default“ process stays the winner
identified by “smac” process.

Matt Buddenhagen and Yuliya Lierler Performance Tuning in Answer Set Programming



parser Tuning: Results II

30 random instances from manual tuning

Original: 2012 results on clasp-default

Rerun: 2015 “smac platform” rerun of clasp-default

SMAC: smac-turned clasp on individual encodings

SMAC (Enc-1): smac-turned clasp on encoding 1

Matt Buddenhagen and Yuliya Lierler Performance Tuning in Answer Set Programming



parser Tuning: Results I and II Conclusions

? Change from random instances to controlled hardness
instances in tuning did not seem to change the winner

? SMAC (Enc-1) seems to be rather close to SMAC in
performance, yet it is substantially better than default

⇒ It makes sense to use automatic configuration tool early on
in tuning to save time in the future

Matt Buddenhagen and Yuliya Lierler Performance Tuning in Answer Set Programming



Conclusions and Future

Performance Guidelines by Gebser et al. (2011) pave the
way to a sensible performance tuning methodology in ASP

Manual performance tuning of parser augmented by
methodological evaluation process of incremental code
changes is an illustration of this claim

We believe that some if not all rewriting techniques
discussed here can be automated

Automation of this process is the future direction

Automatic configuration tools are powerful tools for
performance tuning yet their role is orthogonal to the role
of manual rewriting techniques

Another question for the future is whether we can combine
automatic configuration tools with automatic rewriting
processes (once available)

Matt Buddenhagen and Yuliya Lierler Performance Tuning in Answer Set Programming



Thank you!

Thanks

Questions

Matt Buddenhagen and Yuliya Lierler Performance Tuning in Answer Set Programming


