# **Diagnostic Reasoning for Robotics** using Action Languages

#### Esra Erdem<sup>1</sup>, Volkan Patoğlu<sup>1</sup>, Zeynep G. Saribatur<sup>2</sup>

#### <sup>1</sup> Sabancı University, İstanbul, Turkey <sup>2</sup> Vienna University of Technology, Vienna, Austria

This research is partially supported by TUBITAK 113M422 and 114E491, 111E116 grants.



CogRobo Cognitive Robotics Laboratory



# Robotic Domains with Multiple Teams of Robots



- Teams collaborate with each other for a common goal
- Coordination of teams is needed to use shared resources efficiently
- Each team consists of heterogeneous robots
- Each team has cognitive skills, like hybrid planning with minimum total action cost

E. Erdem, V. Patoglu, Z. G. Saribatur, P. Schüller, T. Uras, "Finding optimal plans for multiple teams of robots through a mediator: A logic-based approach", TPLP 13(4-5): 831-846 (2013).
Z. G. Saribatur, E. Erdem, V. Patoglu, "Cognitive factories with multiple teams of heterogeneous robots: Hybrid reasoning for antimal faccible alobel plans". Proc. of IBOS, 2014.

for optimal feasible global plans", Proc. of IROS, 2014.

### Plan Execution Monitoring



# Causal Replanning



#### NOVELTY: Diagnostic reasoning for replanning!

- Identify causes of discrepancies and modify the planning problem
- Add repair actions to the domain description



Is the logical theory consistent?

#### Model-Based Diagnosis for Plan Execution



Is the logical theory consistent?

If it is consistent then which actions in  $P_t$  could not be executed and why not?

### Describing Robotic Actions for Diagnostic Reasoning



- Formalisms for representing and reasoning about actions and change.
- Action description language: C+ [Giunchiglia et al., 2004].

#### a causes F if G nonexecutable A if G caused F if G

• Action query language: Q [Gelfond & Lifschitz, 1998].

F holds at t A occurs at t

• Automated reasoner: CCalc [McCain 1997].

#### Transforming an Action Description for Diagnosis

1. For every robot *r*, add the causal laws

#### **default** $\neg broken(r)$

**caused** broken(r) **if** broken(r) **after**  $\neg broken(r)$ 

**caused** broken(r) **after** broken(r)

Transforming an Action Description for Diagnosis

#### 2. For every (concurrent) action A, add the causal law default pre(A)

and replace every causal law

nonexecutable A if G

with the causal law

caused  $\neg pre(A)$  if G

For every primitive action *a*, replace every causal law *a* causes *F* if *G* 

with the causal law

a causes F if G, pre(A)

#### Transforming an Action Description for Diagnosis

3. For every primitive action a, for all robots  $r_1, ..., rm$ that take part in execution of a, replace every causal law

a causes F if G

with the causal law

a causes F if G,  $\neg broken(r_1), \dots, \neg broken(r_m)$ 

**Proposition 1** Every query satisfied by D is satisfied by  $D_{diag}$ .

Let's characterize a *diagnosis problem*, *DP*, by  $\langle D_{diag}, R, s_0, P_t, o_t \rangle$ where  $P_t = \langle A_0, ..., A_{t-1} \rangle$ .

A *solution* of *DP* is a set  $X \subseteq R$  of robots such that  $D_{diag}$  satisfies the query

$$s_0 \text{ holds at } 0 \land \land _{i=0..t-1} A_i \text{ occurs at } i \land o_t \text{ holds at } t \land \land _{r \in X} broken(r) \text{ holds at } t \land \land _{r \in R-X} \neg broken(r) \text{ holds at } t .$$

We also say that X is a *diagnosis* of the discrepancy detected at time t.

# Generating Hypotheses



| w Sold Silver Search Terroral Halp                                                                | with Ddit New Search Terminal Help                                                                                                                 |    |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| check environment change<br>ep 7<br>secute the actions<br>eam 1                                   | Team 1: swapindEffector(we2,3) dock(c1,1) workOm(1,3) move(we1,right) distance(we1,right),2<br>Team 2: charge(c1) move(2,up) distance(2,up),1<br>7 | 4x |
| check discrepancy<br>check order change<br>check environment change<br>chan 2                     | <pre>Step 7 Team 1: charge(c1) workOm(wel,2) move(we2,right) distance(we2,right),1 Team 2: undocK(c1) </pre>                                       | IA |
| check discrepancy<br>check order change<br>check environment change<br>rep 8<br>ecute the actions | <pre>Step 8 Team 1: undock(cl) workOm(we2,1) Team 2: move(l,left) move(cl,right) distance(l,left),2 distance(cl,right),1</pre>                     |    |
| ean 1<br>check discrepancy<br>check order change<br>check environment change                      |                                                                                                                                                    |    |
|                                                                                                   |                                                                                                                                                    |    |

 $\sum_{diag} U S_0^M \cup P_t \cup O_t^M \cup H$ 

Is the logical theory consistent? False negatives are generated without geometric reasoning.

Is integrating feasibility checks useful

for generating better diagnoses?

#### Is integrating learning useful for generating better diagnoses and faster?

#### YES!

|                                                 | Number of iterations and CPU time [secs] |             |              |             |
|-------------------------------------------------|------------------------------------------|-------------|--------------|-------------|
| Scenario                                        | ASP                                      |             | SAT          |             |
|                                                 | w/o learning                             | w/ learning | w/o learning | w/ learning |
| 1 charger, 1 wet, 2 dry                         | 2                                        | 1           | 9            | 4           |
| Discrepancy at Step 12, Diagnosis cardinality=1 | 6.51 secs                                | 3.21 secs   | 52.24 secs   | 26.49 secs  |
| 1 charger, 1 wet, 2 dry                         | 2                                        | 1           | 21           | 11          |
| Discrepancy at Step 8, Diagnosis cardinality=2  | 4.14 secs                                | 2.06 secs   | 67.43 secs   | 39.85 secs  |
| 1 charger, 1 wet, 2 dry                         | 2                                        | 1           | 25           | 23          |
| Discrepancy at Step 10, Diagnosis cardinality=3 | 4.28 secs                                | 2.14 secs   | 85.88 secs   | 84.16 secs  |
| 1 charger, 2 wet, 2 dry                         | 2                                        | 1           | 7            | 4           |
| Discrepancy at Step 8, Diagnosis cardinality=1  | 7.66 secs                                | 3.85 secs   | 83.70 secs   | 42.97 secs  |
| 1 charger, 2 wet, 2 dry                         | 2                                        | 1           | 24           | 12          |
| Discrepancy at Step 12, Diagnosis cardinality=2 | 9.10 secs                                | 4.56 secs   | 142.18 secs  | 80.35 secs  |
| 1 charger, 2 wet, 2 dry                         | 2                                        | 1           | 39           | 25          |
| Discrepancy at Step 13, Diagnosis cardinality=3 | 9.86 secs                                | 4.93 secs   | 197.01 secs  | 127.25 secs |
| 2 charger, 2 wet, 2 dry                         | 2                                        | 1           | 8            | 4           |
| Discrepancy at Step 6, Diagnosis cardinality=1  | 6.27 secs                                | 3.13 secs   | 97.00 secs   | 49.30 secs  |
| 2 charger, 2 wet, 2 dry                         | 2                                        | 1           | 31           | 13          |
| Discrepancy at Step 14, Diagnosis cardinality=2 | 13.29 secs                               | 6.63 secs   | 195.17 secs  | 102.48 secs |
| 2 charger, 2 wet, 2 dry                         | 2                                        | 1           | 49           | 30          |
| Discrepancy at Step 12, Diagnosis cardinality=3 | 11.57 secs                               | 5.78 secs   | 240.90 secs  | 154.85 secs |

### Does diagnostic reasoning improve replanning?

YES!

| Scenario                                          | Number of replanning and<br>total CPU time |            |                |
|---------------------------------------------------|--------------------------------------------|------------|----------------|
|                                                   | w/ diagnosis                               |            | unto diagnosio |
|                                                   | w/ repair                                  | w/o repair | w/o diagnosis  |
| 1 charger, 1 wet, 1 dry                           | 3*                                         | 11         | 17             |
| Discrepancy at Step 5<br>Diagnosis cardinality=1  | 10.38                                      | 9.71       | 82.22          |
| 1 charger, 1 wet, 2 dry                           | 3*                                         | 21         | 41             |
| Discrepancy at Step 12<br>Diagnosis cardinality=1 | 0.52                                       | 18.17      | 5.49           |
| 1 charger, 2 wet, 2 dry                           | 2*                                         | 17*        | 25             |
| Discrepancy at Step 8<br>Diagnosis cardinality=1  | 4.95                                       | 28.51      | 99.68          |
| 1 charger, 2 wet, 2 dry                           | 8*                                         | 13         | 25             |
| Discrepancy at Step 12<br>Diagnosis cardinality=2 | 13.41                                      | 23.04      | 53.14          |
| 2 charger, 2 wet, 2 dry                           | 4*                                         | 17         | 44             |
| Discrepancy at Step 6<br>Diagnosis cardinality=1  | 11.78                                      | 79.38      | 152.07         |
| 2 charger, 2 wet, 2 dry                           | 5*                                         | 9*         | 36             |
| Discrepancy at Step 14<br>Diagnosis cardinality=2 | 5.00                                       | 11.67      | 25.7           |

\* indicates termination with a feasible plan, while others terminate due to non-existence of a feasible plan.



Is integrating feasibility checks useful for generating better diagnoses?



Is the logical theory consistent?

False negatives are generated without geometric reasoning.



Is integrating learning useful for generating better diagnoses and faster? YES!

|                                                 | Number of iterations and CPU time [secs] |             |              |             |
|-------------------------------------------------|------------------------------------------|-------------|--------------|-------------|
| Scenario                                        | ASP                                      |             | SAT          |             |
|                                                 | w/o learning                             | w/ learning | w/o learning | w/ learning |
| 1 charger, 1 wet, 2 dry                         | 2                                        | 1           | 9            | 4           |
| Discrepancy at Step 12, Diagnosis cardinality=1 | 6.51 secs                                | 3.21 secs   | 52.24 secs   | 26.49 secs  |
| 1 charger, 1 wet, 2 dry                         | 2                                        | 1           | 21           | 11          |
| Discrepancy at Step 8, Diagnosis cardinality=2  | 4.14 secs                                | 2.06 secs   | 67.43 secs   | 39.85 secs  |
| 1 charger, 1 wet, 2 dry                         | 2                                        | 1           | 25           | 23          |
| Discrepancy at Step 10, Diagnosis cardinality=3 | 4.28 secs                                | 2.14 secs   | 85.88 secs   | 84.16 secs  |
| 1 charger, 2 wet, 2 dry                         | 2                                        | 1           | 7            | 4           |
| Discrepancy at Step 8, Diagnosis cardinality=1  | 7.66 secs                                | 3.85 secs   | 83.70 secs   | 42.97 secs  |
| 1 charger, 2 wet, 2 dry                         | 2                                        | 1           | 24           | 12          |
| Discrepancy at Step 12, Diagnosis cardinality=2 | 9.10 secs                                | 4.56 secs   | 142.18 secs  | 80.35 secs  |
| 1 charger, 2 wet, 2 dry                         | 2                                        | 1           | 39           | 25          |
| Discrepancy at Step 13, Diagnosis cardinality=3 | 9.86 secs                                | 4.93 secs   | 197.01 secs  | 127.25 secs |
| 2 charger, 2 wet, 2 dry                         | 2                                        | 1           | 8            | 4           |
| Discrepancy at Step 6, Diagnosis cardinality=1  | 6.27 secs                                | 3.13 secs   | 97.00 secs   | 49.30 secs  |
| 2 charger, 2 wet, 2 dry                         | 2                                        | 1           | 31           | 13          |
| Discrepancy at Step 14, Diagnosis cardinality=2 | 13.29 secs                               | 6.63 secs   | 195.17 secs  | 102.48 secs |
| 2 charger, 2 wet, 2 dry                         | 2                                        | 1           | 49           | 30          |
| Discrepancy at Step 12, Diagnosis cardinality=3 | 11.57 secs                               | 5.78 secs   | 240.90 secs  | 154.85 secs |

#### Does diagnostic reasoning improve replanning?

#### YES!

|                                                   | Number of replanning and |            |               |  |
|---------------------------------------------------|--------------------------|------------|---------------|--|
| Scenario                                          | total CPU time           |            |               |  |
|                                                   | w/ diagnosis             |            | w/a diagnosis |  |
|                                                   | w/ repair                | w/o repair | w/o diagnosis |  |
| 1 charger, 1 wet, 1 dry                           | 3*                       | 11         | 17            |  |
| Discrepancy at Step 5<br>Diagnosis cardinality=1  | 10.38                    | 9.71       | 82.22         |  |
| 1 charger, 1 wet, 2 dry                           | 3*                       | 21         | 41            |  |
| Discrepancy at Step 12<br>Diagnosis cardinality=1 | 0.52                     | 18.17      | 5.49          |  |
| 1 charger, 2 wet, 2 dry                           | 2*                       | 17*        | 25            |  |
| Discrepancy at Step 8<br>Diagnosis cardinality=1  | 4.95                     | 28.51      | 99.68         |  |
| 1 charger, 2 wet, 2 dry                           | 8*                       | 13         | 25            |  |
| Discrepancy at Step 12<br>Diagnosis cardinality=2 | 13.41                    | 23.04      | 53.14         |  |
| 2 charger, 2 wet, 2 dry                           | 4*                       | 17         | 44            |  |
| Discrepancy at Step 6<br>Diagnosis cardinality=1  | 11.78                    | 79.38      | 152.07        |  |
| 2 charger, 2 wet, 2 dry                           | 5*                       | 9*         | 36            |  |
| Discrepancy at Step 14<br>Diagnosis cardinality=2 | 5.00                     | 11.67      | 25.7          |  |

\* indicates termination with a feasible plan, while others terminate due to non-existence of a feasible plan.

### Conclusions



Novelties of our diagnostic reasoning framework from the AI and Robotics perspectives:

- It generates diagnoses without introducing auxiliary "break" actions.
- It can optimize these diagnoses.
- It utilizes feasibility checks as needed.
- It utilizes learning from earlier diagnoses and failures.

Erdem, E., Patoglu, V., Saribatur, Z.G.: Integrating hybrid diagnostic reasoning in plan execution monitoring for cognitive factories with multiple robots. Proc. of ICRA (2015).