INTRODUCING EQUIBEL

AN IMPLEMENTATION OF CONSISTENCY-BASED BELIEF CHANGE

Paul Vicol'! James Delgrande! Torsten Schaub?
LPNMR - September 28, 2015
Simon Fraser University

2University of Potsdam

MULTI-AGENT BELIEF CHANGE

= We have a network of agents
= Each agent has some initial beliefs about the state of the world
= Agents communicate and share information

= Goal: Determine what each agent believes after learning as much as
possible from other agents
= How do we do this?

PAQ p AT q ? ? ?

@ @ @~ @ @ @

gvr p pvqgyv-r ? ? ?

Original Graph G Completion of G

A MOTIVATING EXAMPLE

Example: Drones looking for people in a disaster site

= Each drone has an initial belief:
= Drone 1 believes that there is a person in the bookstore, and one in
the atrium: bA a
= Drone 2 believes that there cannot be missing people in both the
atrium and the bookstore: —bV —a
= Drone 3 just believes that there is a person in the cafeteria: ¢

baa b v-a

C

= The drones communicate, and learn from one another

= Each drone is willing to incorporate new information that does not
conflict with its initial beliefs

THE CONSISTENCY-BASED FRAMEWORK FOR BELIEF CHANGE

= An agent starts out with initial beliefs that it does not want to give
up, and then includes as much information as consistently possible
from other agents

= We want to determine what pieces of information an agent can
incorporate from others

= How is this done?

= Agent / expresses its beliefs in a language £’ over superscripted
atoms P' = {p’,q',/,...} (i.e. agent 1 believes p' A ~q")

= We “force” the languages used by adjacent agents to agree on the
truth values of corresponding atoms as much as consistently possible

= This yields one or more maximal sets of equivalences, EQ, between
atoms in the languages of adjacent agents

= These equivalences provide a means to consistently translate
information from one agent to another

EQUIBEL OVERVIEW

= Purpose: To make it easy for students and researchers to
experiment with belief change

= Equibel is an implementation of the consistency-based framework, in
ASP and Python

= Allows users to simulate belief sharing in arbitrary networks of agents

= Users create a graph and assign formulas to nodes

= Supports standard belief change operations like revision and merging
by automatically constructing implicit graph topologies
= Users specify a set of formulas and an operation to be performed

= Behind the scenes, Equibel constructs a graph, finds the completion,
and returns only the relevant formulas

EQUIBEL ARCHITECTURE

= The main operation performed by Equibel is finding the completion
of a G-scenario
= The steps to find the completion are:
1. Find maximal sets of equivalences between atoms of adjacent agents

2. Translate beliefs between the languages of adjacent agents
3. Combine beliefs resulting from different maximal equivalence sets

= Two architectural layers:

= The ASP layer performs the core maximization procedure
= The Python layer post-processes answer sets and provides
programmatic and interactive interfaces

EQUIBEL SYSTEM DESIGN

Python

equibel Module / Interactive CLI

Classes for Graphs, Formulas, etc.
input.bcf | _y —» | output.bcf

Format Converters

gringo Module

ASP

eq_base.lp cardinality.lp ann containment.lp

\

Modular Logic Program Structure

ENCODING A BELIEF CHANGE SCENARIO IN ASP

= The graph structure is encoded using node/1 and edge/2, and
formulas are associated with nodes using formula/2

= Formulas are created using neg/1, and/2, or/2, implies/2, and
iff/2

Example

node(1). node(2). node(3). node(4).
edge(1,2). edge(1,3). edge(2,3). edge(2,4).
formula(l, and(p,q)).

formula(2, or(q,neg(r))).

formula(3, implies(and(p,neg(q)),neg(r))).
formula(4, p).

GENERATING EQ SETS IN ASP

= First, we break down formulas into subformulas and extract atoms
= We generate candidate equivalences p* = p” with:

{ eq(P,X,Y) : atom(P), edge(X,Y), X < Y }.
= Then we attempt to assign truth values to the atoms at each node:
1 { tv(N,P,1) ; tv(N,P,0) } 1 :- atom(P), node(N).

= Such that atoms p* and p” that participate in an equivalence
p* = p” have the same truth value:

:- eq(P,X,Y), edge(X,Y), tv(X,P,V), tv(Y,P,W), V I=W.

= We build up the original formulas from the bottom-up, checking
satisfiability; all agents' original formulas must be satisfied:

:— formula(N,F), not sat(N,F).

TRANSLATION AND POST-PROCESSING IN PYTHON

= ASP gives us a collection of maximal equivalence sets
= In Python, we translate formulas between the languages of
connected agents based on the EQ sets
= An agent may obtain different information from different EQ sets
= Each EQ set represents an equally plausible way to share information
= So we take the disjunction of beliefs obtained from different EQ sets

Possible Propagation Scenarios

pAq pAqQ pAQq
. 1 — 2 — 3 N .
Input Scenario // N Completion
EQ={p'=p?* q'=q*, g’ =0’}

p PAQ d PACII @ TPAQ
1 — 2 —— 3 1 — 2 —/8— 3
pAq PAQ TP AQ
\\ 1 —2 — 3 //

EQ={p°=p’ . q'=q", ¢’ =q%

10

EQUIBEL IS EASY

= Equibel can be used interactively, by invoking the equibel prompt:

equibel (g) > add_nodes [1..4]
nodes: [1, 2, 3, 4]
equibel (g) > add_edges [(1,2), (2,3), (3,4)]
edges: 1 <->2 2<->3 3<->4
equibel (g) > add_formula 1 p & q
node 1: q & p
equibel (g) > add_formula 4 ~p & r
node 4: ~p & r
equibel (g) > completion
node 1: q& pé&r
node 2: q & r
node 3: q & r
node 4: q & ~p & r

11

SIMULATING THE DRONE EXAMPLE

= The following script simulates belief sharing in the drone scenario:

import equibel

G = equibel.complete_graph(3)
G.add_formula(0, 'a & b')
G.add_formula(i, '~a | ~b")
G.add_formula(2, 'c')

R = equibel.completion(G)
print (R.formulas())

= python drones.py

{0: a&c&b, 1: c & ((a & ~b) | (~a & b)), 2: (a | b) & c}

12

IMPLICIT GRAPH TOPOLOGIES: BELIEF REVISION

= Belief revision = Incorporating a new belief « into a belief set K
= equibel.revise(['p', 'q | ~r'], 'r') constructs the graph:

{p,q v -r} r PAQAr PAQAT

—)

= Agent 2 will incorporate as much information as possible from agent
1, while not giving up its initial belief

= The revision of K= {p,qV —r} by a = ris the belief of agent 2 in
the completion

13

IMPLICIT GRAPH TOPOLOGIES: BELIEF MERGING

= Two types of merging: projection-based and consensus-based
= equibel.merge(['p&q', '~plr', 'g->r'l,
type=equibel.PROJECTION) constructs a star graph:

pPA~q pVvr PATQAT PATQAT

. (& oW O
o . pA-qAr

qﬁr @rranr

= The input formulas are projected onto the central node
= The result is the formula at the central node in the completion

14

CONCLUSION

Equibel

= Is a software system for working with equivalence-based belief change

= Simulates belief sharing in multi-agent scenarios

= Supports standard belief change operations (revision and merging)
by constructing implicit graphs

= Provides a Python package, as well as an interactive prompt

= |s open source, hosted at
www.github.com/asteroidhouse/equibel

= [s available on PyPI, so it can be installed using pip:

pip install equibel

15

