Compacting Boolean Formulae for Inference in PLP

By Theofrastos Mantadelis, Dimitar Shterionov and Gerda Janssens
Hard Problems

• Boolean Formulae are used:
 – Satisfiability (SAT solvers)
 – Formal Verification
 – Scheduling

• Knowledge Compilation
 – Compile Boolean Formulae
Knowledge Compilation

- Compilation Languages
 - NNF, DNF, CNF, ...
 - sd-DNNF, ROBBD, SDD, ...
- Properties
 - Decomposability (Conjuncts do not share variables)
 - Determinism (Disjuncts are logically disjoint)
 - Smoothness (Disjuncts mention the same set of variables)
 - Ordering (Decision variables appear in the same order)
- Polytime Operations
- Polytime Transformations
Compiling Boolean Formulae

- Usually NP hard or worse!
 - ROBDDs
 - $F = (X_1 \land X_2) \lor (X_3 \land X_4) \lor (X_5 \land X_6) \lor (X_7 \land X_8)$
 - $X_1, X_3, X_5, X_7, X_2, X_4, X_6, X_8$
Compiling Boolean Formulae

• Usually NP hard or worse!
 – ROBDDs
 – \(F=(X_1 \land X_2) \lor (X_3 \land X_4) \lor (X_5 \land X_6) \lor (X_7 \land X_8) \)
 – \(X_1, X_3, X_5, X_7, X_2, X_4, X_6, X_8 \rightarrow X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8 \)
Motivation

- We use Boolean Formulae
 - To represent models
 - We use ROBBDs and sd-DNNFs for compilation
 - Probabilistic Logic Programs often Intractable
• Probabilistic Logic Programming Language
 – Extends Prolog with probabilities
 0.6::e(a, b). 0.7::e(c, d).
 0.2::e(e, f). 0.3::e(a, d).
 0.4::e(d, f). 0.8::e(b, c).
 0.4::e(d, e).
 p(X, Y) :- e(X, Y).
 p(X, Y) :- e(X, X1), p(X1, Y).
ProbLog

- Probabilistic Logic Programming Language
 - Extends Prolog with probabilities
 - 0.6::e(a, b). 0.7::e(c, d).
 - 0.2::e(e, f). 0.3::e(a, d).
 - 0.4::e(d, f). 0.8::e(b, c).
 - 0.4::e(d, e).
 - p(X, Y) :- e(X, Y).
 - p(X, Y) :- e(X, X1), p(X1, Y).
 - Defines a Probabilistic Distribution
 \[
 P(L^d) = \prod_{f_i \in L^d} p_i \cdot \prod_{f_i \in L \setminus L^d} (1 - p_i)
 \]
ProbLog

- **Probabilistic Logic Programming Language**
 - Extends Prolog with probabilities

 \[
 \begin{align*}
 0.6 & \cdot e(a, b) & 0.7 & \cdot e(c, d) \\
 0.2 & \cdot e(e, f) & 0.3 & \cdot e(a, d) \\
 0.4 & \cdot e(d, f) & 0.8 & \cdot e(b, c) \\
 0.4 & \cdot e(d, e) & \\
 p(X, Y) & :- e(X, Y) \\
 p(X, Y) & :- e(X, X1), p(X1, Y)
 \end{align*}
 \]

 - Defines a Probabilistic Distribution
 \[
 P(L^d) \equiv \prod_{f_i \in L^d} p_i \cdot \prod_{f_i \in L \setminus L^d} (1 - p_i)
 \]

- **Queries**
 - Marginal and Conditional
AND-OR Tree

- Intermediate Structure used for BF representation

0.6::e(a, b). 0.7::e(c, d).
0.2::e(e, f). 0.3::e(a, d).
0.4::e(d, f). 0.8::e(b, c).
0.4::e(d, e).

p(X, Y) :- e(X, Y).
p(X, Y) :- e(X, X1), p(X1, Y).

?- problog_exact(p(a, f), P).
AND-OR Tree

- Intermediate Structure used for BF representation
 - AND nodes
 - OR nodes
 - Terminal nodes (probabilistic facts)
 - Cyclic Structure & General Negation
Compacting Boolean Formulae

- Perform Polytime pattern detections
- Perform linear pattern compactions
 - Simplify the Boolean Formulae
 - Reduces the number of operations
 - Reduce the number of binary variables
 - Reduces the search space for Compilation
Detect Patterns

• Single Variable \[O(N_{or} \cdot (\log(N_{or}) + \log(N_{and}))) \] Compaction
Detect Patterns

- Single Branch I $O(N_{or} \cdot \log(N_{or}) + \log(N_{and}))$ Compaction
Detect Patterns

- Compacting
Detect Patterns

- **AND-Cluster** $\mathcal{O}(N_{\text{and}}^2 \cdot N_{\text{term}})$

Compaction

\[p_t = \prod_{C_i \in Ch'_A} p_i \]
Detect Patterns

- Compacting
Detect Patterns

- **OR-Cluster I** $O(N_{or}^2 \cdot N_{term})$

\[
p_t = \left(\prod_{i=1}^{n} \left((p_i \cdot (1-p_i) + p_i) \cdot (1-p_i) + p_i \right) \right) + \ldots + p_n
\]

Compaction
Detect Patterns

- Compaction
Detect Patterns

- **Single Variable** $O(N_{or} \cdot (\log(N_{or}) + \log(N_{and})))$

 ![Diagram of Single Variable]

- **Compaction**

 ![Diagram of Compaction]

- **Compaction**

 ![Diagram of Compaction with annotations]

 1. $p(a, f) \quad \text{AND} \quad \{\text{and}(e(a, b), e(b, c), e(c, d)); 0.336\}$
 2. $p(d, f) \quad \text{AND} \quad \{\text{or}(e(d, f), \text{and}(e(d, e), e(e, f)); 0.448\}$
 3. $p(a, d) \quad \{0.3\}$

 ![Diagram of Compaction with annotations and new patterns]
Detect Patterns

- OR-Cluster II (*not supported*)

\[p_t = \left(\ldots \left(p_1 \cdot (1 - p_2) + p_2 \right) \cdot (1 - p_3) + p_3 \right) \ldots + p_n \]
Detect Patterns

- **Single Branch II** \(O\left(N_{or} \cdot (\log(N_{or}) + \log(N_{and}))\right)\)

- **Minimal Proof** \(O\left(N_{or} \cdot (\log(N_{or}) + \log(N_{and}) + N_{term})\right)\)

Compaction
Experiments

- 2 PLP Systems: *MetaProbLog* and *ProbLog 2*
- 2 Compilation Languages: *ROBDDs*, *sd-DNNFs*
- 3 Different Compaction Settings: *Prior*, *Post*, *Both*
- 7 Benchmark sets: *Alzheimer*, *Balls*, *Dictionary*, *Grid*, *Les Miserables*, *Smokers*, *WebKB*
- Total of 738 *ProbLog* programs
Results

Relative Number of Programs per Compaction Setting for Knowledge Compilation

- **Prior**: Better programs
- **Post**: Better programs
- **Both**: Same programs

5%
Results - MetaProbLog
Results ProbLog 2
Experiments - Timeouts

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>alzheimer_q1</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>alzheimer_q2</td>
<td>9</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>alzheimer_q3</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>alzheimer_q4</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>alzheimer_q5</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>alzheimer_q6</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>balls</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>dictionary</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>grid</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>les_miserables</td>
<td>47</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>27</td>
<td>2</td>
<td>14</td>
<td>2</td>
<td>24</td>
<td>2</td>
<td>16</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>smokers1</td>
<td>20</td>
<td>6</td>
<td>13</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>smokers2</td>
<td>20</td>
<td>5</td>
<td>16</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>16</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>16</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>smokers3</td>
<td>18</td>
<td>3</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>13</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>12</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>smokers4</td>
<td>20</td>
<td>5</td>
<td>13</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>14</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>smokers5</td>
<td>17</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>webkb1</td>
<td>48</td>
<td>18</td>
<td>29</td>
<td>9</td>
<td>0</td>
<td>10</td>
<td>14</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>14</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>webkb2</td>
<td>33</td>
<td>8</td>
<td>19</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>13</td>
<td>7</td>
<td>0</td>
<td>8</td>
<td>13</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>webkb4</td>
<td>48</td>
<td>20</td>
<td>41</td>
<td>17</td>
<td>0</td>
<td>7</td>
<td>41</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>41</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>webkb5</td>
<td>48</td>
<td>17</td>
<td>29</td>
<td>10</td>
<td>0</td>
<td>8</td>
<td>14</td>
<td>4</td>
<td>0</td>
<td>7</td>
<td>14</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Total:</td>
<td>636</td>
<td>99</td>
<td>209</td>
<td>89</td>
<td>59</td>
<td>66</td>
<td>181</td>
<td>38</td>
<td>66</td>
<td>57</td>
<td>182</td>
<td>32</td>
<td>72</td>
</tr>
<tr>
<td>Average timeouts:</td>
<td></td>
<td>4.13</td>
<td>8.57</td>
<td>2.10</td>
<td>3.75</td>
<td>3.19</td>
<td>8.12</td>
<td>1.31</td>
<td>3.93</td>
<td>2.73</td>
<td>8.08</td>
<td>1.59</td>
<td>4.01</td>
</tr>
<tr>
<td>Benchmark</td>
<td>Prior</td>
<td></td>
<td></td>
<td>Post</td>
<td></td>
<td></td>
<td>Both</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alzheimer_q1</td>
<td>1.04/2.66</td>
<td>2.0/17.51</td>
<td>0.07/0.58</td>
<td>17.69/139.28</td>
<td>1.11/2.68</td>
<td>20.38/141.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alzheimer_q2</td>
<td>1.13/2.54</td>
<td>4.17/331.08</td>
<td>0.02/0.14</td>
<td>7.82/308.4</td>
<td>1.15/2.54</td>
<td>11.3/259.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alzheimer_q3</td>
<td>0.05/0.13</td>
<td>5.51/321.67</td>
<td>0.0/0.03</td>
<td>0.0/281.88</td>
<td>0.05/0.13</td>
<td>5.54/302.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alzheimer_q4</td>
<td>0.0/0.03</td>
<td>0.16/0.54</td>
<td>0.0/0.02</td>
<td>0.0/0.18</td>
<td>0.0/0.03</td>
<td>0.16/0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alzheimer_q5</td>
<td>0.05/0.14</td>
<td>0.38/158.32</td>
<td>0.01/0.04</td>
<td>0.24/230.54</td>
<td>0.05/0.14</td>
<td>3.15/438.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alzheimer_q6</td>
<td>1.13/2.53</td>
<td>4.15/327.9</td>
<td>0.02/0.14</td>
<td>7.79/345.25</td>
<td>1.17/2.57</td>
<td>11.21/240.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>balls</td>
<td>0.0/0.02</td>
<td>5.99/78.89</td>
<td>0.0/0.02</td>
<td>6.07/78.4</td>
<td>0.0/0.02</td>
<td>8.77/84.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dictionary</td>
<td>0.0/0.02</td>
<td>0.01/1.22</td>
<td>0.0/0.02</td>
<td>0.01/1.87</td>
<td>0.0/0.02</td>
<td>0.02/1.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grid</td>
<td>0.0/0.02</td>
<td>0.02/271.24</td>
<td>0.0/0.02</td>
<td>0.03/110.92</td>
<td>0.0/0.02</td>
<td>0.09/149.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>les_miserables</td>
<td>0.0/0.02</td>
<td>0.0/178.72</td>
<td>0.0/0.02</td>
<td>0.26/95.19</td>
<td>0.0/0.02</td>
<td>0.26/94.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>smokers1</td>
<td>0.0/0.02</td>
<td>0.01/436.57</td>
<td>0.0/0.02</td>
<td>3.68/108.58</td>
<td>0.0/0.02</td>
<td>38.45/404.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>smokers2</td>
<td>0.0/0.02</td>
<td>0.01/147.54</td>
<td>0.0/0.02</td>
<td>29.98/201.61</td>
<td>0.0/0.02</td>
<td>64.95/297.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>smokers3</td>
<td>0.0/0.02</td>
<td>0.01/64.96</td>
<td>0.0/0.03</td>
<td>8.02/98.45</td>
<td>0.0/0.03</td>
<td>25.36/117.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>smokers4</td>
<td>0.0/0.03</td>
<td>0.01/368.1</td>
<td>0.0/0.03</td>
<td>20.93/306.63</td>
<td>0.0/0.03</td>
<td>21.8/352.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>smokers5</td>
<td>0.0/0.02</td>
<td>0.01/311.78</td>
<td>0.0/0.02</td>
<td>7.87/354.27</td>
<td>0.0/0.02</td>
<td>0.02/140.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>webkb1</td>
<td>0.01/0.06</td>
<td>1.94/370.12</td>
<td>0.01/0.05</td>
<td>3.93/259.48</td>
<td>0.01/0.05</td>
<td>4.72/479.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>webkb2</td>
<td>0.0/0.03</td>
<td>0.17/411.62</td>
<td>0.0/0.03</td>
<td>1.35/453.89</td>
<td>0.0/0.03</td>
<td>0.64/423.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>webkb4</td>
<td>0.0/0.03</td>
<td>2.77/466.59</td>
<td>0.0/0.03</td>
<td>8.46/101.19</td>
<td>0.0/0.03</td>
<td>15.47/174.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>webkb5</td>
<td>0.01/0.08</td>
<td>1.97/413.38</td>
<td>0.01/0.06</td>
<td>9.66/443.91</td>
<td>0.01/0.07</td>
<td>5.34/195.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experiments – ProbLog 2 - Times

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Prior</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>alzheimer_q1</td>
<td>1.32/2.08</td>
<td>3.94/519.63</td>
<td>0.19/0.88</td>
<td>9.42/23.69</td>
<td>1.5/2.02</td>
<td>11.87/24.19</td>
</tr>
<tr>
<td>alzheimer_q2</td>
<td>1.42/1.72</td>
<td>7.95/451.17</td>
<td>0.09/0.39</td>
<td>10.29/257.59</td>
<td>1.52/1.74</td>
<td>18.25/264.27</td>
</tr>
<tr>
<td>alzheimer_q3</td>
<td>0.1/0.17</td>
<td>3.93/268.92</td>
<td>0.05/0.16</td>
<td>0.26/382.5</td>
<td>0.14/0.21</td>
<td>3.98/269.76</td>
</tr>
<tr>
<td>alzheimer_q4</td>
<td>0.05/0.1</td>
<td>0.24/0.46</td>
<td>0.04/0.13</td>
<td>0.04/0.3</td>
<td>0.09/0.14</td>
<td>0.28/0.48</td>
</tr>
<tr>
<td>alzheimer_q5</td>
<td>0.11/0.24</td>
<td>0.5/267.79</td>
<td>0.05/0.2</td>
<td>1.87/113.28</td>
<td>0.16/0.26</td>
<td>2.37/113.61</td>
</tr>
<tr>
<td>alzheimer_q6</td>
<td>1.4/1.68</td>
<td>3.32/92.3</td>
<td>0.1/0.4</td>
<td>5.78/131.44</td>
<td>1.48/1.71</td>
<td>10.79/136.35</td>
</tr>
<tr>
<td>balls</td>
<td>0.04/0.08</td>
<td>3.83/93.48</td>
<td>0.04/0.12</td>
<td>6.96/76.37</td>
<td>0.09/0.13</td>
<td>7.48/77.24</td>
</tr>
<tr>
<td>dictionary</td>
<td>0.04/0.08</td>
<td>0.05/1.4</td>
<td>0.04/0.13</td>
<td>0.04/1.09</td>
<td>0.09/0.13</td>
<td>0.09/1.1</td>
</tr>
<tr>
<td>grid</td>
<td>0.06/0.15</td>
<td>0.11/107.21</td>
<td>0.05/0.21</td>
<td>0.15/100.54</td>
<td>0.11/0.22</td>
<td>0.21/438.91</td>
</tr>
<tr>
<td>les_miserables</td>
<td>0.04/0.08</td>
<td>0.08/534.84</td>
<td>0.04/0.12</td>
<td>0.42/222.54</td>
<td>0.08/0.13</td>
<td>1.57/369.71</td>
</tr>
<tr>
<td>smokers1</td>
<td>0.03/0.07</td>
<td>0.05/173.61</td>
<td>0.03/0.1</td>
<td>0.09/133.69</td>
<td>0.06/0.1</td>
<td>0.13/202.9</td>
</tr>
<tr>
<td>smokers2</td>
<td>0.04/0.08</td>
<td>0.06/538.9</td>
<td>0.04/0.13</td>
<td>0.25/531.27</td>
<td>0.08/0.13</td>
<td>0.28/531.63</td>
</tr>
<tr>
<td>smokers3</td>
<td>0.04/0.1</td>
<td>0.06/190.54</td>
<td>0.04/0.15</td>
<td>0.58/301.3</td>
<td>0.09/0.15</td>
<td>0.59/299.9</td>
</tr>
<tr>
<td>smokers4</td>
<td>0.04/0.08</td>
<td>0.05/360.08</td>
<td>0.04/0.13</td>
<td>0.6/464.78</td>
<td>0.08/0.13</td>
<td>0.58/462.04</td>
</tr>
<tr>
<td>smokers5</td>
<td>0.04/0.1</td>
<td>0.06/74.4</td>
<td>0.04/0.14</td>
<td>0.08/26.18</td>
<td>0.09/0.14</td>
<td>0.14/21.59</td>
</tr>
<tr>
<td>webkb1</td>
<td>0.05/0.79</td>
<td>1.11/340.08</td>
<td>0.05/0.86</td>
<td>1.25/414.36</td>
<td>0.09/0.84</td>
<td>1.45/359.86</td>
</tr>
<tr>
<td>webkb2</td>
<td>0.04/0.73</td>
<td>0.29/237.8</td>
<td>0.04/0.78</td>
<td>2.04/92.82</td>
<td>0.08/0.77</td>
<td>0.85/103.56</td>
</tr>
<tr>
<td>webkb4</td>
<td>0.05/0.74</td>
<td>0.64/242.11</td>
<td>0.04/0.81</td>
<td>0.39/377.47</td>
<td>0.09/0.79</td>
<td>1.28/486.33</td>
</tr>
<tr>
<td>webkb5</td>
<td>0.05/0.79</td>
<td>0.72/434.88</td>
<td>0.05/0.85</td>
<td>1.28/295.33</td>
<td>0.1/0.85</td>
<td>1.43/317.09</td>
</tr>
</tbody>
</table>
Conclusion

- Compaction of 6 out 7 Patterns
- Performance Gain in most cases
- Implementation in Prolog (Future work)
- Test on other fields (Future work)
Questions

Thank You