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Machine Learning and Data Mining

Machine Learning

Data Mining

knowledge discovery 

from data

model, patterns, …

Given: class labeled data 

Find: classification model or 

set of interesting patterns in the data

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE

data
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Example: Contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE

DATA
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Learning models from contact lens data

Data Mining

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Learning models from contact lens data

Data Mining

lenses=NONE ← tear production=reduced 

lenses=NONE ← tear production=normal ˄ astigmatism=yes ˄

spect. pre.=hypermetrope

lenses=SOFT ← tear production=normal ˄ astigmatism=no 

lenses=HARD ← tear production=normal ˄ astigmatism=yes ˄

spect. pre.=myope 

lenses=NONE ←

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Finding patterns in Contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE

DATA

PATTERNs: rules describing subgroups of instances

Lenses = NONE ← Tear prod. = reduced

Data Mining
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1

Why learn symbolic models and patterns

Use learned models

to classify and explain classifications of new instances

Use discovered patterns

for data exploration

classified  instancenew unclassified instance



Task reformulation: Binary class values

Binary classes (positive vs. negative examples of Target class) 

- simplifies single concept learning

- is used in “one class vs. all” multi-class learning methods

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO
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Classification rules learned

from contact lens data with binary classes

lenses=YES ← tear production=normal ˄

astigmatism=no 

lenses=YES ← tear production=normal ˄

astigmatism=yes ˄

spect. pre.=myope 

lenses=NO ← tear production=reduced 

lenses=NO ← tear production=normal ˄

astigmatism=yes ˄

spect. pre.=hypermetrope

lenses=NO ←



Covering algorithm used in rule learning
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Heuristics used in classification rule learning
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Heuristics used in subgroup discovery
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Subgroup discovery example: High CHD Risk 

Group Detection

Input: Patient records described by anamnestic, 
laboratory and ECG attributes

Task: Find and characterize population subgroups with 
high CHD risk (large, distributionally unusual subgroups)

From best induced descriptions, five were selected by the expert as most 
actionable for CHD risk screening (by GPs):

high-CHD-risk  male ˄ pos. fam. history ˄ age > 46

high-CHD-risk  female ˄ bodymassIndex > 25 ˄ age > 63

high-CHD-risk  ...

high-CHD-risk  ...

high-CHD-risk  ...

(Gamberger & Lavrač, JAIR 2002)
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SD algorithms in the Orange DM Platform

• Orange data mining toolkit

– classification and subgroup 

discovery algorithms 

– data mining workflows

– visualization

– developed at FRI, Ljubljana

• SD Algorithms in Orange

- SD (Gamberger & Lavrač, JAIR 2002

- APRIORI-SD (Kavšek & Lavrač, AAI 2006

- CN2-SD (Lavrač et al., JMLR 2004): Adapting CN2  

classification rule learner to Subgroup Discovery



Other Data Mining Platforms

WEKA, KNIME, RapidMiner, Orange4WS, …

– include numerous data mining algorithms

– enable data and model visualization

– enable complex workflow construction 
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ILP and Relational Data Mining 

Relational Data Mining

knowledge discovery 

from data

model, patterns, 

…

Given: a relational database, a set of tables, sets of logical

facts, a graph, …

Find: a classification model, a set of patterns 



ILP and Relational Data Mining

• ILP, relational learning, 
relational data mining 

– Learning from complex 

relational databases



ILP and Relational Data Mining

• ILP, relational learning, 
relational data mining 

– Learning from complex 

relational databases

– Learning from complex 

structured data, e.g. 

molecules and their 

biochemical properties



ILP for Logic Programming

• Given:
– A set of observations (ground facts) 

• positive examples E + 

• negative examples E -

– background knowledge B (definite clauses)
– hypothesis language (definite clauses) LH 

– covers relation (logical entailment)

• Find:
A hypothesis (a theory) H  LH, such that (given B) H covers all 
positive and no negative examples

• In logic, find H such that
– e  E + : B  H |=  e  (H is complete)
– e  E - :  B  H |≠ e  (H is consistent)

+ + +
+++

- - -
--

-

H

-
--

-



Inductive Logic Programming Example

E + = {sort([2,1,3],[1,2,3])}
E - = {sort([2,1],[1]),sort([3,1,2],[2,1,3])}

B : definitions of permutation/2 and sorted/1

• Predictive ILP: Learning a theory H

sort(X,Y)  permutation(X,Y), sorted(Y).

• Descriptive ILP: Finding individual patterns

sorted(Y)  sort(X,Y).

permutation(X,Y)  sort(X,Y).

sorted(X)  sort(X,X).



ILP for relational learning

• Given:
– A set of observations (ground facts) 

• positive examples E + 

• negative examples E -

– background knowledge B (definite clauses)
– hypothesis language (definite clauses) LH 

– covers relation (theta-subsumption)
– quality criterion, e.g., predictive accuracy A(H) 

• Find:
A hypothesis (a set of clauses) H  LH, such that (given B) H is 
optimal w.r.t. given quality criterion

(relaxing the request for finding a hypothesis H  LH, such that 
(given B) H covers all positive and no negative examples)

+ +

++

- - - -
-

-

H

+

++
+

-
-



Relational Learning Example

E + = {daughter(mary,ann),daughter(eve,tom)}
E - = {daughter(tom,ann),daughter(eve,ann)}

B = Facts:{mother(ann,mary), mother(ann,tom),  
father(tom,eve), father(tom,ian), 

female(ann), female(mary), 

female(eve), male(pat),male(tom)}      

Rules: {parent(X,Y)  mother(X,Y), 

parent(X,Y)  father(X,Y)}
ann 

mary tom

eve ian



Relational Learning Example

• Learning models: Induce a theory, e.g., as a single definite clause
daughter(X,Y)  female(X), parent(Y,X).

or as a set of definite clauses
daughter(X,Y)  female(X), mother(Y,X).

daughter(X,Y)  female(X), father(Y,X).

• Finding patterns: Induce individual rules (individual general clauses)
 daughter(X,Y), mother(X,Y).

female(X) daughter(X,Y).

mother(X,Y); father(X,Y)  parent(X,Y).



• ILP systems structure the hypothesis space based on syntactic 
generality relation (-subsumption)

– Clause c1  -subsumes c2 (c1   c2) iff  : c1  c2

– Hypothesis H1   H2 iff c2  H2 exists c1  H1 such that c1   c2

• Example

c1 = daughter(X,Y)  parent(Y,X)
c2 = daughter(mary,ann)  female(mary), parent(ann,mary),                                     
c1  -subsumes c2 under  = {X/mary,Y/ann}

• Learning strategies

– Top-down search of refinement graphs (FOIL)

– Bottom-up search (building least general generalizations, inverting 
resolution (CIGOL), inverting entailment (PROGOL))

– Mixed strategy (Aleph)

ILP as search of program clauses 



Generality ordering of clauses

Training examples Background knowledge

daughter(mary,ann).         parent(ann,mary). female(ann).

daughter(eve,tom).        parent(ann,tom). female(mary).

daughter(tom,ann).          parent(tom,eve). female(eve).

daughter(eve,ann).           parent(tom,ian).

daughter(X,Y) 

daughter(X,Y)  X=Y daughter(X,Y) 
parent(Y,X)

daughter(X,Y) 
parent(X,Z)

daughter(X,Y)  female(X)

daughter(X,Y) 
female (X)

female(Y)

daughter(X,Y) 
female(X)

parent(Y,X)

...
...

... ...

Part of the refinement 

graph for the family 

relations problem.



Top-down search of refinement graphs

daughter(X,Y) 

daughter(X,Y)  X=Y daughter(X,Y) 
parent(Y,X)

daughter(X,Y) 
parent(X,Z)

daughter(X,Y)  female(X)

daughter(X,Y) 
female (X)

female(Y)

daughter(X,Y) 
female(X)

parent(Y,X)

...
...

... ...

2/4

0/0
2/3

2/3

1/2 2/2

Training examples Background knowledge

daughter(mary,ann).         parent(ann,mary). female(ann.).

daughter(eve,tom).        parent(ann,tom). female(mary).

daughter(tom,ann).          parent(tom,eve). female(eve).

daughter(eve,ann).           parent(tom,ian).



Selected ILP algorithms are available online in the 

ClowdFlows platform

June 28, 2013 DAISY, Konstanz34

• Example: ILP system Aleph in ClowdFlows available at 

http://clowdflows.org/workflow/2224/
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Relational Data Mining through 

Propositionalization

Propositionalization

Step 1
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Relational Data Mining through 

Propositionalization

Propositionalization

model, patterns, …

Data Mining

Step 1

Step 2



Sample ILP problem: East-West trains



Relational representation of East-West trains

TRAI N EAS TBOUND

t 1 TRUE

t 2 TRUE

… …

t 6 FAL SE

… …

TRAIN_TABLE

CAR TRAI N SHAPE LENGTH ROOF WHEELS

c1 t 1 rectangle short none 2

c2 t 1 rectangle long none 3

c3 t 1 rectangle short peaked 2

c4 t 1 rectangle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rectangle 3

… … …



TRAI N EAS TBOUND

t 1 TRUE

t 2 TRUE

… …

t 6 FAL SE

… …

TRAIN_TABLE

CAR TRAI N SHAPE LENGTH ROOF WHEELS

c1 t 1 rectangle short none 2

c2 t 1 rectangle long none 3

c3 t 1 rectangle short peaked 2

c4 t 1 rectangle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rectangle 3

… … …

Propositionalization 

through first-order feature 

construction (1BC, RSD, …):

f1(T):-hasCar(T,C),clength(C,short).

f2(T):-hasCar(T,C), hasLoad(C,L),

loadShape(L,circle)

f3(T) :- ….

Propositionalization approach



Propositionalization approach

TRAI N EAS TBOUND

t 1 TRUE

t 2 TRUE

… …

t 6 FAL SE

… …

TRAIN_TABLE

CAR TRAI N SHAPE LENGTH ROOF WHEELS

c1 t 1 rectangle short none 2

c2 t 1 rectangle long none 3

c3 t 1 rectangle short peaked 2

c4 t 1 rectangle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rectangle 3

… … …

train(T) f1(T) f2(T)        f3(T) f4(T)      f5(T) 

t1 t t f t t 

t2 t t t t t 

t3 f f t f f 

t4 t f t f f 

… … …   … 

 

PROPOSITIONALIZED TRAIN_TABLE

Standard propositionalization 

through first-order feature 

construction (1BC, RSD, …):

f1(T):-hasCar(T,C),clength(C,short).

f2(T):-hasCar(T,C), hasLoad(C,L),

loadShape(L,circle)

f3(T) :- ….

Propositional learning:

t(T)  f1(T), f4(T)

Relational interpretation:

eastbound(T) 

hasShortCar(T),hasClosedCar(T).



Propositionalization algorithms are available 

online in the ClowdFlows platform

June 28, 2013 DAISY, Konstanz42

• ClowdFlows - browsed-based DM platform for data mining in 

the cloud and workflow sharing on the web (Kranjc et al. 2012)

• Example workflow: Propositionalization with RSD available in 

ClowdFlows at http://clowdflows.org/workflow/611/



Propositionalization in ClowdFlows

June 28, 2013 DAISY, Konstanz43

• Example workflow: Comparison of propositionalization 

algorithms (RSD, RelF, …), available in ClowdFlows at 

http://clowdflows.org/workflow/4018/
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Relational and semantic data mining 

• ILP, relational learning, 
relational data mining 

– Learning from complex 

relational databases

– Learning from complex 

structured data, e.g. 

molecules and their 

biochemical properties

– Learning by using domain 

knowledge in the form of 

ontologies = semantic data 

mining



June 28, 2013
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Using domain ontologies 

Using domain ontologies as background knowledge

•E.g., the Gene Ontology (GO)

•GO is a database of terms, describing gene sets in terms of 
their 

– functions (12,093) 

– processes (1,812) 

– components (7,459) 

•Genes are annotated 

to GO terms

•Terms are connected

(is_a, part_of)

•Levels represent 

terms generality 



Using domain ontologies 

• Using background knowledge in data mining has been a topic of 

extensive research

– Hierarchical attribute values, hierarchy/taxonomy of attributes, 

since 1986 

– ILP, relational data mining, propositionalization, since 1991

– Ontologies (Tim Berners-Lee), since 1989
• accepted formalism for consensual knowledge representation for 

Semantic Web applications, a basic for the Semantic Web

• Description logic, OWL, Protégé ontology editor

– Using ontologies in data mining, since 2004 

June 28, 2013 DAISY, Konstanz
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Semantic Data Mining

• Ontology-driven (semantic) data mining is an 

emerging research topic 

• Semantic Data Mining (SDM) - a term denoting:

– the new challenge of mining semantically annotated 

resources, with ontologies used as background 

knowledge in mining experimental data 

– approaches with which semantic data are mined



Semantic Data Mining

Semantic 

data mining
annotations,

mappings

domain 

ontologies

data

model,

patterns

June 28, 2013
49

SDM task definition used in our work

Given: 

transaction data table, relational database, text

documents, Web pages, …

one or more domain ontologies

a mapping from examples to ontology concepts

Find: a classification model, a set of patterns



June 28, 2013 DAISY, Konstanz

Our early work: Semantic subgroup discovery

• The approach: Using relational subgroup discovery in 
the SDM context
– General purpose system RSD for Relational Subgroup 

Discovery, using a propositionalization approach to 
relational data mining (Železny and Lavrac, MLJ 2006) 

– Applied to semantic data mining in a biomedical 
application by using the Gene Ontology as background 
knowledge in analyzing microarray data
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RSD: Propositionalization approach to RDM and SDM 

Propositionalization

Step 1

1. constructing relational 

features

2. constructing  a 

propositional table
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RSD: Propositionalization approach to RDM and SDM 

Propositionalization

model, patterns, …

Data Mining

Step 1

Step 2

1. constructing relational 

features

2. constructing  a 

propositional table
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Semantic subgroup discovery with RSD

Gene Ontology

12,093 biological process

1,812 cellular components

7,459 molecular functions

Joint work with I. 

Trajkovski, F. Zelezny and 

J. Tolar (JBI 2008)

Using GO as background knowledge in DNA microarray 

data analysis with relational subgroup discovery system 

RSD
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Semantic subgroup discovery with RSD

Ontology terms (can be viewed 

as generalisations of individual 

genes) are described by first-

order features, presenting

gene properties and relations 

between genes.



June 28, 2013 DAISY, Konstanz

Semantic subgroup discovery with RSD

Application of RSD to microarray data analysis using GO as 
background knowledge (Zelezny et al. 2006, Trajkovski et al. 2008)

1. Take ontology terms represented as logical facts in Prolog, e.g.
component(gene2532,'GO:0016020').

function(gene2534,'GO:0030554').

process(gene2534,'GO:0007243').

interaction(gene2534,gene4803).

2. Automatically generate generalized relational features:
f(2,A):-component(A,'GO:0016020').

f(7,A):-function(A,'GO:0030554').

f(11,A):-process(A,'GO:0007243').

f(224,A):- interaction(A,B), function(B,'GO:0016787'), 
component(B,'GO:0043231').

3. Propositionalization: Determine truth values of features

4. Learn rules by a subgroup discovery algorithm CN2-SD
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Semantic subgroup discovery with RSD

f(7,A):-function(A,'GO:0046872').
f(8,A):-function(A,'GO:0004871').
f(11,A):-process(A,'GO:0007165').
f(14,A):-process(A,'GO:0044267').
f(15,A):-process(A,'GO:0050874').
f(20,A):-function(A,'GO:0004871'), process(A,'GO:0050874').
f(26,A):-component(A,'GO:0016021').
f(29,A):- function(A,'GO:0046872'), component(A,'GO:0016020').
f(122,A):-interaction(A,B),function(B,'GO:0004872').
f(223,A):-interaction(A,B),function(B,'GO:0004871'), 

process(B,'GO:0009613').
f(224,A):-interaction(A,B),function(B,'GO:0016787'), 

component(B,'GO:0043231').

Step 2: Construction of first order features with supp. > min_supp.

existential
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RSD propositionalization step

f1 f2 f3 f4 f5 f6 … … fn

g1 1 0 0 1 1 1 0 0 1 0 1 1

g2 0 1 1 0 1 1 0 0 0 1 1 0

g3 0 1 1 1 0 0 1 1 0 0 0 1

g4 1 1 1 0 1 1 0 0 1 1 1 0

g5 1 1 1 0 0 1 0 1 1 0 1 0

g1 0 0 1 1 0 0 0 1 0 0 0 1

g2 1 1 0 0 1 1 0 1 0 1 1 1

g3 0 0 0 0 1 0 0 1 1 1 0 0

g4 1 0 1 1 1 0 1 0 0 1 0 1

diffexp g1 (gene64499) 

diffexp g2 (gene2534)   

diffexp g3 (gene5199)   

diffexp g4 (gene1052)    

diffexp g5 (gene6036)   

….

random g1 (gene7443)

random g2 (gene9221)

random g3 (gene2339)

random g4 (gene9657)

random g5 (gene19679)

….



RSD: Rule construction with CN2-SD

f1 f2 f3 f4 f5 f6 … … fn

g1 1 0 0 1 1 1 0 0 1 0 1 1

g2 0 1 1 0 1 1 0 0 0 1 1 0

g3 0 1 1 1 0 0 1 1 0 0 0 1

g4 1 1 1 0 1 1 0 0 1 1 1 0

g5 1 1 1 0 0 1 0 1 1 0 1 0

g1 0 0 1 1 0 0 0 1 0 0 0 1

g2 1 1 0 0 1 1 0 1 0 1 1 1

g3 0 0 0 0 1 0 0 1 1 1 0 0

g4 1 0 1 1 1 0 1 0 0 1 0 1

diffexp (Gene) ← f2 ˄ f3 [4,0]



RSD subgroup discovery in two steps

• Step 1: Construct relational logic features of genes such as 

(gene A interacts with another gene whose functions include    

protein binding)

and propositional table construction with features as attributes

• Step 2: Using these features to discover and describe subgroups of 
genes that are differentially expressed (e.g., belong to class DIFF.EXP. of 
top 300 most differentially expressed genes) in contrast with RANDOM 
genes (randomly selected genes with low differential expression). 

• Sample subgroup description:
diffexp(A) :- interaction(A,B) AND 

function(B,'GO:0004871') AND 
process(B,'GO:0009613')

interaction(A, G) & function(G, protein_binding)

June 28, 2013
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RSD implementation in Orange4WS

RSD implemented as a workflow in Orange4WS
– propositionalization

– subgroup discovery algorithms: SD, Apriori-SD, CN2-SD

– applied also to standard ILP problems, e.g. mutagenicity 
prediction

mutagenic(M)  feature121(M), feature235(M)
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Semantic subgroup discovery with SEGS

• More recent work: semantic subgroup discovery 
with SEGS

• Gene set enrichment: moving from single gene to 
gene set analysis

– A gene set is enriched if the genes in the set are 

statistically significantly differentially expressed 

compared to the rest of the genes. 

– Observation: e.g., an 20% increase in all genes 

members of a biological pathway may alter the 

execution of this pathway … and its impact on 

other processes … significantly more then a 10-

fold increase in a single gene. 
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Semantic subgroup discovery with SEGS

• Gene set enrichment methods:

– Single GO terms:
• Gene Set Enrichment Analysis (GSEA)

• Parametric Analysis of Gene Set Enrichment (PAGE)

– Conjunctions of GO terms: SEGS - special 
purpose semantic subgroup discovery system for 
Searching for Enriched Gene Sets
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Semantic subgroup discovery with SEGS

• The SEGS approach:

– fuse information from GO, KEGG and ENTREZ
• Gene Ontology (GO): standardized biological terms used to 

annotate gene products: Molecular Functions, Biological 
Processes, Cellular Components 

• Kyoto Encyclopedia of Genes and Genomes (KEGG):
manually drawn pathway maps representing the knowledge on 
the molecular interaction and reaction networks 

• ENTREZ: gene annotations with GO and KO terms and gene-
gene interaction data 

– generate gene set candidates by performing top-down 
search of rules, formed as conjunctions of ontology terms 
as conjunctions of GO, KEGG and ENTREZ terms

– combine Fisher, GSEA and PAGE enrichment tests to 
select  most interesting groups of differentially expressed 
genes



Semantic subgroup discovery with SEGS

• SEGS workflow is implemented in the Orange4WS 

data mining environment

• SEGS is also implemented also as a Web 

applications

(Trajkovski et al., IEEE TSMC 2008, Trajkovski et al., JBI 2008)

September  24, 2012
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Semantic subgroup discovery with SEGS
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Biomine graph exploration (Toivonnen et al.)

• SEGS can be combined with other biomedical resources, 
such as BioMine

• BioMine graph contains information from public 
databases, including annotated sequences, proteins, 
orthology groups, genes and gene expressions, gene and 
protein interactions, PubMed articles, and different 
ontologies. 
– nodes (~1 mio) correspond to different concepts (such as gene, 

protein, domain, phenotype, biological process, tissue)

– semantically labeled edges (~7 mio) connect related concepts 

• BioMine query engine answers queries to potentially 
discover new links between entities by sophisticated graph 
exploration algorithms



Complex data mining methodology 

SegMine = SEGS + BioMine

Podpečan et al., BMC Bioinformatics 2011
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SEGS + BioMine  outputs
SEGS output:                BioMine query output:                                 



SegMine methodology implemented in 

Orange4WS

Orodje SegMine je prosto dostopno, glej http://segmine.ijs.si/



Biomedical applications of SegMine methodology

• Combination of advanced data processing and mining algorithms 

• Enables semantic analysis of gene expression using background 

knowledge in the form of ontologies

• SegMine tool is actively used at the National Institute for Biology 

• Successful application in human stem cell data analysis: new 

hypotheses,  enabling better understanding of cell senescence 

mechanisms 

• General purpose Semantic Data Mining algorithm g-SEGS is also 

available in Orange4WS



From SEGS to SDM-SEGS: Generalizing SEGS

• SDM-SEGS: a semantic data mining system 

generalizing SEGS

• Discovers subgroups both for ranked and labeled data

• Exploits input ontologies in OWL format

• Implemented as a web service in Orange4WS

– Can also be used e.g. in Taverna

September  24, 2012



Recent work

• Semantic Subgroup Discovery workflows in 

Orange4WS and ClowdFlows (Vavpetič et al., 2012)

June 28, 2013 DAISY, Konstanz72



Recent biomedical applications

June 28, 2013 DAISY, Konstanz73

• Subgroup discovery and semantic explanation of subgroups on 

breast cancer data (Vavpetič et al., JIIS 2014)

• The workflow, implemented in ClowdFlows, is available for 

sharing at http://clowdflows.org/workflow/1283/
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Future challenges for Semantic Data Mining

• Current SDM scenario: Mining empirical data with 

ontologies as background knowledge

• abundant empirical data, but

• scarce background knowledge

• Future SDM scenarios:

– envisioning a growing amount of semantic data

• abundance of ontologies and semantically 

anotated data collections

• e.g. Linked Data 

–over 6 billion RDF triples

–over 148 million links
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Future work

• We may envision a paradigm shift from data mining to 

knowledge mining

• The envisioned future Semantic data mining scenario in 

mining the Semantic Web:

– mining knowledge encoded in domain ontologies,

– constrained by annotated (empirical) data collections.
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Summary: RDM and SDM in Context

Data Mining

Relational Data Mining

Semantic Web

Ontologies

Relational Subgroup Discovery 

Semantic Subgroup 

Discovery
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