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One talk, two plans

Common appetizer

ADT plan
Fair division
Coalition structure formation
Combinatorial auctions
Multiple referenda
Committee elections
Multiattribute decision making
Voting under uncertainty

LPNMR plan
Propositional Logic
maxsat
Default Logic
Weighted Goals
Prioritized Goals
Preference Logics
Nonmonotonic Preferences

Common dessert: ASP and ADT, a love match
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Algorithmic Decision Theory
for logic programmers and nonmonotonic logicians

Design and study of languages and computational methods
for expressing and solving decision making problems, such as

sequential decision making resource allocation
multiattribute decision making strategic games
coalition structure formation decision under uncertainty

committee elections multiple referenda
recommender systems (and more)

Domains of solutions in algorithmic decision theory often have a
combinatorial structure

A = D1× . . .×Dp

where Di = finite set of values associated with a variable Xi .

Algorithmic decision theory is computationally hard.
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Logic in Artificial Intelligence
for algorithmic decision theorists

Two distinct roles:
a declarative representation language

rich expressivity of logics → representing complex problems
a generic problem solving tool

SAT (satisfiability) solvers
QBF (quantified Boolean formulas)
the early stage: Prolog
the modern stage: ASP (answer set programming)
model checking
(and more)

Combination of both:
representation and resolution of complex problems.

5 / 62
Algorithmic Decision Theory meets Logic

N



Logic and Algorithmic Decision Theory

How does logic help representing decision making problems in a more
compact, more modular, more intuitive way?
How does logic help solving complex decision making problems?

We’ll go back and forth between logic and typical ADT problems.
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Fair Division

N = {1, . . . ,n} set of agents
O = {o1, . . . ,om} indivisible objects
allocation: maps each object to an agent
Notation: [o1o2|o3|o4o5] is the allocation where that agent 1 receives
{o1o2}, 2 receives {o3} and 3 receives {o4,o5}.

“No externality” assumption:
an agent’s preferences depend only on the bundle she receives
1 is indifferent between [o1o2|o3|o4o5] and [o1o2|o3o5|o4]

2 is indifferent between [o1o2|o3|o4o5] and [∅|o3|o1o2o4o5]

etc.

Therefore: it is sufficient to know each agent’s preferences over bundles
(as opposed to her preferences over all allocations).
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Fair Division (here with dichotomous preferences)

three goods: one cup of coffee, one glass of beer, one sugar cube
three agents: J(udy), M(irek), T(orsten), with dichotomous preferences:

Judy wants a beer, or else coffee with sugar.
Mirek wants a beer.
Torsten wants a beer or a coffee.

can they all be satisfied?
bJ ∨ (cJ ∧ sJ ) where cJ means: the coffee is allocated to Judy
bM
bT ∨ cT
constraints: bJ →¬bM ∧¬bT ; etc. (an object is given to at most one agent)
(and possibly): bJ ∨bM ∨bT etc. (every object must be allocated)

allocations satisfying a maximum number of agents via maxsat

[b|− |c] + s to anybody (or to nobody, if allowed)
[cs|b|−]
[cs|− |b]
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Dichotomous preferences for resource allocation
X = {o1, . . . ,om} set of items
A⊆X set of acceptable bundles
agent i partitions the set of bundles A into two sets: acceptable and
unacceptable bundles
bJ ∨ (cJ ∧ sJ ): Judy is happy with {b}, {c,s}, {b,s} and {b,c,s}, and
unhappy with {c}, {s}, {b,s} and ∅ [mistake]
each set of acceptable bundles A is representable by a propositional
formula ϕA

a set of acceptable bundles A is monotonic if for all X ⊆ Y , X ∈ A
implies Y ∈ A.
Remark A is monotonic iff ϕA is a positive formula (can be written
with only ∧, ∨, but with no ¬)

b∧¬c (agent allergic to the smell of coffee): nonmonotonic

LPNMR crowd: keep calm!
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Fair Division

Judy wants a beer, or else coffee with sugar: bJ ∨ (cJ ∧ sJ )

Mirek wants a beer: bM

Torsten wants a beer or a coffee: bT ∨ cT

An allocation π is envy-free if every agent is at least happy with her
share than with any other agent’s share

π1 = [b|− |c]: Mirek is envious of Judy.
π2 = [cs|b|−]: Torsten is envious of both Judy and Mirek.
π3 = [−|−|c]: envy-free, but not Pareto-efficient: [b|− |c] does at least
as well as π3 for all agents and strictly better for one (Judy).

Here: no allocation is both envy-free and Pareto-efficient
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Fair Division

Preferences slightly change: Judy does not like beer anymore.
Judy wants a coffee with sugar: cJ ∧ sJ

Mirek wants a beer: bM

Torsten wants a beer or a coffee: bT ∨ cT

[−|b|c], and also [s|b|c]: envy-free and Pareto-efficient
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Fair Division
Judy wants a coffee with sugar: cJ ∧ sJ
Mirek wants a beer: bM
Torsten wants a beer or a coffee: bT ∨ cT

EF :
(cJ ∧ sJ )∨ (¬(cM ∧ sM)∧¬(cT ∧ sT )) Judy not envious

∧ bM ∨ (¬bJ ∧¬bT ) Mirek not envious
∧ (bT ∨ cT )∨ (¬(bJ ∨ cJ )∧¬(bM ∨ cM)) Torsten not envious

Γ: an item cannot be given to more than one person
cJ → (¬cM ∧¬cT )∧ . . .

Pareto efficiency: satisfy a maximal subset of
{cJ ∧ sJ ,bM ,bT ∨ cT }

Finding EF-PE allocations via default logic (Bouveret and L, 08):
∆ = (Γ,D) where D =

{
:cJ∧sJ
cJ∧sJ

, :bM
bM

, :bT∨cT
bT∨cT

}
EF-PE allocation ↔ extension of ∆ consistent with EF
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Hedonic Games
ADT-LPNMR lunch.

Participants: Judy, Nick, Mirek, Torsten
Judy wants to sit at a table of at least three persons.

(JN ∧JT )∨ (JN ∧JM)∨ (JT ∧JM)

Nick wants to sit at a table of exactly three persons.
(NJ ∧NT ∧¬NM)∨ (NJ ∧NM ∧¬NT )∨ (NM ∧NT ∧¬NJ)

Torsten wants to have lunch with Judy or Nick, but not with Mirek.
(TJ ∨TN)∧¬TM

Mirek only wants to avoid having lunch with both Judy and Nick.
¬(MJ ∧MN)

Constraints: AB↔ BA, AB∧BC → BC etc.
What will happen?

[Judy Nick Torsten | Mirek]

everybody’s happy! perfect partition
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Hedonic Games

Now: dinner.
Judy wants to sit alone, or else with Nick and Mirek.
Nick wants to sit at a table of exactly two persons.
Torsten does not want to have dinner alone.
Mirek wants to have dinner with Judy.

It is not possible to satisfy the four of them: no perfect partition

Judy Nick Torsten Mirek] # happy
[Judy Nick Torsten Mirek] + - + + 3

[Judy Mirek | Nick Torsten] - + + + 3
(...) < 3
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Hedonic Games

Dinner.
Judy wants to sit alone, or else with Nick and Mirek.
Nick wants to sit at a table of exactly two persons.
Torsten does not want to have dinner alone.
Mirek wants to have dinner with Judy.

[ Judy Nick Torsten Mirek ]:
a maximal number of players (all except Judy) are happy.
but not individually rational: Judy prefers to leave her coalition and eat alone.

same thing for [ Judy Mirek | Nick Torsten]

[Torsten | Nick Mirek Judy]:
only two players (Judy and Mirek) are happy
individually rational: noone would be happier leaving their coalition and eat
alone.
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Hedonic Games
Dinner.

Judy wants to sit alone, or else with Nick and Mirek.
Nick wants to sit at a table of exactly two persons.
Torsten does not wants to have dinner alone.
Mirek wants to have dinner with Judy.

[Torsten | [whatever] ] → Torsten wants to join any group
[Judy Torsten | Nick | Mirek ] → Nick wants to join Mirek
[Judy | Mirek Torsten | Nick ] → Nick wants to join Judy
[Judy x | y z ] → Judy leaves and eats alone
[Nick | Judy Mirek Torsten ] → Judy leaves and eats alone
[Mirek | Judy Nick Torsten ] → Judy leaves and eats alone
[Judy | Nick Torsten | Mirek] → Mirek wants to join Judy
[Judy | Nick Mirek Torsten] → Mirek leaves and joins Judy
[Judy Nick Torsten Mirek] → Judy leaves and eats alone

no partition is Nash stable: in every partition someone prefers to leave the
coalition he belongs to and join another existing coalition
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Hedonic Games
Dinner.

Judy wants to sit alone, or else with Nick and Mirek.
Nick wants to sit at a table of exactly two persons.
Torsten does not wants to have dinner alone.
Mirek wants to have dinner with Judy.

[Torsten | Judy Mirek | Nick] → Torsten wants to join Nick; Nick: yes!
[Judy Torsten | Nick | Mirek] → Nick wants to join Mirek; Mirek: yes!
[Judy | Mirek Torsten | Nick] → Nick wants to join Judy; Judy: sorry, no

→ Mirek wants to join Judy; Judy: sorry, no
→ noone else wants to deviate.

[Judy | Mirek Torsten | Nick] is individually stable: noone prefers joining
another coalition without making a member of this coalition less happy.
Logical characterization of solution concepts in dichotomous hedonic
games in (Aziz, Harrenstein, L and Wooldridge, 14)
Related: group activity selection, cf. talk by Andreas Darmann on Monday
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Preference structures
In the latter two examples, preferences are dichotomous. More generally:

Ordinal preferences
Preference relation on X : reflexive and transitive relation �

x � y x is at least as good as y
x � y ⇔ x � y and not y � x

x is preferred to y (strict preference)
x ∼ y ⇔ x � y and y � x

x and y are equally preferred (indifference)
� is often assumed to be complete (no incomparabilities)

Cardinal preferences
Utility function u : X → R
More generally u : X → V ordered scale; example:
V = {unacceptable,bad ,medium,good ,excellent}
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Preference structures

From cardinal preferences to ordinal preferences:

x �u y ⇔ u(x)≥ u(y)

Dichotomous preferences are back
A⊆X set of acceptable bundles
dichotomous preferences are cardinal preferences:

V = {0,1}; u(S) = 1⇔ S ∈ A.

dichotomous preferences are also ordinal preferences:

S � S′⇔ (S ∈ A) or (S′ /∈ A).
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Weighted Goals

LPS propositional language built up from usual connectives and set of
propositional symbols PS .
G = a set of pairs 〈ϕi ,wi 〉 where

ϕi is a propositional formula;
wi is a real number

for every truth assignment (interpretation) x ∈ 2PS ,

uG (x) =
∑
{wi | 〈ϕi ,wi 〉 ∈ G and x � ϕi}
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Combinatorial Auctions
O = {o1, . . . ,om} set of objects

for each agent i , Vi : 2O→ N where Vi (X) is the maximum price that i is
ready to pay for the set of objects X .
Vi is additive if Vi (X) =

∑
o∈X Vi (o) for all X .

if Vi additive for all i : then sell each object to its highest bidder

but Vi is generally non-additive :
{left shoe}: 10 e; {right shoe}: 10 e; {left shoe, right shoe}: 50 e
{lemonade}: 2 e; {beer}: 3 e; {lemonade, beer}: 4 e

optimal allocation π∗: maximizes the seller’s revenue
n∑

i=1
Vi (π(i))

where π(i) is the set of objects allocated to agent i
How can bidders express their functions Vi ?
How can the seller determine π∗?
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Combinatorial Auctions through Weighted Goals

adapted from (Boutilier and Hoos, 2001)
items: 3 chopsticks c1,c2,c3; one fork f , one knife k
2chopsticks = (c1∧ c2)∨ (c1∧ c3)∨ (c2∧ c3)

Judy:

{(2chopsticks ∨ fork,5),(fork ∧knife,1),(2chopsticks,3)}

Mirek:
{(2chopsticks,2),(fork,4),(fork ∧knife,4),1)}

Torsten:
{(2chopsticks ∨ fork,6),(fork ∧ (c1∨ c2∨ c3),1)}

Who gets what?

2c f f +k f + c
Judy 8 5 6 5
Mirek 2 4 8 4

Torsten 6 6 6 7
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Prioritized goals
starts with (Brewka, 89)
G = 〈G1, . . . ,Gq〉

Gi set of goals ϕj
i of priority i – each being a propositional formula

G1= set of highest priority goals, then G2 etc.
maximize the number (or the set) of goals satisfied, starting from the most
important priority levels
particular case: conditionally lexicographic preferences (cf. talk by Xudong
Liu on Monday)
two semantics (coinciding if each Gi is a singleton):
leximin x � y if there is a k ≤ q such that

|{ϕ ∈ Gi ,x � ϕ}|= |{ϕ ∈ Gi ,y � ϕ}|;
for each i < k : |{ϕ ∈ Gi ,x � ϕ}|= |{ϕ ∈ Gi ,y � ϕ}|.

discrimin x � y if there is a k ≤ q such that
{ϕ ∈ Gi ,x � ϕ} ⊃ {ϕ ∈ Gi ,y � ϕ};
for each i < k : {ϕ ∈ Gi ,x � ϕ}= {ϕ ∈ ϕ,y � ϕ}.
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Multiple Referenda
Lexingtonians called to urns:

should we build a new university campus or not? (c or ¬c)
should we build a tram or not? (t or ¬t)
should we build a new horse race field or not? (h or ¬h)

Judy’s prioritized goals: G1 = {¬(c ∧ t ∧h)}, G2 = {c}, G3 = {t}
Judy’s induced preference relation:

cth
↓

cth ∼ cth
↓

cth ∼ cth
↓

cth ∼ cth
↓

cth
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Multiple Referenda

Judy: G1 = {¬(c ∧ t ∧h)}, G2 = {c}, G3 = {t}

cth � . . .
Mirek: G1 = {¬(c ∧ t ∧h)}, G2 = {t}, G3 = {h}

cth � . . .
Nick: G1 = {¬(c ∧ t ∧h)}, G2 = {h}, G3 = {c}

cth � . . .

If we vote separately on each issue, the following outcome may occur:
Judy and Nick vote for c , Mirek against;
Judy and Mirek vote for t , Nick against;
Mirek and Nick vote for h, Judy against
Outcome: cth – is it good?

Need for more sophisticated methods!

32 / 62
Algorithmic Decision Theory meets Logic

N



Multiple Referenda

Judy: G1 = {¬(c ∧ t ∧h)}, G2 = {c}, G3 = {t}

cth � . . .
Mirek: G1 = {¬(c ∧ t ∧h)}, G2 = {t}, G3 = {h}

cth � . . .
Nick: G1 = {¬(c ∧ t ∧h)}, G2 = {h}, G3 = {c}

cth � . . .

If we vote separately on each issue, the following outcome may occur:
Judy and Nick vote for c , Mirek against;
Judy and Mirek vote for t , Nick against;
Mirek and Nick vote for h, Judy against
Outcome: cth – is it good?

Need for more sophisticated methods!

32 / 62
Algorithmic Decision Theory meets Logic

N



One talk, two plans

Common appetizer

ADT plan
Fair division
Coalition structure formation
Combinatorial auctions
Multiple referenda
Committee elections
Multiattribute decision making
Voting under uncertainty

LPNMR plan
Propositional Logic
maxsat
Default Logic
Weighted Goals
Prioritized Goals
Preference Logics
Nonmonotonic Preferences

Common dessert: ASP and ADT, a love match

33 / 62
Algorithmic Decision Theory meets Logic

N



Preference logics

A I prefer to go to Chicago tomorrow by bus than by plane

Can we infer from A the following?
B I prefer to go to Chicago tomorrow by bus and have a beer tonight than by

plane and have a beer tonight.
C I prefer to go to Chicago tomorrow by bus with a strong toothache than by

plane after seeing a good dentist.
D I prefer to go to Chicago tomorrow by bus (7 hours) with a strong

toothache than by plane with a strong toothache.
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Preference logics

Classic preference logic (von Wright, 1963)
formulas built up from preference statements αB β
α∧¬β-worlds preferred to β∧¬α-worlds, ceteris paribus
here ceteris paribus means that all variables not appearing in α or β must
be interpreted identically

bus B plane:
implies (bus,beer ,¬toothache)� (plane,beer ,¬toothache)
(bus,beer , toothache) and (plane,beer ,¬toothache) incomparable
(bus,beer , toothache) and (bus,¬beer ,¬toothache) incomparable

toothache∧plane B toothache∧bus [shorthand toothache : plane B bus ]
(bus,beer ,¬toothache)� (plane,beer ,¬toothache)
(bus,beer , toothache) and (plane,beer ,¬toothache) still incomparable
(bus,beer , toothache) and (bus,¬beer ,¬toothache) still incomparable
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Preference logics
Modern preference logics: Hansson (2001), van Benthem, Roy and Girard.
(2009), Bienvenu, L and Wilson (2010), etc.
PL formulas are Boolean combinations of preference statements of the form

αB β || F

α, β propositional formulas, F a set of propositional formulas
α preferred to β when F is held constant; other formulas can vary
formally: � satisfies (αB β || F ) if ω � ω′ holds for all ω, ω′ such that

ω � α
ω′ � β
forall ϕ ∈ F : ω � ϕ if and only if ω′ � ϕ.

¬toothache B toothache || ∅:
(bus,¬beer ,¬toothache)� (plane,beer , toothache)

beer B ¬beer || {bus,plane, toothache}
shorthand: beer B ¬beer || CP , where CP = ceteris paribus
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Preference logics

Many existing formalisms can be seen as fragments of PL:
von Wright’s preference logic
conditional preference (CP) networks (Boutilier et al., 2003)
extensions of CP-nets (TCP-nets, etc.)
conditional importance networks (Bouveret, Endriss and L, 2009)
prioritized goal bases (Brewka, 89)
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Voting under uncertainty

LPNMR plan
Propositional Logic
maxsat
Default Logic
Weighted Goals
Prioritized Goals
Preference Logics
Nonmonotonic Preferences

Common dessert: ASP and ADT, a love match

38 / 62
Algorithmic Decision Theory meets Logic

N



Multiattribute decision making
Toby travels (except when he cannot). He is considering buying

an outgoing flight (o),
a return flight (r ),
a hotel night (h),
a book (b).

His preferences:
better both tickets than none, and better none than just one; preferences
about tickets override everything else

(o∧ r)B (¬o∧¬r)B (o↔¬r) || ∅

he wants a hotel night if and only if he buys a return flight ticket

o∧ r : h B ¬h || {o↔ r}

¬(o∧ r) : ¬h B h || {o↔ r}
he wants to buy the book, ceteris paribus

b B ¬b || {o, r ,h}

39 / 62
Algorithmic Decision Theory meets Logic

N



Multiattribute decision making

(o∧ r)B (¬o∧¬r)B (o↔¬r) || ∅
or ××� or ××
or ××� or ××
or ××� or ××

o∧ r : h B ¬h || {o↔ r}
orh×� orh×

¬(o∧ r) : ¬h B h ||{o↔ r}
orh×� orh×
orh×� orh×
orh×� orh×
orh×� orh×

b B ¬b || {o, r ,h}
orhb � orhb
orhb � orhb etc.

orhb

orhb

orhb

orhb

orhb

orhb

orhb

orhb

orhb orhb

orhb orhb

orhb orhb

orhb orhb
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Committee Elections

two seats to fill for the department managing committee

candidates: A,B,C ,D,E
woman man

group 1 A,E B
group 2 C D

preferences of voter 1:
1M+1W B 2M ∼ 2W || ∅
where: 1M+1W = (A∧B∧¬C ∧¬D∧¬E)∨ (E ∧B∧¬A∧¬C ∧¬D)∨ (. . .)
gender equilibrium more important than everything else
1G1+1G2 B 2G2 B 2G1 || {1M1W, 2M, 2W}
group equilibrium most important thing after gender equilibrium
A B B B C B D B E ||{1M1W, 2M, 2W, 1G1+1G2,2G1,2G2} (ceteris paribus)
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Committee Elections
woman man

group 1 A,E B
group 2 C D

1M+1W B 2M ∼ 2W || ∅
1G1+1G2 B 2G2 B 2G1 || {1M1W, 2M, 2W}
AB B B C B D B E ||{1M1W, 2M, 2W, 1G1+1G2,2G1,2G2}

Induced preference relation for voter 1:

AD

BC
DE CD AB BE AC BD CE AE

Voter 1’s preferred committee is AD or BC – we don’t have enough
information to know which one.
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Committee Elections

Voter 1’s preferred committee: AD or BC
Voter 2’s preferred committee: AE or BE
Voter 3’s preferred committee: BD

Standard rule for multiwinner approval voting (also called ‘minisum’):
each voter votes for her preferred committee
the (here: two) candidates that appear most often on the votes are elected
tie-breaking priority = age: D > E > A> B > C

1 : AD 1 : BC
2 : AE 12021 7→ BD 03111 7→ BD
2 : BE 21021 7→ AD 12111 7→ BD

D is a necessary winner
A and B (and of course D) are possible winners
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Nonmonotonic Preferences

Should we have a department meeting on Monday?
yes, I prefer to have the department meeting this Monday
if there’s a train strike, I’d prefer to cancel the department meeting
if Barack Obama intends to visit the department on Monday, then yes, I’d
prefer to have the meeting in any case (even if there is a strike)

� normal situation: no strike, no Obama
� exceptional situation: strike, no Obama
� even more exceptional situation: Obama
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Nonmonotonic Preferences

preference order normality order

mso most preferred
↓

mso
↓

mso
↓

m××
↓

mso least preferred

×so normal
↓
×so exceptional
↓

××o super-exceptional
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Nonmonotonic Preferences

preference order normality order

mso most preferred
↓

mso
↓

mso
↓

mso,mso,mso,mso
↓

mso least preferred

mso,mso normal
↓

mso,mso exceptional
↓

mso,mso,
mso,mso super-exceptional

ϕ : m �P ¬m if typical ϕ∧m-worlds preferred to typical ϕ∧¬m-worlds
most normal m-world mso

↓P
most normal ¬m-world mso

m �P ¬m

48 / 62
Algorithmic Decision Theory meets Logic

N



Nonmonotonic Preferences

preference order normality order

mso most preferred
↓

mso
↓

mso
↓

mso,mso,mso,mso
↓

mso least preferred

mso,mso normal
↓

mso,mso exceptional
↓

mso,mso,
mso,mso super-exceptional

ϕ : m �P ¬m if typical ϕ∧m-worlds preferred to typical ϕ∧¬m-worlds
most normal s ∧m-world mso

↑P
most normal s ∧¬m-world mso

s : ¬m �P m
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Nonmonotonic Preferences

preference order normality order

mso most preferred
↓

mso
↓

mso
↓

mso,mso,mso,mso
↓

mso least preferred

mso,mso normal
↓

mso,mso exceptional
↓

mso,mso,
mso,mso super-exceptional

ϕ : m �P ¬m if typical ϕ∧m-worlds preferred to typical ϕ∧¬m-worlds
most normal o∧ s ∧m-world mso

↓P
most normal o∧ s ∧¬m-world mso

o∧ s : m �P ¬m
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Nonmonotonic Preferences

Another example:
I don’t want to have the meeting on Monday
but if we do have it on Monday, then I want to have my lecture on Monday
afternoon.
(cf. contrary-to-duties obligations in deontic logics)
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Nonmonotonic Preferences
Yet another example: Lexingtonian are called to urns again

should we build a new university campus? u or u
should we build a tram? t or t
should we build a new horse race field? h or h

Judy’s preferences:
u � u
t � t
h � h
but u∧ t : h � h
Judy believes that u∧ t is very unlikely.
Therefore she intends to vote for yes for u, for t and for h
But now, the Lexington Post publishes a poll: it’s likely that u an t will
get a slight majority of yes!
Judy now votes yes for u, yes for t and no for h
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Defeasible Beliefs vs. Defeasible Prefer-
ences

W set of worlds
�N normality ordering (complete weak order on W )
�P : preference ordering (complete weak order on W )

normality N(β|α): if α then normally, β
N(β|α) is satisfied if the most normal α-worlds satisfy β
formally: if Max(�N ,Mod(α))⊆Mod(β)

preference things are less obvious, for two reasons:
1 there is no standard way of lifting preferences from worlds

to sets of worlds.
2 in the presence of uncertainty or normality, preferences

can hardly be interpreted from �P alone (�N counts!).
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Defeasible Beliefs vs. Defeasible Prefer-
ences

Step 1: lifting preferences from worlds to sets of worlds
�P complete weak orders on W
we want to lift �P from W to 2W

W1, W2 nonempty sets of worlds
W1�W2 if ...

strong lifting every world in W1 is preferred to every world in W2.
optimistic lifting the ‘best’ (most preferred) worlds in W1 are preferred to

the best worlds in W2.
pessimistic lifting the worst worlds in W1 are preferred to the worst

worlds in W2.
ceteris paribus lifting the worlds in W1 are preferred to the worlds in W2,

ceteris paribus
(etc.)
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Defeasible Beliefs vs. Defeasible Prefer-
ences

Step 2: interpreting preference in the presence of normality
When an agent states a preference for ϕ he not only expresses preferences
between worlds but also to implicit uncertainty/normality.
At least two meaningful definitions:

Boutilier, 94 among the most normal α-worlds, the β-worlds are
preferred to the ¬β-worlds

L, van der Torre and Weydert, 03 the most normal α∧β-worlds are
preferred to the most normal α∧¬β-worlds
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Nonmonotonic Doodle

str: train strike; sc: seminar cancelled; h: hurricane
N(sc|h): normally, seminar cancelled when hurricane.
train strikes and hurricanes known the day before
seminar cancellations known two days before, except when hurricane

Monday Tuesday Wednesday

Judy Y
str: N

N
sc: Y N

Mirek Y N
sc: Y; h: N Y

Nick N Y Y
Toby Y Y Y

Torsten Y
str: N

Y
h: N N

best date ? ? ?
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Other

Because of lack of time I did not talk about
Description logics for multi-attribute decision making (cf. talk by Erman
Acar on Monday)
Judgment aggregation (cf. talk by Ann-Kathrin Selker this morning)
Boolean games
(and yet other things)
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Logic programming for ADT
The ADT family

planning multiple referenda cooperative games
hedonic games resource allocation committee elections
multiattribute decision making noncooperative games (...)

need a modular, compact and declarative representation of the problem
high complexity (often above NP)

The ASP family
AnsProlog ASPeRIX ASSAT Clasp clingo Cmodels coala DLV DLV-Complex

GnT gringo iclingo libdlvhexbase6-dev lparse NoMoRe++ Platypus

Pbmodels Potassco relsat runlim Smodels Smodels-cc Sup-lp (...)

declarative problem representation
generic resolution tool for hard combinatorial problems
built-in preference handling — e.g., Asprin
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ASP for ADT
[Warning: plagiarizing]

problem

‘logic object’ solver model(s)

solution(s)ADT
ADT

KR

SAT/LP/. . .

←solving→

interpretingmodelling

Topcasso
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Logic programming for ADT

Generic use of LPNMR for ADT: topic of three talks at ADT-LPNMR 15
Andreas Pfandler, Democratix, A Declarative Approach to Winner
Determination, on Tuesday
Torsten Schaub, Implementing Preferences with asprin, on Tuesday
myself, Algorithmic Decision Theory Meets Logic, right now (warning: this
is an auto-referential talk)
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Science-fiction: ADT-LPNMR 2017
Program:

Winner Determination and Manipulation in Minimax Committee Elections
via Infinitary Equilibrium Logic and Strong Equivalence

Choquet integral via Non-Monotonic Reasoning in Distributed
Heterogeneous Environments
ADT LPNMR OWA MOPIC ROS OOASP
Interactive debugging of decision makers in ASP
NoMoRe Manipulation, Lobbying and Bribery in Potsdam
generalized ASP for the Group Activity Selection Problem: GASP-GASP
how to read

Complexity of Bayesian Sequential Manipulation and Control in
OWA-Based Extensions of Uniform Weighted Incomplete
Resource Allocation: Approximation and Super-strong Equilibria

with asprin
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