Stable Models for Temporal Theories

Pedro Cabalar

Department of Computer Science University of Corunna (Spain) cabalar@udc.es

September 28th, 2015 LPNMR'15 Lexington, KY, USA

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Joint work with KR group at

Felicidad Aguado

Martín Diéguez

Gilberto Pérez

Concepción Vidal

A (1) > A (2) > A

Pedro Cabalar

Stable Models for Temporal Theories

LPNMR'15 2 / 57

Joint work with KR group at

Felicidad Aguado

Martín Diéguez

Gilberto Pérez

Concepción Vidal

and collaborators from other universities:

- David Pearce and Laura Bozzelli (Univ. Pol. Madrid, Spain),
- Stephane Demri (ENS de Cachan, France),
- Philippe Balbiani and Luis Fariñas (IRIT Toulouse, France)

- 2 Definitions and examples
- 3 Translations
- 4 Temporal Logic Programs
- 5 Automata-based methods
- 6 Conclusions and open topics

4 A N

Formalizing dynamic domains was part of KR origins

• Actions and Change: temporal domains in first-order logic

- Situation Calculus
- Event Calculus
- Features and Fluents

A (1) > A (2) > A

Formalizing dynamic domains was part of KR origins

• Actions and Change: temporal domains in first-order logic

- Situation Calculus
- Event Calculus
- Features and Fluents
- Representational problems: frame, Yale Shooting, ... How to deal with defaults like inertia?

Initial motivation

The stress was put on Non-monotonic Reasoning (NMR)

Initial motivation

The stress was put on Non-monotonic Reasoning (NMR)

[AIJ 1980] Circumscription, Default Logic, NM Modal logic

Initial motivation

The stress was put on Non-monotonic Reasoning (NMR)

[AIJ 1980] Circumscription, Default Logic, NM Modal logic

Late 80's, strong connection between

LP Logic Programming NMR Non-Monotonic Reasoning

LP - NMR

Example of correspondence:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

LP - NMR

Example of correspondence:

• Why not using logic programs for action and change?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

LP - NMR

Example of correspondence:

- Why not using logic programs for action and change?
- [Gelfond & Lifschitz, JLP 93] *Representing Action and Change by Logic Programs* Established a new methodology giving rise to ...

LPNMR'15 6 / 57

Some nice features

- $\checkmark~$ Elaboration tolerance: small changes in the problem \Rightarrow small changes in representation
- \checkmark Simple solution to frame, ramification and qualification problems

Some nice features

- $\checkmark~$ Elaboration tolerance: small changes in the problem \Rightarrow small changes in representation
- \checkmark Simple solution to frame, ramification and qualification problems
- ✓ Easy to switch reasoning task: prediction (or simulation), explanation, planning, diagnosis

Some nice features

- $\checkmark~$ Elaboration tolerance: small changes in the problem \Rightarrow small changes in representation
- \checkmark Simple solution to frame, ramification and qualification problems
- ✓ Easy to switch reasoning task: prediction (or simulation), explanation, planning, diagnosis
- ✓ Simple (linear) time structure: integer argument in predicates

Some nice features

- $\checkmark~$ Elaboration tolerance: small changes in the problem \Rightarrow small changes in representation
- ✓ Simple solution to frame, ramification and qualification problems
- ✓ Easy to switch reasoning task: prediction (or simulation), explanation, planning, diagnosis
- \checkmark Simple (linear) time structure: integer argument in predicates
- $\checkmark\,$ Incremental ASP exploits time index to reuse grounding/solving

But not thought for temporal reasoning

- Planning by iterative deepening with finite path length: we cannot prove non-existence of plan
- X Reactive systems out of the scope: e.g. a network server must keep on running (potentially) forever

But not thought for temporal reasoning

- Planning by iterative deepening with finite path length: we cannot prove non-existence of plan
- X Reactive systems out of the scope: e.g. a network server must keep on running (potentially) forever
- (Forgotten) reasoning task: verification of temporal properties.
 E.g. "At some point, fluent p will never change again"

But not thought for temporal reasoning

- Planning by iterative deepening with finite path length: we cannot prove non-existence of plan
- X Reactive systems out of the scope: e.g. a network server must keep on running (potentially) forever
- (Forgotten) reasoning task: verification of temporal properties.
 E.g. "At some point, fluent p will never change again"
- X Existing formal methods for transition systems: outside ASP

Example

• Initially, a lamp switch can be *up* or *down*.

• • • • • • • • • • • •

Example

- Initially, a lamp switch can be *up* or *down*.
- By default, the switch state persists by inertia,

Example

- Initially, a lamp switch can be *up* or *down*.
- By default, the switch state persists by inertia,
- but we can arbitrarily close it at any moment.

< ロ > < 同 > < 回 > < 回 >

Examples of problems that cannot be solved using bounded time:

• Is there a reachable state with up and down false?

• • • • • • • • • • •

Examples of problems that cannot be solved using bounded time:

- Is there a reachable state with up and down false?
- Once up becomes true, does it remain so forever?

Examples of problems that cannot be solved using bounded time:

- Is there a reachable state with up and down false?
- Once *up* becomes true, does it remain so forever?
- The switch cannot be closed infinitely often without eventually damaging the lamp

• These topics typically covered by (Modal) Temporal Logics

- These topics typically covered by (Modal) Temporal Logics
- Mostly used in Theoretical Computer Science: algorithms, computability, complexity, formal verification

• • • • • • • • • • • •

- These topics typically covered by (Modal) Temporal Logics
- Mostly used in Theoretical Computer Science: algorithms, computability, complexity, formal verification
- But, initially, not so much in Actions and Change [McCarthy97] "Modality, si! Modal logic, no!"

• • • • • • • • • • • •

- These topics typically covered by (Modal) Temporal Logics
- Mostly used in Theoretical Computer Science: algorithms, computability, complexity, formal verification
- But, initially, not so much in Actions and Change [McCarthy97] "Modality, si! Modal logic, no!"
- Nowadays, temporal logics used in KR or planning, but difficult combination with NMR

Linear-time Temporal Logic (LTL) \Box (forever), \Diamond (eventually), \bigcirc (next), \mathcal{U} (until)

Linear-time Temporal Logic (LTL) \Box (forever), \Diamond (eventually), \bigcirc (next), \mathcal{U} (until)

✓ Decidable inference methods. Satisfiability: PSPACE-complete

Linear-time Temporal Logic (LTL) \Box (forever), \Diamond (eventually), \bigcirc (next), \mathcal{U} (until)

- ✓ Decidable inference methods. Satisfiability: PSPACE-complete
- Relation to other mathematical models: algebra, automata, formal languages

< 🗇 🕨 < 🖃 🕨

Linear-time Temporal Logic (LTL) \Box (forever), \Diamond (eventually), \bigcirc (next), \mathcal{U} (until)

- ✓ Decidable inference methods. Satisfiability: PSPACE-complete
- ✓ Relation to other mathematical models: algebra, automata, formal languages
- ✓ Fragment of First-Order Logic: [Kamp 68] LTL = Monadic FO (<)

Linear-time Temporal Logic (LTL) \Box (forever), \Diamond (eventually), \bigcirc (next), \mathcal{U} (until)

- ✓ Decidable inference methods. Satisfiability: PSPACE-complete
- ✓ Relation to other mathematical models: algebra, automata, formal languages
- ✓ Fragment of First-Order Logic: [Kamp 68] LTL = Monadic FO (<)</p>
- ✓ Model checking and verification of reactive systems

• • • • • • • • • • • •

Linear-time Temporal Logic (LTL) \Box (forever), \Diamond (eventually), \bigcirc (next), \mathcal{U} (until)

- ✓ Decidable inference methods. Satisfiability: PSPACE-complete
- ✓ Relation to other mathematical models: algebra, automata, formal languages
- ✓ Fragment of First-Order Logic: [Kamp 68] LTL = Monadic FO (<)</p>
- ✓ Model checking and verification of reactive systems
- ✓ Many uses in AI: planning, ontologies, multi-agent systems, ...

• • • • • • • • • • • • •

A simple and well-known example

Linear-time Temporal Logic (LTL) \Box , \Diamond , \bigcirc , \mathcal{U} ...

X Monotonic: action domain representations manifest frame problem
A simple and well-known example

Linear-time Temporal Logic (LTL) \Box , \Diamond , \bigcirc , \mathcal{U} ...

X Monotonic: action domain representations manifest frame problem

In model checking no worry on this: usually, logical description of automaton states

A simple and well-known example

Linear-time Temporal Logic (LTL) \Box , \Diamond , \bigcirc , \mathcal{U} ...

X Monotonic: action domain representations manifest frame problem

In model checking no worry on this: usually, logical description of automaton states even worse! nothing less elaboration tolerant than an automaton A simple and well-known example

Linear-time Temporal Logic (LTL) \Box , \Diamond , \bigcirc , \mathcal{U} ...

X Monotonic: action domain representations manifest frame problem

In model checking no worry on this: usually, logical description of automaton states even worse! nothing less elaboration tolerant than an automaton

X NMR attempts for LTL: limited syntax, only for queries, control rules, etc. Not really embodied in LTL

Our proposal

Temporal Equilibrium Logic (TEL) [C_&Pérez 07] TEL = ASP + LTL

• ASP: logical characterisation Equilibrium Logic [Pearce 96]

• LTL: We add temporal operators \Box , \Diamond , \bigcirc , \mathcal{U} , \mathcal{R} .

Result: Temporal Stable Models for any arbitrary LTL theory.

Example

- Initially, a lamp switch can be closed (*p*) or open (*q*).
- By default, the switch state persists by inertia,
- but we can arbitrarily close it at any moment.

Example

- Initially, a lamp switch can be closed (*p*) or open (*q*).
- By default, the switch state persists by inertia,
- but we can arbitrarily close it at any moment.

Idea: LTL syntax, but keeping ASP semantics

イロト イヨト イヨト イヨト

- 2 Definitions and examples
- 3 Translations
- 4 Temporal Logic Programs
- 5 Automata-based methods
- 6 Conclusions and open topics

< 同 > < ∃ >

Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories. Consists of:

 A non-classical monotonic (intermediate) logic called Here-and-There (HT)

Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories. Consists of:

 A non-classical monotonic (intermediate) logic called Here-and-There (HT)

A selection of (certain) minimal models that yields nonmonotonicity

LPNMR'15 17 / 57

< 🗇 🕨 < 🖃 >

Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories. Consists of:

 A non-classical monotonic (intermediate) logic called Here-and-There (HT)

A selection of (certain) minimal models that yields nonmonotonicity

LPNMR'15 17 / 57

▲ 同 ▶ | ▲ 三 ▶

Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories. Consists of:

 A non-classical monotonic (intermediate) logic called Here-and-There (HT)

A selection of (certain) minimal models that yields nonmonotonicity

LPNMR'15 17 / 57

< 🗇 🕨 < 🖃 >

Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories. Consists of:

 A non-classical monotonic (intermediate) logic called Here-and-There (HT)

A selection of (certain) minimal models that yields nonmonotonicity

LPNMR'15 17 / 57

A (1) > A (1) > A

• Interpretation = pairs $\langle H, T \rangle$ of sets of atoms $H \subseteq T$

▲ ≣ ୬ ৭ ৫
LPNMR'15 18/57

- Interpretation = pairs $\langle H, T \rangle$ of sets of atoms $H \subseteq T$
- Example: $H = \{p, q\}, T = \{p, q, r, s\}.$

- Interpretation = pairs $\langle H, T \rangle$ of sets of atoms $H \subseteq T$
- Example: $H = \{p, q\}, T = \{p, q, r, s\}$. Intuition:

• When H = T we have a classical model.

Satisfaction of formulas

 $\langle H, T \rangle \models \varphi \quad \Leftrightarrow \quad "\varphi \text{ is proved"}$

LPNMR'15 19 / 57

Satisfaction of formulas

 $\begin{array}{ll} \langle H,T\rangle\models\varphi &\Leftrightarrow \quad "\varphi \text{ is proved"} \\ \langle T,T\rangle\models\varphi &\Leftrightarrow \quad "\varphi \text{ potentially true"} &\Leftrightarrow \quad T\models\varphi \text{ classically} \end{array}$

(日)

Satisfaction of formulas

 $\begin{array}{lll} \langle H, T \rangle \models \varphi & \Leftrightarrow & "\varphi \text{ is proved"} \\ \langle T, T \rangle \models \varphi & \Leftrightarrow & "\varphi \text{ potentially true"} & \Leftrightarrow & T \models \varphi \text{ classically} \end{array}$

• $\langle H, T \rangle \models p$ if $p \in H$ (for any atom p)

Satisfaction of formulas

 $\begin{array}{lll} \langle H, T \rangle \models \varphi & \Leftrightarrow & "\varphi \text{ is proved"} \\ \langle T, T \rangle \models \varphi & \Leftrightarrow & "\varphi \text{ potentially true"} & \Leftrightarrow & T \models \varphi \text{ classically} \end{array}$

- $\langle H, T \rangle \models p$ if $p \in H$ (for any atom p)
- \land,\lor as always

Satisfaction of formulas

 $\begin{array}{lll} \langle H, T \rangle \models \varphi & \Leftrightarrow & "\varphi \text{ is proved"} \\ \langle T, T \rangle \models \varphi & \Leftrightarrow & "\varphi \text{ potentially true"} & \Leftrightarrow & T \models \varphi \text{ classically} \end{array}$

- $\langle H, T \rangle \models p$ if $p \in H$ (for any atom p)
- $\bullet \ \land, \lor$ as always
- $\langle H, T \rangle \models \varphi \rightarrow \psi$ if both
 - $\mathcal{T} \models \varphi \rightarrow \psi$ classically
 - $\langle H, T \rangle \models \varphi$ implies $\langle H, T \rangle \models \psi$

Satisfaction of formulas

 $\begin{array}{lll} \langle H,T\rangle\models\varphi &\Leftrightarrow \quad ``\varphi \text{ is proved"} \\ \langle T,T\rangle\models\varphi &\Leftrightarrow \quad ``\varphi \text{ potentially true"} &\Leftrightarrow \quad T\models\varphi \text{ classically} \end{array}$

- $\langle H, T \rangle \models p$ if $p \in H$ (for any atom p)
- \land,\lor as always
- $\langle H, T \rangle \models \varphi \rightarrow \psi$ if both
 - $\mathbf{T} \models \varphi \rightarrow \psi$ classically
 - $\langle H, T \rangle \models \varphi$ implies $\langle H, T \rangle \models \psi$
- Negation $\neg F$ is defined as $F \rightarrow \bot$

• $\langle H, T \rangle \models \varphi$ implies $T \models \varphi$ (proved implies potentially true)

Satisfaction of formulas

 $\begin{array}{lll} \langle H, T \rangle \models \varphi & \Leftrightarrow & "\varphi \text{ is proved"} \\ \langle T, T \rangle \models \varphi & \Leftrightarrow & "\varphi \text{ potentially true"} & \Leftrightarrow & T \models \varphi \text{ classically} \end{array}$

- $\langle H, T \rangle \models p$ if $p \in H$ (for any atom p)
- \land,\lor as always
- $\langle H, T \rangle \models \varphi \rightarrow \psi$ if both
 - $\mathbf{T} \models \varphi \rightarrow \psi$ classically
 - $\langle H, T \rangle \models \varphi$ implies $\langle H, T \rangle \models \psi$
- Negation $\neg F$ is defined as $F \rightarrow \bot$
- $\langle H, T \rangle \models \varphi$ implies $T \models \varphi$ (proved implies potentially true)
- Relation to Gelfond & Lifschitz's reduct: $\langle H, T \rangle \models P$ iff $H \models P^T$ classically

Definition (Equilibrium/stable model) A model $\langle T, T \rangle$ of Γ is an equilibrium model iff

```
there is no H \subset T such that \langle H, T \rangle \models \Gamma.
```

When this holds, T is called a stable model.

Definition (Equilibrium/stable model)

A model $\langle T, T \rangle$ of Γ is an equilibrium model iff

```
there is no H \subset T such that \langle H, T \rangle \models \Gamma.
```

When this holds, *T* is called a stable model.

In other words, all assumptions T are eventually proved H

• • • • • • • • • • • •

Well-known and understood, solid logical background, used in implementation, nice fundamental properties:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Well-known and understood, solid logical background, used in implementation, nice fundamental properties:

 Two theories Γ₁, Γ₂ are strongly equivalent if Γ₁ ∪ Γ and Γ₂ ∪ Γ have the same equilibrium models for any Γ.

Strong equivalence of equilibrium theories = HT equivalence [Lifschitz, Pearce, Valverde 01].

< ロ > < 同 > < 回 > < 回 >

Well-known and understood, solid logical background, used in implementation, nice fundamental properties:

 Two theories Γ₁, Γ₂ are strongly equivalent if Γ₁ ∪ Γ and Γ₂ ∪ Γ have the same equilibrium models for any Γ.

Strong equivalence of equilibrium theories = HT equivalence [Lifschitz, Pearce, Valverde 01].

- Captures all LP extensions with propositional connectives (also first-order [Pearce & Valverde 04]).
- Moreover, covers arbitrary formulas, in a very reasonable way:

 $intuitionistic \subset HT \subset classical$

(Linear) Temporal Equilibrium Logic

- Syntax = propositional plus
 - $\Box \varphi$ = "forever" φ
 - $\Diamond \varphi$ = "eventually" φ
 - $\bigcirc \varphi$ = "next moment" φ
 - $\varphi \mathcal{U} \psi = \varphi$ "until eventually" ψ
 - $\varphi \mathcal{R} \psi = \varphi$ "release" ψ

(Linear) Temporal Equilibrium Logic

- Syntax = propositional plus
 - $\Box \varphi$ = "forever" φ
 - $\Diamond \varphi$ = "eventually" φ
 - $\bigcirc \varphi$ = "next moment" φ
 - $\varphi \mathcal{U} \psi = \varphi$ "until eventually" ψ
 - $\varphi \mathcal{R} \psi = \varphi$ "release" ψ
- As we had with Equilibrium Logic:
 - A monotonic underlying logic: Temporal Here-and-There (THT)
 - 2 An ordering among models. Select minimal models.

LPNMR'15 22 / 57

< ロ > < 同 > < 回 > < 回 >

Sequences

 $\bullet\,$ In standard LTL, interpretations are ∞ sequences of sets of atoms

{p, q}	{ <i>p</i> }	$\{q\}$	{}	{p, q}	

0 1 2 3 4	1
-----------	---

イロト イヨト イヨト イヨ

Sequences

 $\bullet\,$ In standard LTL, interpretations are ∞ sequences of sets of atoms

					F
{p, q}	{ <i>p</i> }	<i>{q}</i>	{}	{p, q}	
0	1	2	3	4	

• In THT we will have ∞ sequences of HT interpretations

 $\bullet\,$ We define an ordering among sequences $\textbf{H} \leq \textbf{T}$ when

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• We define an ordering among sequences $\mathbf{H} \leq \mathbf{T}$ when

Definition (THT-interpretation)

is a pair of sequences of sets of atoms $\langle \mathbf{H}, \mathbf{T} \rangle$ with $\mathbf{H} \leq \mathbf{T}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• We define an ordering among sequences **H**<**T** when

Definition (THT-interpretation) is a pair of sequences of sets of atoms $\langle H, T \rangle$ with H < T.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Temporal Here-and-There (THT)

 $\langle \mathbf{H}, \mathbf{T} \rangle, i \models \varphi \quad \Leftrightarrow \quad \text{``}\varphi \text{ is proved at } i$ ''
Temporal Here-and-There (THT)

 $\langle \mathbf{H}, \mathbf{T} \rangle, i \models \varphi \iff "\varphi \text{ is proved at } i"$ $\langle \mathbf{T}, \mathbf{T} \rangle, i \models \varphi \iff "\varphi \text{ potentially true at } i" \Leftrightarrow \mathbf{T}, i \models \varphi \text{ in LTL}$

LPNMR'15 25 / 57

(日)

 $\langle \mathbf{H}, \mathbf{T} \rangle, i \models \varphi \quad \Leftrightarrow \quad "\varphi \text{ is proved at } i" \\ \langle \mathbf{T}, \mathbf{T} \rangle, i \models \varphi \quad \Leftrightarrow \quad "\varphi \text{ potentially true at } i" \quad \Leftrightarrow \quad \mathbf{T}, i \models \varphi \text{ in LTL}$

An interpretation *M* = (H, T) satisfies *α* at situation *i*, written *M*, *i* |= *α*

α	$M, i \models \alpha$ when
an atom p	$p \in H_0$
\wedge,\vee	as usual
$\varphi \to \psi$	$ \begin{array}{l} \mathbf{T}, i \models \varphi \rightarrow \psi \text{ in LTL and} \\ \langle \mathbf{H}, \mathbf{T} \rangle, i \models \varphi \text{ implies } \langle \mathbf{H}, \mathbf{T} \rangle, i \models \psi \end{array} $

Temporal Here-and-There (THT)

 $\langle \mathbf{H}, \mathbf{T} \rangle, i \models \varphi \iff "\varphi \text{ is proved at } i"$ $\langle \mathbf{T}, \mathbf{T} \rangle, i \models \varphi \iff "\varphi \text{ potentially true at } i" \Leftrightarrow \mathbf{T}, i \models \varphi \text{ in LTL}$

An interpretation *M* = (H, T) satisfies *α* at situation *i*, written *M*, *i* |= *α*

 $\begin{array}{c|c} \alpha & M, i \models \alpha \text{ when } \dots \\ \hline \bigcirc \varphi & (M, i+1) \models \varphi \\ \Box \varphi & \forall j \ge i, \quad M, j \models \varphi \\ \Diamond \varphi & \exists j \ge i, \quad M, j \models \varphi \\ \varphi \mathcal{U} \psi & \exists j \ge i, \quad M, j \models \psi \text{ and } \forall k \text{ s.t. } i \le k < j, \quad M, k \models \varphi \\ \varphi \mathcal{R} \psi & \forall j \ge i, \quad M, j \models \psi \text{ or } \exists k, i \le k < j, \quad M, k \models \varphi \end{array}$

• *M* is a model of a theory Γ when $M, 0 \models \alpha$ for all $\alpha \in \Gamma$

Stable Models for Temporal Theories

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

イロト イポト イヨト イヨト

• $\varphi \mathcal{U} \psi$ = repeat φ until (mandatorily) ψ

• $\varphi \mathcal{U} \psi$ = repeat φ until (mandatorily) ψ

• $\varphi \mathcal{U} \psi$ = repeat φ until (mandatorily) ψ

• $\varphi \mathcal{U} \psi$ = repeat φ until (mandatorily) ψ

• $\varphi \mathcal{U} \psi$ = repeat φ until (mandatorily) ψ

• $\varphi \mathcal{U} \psi$ = repeat φ until (mandatorily) ψ

• $\varphi \mathcal{U} \psi$ = repeat φ until (mandatorily) ψ

• $\varphi \mathcal{R} \psi$ = there is a φ before any state without ψ

• $\varphi \mathcal{U} \psi$ = repeat φ until (mandatorily) ψ

• $\varphi \mathcal{R} \psi$ = there is a φ before any state without ψ

• Some valid THT formulas:

For $\otimes = \land, \lor, \rightarrow, \mathcal{U}, \mathcal{R}$.

イロト イポト イヨト イヨト

• Some valid THT formulas:

$$\begin{array}{rcl} & & & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & &$$

For $\otimes = \land, \lor, \rightarrow, \mathcal{U}, \mathcal{R}$.

Axiomatization of THT: ongoing work [Balbiani & Diéguez 15]

Definition (Temporal Equilibrium Model)

of a theory Γ is a model $M = \langle \mathbf{T}, \mathbf{T} \rangle$ of Γ such that there is no $\mathbf{H} < \mathbf{T}$ satisfying $\langle \mathbf{H}, \mathbf{T} \rangle$, $\mathbf{0} \models \Gamma$.

LPNMR'15 30 / 57

Definition (Temporal Equilibrium Model)

of a theory Γ is a model $M = \langle \mathbf{T}, \mathbf{T} \rangle$ of Γ such that there is no $\mathbf{H} < \mathbf{T}$ satisfying $\langle \mathbf{H}, \mathbf{T} \rangle, \mathbf{0} \models \Gamma$.

• Temporal Equilibrium Logic (TEL) is the logic induced by temporal equilibrium models.

Definition (Temporal Stable Model)

T is a temporal stable model of a theory Γ iff $\langle T, T \rangle$ is a temporal equilibrium model of Γ .

イロト イ団ト イヨト イヨト

Example 1: TEL models of □(¬p → ○p). It's like an infinite program:

Example 1: TEL models of □(¬p → ○p). It's like an infinite program:

• TEL models have the form

corresponding to LTL models of $\neg p \land \Box(\neg p \leftrightarrow \bigcirc p)$.

• Example 2: consider TEL models of $\Diamond p$

イロト イヨト イヨト イヨト

Example 2: consider TEL models of ◊p is like p ∨ ○p ∨ ○ ○ p ∨ …

イロト イヨト イヨト イヨト

Example 2: consider TEL models of ◊p is like p ∨ ○p ∨ ○ ○ p ∨ …
 TEL models have the form

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example 2: consider TEL models of \$\phip\$
is like \$p \langle \circ p \langle \circ p \langle \lines\$
TEL models have the form
\$\emp\$\$ \$\emp\$\$ \$\emp\$\$ \$\emp\$\$ \$\emp\$\$ \$\emp\$\$ \$\emp\$\$

corresponding to LTL models of $\neg p \mathcal{U} (p \land \bigcirc \Box \neg p)$

< ロ > < 同 > < 回 > < 回 >

• In ASP terms, how can we represent temporal stable models? infinitely long! infinitely many!

 In ASP terms, how can we represent temporal stable models? infinitely long! infinitely many!

 Answer: using Büchi automata. An infinite-length word is accepted iff it visits some acceptance state infinitely often

- Example 3: consider TEL models of □◊*p*
- In LTL this means *p* occurs infinitely often.

・ロト ・ 日 ・ ・ ヨ ・ ・

- Example 3: consider TEL models of □◊*p*
- In LTL this means *p* occurs infinitely often.
- So take any LTL model T like that, i.e., $\langle T, T \rangle$ is a total THT model.

- Example 3: consider TEL models of □◊*p*
- In LTL this means *p* occurs infinitely often.
- So take any LTL model T like that, i.e., $\langle T, T \rangle$ is a total THT model.
- Now build some H < T by removing one p at some point. But then $\langle H, T \rangle$ is also a model since H contains $\infty 1 = \infty p$'s yet!

- Example 3: consider TEL models of □◊*p*
- In LTL this means *p* occurs infinitely often.
- So take any LTL model T like that, i.e., $\langle T, T \rangle$ is a total THT model.
- Now build some H < T by removing one p at some point. But then $\langle H, T \rangle$ is also a model since H contains $\infty 1 = \infty p$'s yet!
- Therefore, $\Box \Diamond p$ alone has no TEL models.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example 4: consider TEL models of the pair of formulas

 $\Box(\neg \bigcirc p \rightarrow p) \\ \Box(\bigcirc p \rightarrow p)$

LPNMR'15 35 / 57

イロト 不得 トイヨト イヨト 二日

• Example 4: consider TEL models of the pair of formulas

 $\Box(\neg \bigcirc p \rightarrow p) \\ \Box(\bigcirc p \rightarrow p)$

• Curiosity: implications go backwards in time

• Example 4: consider TEL models of the pair of formulas

 $\Box(\neg \bigcirc p \rightarrow p) \\ \Box(\bigcirc p \rightarrow p)$

- Curiosity: implications go backwards in time
- This is LTL-equivalent to:

 $\Box \big((\neg \bigcirc p \to p) \land (\bigcirc p \to p) \big)$

• Example 4: consider TEL models of the pair of formulas

 $\Box(\neg \bigcirc p \rightarrow p) \\ \Box(\bigcirc p \rightarrow p)$

- Curiosity: implications go backwards in time
- This is LTL-equivalent to:

$$\Box ((\neg \bigcirc p \to p) \land (\bigcirc p \to p))$$

$$\equiv \Box (\underbrace{\neg \bigcirc p \lor \bigcirc p}_{\top} \to p)$$

$$\equiv \Box p$$

• Example 4: consider TEL models of the pair of formulas

 $\Box(\neg \bigcirc p \rightarrow p)$ $\Box(\bigcirc p \rightarrow p)$

• So LTL models make *p* true forever,

• Example 4: consider TEL models of the pair of formulas

 $\Box(\neg \bigcirc p \rightarrow p) \\ \Box(\bigcirc p \rightarrow p)$

• So LTL models make *p* true forever, but we won't get TEL models!
Some examples

- Example 4: consider TEL models of the pair of formulas $\Box(\neg \bigcirc p \rightarrow p)$ $\Box(\bigcirc p \rightarrow p)$
- So LTL models make *p* true forever, but we won't get TEL models!
- We can build a strictly smaller model with **H** where from some point on **T**, *p* becomes false forever

Some examples

• Example 5: lamp switch again

< ロ > < 同 > < 回 > < 回 >

Some examples

• Example 5: lamp switch again

We never get $up \land down$ Once up is true, it remains so forever

LPNMR'15 37 / 57

• • • • • • • • • • • • •

• Reasonable behavior when theories "look like" logic programs

LPNMR'15 38 / 57

A D > A B > A B > A

- Reasonable behavior when theories "look like" logic programs
- But what happens with arbitrary temporal formulas?
 e.g. ◊p ∧ (¬□◊q → ◊(p U q))

• • • • • • • • • • • •

- Reasonable behavior when theories "look like" logic programs
- But what happens with arbitrary temporal formulas?
 e.g. ◊p ∧ (¬□◊q → ◊(p U q))
- Answer: natural translations to first-order and infinitary ...

1. Enconding THT into LTL

- THT can be encoded into LTL, adding auxiliary atoms using the same translation of → from HT to classical logic
- Intuition: p will represent $p \in T$ whereas p' will mean $p \in H$

• • • • • • • • • • • • •

1. Enconding THT into LTL

- THT can be encoded into LTL, adding auxiliary atoms using the same translation of → from HT to classical logic
- Intuition: p will represent $p \in T$ whereas p' will mean $p \in H$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Warning: this does not mean that we can encode Temporal Stable Models as models of an LTL theory!

• • • • • • • • • • •

- Warning: this does not mean that we can encode Temporal Stable Models as models of an LTL theory!
- This is an open question (failed attempt [C_ & Diéguez, ASPOCP'14])

We know it holds for splittable temporal programs (see later)

- Warning: this does not mean that we can encode Temporal Stable Models as models of an LTL theory!
- This is an open question (failed attempt [C_ & Diéguez, ASPOCP'14])
 We know it holds for splittable temporal programs (see later)
- THT-satisfiability = PSPACE-complete [C_ & Demri 11] TEL-satisfiability = EXPSPACE-complete [Bozzelli & Pearce 15]

• • • • • • • • • • • •

• Encoding LTL into THT is straightforward. Add the excluded middle axiom for all atom *p*:

 $\Box(p \lor \neg p)$

• • • • • • • • • • • •

• Encoding LTL into THT is straightforward. Add the excluded middle axiom for all atom *p*:

 $\Box(p \lor \neg p)$

 Note that p ∨ ¬p is alternate notation for a choice rule. We can selectively make a proposition behave as LTL/classical.

Most modal logics, natural translation into First-Order Logic (FOL)

- Most modal logics, natural translation into First-Order Logic (FOL)
- [Kamp 68]: from LTL into MFO(<), monadic FOL plus < relation Some examples:

<u>LTL Formula</u>		MFO(<) Translation
⟨⟩up	\mapsto	$\exists (x \geq 0 \land up(x))$
⟨□up	\mapsto	$\exists (x \geq 0 \land \forall y (y \geq x \rightarrow up(x)))$
up U down	\mapsto	$\exists (x \ge 0 \land up(x) \land \forall y \ (0 \le y < x \rightarrow down(y)))$

- Most modal logics, natural translation into First-Order Logic (FOL)
- [Kamp 68]: from LTL into MFO(<), monadic FOL plus < relation Some examples:

LTL Formula		MFO(<) Translation
⟨⟩up	\mapsto	$\exists (x \geq 0 \land up(x))$
$\Diamond \Box up$	\mapsto	$\exists (x \geq 0 \land \forall y (y \geq x \rightarrow up(x)))$
up U down	\mapsto	$\exists (x \ge 0 \land up(x) \land \forall y \ (0 \le y < x \rightarrow down(y)))$

[C_, Diéguez, Vidal KR14]: Kamp's translation also sound for

- from THT to Monadic Quantified HT with <</p>
- from TEL to Monadic Quantified Equilibrium logic with <</p>

LPNMR'15 43 / 57

< □ > < □ > < □ > < □ >

- Most modal logics, natural translation into First-Order Logic (FOL)
- [Kamp 68]: from LTL into MFO(<), monadic FOL plus < relation Some examples:

<u>LTL Formula</u>		MFO(<) Translation
⟨⟩up	\mapsto	$\exists (x \geq 0 \land up(x))$
⟨□up	\mapsto	$\exists (x \geq 0 \land \forall y (y \geq x \rightarrow up(x)))$
$up \mathcal{U} \ down$	\mapsto	$\exists (x \ge 0 \land up(x) \land \forall y \ (0 \le y < x \rightarrow down(y)))$

• [C_, Diéguez, Vidal KR14]: Kamp's translation also sound for

- from THT to Monadic Quantified HT with <</p>
- from TEL to Monadic Quantified Equilibrium logic with <</p>
- Kamp also proved the other direction MFO(<) → LTL.
 Open question: Does it hold in our case?

LPNMR'15 43 / 57

< 回 ト < 三 ト < 三

• A similar correspondence can be proved for Infinitary Equilibrium Logic [Harrison et al, ASPOCP'14]

- A similar correspondence can be proved for Infinitary Equilibrium Logic [Harrison et al, ASPOCP'14]
- Rather than ∀ or ∃ we use infinitary conjunction and disjunction

LTLMFO(<)</th>Infinitary $\Box p \Leftrightarrow \forall x \ (x \ge 0 \rightarrow p(x)) \Leftrightarrow p \land \bigcirc p \land \bigcirc^2 p \land \ldots$ $\Diamond p \Leftrightarrow \exists x \ (x \ge 0 \land p(x)) \Leftrightarrow p \lor \bigcirc p \lor \bigcirc^2 p \lor \ldots$

✓ Propositional signature: each ' $\bigcirc^i p$ ' understood as an atom.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

- A similar correspondence can be proved for Infinitary Equilibrium Logic [Harrison et al, ASPOCP'14]
- Rather than \forall or \exists we use infinitary conjunction and disjunction

LTL		MFO(<)		Infinitary
$\Box p$	\Leftrightarrow	$\forall x \ (x \ge 0 \to p(x))$	\Leftrightarrow	$p \land \bigcirc p \land \bigcirc^2 p \land \ldots$
$\Diamond p$	\Leftrightarrow	$\exists x \ (x \ge 0 \land p(x))$	\Leftrightarrow	$p \lor \bigcirc p \lor \bigcirc^2 p \lor \ldots$

- ✓ Propositional signature: each ' $\bigcirc^i p$ ' understood as an atom.
- > But even adding excluded middle, infinitary logic more expressive than LTL or MFO(<)</p>

 $\{\bigcirc^{i} p \mid i \ge 0 \text{ and } mod(i,2) = 0\}^{\wedge}$ $\equiv p \land \bigcirc^{2} p \land \bigcirc^{4} p \land \bigcirc^{6} p \land \dots$

Not LTL-representable.

- A similar correspondence can be proved for Infinitary Equilibrium Logic [Harrison et al, ASPOCP'14]
- Rather than \forall or \exists we use infinitary conjunction and disjunction

LTL		MFO(<)		Infinitary
$\Box p$	\Leftrightarrow	$\forall x \ (x \ge 0 \to p(x))$	\Leftrightarrow	$p \land \bigcirc p \land \bigcirc^2 p \land \ldots$
$\Diamond p$	\Leftrightarrow	$\exists x \ (x \ge 0 \land p(x))$	\Leftrightarrow	$p \lor \bigcirc p \lor \bigcirc^2 p \lor \ldots$

- ✓ Propositional signature: each ' $\bigcirc^i p$ ' understood as an atom.
- > But even adding excluded middle, infinitary logic more expressive than LTL or MFO(<)</p>

 $\{\bigcirc^{i} p \mid i \ge 0 \text{ and } mod(i,2) = 0\}^{\wedge}$ $\equiv p \land \bigcirc^{2} p \land \bigcirc^{4} p \land \bigcirc^{6} p \land \dots$

Not LTL-representable. Which kind of infinite sets of formulas?

- 2 Definitions and examples
- 3 Translations

Pedro Cabalar

- 5 Automata-based methods
- 6 Conclusions and open topics

A b

Temporal Logic Programs

- THT theories can be reduced to a normal form: temporal logic programs TLPs [C_, JELIA'10].
- Structure preserving transformation introducing auxiliary atoms.

• • • • • • • • • • • •

Temporal Logic Programs

- THT theories can be reduced to a normal form: temporal logic programs TLPs [C_, JELIA'10].
- Structure preserving transformation introducing auxiliary atoms.
- A temporal logic program (TLP for short) consists of

Definition (Temporal rule)

A temporal rule is either:

- $Iit_1 \land \cdots \land Lit_n \to Lit_{n+1} \lor \cdots \lor Lit_m$
- $(Lit_1 \land \cdots \land Lit_n \to Lit_{n+1} \lor \cdots \lor Lit_m)$
- **③** or an implication like $\Box(\Box p \rightarrow q)$ or like $\Box(p \rightarrow \Diamond q)$
- (arbitrary constraints $\alpha \rightarrow \bot$

where p, q atoms and *Lit_i* expressions like $\bigcirc^i p$ or $\neg \bigcirc^i p$

Splittable TLPs

• [Aguado et al, LPNMR'11] introduces splittable TLPs splittable. Informally speaking: past does not depend on the future.

LPNMR'15 47 / 57

Splittable TLPs

• [Aguado et al, LPNMR'11] introduces splittable TLPs splittable. Informally speaking: past does not depend on the future.

• Our switch example theory was splittable.

• • • • • • • • • • • •

Splittable TLPs

• [Aguado et al, LPNMR'11] introduces splittable TLPs splittable. Informally speaking: past does not depend on the future.

- Our switch example theory was splittable.
- Temporal stable models of a splittable TLP are LTL-representable: We can build loop formulas in LTL

< □ > < □ > < □ > < □ >

• [Aguado et al, LPNMR'11] introduces splittable TLPs splittable. Informally speaking: past does not depend on the future.

- Our switch example theory was splittable.
- Temporal stable models of a splittable TLP are LTL-representable: We can build loop formulas in LTL
- System STelP [C_ & Diéguez LPNMR11] uses loop formulas and backend model checker.

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- 2 Definitions and examples
- 3 Translations
- 4 Temporal Logic Programs
- 5 Automata-based methods
- 6 Conclusions and open topics

▲ 同 ▶ → 三 ▶

[C_ & Demri 2011]

Definition (Automata Based Computation Method)

LTL (i. e. total) models which do not have a strictly smaller $\langle H, T \rangle$

 $\overline{h}(\mathcal{A}_{\omega'})$

• Intuition: $A_{\varphi'}$ captures the $\langle H, T \rangle$ satisfying H < T

• • • • • • • • • • • •

[C_ & Demri 2011]

Definition (Automata Based Computation Method)

LTL (i. e. total) models which do not have a strictly smaller $\langle H, T \rangle$

 $h(\mathcal{A}_{\omega'})$

- Intuition: $A_{\varphi'}$ captures the $\langle H, T \rangle$ satisfying H < T
- We use the φ^* translation and force non-LTL models. Example: if $\varphi = \Diamond up$ then

 $\varphi' = \Diamond up' \land \Box (up' \to up) \land \Diamond (up \land \neg up')$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

[C_ & Demri 2011]

Definition (Automata Based Computation Method)

LTL (i. e. total) models which do not have a strictly smaller $\langle H, T \rangle$

 $h(\mathcal{A}_{\omega'})$

- Intuition: $A_{\varphi'}$ captures the $\langle H, T \rangle$ satisfying H < T
- We use the φ^* translation and force non-LTL models. Example: if $\varphi = \Diamond up$ then

 $\varphi' = \Diamond up' \land \Box (up' \to up) \land \Diamond (up \land \neg up')$

Operation h(A_{\varphi'}) filters out the auxiliary atoms p'

[C_ & Demri 2011]

Definition (Automata Based Computation Method)

LTL (i. e. total) models which do not have a strictly smaller $\langle H, T \rangle$

 $h(\mathcal{A}_{\omega'})$

- Intuition: $A_{\varphi'}$ captures the $\langle H, T \rangle$ satisfying H < T
- We use the φ^* translation and force non-LTL models. Example: if $\varphi = \Diamond up$ then

 $\varphi' = \Diamond up' \land \Box (up' \to up) \land \Diamond (up \land \neg up')$

- Operation h(A_φ) filters out the auxiliary atoms p'
- Büchi automata are closed w.r.t. complementation and intersection

 $up \lor down.$ $\Box (up \land \neg \bigcirc down \to \bigcirc up).$ $\Box (down \land \neg \bigcirc up \to \bigcirc down).$ $\Box (up \lor \neg up)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $up \lor down.$ $\Box (up \land \neg \bigcirc down \to \bigcirc up).$ $\Box (down \land \neg \bigcirc up \to \bigcirc down).$ $\Box (up \lor \neg up)$ $\Diamond \Box up \to \Box stuck.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

৸ ৰ≣ ১ ছি ৩ ৭ ৫ LPNMR'15 50 / 57
Example of non-splittable theory

LPNMR'15 51 / 57

• ABSTEM: obtains temporal stable models for arbitrary theories

- It also allows checking different types of equivalence
 - LTL equivalence
 - Weak equivalence (same temporal stable models)
 - Strong equivalence

ABSTEM: obtains temporal stable models for arbitrary theories

- It also allows checking different types of equivalence
 - LTL equivalence
 - Weak equivalence (same temporal stable models)
 - Strong equivalence

Theorem ([C_ & Diéguez KR14])

 φ_1 and φ_2 are strongly equivalent iff they are THT equivalent.

< ロ > < 同 > < 回 > < 回 >

• ABSTEM: obtains temporal stable models for arbitrary theories

- It also allows checking different types of equivalence
 - LTL equivalence
 - Weak equivalence (same temporal stable models)
 - Strong equivalence

Theorem ([C_ & Diéguez KR14])

 φ_1 and φ_2 are strongly equivalent iff they are THT equivalent.

When not THT-equivalent, ABSTEM provides a context that make both theories differ

LPNMR'15 52 / 57

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 2 Definitions and examples
- 3 Translations
- 4 Temporal Logic Programs
- 5 Automata-based methods
- 6 Conclusions and open topics

A b

- TEL = suitable framework for temporal reasoning + ASP
- Simple semantics thanks to just merging two logical formalisms: Equilibrium Logic + LTL.
- TEL does not "compete" with other ASP techniques: it complements them
 - when planning: non-existence of plans, temporal constraints
 - when debugging: checking temporal properties
 - checking strong equivalence

• • • • • • • • • • • •

- TEL = suitable framework for temporal reasoning + ASP
- Simple semantics thanks to just merging two logical formalisms: Equilibrium Logic + LTL.
- TEL does not "compete" with other ASP techniques: it complements them
 - when planning: non-existence of plans, temporal constraints
 - when debugging: checking temporal properties
 - checking strong equivalence
- It constitutes a new open field. Many open topics ...

LPNMR'15 54 / 57

 Complete Axiomatisation of Temporal Here-and-There (almost done [Balbiani & Diéguez])

- Complete Axiomatisation of Temporal Here-and-There (almost done [Balbiani & Diéguez])
- Can we represent the temporal stable models of Γ as LTL models of a formula? Our conjecture: positive

- Complete Axiomatisation of Temporal Here-and-There (almost done [Balbiani & Diéguez])
- THT vs Quantified HT (QHT): analogous to Kamp's theorem for THT and monadic QHT with <?

- ∢ ∃ ▶

- Complete Axiomatisation of Temporal Here-and-There (almost done [Balbiani & Diéguez])
- THT vs Quantified HT (QHT): analogous to Kamp's theorem for THT and monadic QHT with <? Our conjecture: negative. It seems we cannot move *q* out of ∃*x* in ∃*x*((*p*(*x*) → *q*) ∧ *r*(*x*))

• • • • • • • • • • • •

- Complete Axiomatisation of Temporal Here-and-There (almost done [Balbiani & Diéguez])
- THT vs Quantified HT (QHT): analogous to Kamp's theorem for THT and monadic QHT with <?
 Our conjecture: negative. It seems we cannot move *q* out of ∃*x* in ∃*x*((*p*(*x*) → *q*) ∧ *r*(*x*))
- Adding past operators:

 $\Box(up \land \neg \bigcirc down \to \bigcirc up) \quad \text{versus} \quad \Box(\ominus up \land \neg down \to up)$

More natural when rule bodies refer to past

- Other temporal logics.
 Example: Equilibrium Logic+Dynamic LTL [Aguado et al. LPNMR13])
- New syntactic subclasses with satisfiability lower than EXPSPACE [Bozzelli & Pearce 15]
- Find a tableaux method for THT. Perhaps designing specific on-the-fly techniques
- Possible adaptation of Temporal Resolution [Fisher 91]
- Planning tool. Compare to planners using LTL control knowledge like TLPIan [Bacchus & Kabanza 00].
- Encoding action languages

< ロ > < 同 > < 回 > < 回 >

Stable Models for Temporal Theories Pedro Cabalar

Thanks for your attention!

September 28th, 2015 LPNMR'15 Lexington, KY, USA

LPNMR'15 57 / 57

• • • • • • • • • • • •