Stable Models for Temporal Theories

Pedro Cabalar

Department of Computer Science
University of Corunna (Spain)
cabalar@udc.es

September 28th, 2015
LPNMR’15
Lexington, KY, USA
Joint work with KR group at

Felicidad Aguado

Martín Diéguez

Gilberto Pérez

Concepción Vidal

UNIVERSIDADE DA CORUÑA
Joint work with KR group at

UNIVERSIDADE DA CORUÑA

Felicidad Aguado Martín Diéguez Gilberto Pérez Concepción Vidal

and collaborators from other universities:

- David Pearce and Laura Bozzelli (Univ. Pol. Madrid, Spain),
- Stephane Demri (ENS de Cachan, France),
- Philippe Balbiani and Luis Fariñas (IRIT Toulouse, France)
1 Introduction

2 Definitions and examples

3 Translations

4 Temporal Logic Programs

5 Automata-based methods

6 Conclusions and open topics
Initial motivation

Formalizing **dynamic domains** was part of KR origins

- **Actions and Change**: temporal domains in first-order logic
 - Situation Calculus
 - Event Calculus
 - Features and Fluents
Initial motivation

Formalizing **dynamic domains** was part of KR origins

- **Actions and Change**: temporal domains in first-order logic
 - Situation Calculus
 - Event Calculus
 - Features and Fluents

- **Representational problems**: frame, Yale Shooting, …
 How to deal with **defaults** like **inertia**?
Initial motivation

The stress was put on Non-monotonic Reasoning (NMR)

- You said it’s a penguin?
- Well, it is not flying . . .
Initial motivation

[Image 104x192 to 154x235]
[Image 65x87 to 101x143]
[Image 24x46 to 143x83]

The stress was put on Non-monotonic Reasoning (NMR)

- You said it’s a penguin?
- Well, it is not flying . . .

[AIJ 1980] Circumscription, Default Logic, NM Modal logic
The stress was put on Non-monotonic Reasoning (NMR)

[AIJ 1980] Circumscription, Default Logic, NM Modal logic

Late 80’s, strong connection between LP - NMR
Logic Programming
Non-Monotonic Reasoning

- You said it’s a penguin?
- Well, it is not flying . . .
Example of correspondence:

\[
\begin{align*}
p & \leftarrow \text{not } q \\
r & \leftarrow p, \text{not } s
\end{align*}
\]

Stable models [Gelfond & Lifschitz 88] =

Default Logic [Reiter 80]
Example of correspondence:

\[p \leftarrow \text{not } q \]
\[r \leftarrow p, \text{not } s \]

\[\text{Stable models} \]

\[\text{Default Logic} \]

\[\text{[Gelfond & Lifschitz 88]} \]

\[\text{[Reiter 80]} \]

Why not using logic programs for action and change?
Example of correspondence:

\[
\begin{align*}
\text{LP} & : \quad p \leftarrow \neg q \\
& \quad r \leftarrow p, \neg s \\
\text{NMR} & : \quad \frac{\neg q}{p} \quad \frac{p : \neg s}{r}
\end{align*}
\]

Stable models

[Gelfond & Lifschitz 88]

Default Logic

[Reiter 80]

Why not using logic programs for action and change?

[Gelfond & Lifschitz, JLP 93]

Representing Action and Change by Logic Programs

Established a new methodology giving rise to . . .
Transition systems in Answer Set Programming (ASP)

Some nice features

✓ Elaboration tolerance: small changes in the problem \Rightarrow small changes in representation

✓ Simple solution to frame, ramification and qualification problems
Transition systems in Answer Set Programming (ASP)

Some nice features

✓ Elaboration tolerance: small changes in the problem ⇒ small changes in representation

✓ Simple solution to frame, ramification and qualification problems

✓ Easy to switch reasoning task: prediction (or simulation), explanation, planning, diagnosis
Transition systems in Answer Set Programming (ASP)

Some nice features

✓ Elaboration tolerance: small changes in the problem \Rightarrow small changes in representation

✓ Simple solution to frame, ramification and qualification problems

✓ Easy to switch reasoning task:
 prediction (or simulation), explanation, planning, diagnosis

✓ Simple (linear) time structure: integer argument in predicates
Transition systems in Answer Set Programming (ASP)

Some nice features

✓ Elaboration tolerance: small changes in the problem \Rightarrow small changes in representation

✓ Simple solution to frame, ramification and qualification problems

✓ Easy to switch reasoning task:
 prediction (or simulation), explanation, planning, diagnosis

✓ Simple (linear) time structure: integer argument in predicates

✓ Incremental ASP exploits time index to reuse grounding/solving
Transition systems in ASP

But not thought for temporal reasoning

✗ Planning by iterative deepening with finite path length: we cannot prove non-existence of plan

✗ Reactive systems out of the scope: e.g. a network server must keep on running (potentially) forever

("Forgotten" reasoning task: verification of temporal properties. E.g. "At some point, fluent p will never change again")
Transition systems in ASP

But not thought for temporal reasoning

× Planning by iterative deepening with finite path length: we cannot prove non-existence of plan

× Reactive systems out of the scope: e.g. a network server must keep on running (potentially) forever

× (Forgotten) reasoning task: verification of temporal properties. E.g. “At some point, fluent p will never change again”
Transition systems in ASP

But not thought for temporal reasoning

- Planning by *iterative deepening* with *finite path length*: we cannot prove *non-existence* of plan

- Reactive systems out of the scope:
 e.g. a *network server* must keep on running (potentially) forever

- (Forgotten) reasoning task: *verification of temporal properties.*
 E.g. “At some point, fluent p will never change again”

- Existing formal methods for transition systems: *outside ASP*
Example

- Initially, a lamp switch can be *up* or *down*.

```prolog
time(0..n).
up(0), down(0).
```

\[\text{up}(T+1) : \neg \text{down}(T+1), \text{time}(T)\]

\[\text{down}(T+1) : \neg \text{up}(T+1), \text{time}(T)\]

\{\text{up}(T)\} : \text{time}(T)\]
Example

- Initially, a lamp switch can be *up* or *down*.
- By default, the switch state persists by inertia,

```
time(0..n).
up(0), down(0).
up(T+1) :- up(T), not down(T+1), time(T).
down(T+1) :- down(T), not up(T+1), time(T).
```
Example

- Initially, a lamp switch can be \textit{up} or \textit{down}.
- By default, the switch state persists by inertia, but we can \textit{arbitrarily close} it at any moment.

\begin{verbatim}
transition_system

\text{time}(0..n).
\text{up}(0), \text{down}(0).

\text{up}(T+1) :- \text{up}(T), \neg \text{down}(T+1), \text{time}(T).
\text{down}(T+1) :- \text{down}(T), \neg \text{up}(T+1), \text{time}(T).
\{\text{up}(T)\} :- \text{time}(T).
\end{verbatim}
Examples of problems that cannot be solved using bounded time:

- Is there a reachable state with up and $down$ false?
Examples of problems that cannot be solved using bounded time:

- Is there a reachable state with \textit{up} and \textit{down} false?
- Once \textit{up} becomes true, does it remain so forever?
Examples of problems that cannot be solved using bounded time:

- Is there a reachable state with \textit{up} and \textit{down} false?
- Once \textit{up} becomes true, does it remain so forever?
- The switch cannot be closed infinitely often without eventually damaging the lamp
These topics typically covered by **(Modal) Temporal Logics**
Modal Temporal Logic

- These topics typically covered by (Modal) Temporal Logics

- Mostly used in Theoretical Computer Science: algorithms, computability, complexity, formal verification
Modal Temporal Logic

- These topics typically covered by (Modal) Temporal Logics
- Mostly used in Theoretical Computer Science: algorithms, computability, complexity, formal verification
- But, initially, not so much in Actions and Change
 [McCarthy97] “Modality, si! Modal logic, no!”
These topics typically covered by (Modal) Temporal Logics

Mostly used in Theoretical Computer Science: algorithms, computability, complexity, formal verification

But, initially, not so much in Actions and Change [McCarthy97] “Modality, si! Modal logic, no!”

Nowadays, temporal logics used in KR or planning, but difficult combination with NMR
Modal Temporal Logic

A simple and well-known case

Linear-time Temporal Logic (LTL)

□ (forever), ♦ (eventually), ○ (next), U (until)
Modal Temporal Logic

A simple and well-known case

Linear-time Temporal Logic (LTL)

- □ (forever), ♦ (eventually), ○ (next), U (until)

✓ Decidable inference methods. Satisfiability: PSPACE-complete
Modal Temporal Logic

A simple and well-known case

Linear-time Temporal Logic (LTL)

\(\Box \) (forever), \(\Diamond \) (eventually), \(\bigcirc \) (next), \(U \) (until)

✓ Decidable inference methods. Satisfiability: PSPACE-complete

✓ Relation to other mathematical models:
 algebra, automata, formal languages
Modal Temporal Logic

A simple and well-known case

Linear-time Temporal Logic (LTL)

\(\square\) (forever), \(\diamond\) (eventually), \(\bigcirc\) (next), \(U\) (until)

✓ Decidable inference methods. Satisfiability: PSPACE-complete

✓ Relation to other mathematical models:
algebra, automata, formal languages

✓ Fragment of First-Order Logic: [Kamp 68] LTL = Monadic FO (\(<\)
Modal Temporal Logic

A simple and well-known case

Linear-time Temporal Logic (LTL)

\[\square \text{ (forever)}, \quad \Diamond \text{ (eventually)}, \quad \bigcirc \text{ (next)}, \quad U \text{ (until)} \]

✓ Decidable inference methods. Satisfiability: PSPACE-complete

✓ Relation to other mathematical models:
 algebra, automata, formal languages

✓ Fragment of First-Order Logic: [Kamp 68] LTL = Monadic FO (<)

✓ Model checking and verification of reactive systems
Modal Temporal Logic

A simple and well-known case

Linear-time Temporal Logic (LTL)

\(\square\) (forever), \(\Diamond\) (eventually), \(\bigcirc\) (next), \(U\) (until)

✓ Decidable inference methods. Satisfiability: PSPACE-complete

✓ Relation to other mathematical models:
 algebra, automata, formal languages

✓ Fragment of First-Order Logic: [Kamp 68] LTL = Monadic FO (<)

✓ Model checking and verification of reactive systems

✓ Many uses in AI: planning, ontologies, multi-agent systems, ...
Modal Temporal Logic

A simple and well-known example

Linear-time Temporal Logic (LTL)

□, ◊, ◯, U...

× Monotonic: action domain representations manifest frame problem
Modal Temporal Logic

A simple and well-known example

Linear-time Temporal Logic (LTL)

□, ◊, ○, U ...

✗ Monotonic: action domain representations manifest **frame problem**

In model checking no worry on this: usually, logical description of **automaton states**
Modal Temporal Logic

A simple and well-known example

Linear-time Temporal Logic (LTL)

□, ◊, ○, U ...

✗ **Monotonic**: action domain representations manifest frame problem

In model checking no worry on this:
usually, logical description of automaton states
even worse! nothing less elaboration tolerant than an automaton
Modal Temporal Logic

A simple and well-known example

Linear-time Temporal Logic (LTL)
□, ◊, ◯, U ...

✗ Monotonic: action domain representations manifest frame problem

In model checking no worry on this:
usually, logical description of automaton states
even worse! nothing less elaboration tolerant than an automaton

✗ NMR attempts for LTL: limited syntax, only for queries, control rules, etc. Not really embodied in LTL
Our proposal

Temporal Equilibrium Logic (TEL) [C_&Pérez 07]

TEL = ASP + LTL

- **ASP**: logical characterisation Equilibrium Logic [Pearce 96]
- **LTL**: We add temporal operators \square, \diamond, \bigcirc, U, R.

Result: **Temporal Stable Models** for any arbitrary LTL theory.
Initially, a lamp switch can be closed \((p)\) or open \((q)\).

By default, the switch state persists by inertia,
but we can arbitrarily close it at any moment.

\[
\begin{align*}
time(0..n). \\
up(0), \down(0). \\
up(T+1) & :\text{ up}(T), \text{ not } \down(T+1), \text{ time}(T). \\
\down(T+1) & :\text{ down}(T), \text{ not } \up(T+1), \text{ time}(T). \\
\{\up(T)\} & :\text{ time}(T).
\end{align*}
\]
Initially, a lamp switch can be closed \((p)\) or open \((q)\).

By default, the switch state persists by inertia, but we can **arbitrarily close** it at any moment.

\[
\begin{align*}
&\text{up} \lor \text{down} \\
\square(\square \text{up} &\leftarrow \text{up} \land \neg \square \text{down}) &\text{Initially} \\
\square(\square \text{down} &\leftarrow \text{down} \land \neg \square \text{up}) &\text{Inertia} \\
\square(\text{up} \lor \neg \text{up}) &\text{Choice}
\end{align*}
\]

Idea: LTL syntax, but keeping ASP semantics
Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories.
Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories. Consists of:

1. A non-classical monotonic (intermediate) logic called Here-and-There (HT)

\[HT \text{ models} \]

\[Classical \text{ models} \]
Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories. Consists of:

1. A non-classical monotonic (intermediate) logic called Here-and-There (HT)

2. A selection of (certain) minimal models that yields nonmonotonicity
Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories. Consists of:

1. A non-classical monotonic (intermediate) logic called Here-and-There (HT)

2. A selection of (certain) minimal models that yields nonmonotonicity
Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories. Consists of:

1. A non-classical monotonic (intermediate) logic called Here-and-There (HT)

2. A selection of (certain) minimal models that yields nonmonotonicity
Equilibrium Logic \cite{Pearce96}: generalises stable models for arbitrary propositional theories. Consists of:

1. A non-classical monotonic (intermediate) logic called Here-and-There (HT)

2. A selection of (certain) minimal models that yields nonmonotonicity
Interpretation = pairs $\langle H, T \rangle$ of sets of atoms $H \subseteq T$

Example: $H = \{p, q\}$, $T = \{p, q, r, s\}$.

Intuition: There = perhaps true
Here = proved
p
r
q
w
t
Not there = false

When $H = T$ we have a classical model.
Here-and-There

- **Interpretation** = pairs $\langle H, T \rangle$ of sets of atoms $H \subseteq T$

- **Example:** $H = \{p, q\}$, $T = \{p, q, r, s\}$.

Intuition: There = perhaps true
Here = proved
p
r
q
s
Not there = false

When $H = T$ we have a classical model.

Pedro Cabalar (Department of Computer Science University of Corunna (Spain)
cabalar@udc.es

Stable Models for Temporal Theories

LPNMR’15 18 / 57
Here-and-There

- Interpretation = pairs \(\langle H, T \rangle \) of sets of atoms \(H \subseteq T \)

- Example: \(H = \{ p, q \}, T = \{ p, q, r, s \} \). Intuition:

- When \(H = T \) we have a classical model.
Here-and-There

Satisfaction of formulas

\[\langle H, T \rangle \models \varphi \iff \text{“} \varphi \text{ is proved”} \]
Here-and-There

Satisfaction of formulas

\(\langle H, T \rangle \models \varphi \iff \text{“} \varphi \text{ is proved”} \)

\(\langle T, T \rangle \models \varphi \iff \text{“} \varphi \text{ potentially true”} \iff T \models \varphi \text{ classically} \)
Here-and-There

Satisfaction of formulas

\[\langle H, T \rangle \models \varphi \iff \text{“} \varphi \text{ is proved”} \]
\[\langle T, T \rangle \models \varphi \iff \text{“} \varphi \text{ potentially true”} \iff T \models \varphi \text{ classically} \]

- \(\langle H, T \rangle \models p \text{ if } p \in H \) (for any atom \(p \))
Satisfaction of formulas

\[\langle H, T \rangle \models \varphi \iff \text{“} \varphi \text{ is proved”} \]
\[\langle T, T \rangle \models \varphi \iff \text{“} \varphi \text{ potentially true”} \iff T \models \varphi \text{ classically} \]

- \[\langle H, T \rangle \models p \text{ if } p \in H \quad \text{(for any atom } p \text{)} \]
- \[\land, \lor \text{ as always} \]
Here-and-There

Satisfaction of formulas

\[\langle H, T \rangle \models \varphi \iff \text{"} \varphi \text{ is proved} \]
\[\langle T, T \rangle \models \varphi \iff \text{"} \varphi \text{ potentially true} \iff T \models \varphi \text{ classically} \]

- \[\langle H, T \rangle \models p \text{ if } p \in H \quad \text{(for any atom } p) \]
- \[\land, \lor \text{ as always} \]
- \[\langle H, T \rangle \models \varphi \rightarrow \psi \text{ if both} \]
 - \[T \models \varphi \rightarrow \psi \text{ classically} \]
 - \[\langle H, T \rangle \models \varphi \text{ implies } \langle H, T \rangle \models \psi \]
Satisfaction of formulas

\(\langle H, T \rangle \models \varphi \iff \text{“\(\varphi \) is proved”} \)

\(\langle T, T \rangle \models \varphi \iff \text{“\(\varphi \) potentially true”} \iff T \models \varphi \text{ classically} \)

- \(\langle H, T \rangle \models p \text{ if } p \in H \) (for any atom \(p \))

- \(\land, \lor \) as always

- \(\langle H, T \rangle \models \varphi \rightarrow \psi \text{ if both} \)
 - \(T \models \varphi \rightarrow \psi \text{ classically} \)
 - \(\langle H, T \rangle \models \varphi \) implies \(\langle H, T \rangle \models \psi \)

- Negation \(\neg F \) is defined as \(F \rightarrow \bot \)

- \(\langle H, T \rangle \models \varphi \) implies \(T \models \varphi \) (proved implies potentially true)
Satisfaction of formulas

\[\langle H, T \rangle \models \varphi \iff \text{“} \varphi \text{ is proved”} \]
\[\langle T, T \rangle \models \varphi \iff \text{“} \varphi \text{ potentially true”} \iff T \models \varphi \text{ classically} \]

- \[\langle H, T \rangle \models p \text{ if } p \in H \text{ (for any atom } p) \]
- \[\land, \lor \text{ as always} \]
- \[\langle H, T \rangle \models \varphi \rightarrow \psi \text{ if both} \]
 - \[T \models \varphi \rightarrow \psi \text{ classically} \]
 - \[\langle H, T \rangle \models \varphi \text{ implies } \langle H, T \rangle \models \psi \]

- Negation \(\neg F \) is defined as \(F \rightarrow \bot \)
- \[\langle H, T \rangle \models \varphi \text{ implies } T \models \varphi \text{ (proved implies potentially true)} \]
- Relation to Gelfond & Lifschitz’s reduct:
 \[\langle H, T \rangle \models P \text{ iff } H \models P^T \text{ classically} \]
A model $\langle T, T \rangle$ of Γ is an equilibrium model iff

$$\text{there is no } H \subset T \text{ such that } \langle H, T \rangle \models \Gamma.$$

When this holds, T is called a stable model.
Equilibrium models

Definition (Equilibrium/stable model)
A model $\langle T, T \rangle$ of Γ is an equilibrium model iff

$$\text{there is no } H \subseteq T \text{ such that } \langle H, T \rangle \models \Gamma.$$

When this holds, T is called a stable model.

In other words, all assumptions T are eventually proved H.
Equilibrium logic

Well-known and understood, solid logical background, used in implementation, nice fundamental properties:
Equilibrium logic

Well-known and understood, solid logical background, used in implementation, nice fundamental properties:

- Two theories Γ_1, Γ_2 are strongly equivalent if $\Gamma_1 \cup \Gamma$ and $\Gamma_2 \cup \Gamma$ have the same equilibrium models for any Γ.

Strong equivalence of equilibrium theories = HT equivalence [Lifschitz, Pearce, Valverde 01].
Equilibrium logic

Well-known and understood, solid logical background, used in implementation, nice fundamental properties:

- Two theories Γ_1, Γ_2 are strongly equivalent if $\Gamma_1 \cup \Gamma$ and $\Gamma_2 \cup \Gamma$ have the same equilibrium models for any Γ.

 Strong equivalence of equilibrium theories = HT equivalence [Lifschitz, Pearce, Valverde 01].

- Captures all LP extensions with propositional connectives (also first-order [Pearce & Valverde 04]).

- Moreover, covers arbitrary formulas, in a very reasonable way:

 intuitionistic \subset HT \subset classical
Syntax = propositional plus

- □φ = “forever” φ
- ◊φ = “eventually” φ
- ◯φ = “next moment” φ
- φ U ψ = φ “until eventually” ψ
- φ R ψ = φ “release” ψ
Syntax = propositional plus

- □φ = “forever” φ
- ◊φ = “eventually” φ
- ○φ = “next moment” φ
- φ U ψ = φ “until eventually” ψ
- φ R ψ = φ “release” ψ

As we had with Equilibrium Logic:

1. A monotonic underlying logic: Temporal Here-and-There (THT)
2. An ordering among models. Select minimal models.
In standard LTL, interpretations are \(\infty \) sequences of sets of atoms.

\[
\begin{array}{cccccc}
\{p, q\} & \{p\} & \{q\} & \{\} & \{p, q\} & \ldots \\
0 & 1 & 2 & 3 & 4 & \\
\end{array}
\]
Sequences

- In standard LTL, interpretations are ∞ sequences of sets of atoms

$$\{p, q\} \rightarrow \{p\} \rightarrow \{q\} \rightarrow \{\} \rightarrow \{p, q\} \rightarrow \ldots$$

0 1 2 3 4

- In THT we will have ∞ sequences of HT interpretations

$$\ldots$$

0 1 2 3 4

Pedro Cabalar (Department of Computer Science, University of Corunna (Spain))
cabalar@udc.es

Stable Models for Temporal Theories

LPNMR’15 23 / 57
Sequences

We define an ordering among sequences $H \leq T$ when

\[
T_0 \rightarrow T_1 \rightarrow T_2 \rightarrow \ldots \rightarrow T_i \rightarrow \ldots
\]

\[
U \upharpoonright \quad U \upharpoonright \quad U \upharpoonright \quad \quad \quad \quad \quad U \upharpoonright
\]

\[
H_0 \rightarrow H_1 \rightarrow H_2 \rightarrow \ldots \rightarrow H_i \rightarrow \ldots
\]
We define an ordering among sequences $H \leq T$ when

\[T_0 \rightarrow T_1 \rightarrow T_2 \rightarrow \ldots \rightarrow T_i \rightarrow \ldots \]

\[U \mid U \mid U \mid U \mid \]

\[H_0 \rightarrow H_1 \rightarrow H_2 \rightarrow \ldots \rightarrow H_i \rightarrow \ldots \]

Definition (THT-interpretation)

is a pair of sequences of sets of atoms $\langle H, T \rangle$ with $H \leq T$.
We define an ordering among sequences $H < T$ when

$$
T_0 \rightarrow T_1 \rightarrow T_2 \rightarrow \ldots \rightarrow T_i \rightarrow \ldots \\
U \mid U \mid U \mid U \\
H_0 \rightarrow H_1 \rightarrow H_2 \rightarrow \ldots \rightarrow H_i \rightarrow \ldots
$$

Definition (THT-interpretation)

is a pair of sequences of sets of atoms $\langle H, T \rangle$ with $H \leq T$.

\[\]

Pedro Cabalar (Department of Computer Science, University of Corunna (Spain)) cabalar@udc.es

Stable Models for Temporal Theories

LPNMR'15 24 / 57
Temporal Here-and-There (THT)

\[\langle H, T \rangle, i \models \varphi \iff \text{“}\varphi\text{ is proved at } i\text{”} \]
Temporal Here-and-There (THT)

\(\langle H, T \rangle, i \models \varphi \iff \text{"\varphi is proved at } i\text{"} \)

\(\langle T, T \rangle, i \models \varphi \iff \text{"\varphi potentially true at } i\text{"} \iff T, i \models \varphi \text{ in LTL} \)
Temporal Here-and-There (THT)

\[\langle H, T \rangle, i \models \varphi \iff \text{“} \varphi \text{ is proved at } i \text{”} \]
\[\langle T, T \rangle, i \models \varphi \iff \text{“} \varphi \text{ potentially true at } i \text{”} \iff T, i \models \varphi \text{ in LTL} \]

- An interpretation \(M = \langle H, T \rangle \) satisfies \(\alpha \) at situation \(i \), written \(M, i \models \alpha \)

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(M, i \models \alpha) when ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>an atom (p)</td>
<td>(p \in H_0)</td>
</tr>
<tr>
<td>(\land, \lor)</td>
<td>as usual</td>
</tr>
<tr>
<td>(\varphi \rightarrow \psi)</td>
<td>(T, i \models \varphi \rightarrow \psi) in LTL and (\langle H, T \rangle, i \models \varphi) implies (\langle H, T \rangle, i \models \psi)</td>
</tr>
</tbody>
</table>
Temporal Here-and-There (THT)

$\langle H, T \rangle, i \models \varphi \iff \text{"}\varphi\text{ is proved at } i\text{"}$$

$\langle T, T \rangle, i \models \varphi \iff \text{"}\varphi\text{ potentially true at } i\text{"} \iff T, i \models \varphi\text{ in LTL}$

- An interpretation $M = \langle H, T \rangle$ satisfies α at situation i, written $M, i \models \alpha$

<table>
<thead>
<tr>
<th>α</th>
<th>$M, i \models \alpha$ when . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Box \varphi$</td>
<td>$(M, i+1) \models \varphi$</td>
</tr>
<tr>
<td>$\Diamond \varphi$</td>
<td>$\forall j \geq i, \ M, j \models \varphi$</td>
</tr>
<tr>
<td>$\Diamond U \psi$</td>
<td>$\exists j \geq i, \ M, j \models \psi$ and $\forall k$ s.t. $i \leq k < j, \ M, k \models \varphi$</td>
</tr>
<tr>
<td>$\Diamond R \psi$</td>
<td>$\forall j \geq i, \ M, j \models \psi$ or $\exists k, i \leq k < j, \ M, k \models \varphi$</td>
</tr>
</tbody>
</table>

- M is a model of a theory Γ when $M, 0 \models \alpha$ for all $\alpha \in \Gamma$
(Linear) Temporal Equilibrium Logic

\[\bigcirc \varphi \]

\[\varphi \]

[\[\rightarrow \rightarrow \rightarrow \rightarrow \ldots \rightarrow \rightarrow \rightarrow \ldots \]
(Linear) Temporal Equilibrium Logic

- $\Diamond \varphi$

- $\square \varphi$

\[\varphi \quad \varphi \quad \varphi \quad \varphi \quad \varphi \quad \varphi \]

\[\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \rightarrow \bullet \rightarrow \ldots \]
(Linear) Temporal Equilibrium Logic

- $\Diamond \varphi$

- $\Box \varphi$

- $\lozenge \varphi$
Linear Temporal Equilibrium Logic

\[\varphi \mathcal{U} \psi = \text{repeat } \varphi \text{ until (mandatorily) } \psi \]

\[\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \]
(Linear) Temporal Equilibrium Logic

\[\varphi U \psi = \text{repeat } \varphi \text{ until (mandatorily) } \psi \]

\[\varphi \]

\[\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \]
(Linear) Temporal Equilibrium Logic

\[\phi U \psi = \text{repeat } \phi \text{ until (mandatorily) } \psi \]

\[\phi \quad \phi \]

\[\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \]
(Linear) Temporal Equilibrium Logic

\[\varphi \mathcal{U} \psi = \text{repeat } \varphi \text{ until (mandatorily) } \psi \]

\[\varphi \quad \varphi \quad \varphi \]

\[\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \]
(Linear) Temporal Equilibrium Logic

\[\varphi \cup \psi = \text{repeat } \varphi \text{ until (mandatorily) } \psi \]

\[\varphi \quad \varphi \quad \varphi \quad \varphi \]

\[\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \]
\(\varphi \cup \psi = \text{repeat } \varphi \text{ until (mandatorily) } \psi \)

\[\varphi \xrightarrow{} \varphi \xrightarrow{} \varphi \xrightarrow{} \ldots \xrightarrow{} \psi \]

\[\bullet \xrightarrow{} \bullet \xrightarrow{} \bullet \xrightarrow{} \ldots \xrightarrow{} \bullet \xrightarrow{} \bullet \xrightarrow{} \ldots \]
(Linear) Temporal Equilibrium Logic

- \(\varphi \cup \psi = \text{repeat } \varphi \text{ until (mandatorily) } \psi \)

- \(\varphi \mathcal{R} \psi = \text{there is a } \varphi \text{ before any state without } \psi \)

\[(M, i) \not\models \psi \]
(Linear) Temporal Equilibrium Logic

- $\varphi \mathcal{U} \psi = \text{repeat } \varphi \text{ until (mandatorily) } \psi$

 $\varphi \varphi \varphi \varphi \psi$

 $\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots$

- $\varphi \mathcal{R} \psi = \text{there is a } \varphi \text{ before any state without } \psi$

 $\varphi \ \\ \ \ \ \ \ \ \ \ (M, i) \nvdash \psi$

 $\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots$
Some valid THT formulas:

\[\Diamond \varphi \leftrightarrow \top U \varphi \]

\[\Box \varphi \leftrightarrow \bot R \varphi \]

\[\Box (\varphi \otimes \psi) \leftrightarrow \Box \varphi \otimes \Box \psi \]

\[\varphi U \psi \leftrightarrow \psi \lor (\varphi \land \Box (\varphi U \psi)) \]

\[\varphi R \psi \leftrightarrow \psi \land (\varphi \lor \Box (\varphi R \psi)) \]

\[\neg (\varphi U \psi) \leftrightarrow \neg \Box \neg \psi \]

\[\Box \neg \varphi \leftrightarrow \neg \Box \varphi \]

\[\neg (\varphi R \psi) \leftrightarrow \neg \varphi U \neg \psi \]

For \(\otimes = \land, \lor, \rightarrow, U, R \).
Temporal Here-and-There (THT)

Some valid THT formulas:

\[
\begin{align*}
\Diamond \varphi & \iff \top U \varphi \\
\square \varphi & \iff \bot R \varphi \\
\Box (\varphi \otimes \psi) & \iff \Box \varphi \otimes \Box \psi \\
\varphi U \psi & \iff \psi \lor (\varphi \land \Box (\varphi U \psi)) \\
\varphi R \psi & \iff \psi \land (\varphi \lor \Box (\varphi R \psi)) \\
\neg (\varphi U \psi) & \iff \neg \varphi R \neg \psi \\
\Box \neg \varphi & \iff \neg \Box \varphi \\
\neg (\varphi R \psi) & \iff \neg \varphi U \neg \psi
\end{align*}
\]

For \(\otimes = \land, \lor, \rightarrow, U, R\).

Axiomatization of THT: ongoing work [Balbiani & Diéguez 15]
Definition (Temporal Equilibrium Model)

of a theory Γ is a model $M = \langle T, T \rangle$ of Γ such that there is no $H < T$ satisfying $\langle H, T \rangle, 0 \models \Gamma$.

Temporal Equilibrium Logic (TEL) is the logic induced by temporal equilibrium models.
Temporal Equilibrium Models

Definition (Temporal Equilibrium Model)

of a theory \(\Gamma \) is a model \(M = \langle T, T \rangle \) of \(\Gamma \) such that there is no \(H < T \) satisfying \(\langle H, T \rangle, 0 \models \Gamma \).

Temporal Equilibrium Logic (TEL) is the logic induced by temporal equilibrium models.

Definition (Temporal Stable Model)

\(T \) is a temporal stable model of a theory \(\Gamma \) iff \(\langle T, T \rangle \) is a temporal equilibrium model of \(\Gamma \).
Some examples

Example 1: TEL models of $\Box(\neg p \rightarrow \bigcirc p)$. It’s like an infinite program:

\[
\begin{align*}
\neg p & \rightarrow \bigcirc p \\
\neg \bigcirc p & \rightarrow \bigcirc^2 p \\
\neg \bigcirc^2 p & \rightarrow \bigcirc^3 p \\
\vdots
\end{align*}
\]
Some examples

- Example 1: TEL models of $\Box(\neg p \rightarrow \Diamond p)$. It’s like an infinite program:

\[
\neg p \rightarrow \Diamond p \\
\neg \Diamond p \rightarrow \Diamond^2 p \\
\neg \Diamond^2 p \rightarrow \Diamond^3 p \\
\vdots
\]

- TEL models have the form

\[
\emptyset \quad p \quad \emptyset \quad p \quad \emptyset \\
\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots
\]

corresponding to LTL models of $\neg p \land \Box(\neg p \leftrightarrow \Diamond p)$.
Example 2: consider TEL models of $\lozenge p$
Some examples

Example 2: consider TEL models of $\Diamond p$

is like $p \lor \Box p \lor \Box \Box p \lor \ldots$
Some examples

Example 2: consider TEL models of $\diamond p$

is like $p \lor \Box p \lor \Box \Box p \lor \ldots$

TEL models have the form

$$
\emptyset \quad \emptyset \quad \emptyset \quad \emptyset \quad p \quad \emptyset
$$

\[\quad \rightarrow \quad \rightarrow \quad \ldots \quad \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow \quad \ldots \]
Some examples

- Example 2: consider TEL models of $\Diamond p$
 is like $p \lor \Box p \lor \Box \Box p \lor \ldots$

 TEL models have the form

 $\emptyset \quad \emptyset \quad \emptyset \quad \emptyset \quad p \quad \emptyset$

 $\bullet \rightarrow \bullet \rightarrow \ldots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots$

 corresponding to LTL models of $\neg p \mathcal{U} (p \land \Box \Box \neg p)$
In ASP terms, how can we represent temporal stable models?
infinite long! infinitely many!

Answer: using Büchi automata. An infinite-length word is accepted iff it visits some acceptance state infinitely often.
In ASP terms, how can we represent temporal stable models? infinitely long! infinitely many!

Answer: using Büchi automata. An infinite-length word is accepted iff it visits some acceptance state infinitely often.
Some examples

- Example 3: consider TEL models of $\Box \Diamond p$
- In LTL this means p occurs infinitely often.
Some examples

- Example 3: consider TEL models of $\Box \Diamond p$
- In LTL this means p occurs infinitely often.
- So take any LTL model T like that, i.e., $\langle T, T \rangle$ is a total THT model.
Some examples

- Example 3: consider TEL models of $\Box \Diamond p$
- In LTL this means p occurs infinitely often.
- So take any LTL model T like that, i.e., $\langle T, T \rangle$ is a total THT model.
- Now build some $H < T$ by removing one p at some point. But then $\langle H, T \rangle$ is also a model since H contains $\infty - 1 = \infty$ p’s yet!
Some examples

- Example 3: consider TEL models of $\Box \Diamond p$
- In LTL this means p occurs infinitely often.
- So take any LTL model T like that, i.e., $\langle T, T \rangle$ is a total THT model.
- Now build some $H < T$ by removing one p at some point. But then $\langle H, T \rangle$ is also a model since H contains $\infty - 1 = \infty$ p's yet!
- Therefore, $\Box \Diamond p$ alone has no TEL models.
Some examples

- Example 4: consider TEL models of the pair of formulas

\[
\square (\neg \lozenge p \to p) \\
\square (\lozenge p \to p)
\]

Curiosity: implications go backwards in time

This is LTL-equivalent to:

\[
\square (\neg \lozenge p \to \neg \lozenge p) \land (\lozenge p \to \lozenge p) \equiv \square (\neg \lozenge p \lor \lozenge p \land \top) \to p
\]

\[
\equiv \square p
\]

Pedro Cabalar (Department of Computer Science, University of Corunna (Spain)
cabalar@udc.es

Stable Models for Temporal Theories

LPNMR'15 35 / 57
Some examples

- Example 4: consider TEL models of the pair of formulas

\[
\square (\neg \bigcirc p \rightarrow p) \\
\square (\bigcirc p \rightarrow p)
\]

- Curiosity: implications go **backwards in time**
Some examples

- Example 4: consider TEL models of the pair of formulas

\[\square(\neg \bigcirc p \rightarrow p) \]
\[\square(\bigcirc p \rightarrow p) \]

- Curiosity: implications go **backwards in time**

- This is LTL-equivalent to:

\[\square((\neg \bigcirc p \rightarrow p) \land (\bigcirc p \rightarrow p)) \]
Some examples

- Example 4: consider TEL models of the pair of formulas

\[\square(\neg \bigcirc p \rightarrow p) \]
\[\square(\bigcirc p \rightarrow p) \]

- Curiosity: implications go backwards in time

This is LTL-equivalent to:

\[\square((\neg \bigcirc p \rightarrow p) \land (\bigcirc p \rightarrow p)) \]
\[\equiv \square(\neg \bigcirc p \lor \bigcirc p \rightarrow p) \]
\[\equiv \square p \]
Some examples

- Example 4: consider TEL models of the pair of formulas

\[
\Box (\neg \Diamond p \rightarrow p) \\
\Box (\Diamond p \rightarrow p)
\]

- So LTL models make \(p \) true forever,
Some examples

- Example 4: consider TEL models of the pair of formulas

\[\Box(\neg \Diamond p \rightarrow p) \]
\[\Box(\Diamond p \rightarrow p) \]

- So LTL models make \(p \) true forever, but we won’t get TEL models!
Some examples

- Example 4: consider TEL models of the pair of formulas
 \[\Box (\neg \Diamond p \rightarrow p) \]
 \[\Box (\Diamond p \rightarrow p) \]

 So LTL models make \(p \) true forever, but we won’t get TEL models!

 We can build a strictly smaller model with \(H \) where from some point on \(T \), \(p \) becomes false forever

\[
\begin{array}{cccccc}
\text{T} & p & p & p & p & p \\
\| & \| & \| & \| & \mathcal{U} & \mathcal{U} \\
\text{H} & p & p & p & \emptyset & \emptyset \\
\end{array}
\]

\[\bullet \rightarrow \bullet \rightarrow \ldots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \]
Some examples

Example 5: lamp switch again

\[\text{Initially} \quad \square (up \land \neg \Diamond down) \rightarrow \Diamond up \]
\[\text{Inertia} \quad \square (down \land \neg \Diamond up) \rightarrow \Diamond down \]
\[\text{Inertia} \quad \square (up \lor \neg up) \]

We never get \(up \land down \)

Once \(up \) is true, it remains so forever

\[\{down\} \rightarrow \{up\} \]
\[\text{Choice} \quad q_0 \rightarrow q_1 \]
Some examples

Example 5: lamp switch again

\[\begin{align*}
\square (up \land \neg \lozenge down) & \rightarrow \lozenge up) \\
\square (down \land \neg \lozenge up) & \rightarrow \lozenge down \\
\square (up \lor \neg up) & \text{Choice}
\end{align*} \]

Initially

Inertia

Inertia

We never get \(up \land down \)

Once \(up \) is true, it remains so forever
Some examples

- Reasonable behavior when theories “look like” logic programs

\[\text{e.g.} \quad p \land (\neg \square \diamond p \rightarrow \diamond (p \cup q)) \]
Some examples

- Reasonable behavior when theories “look like” logic programs

- But what happens with arbitrary temporal formulas?
 e.g. $\Diamond p \land (\neg \Box \Diamond q \rightarrow \Diamond (p \mathcal{U} q))$
Some examples

- Reasonable behavior when theories “look like” logic programs

- But what happens with arbitrary temporal formulas?
 e.g. $\lozenge p \land (\neg \Box \lozenge q \rightarrow \lozenge (p \mathcal{U} q))$

- Answer: natural translations to first-order and infinitary ...
1. Introduction
2. Definitions and examples
3. Translations
4. Temporal Logic Programs
5. Automata-based methods
6. Conclusions and open topics
1. Encoding THT into LTL

- THT can be encoded into LTL, adding auxiliary atoms using the same translation of \(\rightarrow \) from HT to classical logic.

- Intuition: \(p \) will represent \(p \in T \) whereas \(p' \) will mean \(p \in H \).
1. Encoding THT into LTL

- THT can be encoded into LTL, adding auxiliary atoms using the same translation of \rightarrow from HT to classical logic.
- Intuition: p will represent $p \in T$ whereas p' will mean $p \in H$.

Example

<table>
<thead>
<tr>
<th>THT</th>
<th>LTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\square((\text{down} \land \neg \lozenge \text{up} \rightarrow \lozenge \text{down})$</td>
<td>$\square((\text{up}' \rightarrow \text{up}) \land \square((\text{down}' \rightarrow \text{down})$</td>
</tr>
<tr>
<td>$\land \square((\text{down} \land \neg \lozenge \text{up} \rightarrow \lozenge \text{down})$</td>
<td>$\land \square((\text{down}' \land \neg \lozenge \text{up} \rightarrow \lozenge \text{down}')$</td>
</tr>
</tbody>
</table>
1. Encoding THT into LTL

Warning: this does not mean that we can encode **Temporal Stable Models** as models of an LTL theory!

THT-satisfiability = PACE

TEL-satisfiability = E^{XP_S}_{PACE} [Bozzelli & Pearce 15]
1. Encoding THT into LTL

- **Warning**: this does not mean that we can encode **Temporal Stable Models** as models of an LTL theory!

- This is an open question
 (failed attempt [C_ & Diéguez, ASPOCP’14])

We know it holds for **splittable temporal programs** (see later)
1. Encoding THT into LTL

- **Warning**: this does not mean that we can encode Temporal Stable Models as models of an LTL theory!
- This is an open question (failed attempt [C_ & Diéguez, ASPOCP’14])
- We know it holds for splittable temporal programs (see later)

- THT-satisfiability = PSPACE-complete [C_ & Demri 11]
- TEL-satisfiability = EXPSPACE-complete [Bozzelli & Pearce 15]
Encoding LTL into THT is straightforward. Add the excluded middle axiom for all atom p:

$$\Box(p \lor \neg p)$$
Encoding LTL into THT is straightforward. Add the excluded middle axiom for all atom p:

$$\Box(p \lor \neg p)$$

Note that $p \lor \neg p$ is alternate notation for a choice rule. We can selectively make a proposition behave as LTL/classical.
3. TEL into First-Order Equilibrium Logic

- Most modal logics, natural translation into First-Order Logic (FOL)

<table>
<thead>
<tr>
<th>LTL Formula</th>
<th>MFO(<) Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ up</td>
<td>→ ∃(x ≥ 0 ∧ up(x))</td>
</tr>
<tr>
<td>♦□ up</td>
<td>→ ∃(x ≥ 0 ∧ ∀y(y ≥ x → up(y)))</td>
</tr>
<tr>
<td>up U down</td>
<td>→ ∃(x ≥ 0 ∧ up(x) ∧ ∀y(0 ≤ y < x → down(y)))</td>
</tr>
</tbody>
</table>

[Kamp 68]: Kamp’s translation also sound from THT to Monadic Quantified HT with from TEL to Monadic Quantified Equilibrium Logic (MFO(<)). Kamp also proved the other direction MFO(<) ↦→ LTL.

Open question: Does it hold in our case?
3. TEL into First-Order Equilibrium Logic

- Most modal logics, natural translation into First-Order Logic (FOL)
- [Kamp 68]: from LTL into MFO(<), monadic FOL plus < relation

Some examples:

<table>
<thead>
<tr>
<th>LTL Formula</th>
<th>MFO(<) Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦up</td>
<td>$\exists (x \geq 0 \land up(x))$</td>
</tr>
<tr>
<td>◻◻up</td>
<td>$\exists (x \geq 0 \land \forall y (y \geq x \rightarrow up(x)))$</td>
</tr>
<tr>
<td>up U down</td>
<td>$\exists (x \geq 0 \land up(x) \land \forall y (0 \leq y < x \rightarrow down(y)))$</td>
</tr>
</tbody>
</table>
3. TEL into First-Order Equilibrium Logic

- Most modal logics, natural translation into First-Order Logic (FOL)

- [Kamp 68]: from LTL into MFO(<), monadic FOL plus < relation

Some examples:

<table>
<thead>
<tr>
<th>LTL Formula</th>
<th>MFO(<) Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>◊up</td>
<td>∃(x ≥ 0 ∧ up(x))</td>
</tr>
<tr>
<td>◊□up</td>
<td>∃(x ≥ 0 ∧ ∀y(y ≥ x → up(x)))</td>
</tr>
<tr>
<td>up U down</td>
<td>∃(x ≥ 0 ∧ up(x) ∧ ∀y (0 ≤ y < x → down(y)))</td>
</tr>
</tbody>
</table>

- [C_, Diéguez, Vidal KR14]: Kamp’s translation also sound for
 ➤ from THT to Monadic Quantified HT with <
 ➤ from TEL to Monadic Quantified Equilibrium logic with <
3. TEL into First-Order Equilibrium Logic

- Most modal logics, natural translation into First-Order Logic (FOL)

- [Kamp 68]: from LTL into MFO(<), monadic FOL plus < relation

 Some examples:

<table>
<thead>
<tr>
<th>LTL Formula</th>
<th>MFO(<) Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦up</td>
<td>(\exists (x \geq 0 \land up(x)))</td>
</tr>
<tr>
<td>♦□up</td>
<td>(\exists (x \geq 0 \land \forall y (y \geq x \rightarrow up(x))))</td>
</tr>
<tr>
<td>up U down</td>
<td>(\exists (x \geq 0 \land up(x) \land \forall y (0 \leq y < x \rightarrow down(y))))</td>
</tr>
</tbody>
</table>

- [C_, Diéguez, Vidal KR14]: Kamp’s translation also sound for
 - from THT to Monadic Quantified HT with <
 - from TEL to Monadic Quantified Equilibrium logic with <

- Kamp also proved the other direction MFO(<) \(\leftrightarrow\) LTL.

Open question: Does it hold in our case?
4. TEL into Infinitary Equilibrium Logic

- A similar correspondence can be proved for Infinitary Equilibrium Logic [Harrison et al, ASPOCP’14]
4. TEL into Infinitary Equilibrium Logic

- A similar correspondence can be proved for Infinitary Equilibrium Logic [Harrison et al, ASPOCP’14]

- Rather than ∀ or ∃ we use infinitary conjunction and disjunction

<table>
<thead>
<tr>
<th>LTL</th>
<th>MFO(<)</th>
<th>Infinitary</th>
</tr>
</thead>
<tbody>
<tr>
<td>□p</td>
<td>∀x (x ≥ 0 → p(x))</td>
<td>p ∧ □p ∧ □²p ∧ ...</td>
</tr>
<tr>
<td>◊p</td>
<td>∃x (x ≥ 0 ∧ p(x))</td>
<td>p ∨ ◊p ∨ ◊²p ∨ ...</td>
</tr>
</tbody>
</table>

✓ Propositional signature: each ‘□¬p’ understood as an atom.
4. TEL into Infinitary Equilibrium Logic

- A similar correspondence can be proved for Infinitary Equilibrium Logic [Harrison et al, ASPOCP’14]

- Rather than ∀ or ∃ we use infinitary conjunction and disjunction

<table>
<thead>
<tr>
<th>LTL</th>
<th>MFO(⟨)</th>
<th>Infinitary</th>
</tr>
</thead>
<tbody>
<tr>
<td>□p</td>
<td>∀x (x ≥ 0 → p(x))</td>
<td>p ∧ □p ∧ □²p ∧ ...</td>
</tr>
<tr>
<td>♦p</td>
<td>∃x (x ≥ 0 ∧ p(x))</td>
<td>p ∨ □p ∨ □²p ∨ ...</td>
</tr>
</tbody>
</table>

✓ Propositional signature: each ‘□ᵢp’ understood as an atom.

✗ But even adding excluded middle, infinitary logic more expressive than LTL or MFO(⟨)

\[\{□ᵢp \mid i ≥ 0 \text{ and } mod(i, 2) = 0\}^\wedge \equiv p ∧ □²p ∧ □⁴p ∧ □⁶p ∧ ... \]

Not LTL-representable.
4. TEL into Infinitary Equilibrium Logic

- A similar correspondence can be proved for Infinitary Equilibrium Logic [Harrison et al, ASPOCP’14]

- Rather than \forall or \exists we use infinitary conjunction and disjunction

<table>
<thead>
<tr>
<th>LTL</th>
<th>MFO(\prec)</th>
<th>Infinitary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Box p$</td>
<td>$\forall x \ (x \geq 0 \rightarrow p(x))$</td>
<td>$p \land \Diamond p \land \Diamond^2 p \land \ldots$</td>
</tr>
<tr>
<td>$\Diamond p$</td>
<td>$\exists x \ (x \geq 0 \land p(x))$</td>
<td>$p \lor \Diamond p \lor \Diamond^2 p \lor \ldots$</td>
</tr>
</tbody>
</table>

✓ Propositional signature: each $\Diamond^i p$ understood as an atom.

✗ But even adding excluded middle, infinitary logic more expressive than LTL or MFO(\prec)

$\{\Diamond^i p \mid i \geq 0 \text{ and } \text{mod}(i, 2) = 0\}^\land$

$\equiv p \land \Diamond^2 p \land \Diamond^4 p \land \Diamond^6 p \land \ldots$

Not LTL-representable. Which kind of infinite sets of formulas?
Temporal Logic Programs

- THT theories can be reduced to a normal form: temporal logic programs TLPs [C_, JELIA’10].
- Structure preserving transformation introducing auxiliary atoms.
Temporal Logic Programs

- THT theories can be reduced to a normal form: temporal logic programs TLPs [C_, JELIA’10].
- Structure preserving transformation introducing auxiliary atoms.
- A temporal logic program (TLP for short) consists of

Definition (Temporal rule)

A temporal rule is either:

1. \(\text{Lit}_1 \land \cdots \land \text{Lit}_n \rightarrow \text{Lit}_{n+1} \lor \cdots \lor \text{Lit}_m \)
2. \(\Box(\text{Lit}_1 \land \cdots \land \text{Lit}_n \rightarrow \text{Lit}_{n+1} \lor \cdots \lor \text{Lit}_m) \)
3. or an implication like \(\Box(\Box p \rightarrow q) \) or like \(\Box(p \rightarrow \Diamond q) \)
4. arbitrary constraints \(\alpha \rightarrow \bot \)

where \(p, q \) atoms and \(\text{Lit}_i \) expressions like \(\bigcirc^i p \) or \(\neg \bigcirc^i p \)
Splittable TLPs

\[
\square(up \land \neg \Diamond down \rightarrow \Diamond up)
\]

Splittable

\[
\square(\Diamond p \land \rightarrow p)
\]

Non-splittable

Our switch example theory was splittable.
Splittable TLPs

\[\square(\text{up} \land \neg \square \text{down} \rightarrow \square \text{up}) \]

Splittable

\[\square (\square \text{p} \land \rightarrow \text{p}) \]

Non-splittable

- Our switch example theory was splittable.

- Temporal stable models of a splittable TLP are LTL-representable: We can build loop formulas in LTL.
Splittable TLPs

\[\Box (\text{up} \land \neg \Box \text{down}) \rightarrow \Box \text{up} \] Splittable

\[\Box (\Box p \land \rightarrow p) \] Non-splittable

- Our switch example theory was splittable.
- Temporal stable models of a splittable TLP are LTL-representable: We can build loop formulas in LTL
- System \textbf{STeLP} [C_ & Diéguez LPNMR11] uses loop formulas and backend model checker.
1. Introduction

2. Definitions and examples

3. Translations

4. Temporal Logic Programs

5. Automata-based methods

6. Conclusions and open topics
Automata-based methods

[C_ & Demri 2011]

Definition (Automata Based Computation Method)

LTL (i.e., total) models which do not have a strictly smaller $\langle H, T \rangle$

$A_\varphi \otimes h(A_{\varphi'})$

Intuition: $A_{\varphi'}$ captures the $\langle H, T \rangle$ satisfying $H < T$
Automata-based methods

[C_ & Demri 2011]

Definition (Automata Based Computation Method)

LTL (i.e. total) models which do not have a strictly smaller \(\langle H, T \rangle \)

\[\mathcal{A}_\varphi \otimes h(\mathcal{A}_\varphi') \]

- **Intuition:** \(\mathcal{A}_\varphi' \) captures the \(\langle H, T \rangle \) satisfying \(H < T \)

- We use the \(\varphi^* \) translation and force non-LTL models.

Example: if \(\varphi = \diamond up \) then

\[\varphi' = \diamond up' \land \square (up' \rightarrow up) \land \diamond (up \land \neg up') \]
Automata-based methods

[C_ & Demri 2011]

Definition (Automata Based Computation Method)

LTL (i.e. total) models which do not have a strictly smaller $\langle H, T \rangle$

\[\mathcal{A}_\varphi \otimes h(\mathcal{A}_{\varphi'}) \]

- **Intuition:** $\mathcal{A}_{\varphi'}$ captures the $\langle H, T \rangle$ satisfying $H < T$

- We use the φ^* translation and force non-LTL models.

Example: if $\varphi = \Diamond up$ then

$\varphi' = \Diamond up' \land \Box (up' \rightarrow up) \land \Diamond (up \land \neg up')$

- Operation $h(\mathcal{A}_{\varphi'})$ filters out the auxiliary atoms p'
Automata-based methods

[C_ & Demri 2011]

Definition (Automata Based Computation Method)

LTL (i.e. total) models which do not have a strictly smaller $\langle H, T \rangle$

$A_\varphi \otimes h(A_\varphi')$

Intuition: A_φ' captures the $\langle H, T \rangle$ satisfying $H < T$

We use the φ^* translation and force non-LTL models.

Example: if $\varphi = \Diamond up$ then

$\varphi' = \Diamond up' \land \Box(up' \rightarrow up) \land \Diamond(up \land \neg up')$

Operation $h(A_\varphi')$ filters out the auxiliary atoms p'

Büchi automata are closed w.r.t. complementation and intersection
Example of non-splittable theory

\[up \lor down. \]
\[\square (up \land \neg \lozenge down \rightarrow \lozenge up). \]
\[\square (down \land \neg \lozenge up \rightarrow \lozenge down). \]
\[\square (up \lor \neg up) \]

\[down \land \neg up \]
\[\neg down \land up \]

\[\neg down \land up \]
Example of non-splittable theory

\(\uparrow \lor \downarrow \).
\(\Box (\uparrow \land \neg \Diamond \downarrow \rightarrow \Diamond \uparrow) \).
\(\Box (\downarrow \land \neg \Diamond \uparrow \rightarrow \Diamond \downarrow) \).
\(\Box (\uparrow \lor \neg \uparrow) \)
\(\Diamond \Box \uparrow \rightarrow \Box \text{stuck} \).
Example of non-splittable theory

\[\text{Example of non-splittable theory} \]

\[\mathsf{up} \lor \mathsf{down}. \]

\[\square (\mathsf{up} \land \neg \bigcirc \mathsf{down} \rightarrow \bigcirc \mathsf{up}) \]

\[\square (\mathsf{down} \land \neg \bigcirc \mathsf{up} \rightarrow \bigcirc \mathsf{down}) \]

\[\square (\mathsf{up} \lor \neg \mathsf{up}) \]

\[\Diamond \square \mathsf{up} \rightarrow \square \mathsf{stuck} \]
ABSTEM: obtains temporal stable models for arbitrary theories

- It also allows checking different types of equivalence
 - LTL equivalence
 - Weak equivalence (same temporal stable models)
 - Strong equivalence

Theorem ([C & Diéguez KR14])

\[\phi_1 \text{ and } \phi_2 \text{ are strongly equivalent iff they are THT equivalent.} \]

When not THT-equivalent, ABSTEM provides a context that makes both theories differ.
ABSTEM

- ABSTEM: obtains temporal stable models for arbitrary theories
- It also allows checking different types of equivalence
 - LTL equivalence
 - Weak equivalence (same temporal stable models)
 - Strong equivalence

Theorem ([C_ & Diéguez KR14])

\(\varphi_1 \) and \(\varphi_2 \) are strongly equivalent iff they are THT equivalent.
ABSTEM

- **ABSTEM**: obtains temporal stable models for arbitrary theories
- It also allows checking different types of equivalence
 - LTL equivalence
 - Weak equivalence (same temporal stable models)
 - Strong equivalence

Theorem ([C_ & Diéguez KR14])

\(\varphi_1 \) and \(\varphi_2 \) are strongly equivalent iff they are THT equivalent.

When not THT-equivalent, ABSTEM provides a context that make both theories differ
1 Introduction

2 Definitions and examples

3 Translations

4 Temporal Logic Programs

5 Automata-based methods

6 Conclusions and open topics
Conclusions

- TEL = **suitable framework** for temporal reasoning + ASP

- Simple semantics thanks to just **merging two logical formalisms**: Equilibrium Logic + LTL.

- TEL does not “compete” with other ASP techniques: it **complements** them
 - when planning: non-existence of plans, temporal constraints
 - when debugging: checking temporal properties
 - checking **strong equivalence**
Conclusions

- TEL = suitable framework for temporal reasoning + ASP
- Simple semantics thanks to just merging two logical formalisms: Equilibrium Logic + LTL.
- TEL does not “compete” with other ASP techniques: it complements them
 - when planning: non-existence of plans, temporal constraints
 - when debugging: checking temporal properties
 - checking strong equivalence
- It constitutes a new open field. Many open topics . . .
Open topics (wish list)

- Complete Axiomatisation of Temporal Here-and-There (almost done [Balbiani & Diéguez])

Can we represent the temporal stable models of Γ as LTL models? Our conjecture: positive

THT vs Quantified HT (QHT): analogous to Kamp's theorem for THT and monadic QHT with $<$

Our conjecture: negative. It seems we cannot move q out of $\exists x$ in $\exists x ((p(x) \rightarrow q) \land r(x))$

Adding past operators: $\Box (\uparrow \land \neg \downarrow \rightarrow \uparrow)$ versus $\Box (\neg \uparrow \land \neg \downarrow \rightarrow \uparrow)$

More natural when rule bodies refer to past

Pedro Cabalar (Department of Computer Science University of Corunna (Spain) cabalar@udc.es)
Open topics (wish list)

- Complete **Axiomatisation of Temporal Here-and-There** (almost done [Balbiani & Diéguez])

- Can we represent the temporal stable models of Γ as LTL models of a formula? Our conjecture: **positive**
Open topics (wish list)

- Complete Axiomatisation of Temporal Here-and-There (almost done [Balbiani & Diéguez])

- Can we represent the temporal stable models of Γ as LTL models of a formula? Our conjecture: positive

- THT vs Quantified HT (QHT): analogous to Kamp’s theorem for THT and monadic QHT with $<$?
Open topics (wish list)

- Complete Axiomatisation of Temporal Here-and-There (almost done [Balbiani & Diéguez])

- Can we represent the temporal stable models of Γ as LTL models of a formula? Our conjecture: positive

- THT vs Quantified HT (QHT): analogous to Kamp’s theorem for THT and monadic QHT with $<$?

 Our conjecture: negative. It seems we cannot move q out of $\exists x$ in $\exists x ((p(x) \rightarrow q) \land r(x))$
Open topics (wish list)

- Complete **Axiomatisation of Temporal Here-and-There** (almost done [Balbiani & Diéguez])

- Can we represent the temporal stable models of Γ as LTL models of a formula? Our conjecture: **positive**

- **THT vs Quantified HT (QHT):**
 analogous to Kamp’s theorem for THT and monadic QHT with $<$?

 Our conjecture: **negative**. It seems we cannot move q out of $\exists x$ in $\exists x((p(x) \to q) \land r(x))$

- **Adding past operators:**

 \[
 \Box (up \land \neg \Box down \to \Box up) \quad \text{versus} \quad \Box (\exists up \land \neg down \to up)\]

 More natural when **rule bodies refer to past**
Open topics (wish list)

- Other temporal logics. Example: Equilibrium Logic+Dynamic LTL [Aguado et al. LPNMR13]

- New **syntactic subclasses** with satisfiability lower than \(\text{EXPSPACE}\) [Bozzelli & Pearce 15]

- Find a **tableaux method** for THT. Perhaps designing specific on-the-fly techniques

- Possible adaptation of Temporal Resolution [Fisher 91]

- **Planning tool**. Compare to planners using LTL control knowledge like TLPlan [Bacchus & Kabanza 00].

- Encoding action languages
Stable Models for Temporal Theories

Pedro Cabalar

Thanks for your attention!

September 28th, 2015
LPNMR’15
Lexington, KY, USA