
Polynomial Combined Rewritings for Existential Rules

Georg Gottlob1 and Marco Manna2 and Andreas Pieris1

1Department of Computer Science, University of Oxford, UK
2Department of Mathematics and Computer Science, University of Calabria, Italy

{georg.gottlob,andreas.pieris}@cs.ox.ac.uk
manna@mat.unical.it

Abstract

We consider the scenario of ontology-based data access
where a conjunctive query is evaluated against a database
enriched with intensional knowledge via an ontology. It is
generally accepted that true scalability of query answering in
this setting can only be achieved by using standard relational
database management systems (RDBMSs). An approach to
query answering that enables the use of RDBMSs is the so-
called polynomial combined approach. We investigate this
approach for the main guarded- and sticky-based classes of
existential rules, and we highlight the assumptions on the un-
derlying schema which are sufficient for the polynomial com-
bined first-order rewritability of those classes. To the best of
our knowledge, this is the first work which explicitly studies
the polynomial combined approach for existential rules.

1 Introduction
An ontology is an explicit specification of a conceptualiza-
tion of an area of interest. One of the main applications
of ontologies nowadays is in ontology-based data access
(OBDA) (Poggi et al. 2008), where they are used to enrich
the extensional data with intensional knowledge. In this set-
ting, Description Logics (DLs) and rule-based formalisms
such as existential rules are popular ontology languages,
while conjunctive queries (CQs) are used as a vital query-
ing tool. Therefore, efficient approaches to CQ answering
over such languages are of great importance.

It is widely accepted that true scalability in OBDA can
only be achieved by exploiting standard relational database
management systems (RDBMSs), which provide mature and
efficient technology for answering queries. A significant
step forward in this direction was the introduction of the
DL-Lite family of DLs (Calvanese et al. 2007; Poggi et al.
2008) — the logical underpinning of the OWL 2 QL profile
of OWL 2 — and the proposal of the first practical approach
to OBDA via query rewriting. Most of the languages of the
DL-Lite family have been designed with the aim of being
first-order rewritable, namely a TBox T can be incorporated
together with a given CQ q into a first-order query qT such
that, for every ABox A, qT evaluated over A yields exactly
the same result as q evaluated against A and T . Clearly, qT

Copyright c⃝ 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

can be translated into a standard SQL query, and then sub-
mitted to the RDBMS holding A (as a relational database),
where it is evaluated and optimized in the usual way.

Although first-order rewritability is a most desirable prop-
erty, it suffers from two serious shortcomings: (i) rewriting
algorithms, in general, generate from a reasonably sized CQ
an exponentially sized SQL query (and even for simple cases
such as OWL 2 QL this blowup is unavoidable (Kikot et al.
2012)), which can be prohibitive for efficient execution by
an RDBMS, and (ii) it applies only to lightweight ontology
languages for which the data complexity of CQ answering is
at most LOGSPACE, and thus useful formalisms with PTIME-
hard data complexity are excluded a priori.

A more refined approach to query answering, which over-
comes the inherent limitations of first-order rewritability,
is the polynomial combined approach (Lutz et al. 2009),
that allows the encoding of the consequences of the ontol-
ogy in the given database (or ABox). This approach applies
to languages which are polynomially combined first-order
rewritable, i.e., for every CQ q, database D, and ontology
Σ, it is possible to rewrite in polynomial time (i) q and Σ
into a first-order query qΣ, and (ii) D and Σ into a database
DΣ, in such a way that the answer to qΣ overDΣ is the same
as the answer to q over D and Σ.

The polynomial combined approach has been success-
fully applied to the DL ELHdr

⊥ (Lutz et al. 2009), i.e., the
extension of EL with the inconsistent concept, role inclu-
sions, and domain and range restrictions, and also to DL-
LiteNhorn (Kontchakov et al. 2010; 2011), one the most com-
monly used DL-Lite formalisms without role inclusions.
Notice that DL-Lite(HN)

horn , the extension DL-LiteNhorn with
role hierarchies, has been also considered in (Kontchakov et
al. 2010) but, while the new database can be constructed in
polynomial time, the rewritten query is of exponential size
in the number of roles occurring in the ontology.

Although the polynomial combined approach has been al-
ready applied to several DLs, this is not the case for ex-
istential (a.k.a. Datalog∃) rules of the form ∀Xφ(X) →
∃Zp(X,Z). Notice that the investigation of expressive frag-
ments of existential rules that can be employed as an alterna-
tive way to represent ontologies is currently a field of intense
research (Baget et al. 2011a; 2011b; Krötzsch and Rudolph
2011; Calı̀ et al. 2012a; 2012b; 2013; Leone et al. 2012).
The only known cases of existential rules which are polyno-

Size Arity L G S T
∞ ∞ ? × [×] ×
∞ d > 2 X [×] X⋆ [×]
∞ d 6 1 X X⋆ X⋆ X⋆

c > 1 ∞ ? ×⋆ [×]⋆ ×⋆

c > 1 d > 0 X X⋆ X X⋆

Table 1: Polynomial combined first-order rewritablity of (L)inear,
(G)uarded, (S)ticky and (T)ame rules. The symbol ∞ (resp., c > i
and d > i) asserts that the parameter under consideration is un-
bounded (resp., bounded by the constants c and d). The expression
d 6 1 implies that the arity is either 0 or 1. The symbol ? refers
to an open problem. The symbol X(resp., ×) refers to a positive
(resp., negative) case. The symbol [×] refers to a negative case,
assuming that PSPACE ̸= EXPTIME. Our results are marked with ⋆.

mially combined first-order rewritable are the class of lin-
ear rules when the arity of the schema is bounded, and the
class of sticky rules when both the size and the arity of the
schema are bounded. Those results are implicit in (Gottlob
and Schwentick 2012); however, the goal of that paper was
not the investigation of the polynomial combined approach
for linear and sticky rules, but the construction of a non-
recursive Datalog rewriting of polynomial size.

To the best of our knowledge, this is the first work
which explicitly studies the combined approach for exis-
tential rules. This problem is considered, by the KR com-
munity, as an interesting research direction that must be
investigated (Kontchakov et al. 2011). Towards this direc-
tion, we explore guarded- and sticky-based classes of ex-
istential rules. Both guardedness and stickiness are well-
accepted paradigms. On the one hand, guarded rules form a
robust language which captures important DLs such as DL-
Lite and EL (Calı̀ et al. 2012a) — a rule is guarded if it
has a body-atom, called guard, which contains all the body-
variables. On the other hand, sticky rules allow for joins
in rule-bodies which are expressible only via non-guarded
rules, and they are able to capture well-known data model-
ing constructs such as inclusion and multivalued dependen-
cies (Calı̀ et al. 2012b). Recently, a class called tame, which
combines guardedness and stickiness by taming the interac-
tion between the sticky rules and the guard atoms occurring
in guarded rules, has been proposed (Gottlob et al. 2013).

It is well-known that the problem of evaluating a first-
order query over a database is feasible in polynomial space.
Therefore, the polynomial combined approach is applicable
only to ontology languages for which the combined com-
plexity of CQ answering is at most PSPACE (assuming that
PSPACE ̸= EXPTIME). Since CQ answering under guarded
and tame rules is 2EXPTIME-hard, and under sticky rules is
EXPTIME-hard, it is interesting to investigate which assump-
tions on the underlying schema are sufficient for the polyno-
mial combined first-order rewritability of the above classes.
The techniques employed for ELHdr

⊥ and DL-LiteNhorn , al-
though are quite insightful, leverage specificities of DLs,
such as the limit to unary and binary predicates and the spe-
cial form of DL axioms, so that it is not clear how they can
be extended to general rule-based languages. Thus, we had
to come up with novel techniques beyond the state of the art.

Our contributions can be summarized as follows:

• We first show that guarded rules are, in general, not poly-
nomially combined first-order rewritable, even if the un-
derlying schema contains a single predicate. The same
holds even if we concentrate on unary and binary pred-
icates (unless PSPACE = EXPTIME). Guarded rules are
polynomially combined first-order rewritable if we con-
sider only unary predicates, or when the size and the arity
of the underlying schema are bounded by a constant.
• We show that sticky rules are, in general, not polynomi-

ally combined first-order rewritable, even if the underly-
ing schema contains a single predicate (unless PSPACE =
EXPTIME). Sticky rules are polynomially combined first-
order rewritable if we consider schemas of bounded arity.
• Finally, we show that the results for guarded rules de-

scribed above can be extended to tame rules.

In summary, we form an (almost) complete picture, de-
picted in Table 1, of the polynomial combined first-order
rewritability for the main guarded- and sticky-based classes
of existential rules. Notice that the case of linear rules, even
when the schema contains a single predicate, is still open.
We conjecture that linear rules are polynomially combined
first-order rewritable, and we give some evidence for this in
Section 7. At this point, let us clarify that guarded and tame
rules are not first-order rewritable since the data complexity
of CQ answering under those classes is PTIME-hard, even
when the size and the arity of the underlying schema are
bounded. Moreover, sticky rules are strictly more expressive
than OWL 2 QL, and thus they are not polynomially first-
order rewritable, even if the arity is fixed. Hence, our results
enlarge the family of ontology languages which are suitable
for OBDA purposes. Full proofs can be downloaded from
https://www.mat.unical.it/datalog-exists/pub/gmp14.pdf.

2 Preliminaries
Technical Definitions. We define the following pairwise
disjoint (infinite countable) sets: a set C of constants, a set
N of labeled nulls, and a set V of regular variables. A
term t is a constant, null, or variable. An atom has the form
p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn
are terms. Let arity(p) be the arity of the predicate p. For an
atom a, we denote dom(a) and var(a) the set of its terms
and the set of its variables, respectively; these extend to sets
of atoms. Conjunctions of atoms are often identified with
the sets of their atoms. An instance I is a (possibly infinite)
set of atoms p(t), where t is a tuple of constants and nulls.
Given a set of predicates R, let I|R = {p(t) ∈ I | p ∈ R},
i.e., the restriction of I on R. A database D is a finite in-
stance such that dom(D) ⊂ C. Given a set T of terms, we
denote by base(T,R) the set of atoms that can be formed
using terms of T and predicates ofR. A homomorphism is a
substitution h : C∪N∪V→ C∪N∪V which is the identity
on C. Two sets of atoms A,A′ are homomorphically equiv-
alent, written A ←→ A′, if there exist homomorphisms h
and h′ such that h(A) ⊆ A′ and h′(A′) ⊆ A. We assume
the reader is familiar with conjunctive queries (CQs). We
denote body(q) the body of a query q. The answer to q over

t(X,Y,Z) → ∃W s(Y,W)

r(X,Y),p(Y,Z) → ∃W t(X,Y,W)

(a)

t(X,Y,Z) → ∃W s(X,W)

r(X,Y),p(Y,Z) → ∃W t(X,Y,W)

(b)

×

Figure 1: The Sticky Property.

an instance I is denoted q(I). A Boolean CQ (BCQ) q has a
positive answer over I , denoted I |= q, if () ∈ q(I).

A Datalog∃ rule (or simply rule) σ is a constant-free first-
order formula of the form ∀X∀Yφ(X,Y) → ∃Z p(X,Z),
where X ∪ Y ∪ Z ⊂ V, φ(X,Y) is a conjunction of
atoms, and p(X,Z) is a single atom; φ(X,Y) is the body
of σ, denoted body(σ), while p(X,Z) is the head of σ, de-
noted head(σ). Given a set Σ of rules, sch(Σ) is the set
of predicates occurring in Σ, and arity(Σ) is defined as
maxp∈sch(Σ){arity(p)}. For brevity, we will omit the uni-
versal quantifiers in front of rules. An instance I satisfies σ,
written I |= σ, if the following holds: whenever there ex-
ists a homomorphism h such that h(φ(X,Y)) ⊆ I , then
there exists h′ ⊇ h|X, where h|X is the restriction of h on
X, such that h′(p(X,Z)) ∈ I; I satisfies a set Σ of rules,
denoted I |= Σ, if I satisfies each σ of Σ. The models of
a database D and a set Σ of rules, denoted mods(D,Σ),
is the set of instances {I | I ⊇ D and I |= Σ}. The an-
swer to a CQ q w.r.t. D and Σ is defined as the set of tu-
ples ans(q,D,Σ) =

∩
I∈mods(D,Σ){t | t ∈ q(I)}. The

answer to a BCQ q is positive, denoted D ∪ Σ |= q, if
ans(q,D,Σ) ̸= ∅. The problem of CQ answering is defined
as follows: given a CQ q, a database D, a set Σ of rules, and
a tuple of constants t, decide whether t ∈ ans(q,D,Σ).
In case q is a BCQ, the above problem is called BCQ an-
swering. These decision problems are LOGSPACE-equivalent
(implicit in (Chandra and Merlin 1977)), and we thus focus
only on BCQ answering. For query answering purposes, we
can assume, w.l.o.g., that both the BCQ q and the database
D contain only predicates of sch(Σ).

We are going to employ the chase procedure, which works
on an instance through the so-called chase rule defined as
follows. Consider an instance I , and a rule σ as defined
above. Then, σ is applicable to I if there exists a homo-
morphism h such that h(φ(X,Y)) ⊆ I . Let I ′ = I ∪
{h′(p(X,Z))}, where h′ ⊇ h|X is such that h′(Z) is a
“fresh” null not occurring in I , for each Z ∈ Z. The re-
sult of applying σ to I with h is I ′, and we write I⟨σ, h⟩I ′;
in fact, I⟨σ, h⟩I ′ defines a single chase step. The chase al-
gorithm for a database D and a set Σ of rules consists of
an exhaustive application of chase steps in a fair fashion,
which leads to a (possibly infinite) model of D and Σ, de-
noted chase(D,Σ); for more details see, e.g., (Calı̀ et al.
2012b). The instance chase(D,Σ) is a universal model ofD
and Σ, i.e., for each I ∈ mods(D,Σ), there exists a homo-
morphism that maps chase(D,Σ) to I , and thus D∪Σ |= q
iff chase(D,Σ) |= q, for each BCQ q (implicit in (Fagin et
al. 2005)).

Fragments of Datalog∃. A rule σ is called guarded if

there exists a ∈ body(σ) which contains all the variables
occurring in body(σ) (Calı̀ et al. 2013). Conventionally, the
leftmost such an atom is the guard of σ, denoted guard(σ),
while the non-guard atoms are called the side atoms of σ.
The class of guarded Datalog∃, denoted GUARDED, is de-
fined as the family of all possible sets of guarded rules.
Given a set Σ ∈ GUARDED, we denote by sch(Σ)− the
predicates of Σ which occur in at least one side atom in Σ;
clearly, sch(Σ)− ⊆ sch(Σ). Guarded rules with one body-
atom are called linear (Calı̀ et al. 2012a), and the corre-
sponding class is denoted LINEAR.

Sticky sets of rules have been proposed in (Calı̀ et al.
2012b). The central property of stickiness is that, during the
chase, terms which are associated with body-variables that
appear more than once (i.e., join variables) always are prop-
agated (or “stick”) to the inferred atoms. This is illustrated
in Figure 1; the first case is sticky, while the second is not.
The associated class is denoted STICKY.

Towards the identification of even more expressive decid-
able fragments of Datalog∃, a condition, called tameness,
which allows the consolidation of guardedness with stick-
iness has been recently proposed (Gottlob et al. 2013). In
particular, a set Σ of rules is called tame if it can be parti-
tioned into {Σ[g],Σ[s]}, where Σ[g] is a set of guarded rules
and Σ[s] is a sticky set of rules, and in addition, none of the
rules of Σ[s] “feeds” the guard atom of a guarded rule dur-
ing the construction of the chase. In other words, whenever
a guarded rule σ is applied with homomorphism h, then its
guard must be mapped by h into an atom obtained from a
guarded rule. The corresponding class is denoted TAME.

Fix a class C ∈ {GUARDED, LINEAR,STICKY,TAME}.
Given two integer constants c > 0 and d > 0, we define
C[c, d] = {Σ ∈ C | |sch(Σ)| 6 c and arity(Σ) 6 d} as the
subclass of C where the size and the maximum arity of the
underlying schema are bounded by c and d, respectively.
We define the subclass of C where the size of the underlying
schema is bounded by c as C[c,∞] =

∪
j>0 C[c, j], and the

subclass of C where the maximum arity of the underlying
schema is bounded by d as C[∞, d] =

∪
i>0 C[i, d].

3 The Polynomial Combined Approach
The formal definition of polynomial combined first-order
rewritability, introduced in (Lutz et al. 2009), which is at the
basis of the polynomial combined approach, is as follows:

Definition 1 A Datalog∃ class C is combined first-order
rewritable if, for every BCQ q, for every database D, and
for every Σ ∈ C, it is possible to rewrite:

• q and Σ, independently of D, into a first-order query qΣ,
• D and Σ, independently of q, into a database DΣ,

such that D ∪ Σ |= q iff DΣ |= qΣ. If qΣ and DΣ are con-
structible in polynomial time, then C is polynomially com-
bined (P-combined) first-order rewritable.

Combined Reducibility. To show that a Datalog∃ class
is P-combined first-order rewritable, one may exploit the
fact that existing formalisms already enjoy this property. To-
wards this direction, we introduce the notion of polynomial
combined reducibility:

Definition 2 Consider two Datalog∃ classes C and C′. We
say that C is combined reducible to C′ if, for every BCQ q,
database D, and Σ ∈ C, we can construct:
• a BCQ q′ independently of D,
• a database D′ independently of q, and
• a set Σ′ ∈ C′ independently of q and D,
such that D ∪ Σ |= q iff D′ ∪ Σ′ |= q′. If q′, D′ and Σ′

are constructible in polynomial time, then C is polynomially
combined (P-combined) reducible to C′, and the employed
reduction is called P-combined.

Obviously, the set of P-combined first-order rewritable
Datalog∃ classes is closed under P-combined reductions:

Theorem 3 Consider two Datalog∃ classes C,C′. If C is P-
combined reducible to C′, and C′ is P -combined first-order
rewritable, then also C is P -combined first-order rewritable.

The above result suggests the following: to show that a
Datalog∃ class C is P-combined first-order rewritable, it suf-
fices to reduce query answering under C to query answering
under some P-combined first-order rewritable formalism via
a P-combined reduction.

Polynomial Witness Property. A semantic property
which is sufficient for P-combined first-order rewritability
is the polynomial witness property, introduced in (Gottlob
and Schwentick 2012). Roughly, a Datalog∃ class C enjoys
this property if, whenever a query q is entailed by a database
D and a set Σ ∈ C, then q is already entailed by a finite part
of chase(D,Σ) (the witness) of polynomial size in q and Σ.

Definition 4 A Datalog∃ class C enjoys the polynomial wit-
ness property (PWP) if there exists a polynomial f such that,
for every BCQ q, database D, and Σ ∈ C, D ∪ Σ |= q im-
plies the existence of a chase sequence Ii⟨hi, σi⟩Ii+1 of D
w.r.t. Σ, for 0 6 i < f(|q|, |Σ|), such that If(|q|,|Σ|) |= q.

The following key result is implicit in (Gottlob and
Schwentick 2012):

Proposition 5 If a Datalog∃ class C enjoys the PWP, then
C is P-combined first-order rewritable.

4 Guarded Datalog∃

By making different assumptions on the underlying schema,
we trace the frontier between those sets of guarded rules
which are P-combined first-order rewritable and those which
are not. On the one hand, we show that guarded Datalog∃ is
not P-combined first-order rewritable even if the underly-
ing schema contains a single predicate, or even if we focus
on unary and binary predicates. On the other hand, guarded
Datalog∃ is P-combined first-order rewritable if we consider
only unary predicates, or if the size and the arity of the un-
derlying schema are bounded by an integer constant; the lat-
ter forms one of the main results of this paper.

It is well-known that query answering under guarded
rules is 2EXPTIME-hard (Calı̀ et al. 2013). Since the eval-
uation of a first-order query is feasible in polynomial space,
and also PSPACE (2EXPTIME, we get that GUARDED
is not P-combined first-order rewritable. Interestingly, the
same argument applies when the underlying schema con-
tains only one predicate. More precisely, query answering

under GUARDED[1,∞] is already 2EXPTIME-hard. This
can be shown by a reduction from query answering un-
der arbitrary guarded rules; let us explain the reduction by
means of a simple example. Consider the following instance
of query answering under guarded Datalog∃:

D = {p(a), s(a, b, c)}
Σ = {p(X), s(X,Y, Z)→ ∃W r(X,W)}
q = ∃X∃Y p(X), r(X,Y).

The idea is to simulate the predicates p, r and s using a sin-
gle predicate sim of higher arity; in fact, the atom p(a) can
be encoded as sim(p, a, ⋄1, ⋄2, p, r, s, ⋄1, ⋄2), where ⋄1, ⋄2
are “dummy” constants not occurring in D, while s(a, b, c)
can be encoded as sim(s, a, b, c, p, r, s, ⋄1, ⋄2). Then, the
rule of Σ will be rewritten as

sim(P1, X, V1, V2,T), sim(P3, X, Y, Z,T)
→ ∃W sim(P2, X,W, V2,T),

where T = (P1, P2, P3, V1, V2), while the query q will be
rewritten as

∃X∃Y ∃T sim(P1, X, V1, V2,T), sim(P2, X, Y, V2,T).

From the above discussion, we get the following result:

Theorem 6 GUARDED[1,∞] is not P-combined first-order
rewritable.

The above result follows also from Theorem 3 and the fact
that the reduction from multiple predicates to a single pred-
icate is P-combined. Let us now consider the bounded arity
case. It is known that query answering under the description
logic ELI, i.e., EL extended with inverse roles, is EXPTIME-
hard. Since each ELI-TBox T can be translated into a set
ΣT of guarded rules, where sch(ΣT) contains only unary
and binary predicates, the next result follows:

Theorem 7 If PSPACE ̸= EXPTIME, then GUARDED[∞, 2]
is not P-combined first-order rewritable.

It is believed that PSPACE (EXPTIME, and therefore it is
unlikely for GUARDED[∞, 2] to be P-combined first-order
rewritable. However, if we concentrate on unary predicates,
then it is possible to establish a positive result. In particu-
lar, a set Σ ∈ GUARDED[∞, 1] may contain only rules of
the form p1(X), . . . , pn(X) → a, for n > 1, where a is
either p(X) or ∃Z p(Z). This fact allows us to show that
GUARDED[∞, 1] enjoys the PWP. Hence, by Proposition 5,
we immediately get the following result:

Theorem 8 GUARDED[∞, 1] is P-combined first-order
rewritable.

Let us now investigate whether guarded Datalog∃ is P-
combined first-order rewritable if we bound both the size
and the arity of the schema. Notice that query answering un-
der GUARDED[c, d] is NP-complete (Calı̀ et al. 2013), and
thus the answer to this question is likely to be affirmative;
the rest of this section is devoted to show that this is the
case. Towards this direction, we exploit the following result
established in (Gottlob and Schwentick 2012):

Proposition 9 LINEAR[∞, d] enjoys the PWP.

The above result, together with Proposition 5, implies that
LINEAR[∞, d] is P-combined first-order rewritable. There-
fore, to establish our desired result, by Theorem 3, it suf-
fices to show that GUARDED[c, d] is P-combined reducible
to LINEAR[∞, d]. A key notion employed in the studies of
query answering under guarded rules is the type of an atom.
Given a database D and a set Σ ∈ GUARDED, the type of
an atom a ∈ chase(D,Σ) is defined as type(a,D,Σ) =
{b ∈ chase(D,Σ) | dom(b) ⊆ dom(a)}. Intuitively, when-
ever a is associated with the guard atom of a rule σ during
a chase step application, then the side atoms of σ are neces-
sarily associated with atoms of type(a,D,Σ). The abstract
idea underline our P-combined reduction of query answer-
ing under GUARDED to query answering under LINEAR is
as follows: given a guarded rule σ, encode the shape of the
type τ of guard(σ) in a predicate [τ], and then replace σ
with a linear rule of the form [τ](X,Y)→ ∃Z p(X, Z). Let
us now give some extra terminology which is needed for the
definition of the reduction.

4.1 Technical Definitions and Notation
Fix two setsR,R′ of predicates, whereR′ ⊆ R. A guarded
type for a predicate p ∈ R w.r.t. R′ is defined as a pair
(a, S), where a is an atom of the form p(t1, . . . , tn) with
ti ∈ {1, . . . , arity(p)}, and S ⊆ base(dom(a),R′) \ {a}.
Let gtypes(p,R′) be the set of all possible guarded types
for p w.r.t.R′. We define the guarded types ofR w.r.t.R′ as
the set gtypes(R,R′) = {gtypes(p,R′)}p∈R. Given τ =
(a, S) ∈ gtypes(R,R′), we refer to a by guard(τ) and to
({a}∪S) as atoms(τ), respectively. The arity of τ , denoted
arity(τ), is the maximum integer occurring in guard(τ).

Example 1 Let R = {p, s, r} and R′ = {s, r}, where p is
a ternary predicate, while s and r are binary predicates. A
possible guarded type τ for p w.r.t.R′ is the pair

(p(1, 1, 2), {s(1, 2), s(1, 1), r(2, 1), r(2, 2)}) ,

with arity(τ) = 2.

Roughly speaking, a guarded type describes the equality
type of a guard-atom and a set of further side atoms which
are “covered” by the guard. The integer arguments occurring
in a guarded type, which can be seen as constants, are mere
indicators of equalities among arguments. It is important to
clarify that their actual values have no semantic meaning
beyond this. For normalization reasons, we adopt the con-
vention that the integers appearing in guard(τ), for some
guarded type τ , will always start by 1, and will be consec-
utive, except for repeated integers. Thus, when constructing
new guarded types from existing ones, we will have to re-
name the arguments of a newly constructed set of atoms in
order to follow the above convention. To this purpose, we
use a renaming function ρ whose formal definition is obvi-
ous and it is omitted; for example, given τ = (a, S), where
a = p(2, 2, 4, 1) and S = {s(1, 2), s(4, 1)}, ρ(atoms(τ)) =
{p(1, 1, 2, 3), s(3, 1), s(2, 3)}.

Given a guarded type τ = (a, S), and a tuple of terms t =
(t1, . . . , tn), where n = arity(τ), the instantiation of τ over
t, denoted τ(t), is the set of atoms {ht(b) | b ∈ atoms(τ)},
where ht = {i→ ti}i∈[n]; for brevity, [n] = {1, . . . , n}.

Example 2 Let τ be the guarded type for p given in Exam-
ple 1. Then, τ((a, b)) is the pair

{p(a, a, b), s(a, b), s(a, a), r(b, a), r(b, b)}

with h(a,b) = {1→ a, 2→ b}.
The projection of τ = (a, S) over I ⊆ [arity(τ)] is the

set of atoms ΠI(τ) = {b ∈ atoms(τ) | dom(b) ⊆ I}.
E.g., given τ = (p(1, 2, 3), {r(1), s(2)}), then Π{1,2}(τ) =
{r(1), s(2)}. Having the above notions in place, we are now
ready to show that GUARDED[c, d] is P-combined reducible
to LINEAR[∞, d].

4.2 A Reduction from GUARDED to LINEAR

Let us first give a general reduction GL of query answering
under guarded to query answering under linear Datalog∃.
Fix a database D and a set Σ0 ∈ GUARDED. We are going
to construct a database D⋆ and a set Σ⋆ ∈ LINEAR such
that, for every BCQ q, D ∪ Σ0 |= q iff D⋆ ∪ Σ⋆ |= q.

Step 1: Normalization. The first step is to normalize Σ0 in
such a way that each rule contains at most one existentially
quantified variable which occurs at the last position of the
head-atom. More precisely, for a rule σ ∈ Σ0, if σ is already
in normal form, then N(σ) = {σ}; otherwise, assuming that
head(σ) = a, X = var(body(σ)) ∩ var(head(σ)), and
Z1, . . . , Zm are the existentially quantified variables of σ,
let N(σ) be the set of rules

body(σ) → ∃Z1 p
1
σ(X, Z1)

p1
σ(X, Z1) → ∃Z2 p

2
σ(X, Z1, Z2)

. . .
pm−1
σ (X, Z1, . . . , Zm−1) → ∃Zm pm

σ (X, Z1, . . . , Zm)
pm
σ (X, Z1, . . . , Zm) → a,

where piσ is an (|X|+i)-ary auxiliary predicate not occurring
in sch(Σ0), for each i ∈ [m]. Let Σ =

∪
σ∈Σ0

N(σ).

A key tool that we shall use in our reduction is the com-
pletion of a (finite) instance I w.r.t. Σ, i.e., the process of
enriching I with all the possible atoms that can be entailed
from I and Σ without altering the domain of I . Formally,
the result of such a process, denoted complete(I,Σ), is the
set of atoms {a | dom(a) ⊆ dom(I) and (I ∪ Σ) |= a}.
It is important to say that the atom entailment problem
under guarded rules is decidable (Calı̀ et al. 2013), and thus
the (finite) set complete(I,Σ) can be explicitly computed.
Henceforth, a guarded type for a predicate p ∈ sch(Σ) is
always w.r.t. sch(Σ)−, and we will simply write gtypes(p)
for the set gtypes(p, sch(Σ)−). Moreover, we will refer to
gtypes(sch(Σ), sch(Σ)−) as gtypes(Σ).

Step 2: Database Construction. We define

D⋆ =

[τ](t1)

∣∣∣∣∣∣∣
p(t) ∈ D,
τ ∈ gtypes(p),
guard(τ) ≃ p(t),
τ(t1) ⊆ complete(D,Σ)

 ,

where [τ], for some guarded type τ , is a new arity(τ)-ary
predicate not occurring in sch(Σ), guard(τ) ≃ p(t) means

that guard(τ) and p(t) have the same equality type (e.g.,
p(1, 2, 1, 3, 2) ≃ p(t1, t2, t1, t3, t2)), and t1 is obtained from
t by keeping only the first occurrence of each term occurring
in t (e.g., if t = (t1, t2, t1, t3, t2), then t1 = (t1, t2, t3)).
Intuitively, an atom [τ](t1), occurring in D⋆ due to an atom
p(t) ∈ D, encodes a possible subset of chase(D,Σ) which
contains the atoms that may act as side atoms whenever p(t)
plays the role of the guard in a chase application.

Example 3 Assume that D = {p(a, a), p(a, b), s(b)} and
Σ = {p(X,Y), s(Y) → s(X)}. For the atom p(a, a) ∈ D,
an atom [τ](a) will be added in D⋆, where τ is a guarded
type of the form (p(1, 1), S). Observe that the only atom,
apart from p(a, a), which is entailed by D and Σ, and con-
tains only the term a, is s(a); therefore, S is either empty
or is the set {s(1)}. Consequently, for p(a, a), the atoms
[(p(1, 1),∅)](a), [(p(1, 1), {s(1)})](a) will be added inD⋆.
Consider now the atom p(a, b) ∈ D. It is easy to verify
that the set of atoms

∪
S∈P({p(1,1),s(1),s(2)}){[(p(1, 2), S)]},

where P(X) denotes the powerset of X , will be added in
D⋆. Finally, for s(b) ∈ D, only the atom [(s(1),∅)](b) will
be added in D⋆, since no other atom than s(b), which con-
tains only the term b, is entailed by D and Σ.

Step 3: Rules Construction. The set Σ⋆ consists of the fol-
lowing two groups of rules:
1. The type generator, denoted Σ⋆

G, which is responsible for
generating new guarded types from existing ones, and

2. The unfolder, denoted Σ⋆
U , that is responsible for unfold-

ing a derived guarded type τ , i.e., to explicitly construct
the atoms over the original schema sch(Σ0) which are en-
coded in τ so that they can be queried directly.

Let us now define formally Σ⋆
G and Σ⋆

U ; let w = arity(Σ).

Step 3.1: Type Generator. For each σ ∈ Σ of the form

body(σ) → ∃Z p(X1, . . . , Xn, Z),

and for each guarded type τ ∈ gtypes(Σ) for which there ex-
ists a homomorphism h such that h(body(σ)) ⊆ atoms(τ)
and h(guard(σ)) = guard(τ), in Σ⋆

G there exists the rule:

[τ](V1, . . . , Vm) → ∃Z [τ ′](W1, . . . ,Wk, Z),

where m = arity(τ), and
• {V1, . . . , Vm} ⊆ var(body(σ)), and h(Vi) = i, for each
i ∈ [m],
• {Wℓ}ℓ∈[k] ⊆ {Xℓ}ℓ∈[n] and (h(W1), . . . , h(Wk)) =

(h(X1), . . . , h(Xn))
1,

• τ ′ = (ρ(a), (complete(ρ({a}∪S),Σ)\{ρ(a)})|sch(Σ)−),
where a is the atom p(h(X1), . . . , h(Xn), w + 1) and S
is the set of atoms Π{h(X1),...,h(Xn)}(τ).

No other rules occur in Σ⋆
G.

Example 4 Assume that Σ consists of the rules

σ1 : p(X,Y,X,Z,W), s(X,Z) → ∃U r(Z, Y,X,U)
σ2 : r(X,X, Y, Z) → t(X,Z).

Let us focus our attention on σ1. A possible guarded type τ
for the predicate of the guard of σ1, that is, the predicate p,
for which there exists a homomorphism that maps body(σ1)
to atoms(τ), and guard(σ1) to guard(τ) is:

τ = (p(1, 2, 1, 2, 3), {s(1, 1), s(1, 2)}).

Therefore, in Σ⋆
G we have the linear rule:

[τ](X,Y,W) → ∃U [τ ′](Y,X,U),

where τ ′ = (r(1, 1, 2, 3), {s(2, 2), s(2, 1), t(1, 3)}).

Step 3.2: Unfolder. For each τ ∈ gtypes(Σ0), if guard(τ)
is of the form p(t1, . . . , tn), in Σ⋆

U there exists the rule:

[τ](V1, . . . , Vm) → p(W1, . . . ,Wn),

where
• {V1, . . . , Vm} ⊂ V and (V1, . . . , Vm) = (W1, . . . ,Wn)

1,
• ti = tj implies Wi =Wj , for each i, j ∈ [n].
No other rules occur in Σ⋆

U .

Example 5 Consider the guarded type

τ = (p(1, 2, 1, 2, 3), {s(1, 1), s(1, 2)}).

Due to τ , in Σ⋆
U we have the linear rule:

[τ](X,Y, Z) → p(X,Y,X, Y, Z).

Notice that, for any type of the form (p(1, 2, 1, 2, 3), S), i.e.,
that has the same guard as τ , the rule added to Σ⋆

U is the
same as the one above.

We proceed to show that GL is indeed a reduction of query
answering under guarded Datalog∃ to query answering un-
der linear Datalog∃. To this aim, we exploit the central prop-
erty of the type of an atom. In particular, the subtree of the
guarded chase forest ofD and Σ — the forest obtained from
chase(D,Σ) by keeping only the guards and their children
— rooted at a is determined by type(a,D,Σ) (modulo re-
naming of nulls) (Calı̀ et al. 2013). This implies that, given
an atom a = p(t1, . . . , tn, z), where z is a null value in-
vented in a, we can construct type(a,D,Σ) from a and
the restriction of type(a,D,Σ) to {t1, . . . , tn}. This justi-
fies the definition of the type generator, where we complete
the known part of the type, denoted S, of a generated atom
a by calling the procedure complete using as a database the
instance ({a} ∪ S).

The above property allows us to show two useful lemmas.
The first one asserts that, for each a ∈ chase(D,Σ), GL
encodes type(a,D,Σ) in a complete way. The function γa
renames the arguments of an atom a ∈ chase(D,Σ) into
integers. For example, given a = p(a, z1, a, b), then γa(a) =
p(1, 2, 1, 3); the definition of γa is obvious and it is omitted.
Let τa = (γa(a), γa(type(a,D,Σ) \ {a})).
Lemma 10 There is a homomorphism h such that, p(t) ∈
chase(D,Σ) implies [τp(t)](h(t1)) ∈ chase(D⋆,Σ⋆

G).

The second technical lemma states that the reduction GL
encodes in a sound way the various types that can be realized
in the instance constructed by the chase:

Lemma 11 There is a homomorphism h such that, [τ](t) ∈
chase(D⋆,Σ⋆

G) implies h(τ(t)) ⊆ chase(D,Σ).

By exploiting the above technical lemmas, we can show
that chase(D,Σ0) and chase(D⋆,Σ⋆), after eliminating the
atoms with predicates not occurring in sch(Σ0), are homo-
morphically equivalent:

Proposition 12 It holds that,

chase(D,Σ0) ←→ chase(D⋆,Σ⋆)|sch(Σ0).

Proof (sketch). By construction, there exists a homomor-
phism µ that maps chase(D,Σ0) to chase(D,Σ)|sch(Σ0).
Due to Σ⋆

U , we get that h1, provided by Lemma 10, maps
chase(D,Σ)|sch(Σ0) to chase(D⋆,Σ⋆)|sch(Σ0). Therefore,

h1(µ(chase(D,Σ0))) ⊆ chase(D⋆,Σ⋆)|sch(Σ0).

Conversely, let h2 be the homomorphism as in Lemma 11.
Since chase(D⋆,Σ⋆)|sch(Σ0) ⊆ ∪[τ](t)∈chase(D⋆,Σ⋆

G) τ(t),
h2 maps chase(D⋆,Σ⋆)|sch(Σ0) to chase(D,Σ)|sch(Σ0).
Clearly, by construction, there exists a homomorphism µ′

that maps chase(D,Σ)|sch(Σ0) to chase(D,Σ0). Thus,

µ′(h2(chase(D
⋆,Σ⋆)|sch(Σ0))) ⊆ chase(D,Σ0).

Consequently, due to (h1 ◦ µ) and (µ′ ◦ h2), we get that
chase(D,Σ0)←→ chase(D⋆,Σ⋆)|sch(Σ0).

Using Proposition 12, we can show that, for every BCQ q,
chase(D,Σ0) |= q iff chase(D⋆,Σ⋆) |= q, since q contains
only predicates of sch(Σ0), and the next result follows:

Theorem 13 For every BCQ q,D∪Σ0 |= q iffD⋆∪Σ⋆ |= q.

The question that comes up is whether GL is a P-combined
reduction. Recall that we are interested in sets of guarded
rules where the size and the maximum arity of the underly-
ing schema are bounded by a constant. In this case, as we
show below, indeed GL is P-combined.

4.3 The Reduction GL is P-combined
By construction, D⋆ depends only on D and Σ0, while Σ⋆

depends only on Σ0; hence, GL is a combined reduction.
Thus, to establish the desired result, it remains to show that,
if Σ0 ∈ GUARDED[c, d], then D⋆ and Σ⋆ are constructible
in polynomial time. Via a combinatorial analysis, we can
establish some upper bounds on the number of all possible
guarded types, and also on the size of a guarded type τ , de-
noted |τ |, and defined as |atoms(τ)|.
Lemma 14 It holds that,

1. |gtypes(p)| 6 arity(p)arity(p) · 2|sch(Σ)−|·arity(p)w , for
each p ∈ sch(Σ),

2. |gtypes(Σ)| 6 |sch(Σ)| · ww · 2|sch(Σ)−|·ww

, and
3. |τ | 6 |sch(Σ)| · ww, for each τ ∈ gtypes(Σ).

Henceforth, we assume that Σ0 ∈ GUARDED[c, d]. Ob-
serve that the maximum number of existentially quantified
variables that can appear in a rule of Σ0 is arity(Σ0). There-
fore, |Σ| ∈ O(|Σ0|) and |sch(Σ)| ∈ O(|Σ0|). Since the aux-
iliary predicates introduced during the normalization proce-
dure do not appear in side atoms, we get that sch(Σ)− ⊆

sch(Σ0), and thus |sch(Σ)−| 6 c. It is important to say that
arity(Σ) = arity(Σ0) 6 d.

To construct D⋆ we need, for each atom p(t) ∈ D, and
for each τ ∈ gtypes(p) such that guard(τ) ≃ p(t), to check
whetherD∪Σ |= a, for each a ∈ τ(t1). Importantly, the lat-
ter (atom entailment) check is feasible in polynomial time;
this follows from the fact that atomic query answering under
GUARDED[c, d] can be performed in polynomial time in D
and Σ (Calı̀ et al. 2013). In the worst case, we need to ap-
ply this polynomial check

∑
p(t)∈D

∑
τ∈gtypes(p) |τ | times.

By Lemma 14, and since |sch(Σ)−| 6 c and arity(p) 6 d,
for each p ∈ sch(Σ), eventually the crucial entailment check
must be performed |D| · |sch(Σ)| ·2c·dd ·d2d ∈ O(|D| · |Σ0|)
times, and hence D⋆ is constructible in polynomial time.

We now consider the construction of Σ⋆. By exploiting
Lemma 14, one can show that the maximum number of rules
that can appear in Σ⋆

G isO(|Σ0|2). The construction of each
linear rule (apart from some easy steps) amounts to compute
the set of atoms complete(I,Σ)|sch(Σ)− , where I is an in-
stance of size bounded by |τ | with τ be the guarded type un-
der consideration. This requires to call a polynomial entail-
ment check O(|Σ0|d) times, and hence Σ⋆

G is constructible
in polynomial time. To construct the unfolder Σ⋆

U we ac-
tually need to construct |gtypes(Σ0)| linear rules, each of
which can be constructed in timeO(1). Thus, by Lemma 14,
the construction of Σ⋆

U can be carried out in time O(1).
From the above analysis, we conclude that D⋆ and Σ⋆ are

constructible in polynomial time, and the next result follows:

Proposition 15 GUARDED[c, d] is P-combined reducible
to LINEAR[∞, d].

By combining Theorem 3 with Propositions 5, 9 and 15,
the main result of this section follows:

Theorem 16 GUARDED[c, d] is P-combined first-order
rewritable.

5 Tame Datalog∃

In this section, we investigate the question whether the class
of tame rules is P-combined first-order rewritable whenever
the size and the arity of the schema are bounded. One may
claim that the technique proposed for guarded rules can be
directly applied on tame rules in order to obtain the desired
result. More precisely, one can suggest the following: it can
be shown that TAME[c, d] is P-combined reducible to a class
that is P-combined first-order rewritable — which in turn
implies that TAME[c, d] is P-combined first-order rewritable
— by exploiting GL and rewriting the given database D into
D⋆, and the guarded part Σ[g] of the given tame set Σ ∈
TAME[c, d] into Σ[g]⋆, while keeping the sticky part Σ[s]
of Σ untouched. Although this approach is quite promising,
there are two non-trivial difficulties:
• (Σ[g]⋆ ∪ Σ[s]) is sticky, and it is not known whether
STICKY[∞, d] is P-combined first-order rewritable, and
• GL is not complete on tame rules since a side atom of a

guarded rule may depend on the sticky part.
In what follows, we explore the combined approach for

sticky rules, and we show that STICKY[∞, d] is P-combined

first-order rewritable. We also reveal the key reason of the
incompleteness of GL, and we briefly explain how it can be
adapted in order to regain completeness.

5.1 Stickiness and the Combined Approach
Query answering under sticky sets of rules is EXPTIME-
complete (Calı̀ et al. 2012b). Interestingly, the problem re-
mains EXPTIME-hard even if the underlying schema con-
tains only one predicate. This can be established by employ-
ing the same construction given in the previous section to
show an analogous result for guarded rules. Thus, we get
the following impossibility result:
Theorem 17 If PSPACE ̸= EXPTIME, then STICKY[1,∞]
is not P-combined first-order rewritable.

Let us now show that STICKY[∞, d] is P-combined first-
order rewritable by showing first that it enjoys the polyno-
mial witness property. Consider a BCQ q, a database D,
and a set Σ ∈ STICKY[∞, d]. Assume that D ∪ Σ |= q.
This implies that there exists a homomorphism h such that
h(body(q)) = H ⊆ chase(D,Σ). Consider now the proof
of H , i.e., the (finite) part P ⊆ chase(D,Σ) due to which
H is generated. Because of stickiness, apart from the terms
occurring in H , all the other terms in P do not participate in
a join operation during the construction of P , and therefore
can be seen as “don’t care” terms. Given an atom a ∈ P , let
a⋆ be the atom obtained from a by replacing the “don’t care”
terms, i.e., the terms of dom(a)\dom(H), with ⋆. It is possi-
ble to show that a witness P ′ of q can always be constructed
such that, for every a, a′ ∈ P ′, a ̸= a′ implies a⋆ ̸= a′⋆.
Since |P ′| 6 n · (|dom(H)| + 1)d, where n = |sch(Σ)|,
and |dom(H)| 6 |q| · d, we conclude that a witness of size
O(n · |q|d) always exists, and the next result follows:
Lemma 18 STICKY[∞, d] enjoys the PWP.

The above result improves an existing one asserting that
STICKY[c, d] enjoys the PWP (Gottlob and Schwentick
2012). By Proposition 5 and Lemma 18 we get that:
Theorem 19 STICKY[∞, d] is P-combined first-order
rewritable.

5.2 A Reduction from TAME to STICKY
We now concentrate on the reduction GL. We first show that
it is not complete on tame rules. Let D = {p(a, b), p(b, c)},
and Σ be the tame set of rules consisting of:

σ1 : p(X,Y) → ∃Z r(Y, Z)
σ2 : r(X,Y), s(Y,X) → ∃Z r(Y,Z)
σ3 : r(X,Y), p(X,Z)→ s(Y,X),

where the guarded part Σ[g] = {σ1, σ2} and the sticky part
Σ[s] = {σ3}. The chase of D w.r.t. Σ is

C = {p(a, b), p(b, c), r(b, z1), r(c, z2), s(z1, b), r(z1, z3)}.
Let us now construct D⋆ and Σ[g]⋆. It is easy to verify that

D⋆ = {[(p(1, 2),∅)](a, b), [(p(1, 2),∅)](b, c)}.
Due to σ1 and the guarded type (p(1, 2),∅) for p, in Σ[g]⋆

we have the linear rule

[(p(1, 2),∅)](X,Y) → ∃Z [(r(1, 2),∅)](Y, Z).

Moreover, due to σ2 and the type (r(1, 2), {s(2, 1)}) for r,
in Σ[g]⋆ we have the linear rule

[(r(1, 2), {s(2, 1)})](X,Y) → ∃Z [(r(1, 2),∅)](Y, Z).

Notice that several other rules occur in Σ[g]⋆. However, for
this particular example they are meaningless, and therefore
they are omitted for brevity; e.g., rules that must occur in
Σ[g]⋆ due to σ1 and a type of the form (p(1, 1), S) will never
be triggered. In addition, in Σ[g]⋆ we have the linear rules

[(p(1, 2),∅)](X,Y) → ∃Z p(X,Y)
[(r(1, 2),∅)](X,Y) → ∃Z r(X,Y)
[(r(1, 2), {s(2, 1)})](X,Y) → ∃Z r(X,Y).

Observe that chase(D⋆,Σ[g]⋆ ∪ Σ[s])|sch(Σ) is

C⋆ = {p(a, b), p(b, c), r(b, z⋆1), r(c, z⋆2), s(z⋆1 , b)}.

The fact that there exists a homomorphism that maps C⋆ to
C implies that, for every BCQ q, C⋆ |= q implies C |= q.
Actually, the reduction GL is sound even if we consider tame
rules. However, it is not also complete: consider the BCQ
q = ∃X∃Y ∃Z r(X,Y), r(Y, Z), and observe that C |= q
butC⋆ ̸|= q. The reason whyC⋆ ̸|= q is because GL failed to
encode the fact that an atom r(z⋆1 , z

⋆
3) must also be generated

during the construction of chase(D⋆,Σ[g]⋆ ∪ Σ[s]). More
precisely, the crucial linear rule σ of the form

[(p(1, 2),∅)](X,Y) → ∃Z [(r(1, 2), {s(2, 1)})](Y,Z)

is missing from Σ[g]⋆. Because of the above rule, the atom
[(r(1, 2), {s(2, 1)}](b, z⋆1) will be obtained during the con-
struction of the chase, which in turn will trigger the rule

[(r(1, 2), {s(2, 1)})](X,Y) → ∃Z [(r(1, 2),∅)](Y,Z)

and the atom [(r(1, 2),∅)](z⋆1 , z
⋆
3) will be generated. Then,

due to the rule

[(r(1, 2),∅)](X,Y) → ∃Z r(X,Y)

the desired atom r(z⋆1 , z
⋆
3) will be eventually obtained. Thus,

in order to reveal the real reason why GL is not complete
on tame rules, we need to understand why the crucial rule σ
does not occur in Σ[g]⋆. Clearly, σ should exists in Σ[g]⋆ due
to σ1 and a guarded type τ of the form (p(1, 2), S), where
S ⊆ base({1, 2}, sch(Σ)). However,

τ ′ = (r(1, 2), complete({r(1, 2)} ∪Π{2}(τ),Σ))
= (r(1, 2),∅),

even if S = base({1, 2}, sch(Σ)), and therefore there is no
way to obtain the head atom ∃Z [(r(1, 2), {s(1, 2)})](Y,Z).
This is because, in order to obtain s(2, 1) during the comple-
tion of ({r(1, 2)} ∪ Π{2}(τ)) w.r.t. Σ, an atom of the form
p(1, X) is needed. However, such an atom does not occur
in complete({r(1, 2)}∪Π{2}(τ),Σ), and this is exactly the
source of incompleteness. It is important to observe that the
atom p(1, X) is needed to trigger the rule σ3, i.e., the sticky
rule of Σ, and sinceX is not propagated in the inferred atom,
by stickiness, we can safely conclude that such a termX will
never participate in a join operation during the completion
process. Hence, what is important is not the actual value of
X but the existence of a witness for X .

From the above discussion, we conclude that the way to
regain completeness is to add in side(τ) a witness atom
p(1, ⋆) for p(1, X), and let

τ ′ = (r(1, 2), complete({r(1, 2)} ∪Π{2,⋆}(τ),Σ)),

and also add an additional unfold rule of the form

[(r(1, 2), {s(2, 1), p(1, ⋆)})](X,Y) → ∃Z p(X,Z)
in order to explicitly unfold the witness atom p(1, ⋆) by in-
venting a “fresh” null for each occurrence of ⋆. Notice that
in this particular example, the above rule is not needed since
p(1, ⋆) is a witness of the database atom p(b, c), and thus it
is not necessary to regenerate it. However, in general, such
unfolding rules are crucial.

The above approach can be generalized in order to obtain
a combined reduction, denoted TS, of query answering un-
der tame sets of rules to query answering under sticky sets
of rules. Let us clarify that (Σ[g]⋆ ∪ Σ[s]) is indeed sticky
since, by construction, for each σ ∈ Σ[g]⋆, every variable in
body(σ) occurs only once, and thus there is no way to violate
stickiness after the merging of Σ[g]⋆ and Σ[s]. Moreover, if
the size and arity of the underlying schema is fixed, then TS
is P-combined, and the next result follows:

Proposition 20 TAME[c, d] is P-combined reducible to
STICKY[∞, d].

From Theorem 3, Theorem 19 and Proposition 20, we im-
mediately get the main result of this section:

Theorem 21 TAME[c, d] is P-combined first-order
rewritable.

6 Linear Datalog∃: The Missing Tile
It is open whether Linear Datalog∃ is P-combined first-order
rewritable, and we are currently investigating this problem.
The purpose of this section is to show that the solution to the
above open problem cannot benefit from existing tools, and
therefore novel techniques must be devised.

By exploiting the reduction in the proof of Theorem 6, we
can show that LINEAR and LINEAR[1,∞] coincide w.r.t. P-
combined first-order rewritability. Therefore, in order to es-
tablish the desired result, it suffices to focus our attention
on sets of linear rules which contain exactly one predicate.
Since query answering under LINEAR is PSPACE-hard, the
same problem under LINEAR[1,∞] is also PSPACE-hard.
Thus, in view of the fact that query answering under the (cur-
rently) known Datalog∃ languages which are P-combined
first-order rewritable — i.e., the languages considered in this
paper — is in NP, the P-combined reducibility approach can-
not be applied (unless NP = PSPACE).

Unfortunately, as shown below, the existing techniques
of establishing that LINEAR[∞, d] is P-combined first-order
rewritable, which are based on the PWP, are also not use-
ful, or, at least, immediately applicable. We define the class
SUCC = {Σn}n>0, where Σn is the set of linear rules

{num(Z,O,Bn−i, Z,O
i−1)
→ num(Z,O,Bn−i, O, Zi−1)}i∈[n]

with Bk = B1, . . . , Bk. Roughly speaking, Σn simulates
the successor operator on m-digit binary numbers, where

m = n − 2. The binary number b1b2 . . . bm is encoded
as num(Z,O, b1, . . . , bm), where Z,O are auxiliary vari-
ables that allow us to have access to the bits 0 and 1, re-
spectively. Given the atomic query q = num(0, 1, 1, . . . , 1)
and the database D = {num(0, 1, 0, . . . , 0)}, we need to
apply O(2m) times the chase step in order to entail q. Con-
sequently, SUCC does not enjoy the PWP. Since SUCC ⊂
LINEAR[1,∞], the next result follows:

Lemma 22 LINEAR[1,∞] does not enjoy the PWP.

One may think that Lemma 22 implies that LINEAR[1,∞]
is not P-combined first-order rewritable. However, the PWP
is not a necessary condition for the P-combined first-order
rewritability. This is established by showing first that a class
for which query answering is PTIME-hard does not enjoy
the PWP. Since there exist PTIME-hard classes which are P-
combined first-order rewritable, e.g., GUARDED[c, d], the
next result follows:

Lemma 23 There exists a Datalog∃ class which does not
enjoy the PWP, but it is P-combined first-order rewritable.

All the known formalisms which are P-combined first-
order rewritable, enjoy a property close to the PWP which
we call weakly PWP (wPWP). Roughly, this property is de-
fined as the PWP, with the difference that the polynomial
size witness may depend on the given database. Clearly,
SUCC, and thus LINEAR[1,∞], does not enjoy the wPWP.
However, it is possible to show that SUCC is P-combined
first-order rewritable, and thus obtaining the first example
which does not ensure a witness of polynomial size, but it is
P-combined first-order rewritable.

From the above discussion, we conclude that LINEAR, al-
though does not guarantee witnesses of polynomial size, it is
likely to be P-combined first-order rewritable. However, the
existing tools are not powerful enough for establishing such
a result, and novel techniques must be developed.

7 Conclusion
We considered the polynomial combined approach to query
answering under expressive classes of existential rules. To
the best of our knowledge, this work is the first attempt to
explicitly apply the combined approach to existential rules.
We established that guarded and tame rules are polynomi-
ally combined first-order rewritable, whenever the size and
the arity of the underlying schema are bounded. The same
holds also for sticky rules, even if the size of the underly-
ing schema is not bounded. Notice that our techniques im-
mediately show that guarded and tame rules are combined
first-order rewritable. The results of this work are, for the
moment, of theoretical nature and we do not claim that they
will directly lead to better practical algorithms. A smart im-
plementation and an evaluation of the obtained rewritings
will be the subject of future research. We are also planning to
investigate the notion of output-polynomial combined first-
order rewritability, i.e., when the rewriting is of polynomial
size but not necessarily constructible in polynomial time.

References
Jean-François Baget, Michel Leclère, Marie-Laure Mugnier,
and Eric Salvat. On rules with existential variables: Walk-
ing the decidability line. Artif. Intell., 175(9-10):1620–1654,
2011.
Jean-François Baget, Marie-Laure Mugnier, Sebastian
Rudolph, and Michaël Thomazo. Walking the complexity
lines for generalized guarded existential rules. In Proc. of
IJCAI, pages 712–717, 2011.
Andrea Calı̀, Georg Gottlob, and Thomas Lukasiewicz. A
general Datalog-based framework for tractable query an-
swering over ontologies. J. Web Sem., 14:57–83, 2012.
Andrea Calı̀, Georg Gottlob, and Andreas Pieris. Towards
more expressive ontology languages: The query answering
problem. Artif. Intell., 193:87–128, 2012.
Andrea Calı̀, Georg Gottlob, and Michael Kifer. Taming the
infinite chase: Query answering under expressive relational
constraints. J. Artif. Intell. Res., 48:115–174, 2013.
Diego Calvanese, Giuseppe De Giacomo, Domenico
Lembo, Maurizio Lenzerini, and Riccardo Rosati. Tractable
reasoning and efficient query answering in description log-
ics: The DL-Lite family. J. Autom. Reasoning, 39(3):385–
429, 2007.
Ashok K. Chandra and Philip M. Merlin. Optimal imple-
mentation of conjunctive queries in relational data bases. In
Proc. of STOCS, pages 77–90, 1977.
Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lu-
cian Popa. Data exchange: Semantics and query answering.
Theor. Comput. Sci., 336(1):89–124, 2005.
Georg Gottlob and Thomas Schwentick. Rewriting ontolog-
ical queries into small nonrecursive datalog programs. In
Proc. of KR, 2012.
Georg Gottlob, Marco Manna, and Andreas Pieris. Com-
bining decidability paradigms for existential rules. TPLP,
13(4-5):877–892, 2013.
Stanislav Kikot, Roman Kontchakov, Vladimir V. Podolskii,
and Michael Zakharyaschev. Exponential lower bounds and
separation for query rewriting. In Proc. of ICALP, pages
263–274, 2012.
Roman Kontchakov, Carsten Lutz, David Toman, Frank
Wolter, and Michael Zakharyaschev. The combined ap-
proach to query answering in DL-Lite. In Proc. of KR, 2010.
Roman Kontchakov, Carsten Lutz, David Toman, Frank
Wolter, and Michael Zakharyaschev. The combined ap-
proach to ontology-based data access. In Proc. of IJCAI,
pages 2656–2661, 2011.
Markus Krötzsch and Sebastian Rudolph. Extending decid-
able existential rules by joining acyclicity and guardedness.
In Proc. of IJCAI, pages 963–968, 2011.
Nicola Leone, Marco Manna, Giorgio Terracina, and Pier-
francesco Veltri. Efficiently computable Datalog∃ programs.
In Proc. of KR, 2012.
Carsten Lutz, David Toman, and Frank Wolter. Conjunctive
query answering in the description logic EL using a rela-
tional database system. In Proc. of IJCAI, pages 2070–2075,
2009.

Antonella Poggi, Domenico Lembo, Diego Calvanese,
Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo
Rosati. Linking data to ontologies. J. Data Semantics,
10:133–173, 2008.

A Proof of Theorem 6
The proof is by reduction from query answering under arbitrary guarded rules. Consider a database D, a set Σ of guarded
Datalog∃ rules, and a BCQ q. We are going to construct a database D′, a set Σ′ of guarded rules where |sch(Σ′)| = 1, and a
BCQ q′ such that D ∪ Σ |= q iff D′ ∪ Σ′ |= q′. Let us first define two translation functions τ1 and τ2. In what follows, we
assume that sch(Σ) = {p1, . . . , pn} and m = arity(Σ). Given an atom a = pi(t1, . . . , tk), where each ti ∈ (C ∪V):

1. let τ1(a) = sim(pi, t1, . . . , tk, ⋄k+1, . . . , ⋄m, p1, . . . , pn, ⋄1, . . . , ⋄m), where sim is an (n+2m+1)-ary predicate not occur-
ring in sch(Σ), {p1, . . . , pn, ⋄1, . . . , ⋄m} ⊂ C, {p1, . . . , pn, ⋄1, . . . , ⋄m}∩dom(D) = ∅, and |{p1, . . . , pn, ⋄1, . . . , ⋄m}| =
n+m; and

2. let τ2(a) = sim(Pi, t1, . . . , tk, Vk+1, . . . , Vm, P1, . . . , Pn, V1, . . . , Vm), where {P1, . . . , Pn, V1, . . . , Vm} ⊂ V,
{P1, . . . , Pn, V1, . . . , Vm} ∩ var(Σ) = ∅, and |{P1, . . . , Pn, V1, . . . , Vm}| = n+m.

Having the above translation functions in place, we are now ready to construct D′, Σ′ and q′ as follows:

1. D′ = {τ1(a) | a ∈ D};
2. Assuming that q is of the form ∃X a1, . . . , ak, let q′ be the BCQ ∃X τ2(a1), . . . , τ2(ak); and
3. for each σ ∈ Σ of the form b1, . . . , bk → ∃Z a, in Σ′ the rule τ2(b1), . . . , τ2(bk)→ ∃Z τ2(a) exists.

Is is not difficult to see that indeed D ∪ Σ |= q iff D′ ∪ Σ′ |= q′. Since |sch(Σ′)| = 1 the claim follows.

B Proof of Theorem 8
To show that GUARDED[∞, 1] is P-combined first-order rewritable, we show that this class enjoys the PWP, but before, we
need to introduce some useful notation. The chase relation (Calı̀ et al. 2012b) of a database D and a set Σ of TGDs is a binary
relation on atoms, denoted by CR[D,Σ], which mimics all the chase derivations of the chase. More precisely, CR[D,Σ] is the
maximum subset of chase(D,Σ)× chase(D,Σ) such that ⟨a, b⟩ ∈ CR[D,Σ] implies that b is obtained from a via a chase step
I⟨σ, h⟩I ′ where I ′ \ I = {b} and a ∈ h(body(σ)). The transitive closure of CR[D,Σ] is denoted by CR+[D,Σ].

Consider a BCQ q, a database D, and a set Σ ∈ GUARDED[∞, 1]. Assume that D ∪ Σ |= q. This implies that there is a
homomorphism h such that h(body(q)) = chase(D,Σ). Consider now the proof of H = h(body(q)), namely the set P =
H ∪ {a ∈ chase(D,Σ) | there exits b ∈ H such that ⟨a, b⟩ ∈ CR+[D,Σ]}, which represents the finite part P ⊆ chase(D,Σ)
due to which H is generated. (Note that P is not necessarily a superset of D.) Once we now P , we can identify from the chase
steps that have been applied to construct chase(D,Σ) a sequence S = I0⟨σ1, h1⟩I1⟨σ2, h2⟩I2 . . . In of chase steps such that
I0 = P ∩D, In = P , and Ii ⊆ P , for each i ∈ {1, . . . , n}.

Let Σ∃ denote the subset of Σ collecting all the rules that contain existentially quantified variables. Moreover, let κ =
(|Σ∃|+ |q|) · |sch(Σ)|. Starting from S, it is possible to construct a sequence S′ = I ′0⟨σ′

1, h
′
1⟩I ′1⟨σ′

2, h
′
2⟩I ′2 . . . I ′m of chase steps

such that: (i) each rule of Σ∃ is applied at most once; (ii) m 6 κ + |Σ∃|; (iii) |I ′m| 6 κ; (iv) dom(I ′0) 6 |q|, which implies
that |I ′0| 6 |q| · |sch(Σ)|. The construction mimics the one presented in the proof of Lemma 18.

C Proof of Lemma 10
In the proof of Lemma 10 (and also in the proof of Lemma 11 given in the next section) we implicitly use the central
property of the type of an atom. In particular, the subtree of the guarded chase forest of D and Σ — the forest ob-
tained from chase(D,Σ) by keeping only the guards and their children — rooted at a is determined by type(a,D,Σ)
(modulo renaming of nulls) (Calı̀ et al. 2013, Theorem 5.16)1. This result implies that, given an atom a = p(t1, . . . , tn, z),
where z is a null value invented in a, we can construct type(a,D,Σ) from a and the restriction of type(a,D,Σ) to {t1, . . . , tn}.

Let us now give the proof of Lemma 10. We proceed by induction on the number of chase steps needed to generate p(t). Let
chase [k](D,Σ) be the initial part of the chase obtained after k applications of the chase step. We first show that, for each k > 0,
there exists hk such that p(t) ∈ chase [k](D,Σ) implies [τp(t)](hk(t1)) ∈ chase(D⋆,Σ⋆

G).
Base Step: Clearly, chase [0](D,Σ) = D. Consider an arbitrary atom p(t) ∈ D. By definition of D⋆, the atom [τp(t)](t

1)
belongs to D⋆. Since D⋆ ⊆ chase(D⋆,Σ⋆

G), the claim follows with h0 be the identity on dom(D).
Inductive Step: Let a = r(v) be the atom obtained during the k-th application of the chase step by applying the rule σ ∈ Σ.

Clearly, there exists a homomorphism µ that maps body(σ) to chase [k−1](D,Σ) and µ′(head(σ)) = a, where µ′ ⊇ µ|X
with X = var(body(σ)) ∩ var(head(σ)). Assume that µ(guard(σ)) is an atom of the form p(t). By induction hypothesis,
[τp(t)](hk−1(t

1)) ∈ chase(D⋆,Σ⋆
G). Observe that (γ ◦ µ) maps body(σ) to side(τp(t)) and guard(σ) to guard(τp(t)). There-

fore, by definition of Σ⋆
G, a rule σ′ of the form [τp(t)](X) → ∃Z [τ ′](Y, Z) occurs in Σ⋆

G; for the formal definition of σ′,
see the construction of Σ⋆

G. Clearly, there exists a homomorphism λ that maps body(σ′) to [τp(t)](hk−1(t
1)). Thus, an atom

1Notice that this result is stated in (Calı̀ et al. 2013) for the more general class of weakly-guarded Datalog∃ where the notion of the cloud
is needed. However, in the case of guarded Datalog∃ the notion of the cloud and the notion of the type coincide.

λ′([τ ′](Y, Z)) = [τ ′](u) occurs in chase(D⋆,Σ⋆
G), where λ′ ⊇ λ|X∩Y. Assuming that Z ′ is the existentially quantified vari-

able of σ, we define hk = hk−1 ∪ {µ′(Z ′) → λ′(Z)}; if σ has no existentially quantified variable, then hk = hk−1. It is
obvious that hk is well-defined since the symbol µ′(Z ′) does not occur in the domain of hk−1. It is not difficult to verify that
[τ ′](u) = [τr(v)](hk(v

1)).
Consequently, the claim follows with h = ∪∞i=0hi.

D Proof of Lemma 11
The proof is by induction on the number of chase step applications needed to generate the atom [τ](t). We show that, for each
k > 0, there exists a homomorphism hk such that [τ](t) ∈ chase [k](D⋆,Σ⋆

G) implies hk(τ(t)) ⊆ chase(D,Σ).
Base Step: Clearly, chase [0](D⋆,Σ⋆

G) = D⋆. Consider an arbitrary atom [τ](t) ∈ D⋆. By definition of D⋆, [τ](t) ∈ D+.
Since D+ = base(dom(D), sch(Σ)) ∩ chase(D,Σ), the claim follows with h0 be the identity on dom(D).

Inductive Step: Assume that [τ](t) is obtained during the k-th application of the chase step by applying the TGD σ ∈ Σ⋆
G.

Clearly, there exists a homomorphism µ that maps body(σ) to chase [k−1](D⋆,Σ⋆
G) and µ′(head(σ)) = [τ](t), where µ′ ⊇ µ|X

with X = var(body(σ)) ∩ var(head(σ)); let µ(body(σ)) = [τ ′](t′). By construction, there exists a TGD σ′ ∈ Σ of the form
φ(X,Y)→ ∃Z p(X, Z) and a homomorphism λ such that λ(body(σ′)) ⊆ side(τ ′) and λ(guard(σ′)) ⊆ guard(τ ′). Thus, σ′

is applicable with homomorphism ν = hk−1 ◦γt′ ◦λ during the construction of chase(D,Σ), and the atom ν′(head(σ)), where
ν′ ⊇ ν|X is obtained. Assuming that Z ′ is the existentially quantified variable of σ, we define hk = hk−1∪{µ′(Z ′)→ ν′(Z)};
if σ has no existentially quantified variable, then hk = hk−1. Since µ′(Z ′) does not occur in the domain of hk−1, hk is a
well-defined substitution. It is not difficult to verify that hk(τ(t)) ⊆ chase(D,Σ).

The claim follows with h = ∪∞i=0hi.

E Proof of Lemma 14
Fix a predicate p ∈ sch(Σ). The maximum number of atoms of the form p(t1, . . . , tn), where ti ∈ [arity(p)], is arity(p)arity(p),
i.e., the maximum number of arity(p)-tuples that can be constructed using arity(p) symbols. Consider such an atom a. Since
the cardinality of the powerset of base(dom(a), sch(Σ)−) is 2|sch(Σ)−|·|dom(a)|w 6 2|sch(Σ)−|·arity(p)w , we get that

|gtypes(p)| 6 arity(p)arity(p) · 2|sch(Σ)−|·arity(p)w ,

and (1) follows.
Clearly,

|gtypes(Σ)|
6

∑
p∈sch(Σ) |gtypes(p)|

6
∑

p∈sch(Σ) arity(p)
arity(p) · 2|sch(Σ)−|·arity(p)w

6 |sch(Σ)| · ww · 2|sch(Σ)−|·ww

,

and (2) follows.
Finally, given a type τ ∈ gtypes(Σ), |τ | is bounded by the number of atoms that can be formed using predicates of sch(Σ)

and arity(τ) symbols, namely, |sch(Σ)| · arity(τ)w 6 |sch(Σ)| · ww, and (3) follows.

F Proof of Proposition 15
We assume that Σ0 ∈ GUARDED[c, d]. Observe that the maximum number of existentially quantified variables that can appear
in a rule of Σ0 is arity(Σ0). Therefore, |Σ| 6 arity(Σ0) · |Σ0| 6 d · |Σ0| ∈ O(|Σ0|). Moreover, |sch(Σ)| 6 |sch(Σ0)| +
arity(Σ0) · |Σ0| 6 c + d · |Σ0| ∈ O(|Σ0|). Since the auxiliary predicates introduced during the normalization procedure do
not appear in side atoms, we get that sch(Σ)− = sch(Σ0), and thus |sch(Σ)−| 6 c. It is important to say that arity(Σ) =
arity(Σ0) 6 d.

Let us now concentrate on D⋆. To construct D⋆ we need, for each atom p(t) ∈ D, and for each τ ∈ gtypes(p) such
that guard(τ) ≃ p(t), to check whether D ∪ Σ |= a, for each a ∈ τ(t1). Importantly, the latter (atom entailment) check is
feasible in polynomial time; this follows from the fact that atomic query answering under GUARDED[c, d] can be performed in
polynomial time in |dom(D)| and |Σ| ∈ O(|Σ0|) (Calı̀ et al. 2013). In the worst case, we need to apply this polynomial check∑

p(t)∈D

∑
τ∈gtypes(p) |τ | times. By Lemma 14, and since |sch(Σ)−| 6 c and arity(p) 6 d, for each p ∈ sch(Σ), eventually

the crucial entailment check must be performed |D| · |sch(Σ)| ·2c·dd ·c ·d2d ∈ O(|D| · |Σ0|) times, and henceD⋆ is constructible
in polynomial time.

We now consider the construction of Σ⋆. To construct the type generator Σ⋆
G we need, for each rule σ ∈ Σ, and for each

τ ∈ gtypes(Σ) where there exists a homomorphism h that maps body(σ) to atoms(τ) and guard(σ) to guard(τ), to construct a
linear rule. In the worst case, we need to construct |Σ| · |gtypes(Σ)| linear rules. Hence, by Lemma 14, the maximum number of
rules that must be constructed is |Σ| · |sch(Σ)| ·dd ·2c·dd ∈ O((|Σ0|)2). The construction of such a linear rule (apart from some
easy steps) amounts to compute the set of atoms complete(I,Σ)|sch(Σ)− , where I is an instance of size bounded by |τ |with τ be

the guarded type under consideration. In the worst case, to compute complete(I,Σ)|sch(Σ)− , we need to check if I ∪Σ |= b, for
each b ∈ base(dom(atoms(τ)), sch(Σ)−). Thus, the entailment check, which is feasible in polynomial time (Calı̀ et al. 2013),
is called |base(dom(atoms(τ)), sch(Σ)−)| 6 |sch(Σ)−| · (|dom(atoms(τ))|)d 6 c · (|dom(atoms(τ))|)d times. Observe
that |dom(atoms(τ))| 6 d · |τ |; thus, by Lemma 14, is bounded by |sch(Σ)| · dd+1. Therefore, the entailment check is called
c · (|sch(Σ)| · dd+1)d ∈ O((|Σ0|)d) times. Hence, Σ⋆

G is constructible in polynomial time.
To construct the unfolder Σ⋆

U we actually need to construct |gtypes(Σ0)| linear rules, each of which can be constructed in
time O(1). Thus, by Lemma 14, the construction of Σ⋆

U can be carried out in time O(1).
From the above analysis, we conclude that both D⋆ and Σ⋆ are constructible in polynomial time, and the claim follows.

G Proof of Lemma 18
Before proving that STICKY[∞, d] enjoys the PWP, we need to introduce some useful notation. The chase relation (Calı̀ et
al. 2012b) of a database D and a set Σ of TGDs is a binary relation on atoms, denoted by CR[D,Σ], which mimics all the
chase derivations of the chase. More precisely, CR[D,Σ] is the maximum subset of chase(D,Σ) × chase(D,Σ) such that
⟨a, b⟩ ∈ CR[D,Σ] implies that b is obtained from a via a chase step I⟨σ, h⟩I ′ where I ′ \ I = {b} and a ∈ h(body(σ)). The
transitive closure of CR[D,Σ] is denoted by CR+[D,Σ].

Consider a BCQ q, a database D, and a set Σ ∈ STICKY[∞, d]. Assume that D ∪ Σ |= q. This implies that there is a
homomorphism h such that h(body(q)) = chase(D,Σ). Consider now the proof of H = h(body(q)), namely the set P =
H ∪ {a ∈ chase(D,Σ) | there exits b ∈ H such that ⟨a, b⟩ ∈ CR+[D,Σ]}, which represents the finite part P ⊆ chase(D,Σ)
due to which H is generated. (Note that P is not necessarily a superset of D.) Once we now P , we can identify from the chase
steps that have been applied to construct chase(D,Σ) a sequence S = I0⟨σ1, h1⟩I1⟨σ2, h2⟩I2 . . . In of chase steps such that
I0 = P ∩D, In = P , and Ii ⊆ P , for each i ∈ {1, . . . , n}.

Let F = dom(P) \ dom(H). Given an atom a ∈ P , we denote by a⋆ the atom obtained from a by replacing each term
of F with ⋆. Because of stickiness, all the terms of F do not participate in a join operation during the construction of P , and
therefore can be seen as “don’t care” terms. More specifically, for each chase step I⟨σ, h⟩I ′ such that I ′ \ I ⊆ P and for each
variable X ∈ dom(body(σ)), h(X) ∈ F implies that X appears only once in body(σ). This observation allows us to construct
from S a new chase sequence S′ of at most κ = |sch(Σ)| · (|q| · d+ 1)d chase steps, which is a minimal proof of H .

We proceed by induction on the number ℓ 6 n of chase steps of S. In particular, we show how to construct a chase sequence
S′ = I ′0⟨σ′

1, h
′
1⟩I ′1⟨σ′

2, h
′
2⟩I ′2 . . . I ′m with m 6 κ, and a function f : {0, . . . , n} → {0, . . . ,m} such that:

1. |I ′0| 6 κ;
2. I ′0 ⊆ I0 ⊆ D;
3. for each i, j ∈ {0, . . . , ℓ}, j > i implies f(j) > f(i);
4. for each i ∈ {0, . . . , ℓ} and for each a ∈ Ii, there exists a′ ∈ I ′f(i) such that a⋆ = a′⋆.

In fact, I ′m ⊇ H will be the polynomial witness of q and we conclude that a witness of size O(|sch(Σ)| · |q|d) always exists.

Base Step: Consider the case of ℓ = 0. Let f(0) = 0 and I ′0 be any maximal subset of I0 such that, for each a, a′ ∈ I ′0,
a ̸= a′ implies a⋆ ̸= a′⋆. Conditions 2–4 are satisfied by construction. Regarding condition 1, we observe that that maximum
number of atoms occurring in I ′0 is at most |sch(Σ)| · (|dom(H)|+ 1)d, which is bounded by κ.

Inductive Step: Let us assume that the above four conditions hold for some ℓ < n. We now show how to proceed in the
construction of S′ and f in such a way that these conditions also hold at step ℓ+1. Let {a} = Iℓ+1\Iℓ. If I ′f(ℓ) contains an atom
a′ such that a′⋆ = a⋆, then we define f(ℓ+ 1) = f(ℓ) and we do not modify S′, namely we do not define any chase step from
I ′f(ℓ) to I ′f(ℓ)+1. Conversely, we define f(ℓ+ 1) = f(ℓ) + 1 and we modify S′ by adding the chase step I ′f(ℓ)⟨σℓ+1, h⟩I ′f(ℓ)+1,
where h is such that: h(body(σℓ+1)) ⊆ I ′f(ℓ), h|dom(H) = hℓ+1|dom(H) and, for each atom c ∈ body(σℓ+1), h(c)⋆ = hℓ+1(c)⋆.
Of course, h(head(σℓ+1))⋆ = a⋆ holds.

H Proof of Proposition 20
Fix a database D and a set Σ0 ∈ TAME[c, d]. We are going to construct a database D∗ and a set Σ∗ ∈ STICKY[∞, d] such
that, for every BCQ q, D ∪ Σ0 |= q iff D∗ ∪ Σ∗ |= q. Let us call this new reduction TS.
Step 1: Normalization. The first step is to normalize Σ0 in such a way that each rule contains at most one existentially
quantified variable which occurs at the last position of the head-atom. Let Σ =

∪
σ∈Σ0

N(σ), where N(σ) is the normalization
function defined in the GL reduction.

Given a set Σ ∈ TAME, we denote by sch(Σ)− the predicates of Σ which occur in at least one side atom in Σ[g]; clearly
sch(Σ)− ⊆ sch(Σ), but it is not necessarily true that sch(Σ)− ⊆ sch(Σ[g]) since some side atoms can only be generated by
rules of Σ[s]. Henceforth, a guarded type for a predicate p ∈ sch(Σ[g]) is always w.r.t. sch(Σ)−, and we will simply write
gtypes(p) for the set gtypes(p, sch(Σ)−). Moreover, we will refer to gtypes(sch(Σ[g]), sch(Σ)−) as gtypes(Σ[g]).

Step 2: Database Construction. We define

D⋆ = D ∪

[τ](t1)

∣∣∣∣∣∣∣∣∣
p(t) ∈ D,
p ∈ sch(Σ[g]),
τ ∈ gtypes(p),
guard(τ) ≃ p(t),
τ(t1) ⊆ complete(D,Σ)

 ,

where [τ], for some guarded type τ , is a new arity(τ)-ary predicate not occurring in sch(Σ), guard(τ) ≃ p(t) means that
guard(τ) and p(t) have the same equality type, and t1 is obtained from t by keeping only the first occurrence of each term
occurring in t. It is important to say that the atom entailment problem under tame rules is decidable (Gottlob et al. 2013), and
thus the (finite) set complete(D,Σ) can be explicitly computed.

Step 3: Rules Construction. The set Σ⋆ consists of the following three groups of rules:

1. The type generator, denoted Σ⋆
G, which is responsible for generating new guarded types from existing ones,

2. The unfolder, denoted Σ⋆
U , that is responsible for unfolding a derived guarded type τ , i.e., to explicitly construct the atoms

over the original schema sch(Σ0) which are encoded in τ so that they can be queried directly, and

3. The sticky part Σ⋆
S which incorporates Σ[s] without any modification.

Let us now define formally Σ⋆
G and Σ⋆

U ; let w = arity(Σ).

Step 3.1: Type Generator. For each σ ∈ Σ[g] of the form

body(σ) → ∃Z p(X1, . . . , Xn, Z),

and for each guarded type τ ∈ gtypes(Σ[g]) for which there exists a homomorphism h such that h(body(σ)) ⊆ atoms(τ) and
h(guard(σ)) = guard(τ), in Σ⋆

G there exists the rule:

[τ](V1, . . . , Vm) → ∃Z [τ ′](W1, . . . ,Wk, Z),

where m = arity(τ), and

• {V1, . . . , Vm} ⊆ var(body(σ)), and h(Vi) = i, for each i ∈ [m],

• {Wℓ}ℓ∈[k] ⊆ {Xℓ}ℓ∈[n] and (h(W1), . . . , h(Wk)) = (h(X1), . . . , h(Xn))
1,

• τ ′ = (ρ(a), (complete(ρ({a}∪S),Σ) \ {ρ(a)})|sch(Σ)−), where a is the atom p(h(X1), . . . , h(Xn), w+1) and S is the set
of atoms Π{h(X1),...,h(Xn)}(τ).

No other rules occur in Σ⋆
G. Note that, also in this case, to compute the completion, we use the atom entailment problem under

tame rules (Gottlob et al. 2013).

Step 3.2: Unfolder. For each τ ∈ gtypes(Σ0[g]), if guard(τ) is of the form p(t1, . . . , tn), in Σ⋆
U there exists the rule:

[τ](V1, . . . , Vm) → p(W1, . . . ,Wn),

where

• {V1, . . . , Vm} ⊂ V and (V1, . . . , Vm) = (W1, . . . ,Wn)
1,

• ti = tj implies Wi =Wj , for each i, j ∈ [n].

No other rules occur in Σ⋆
U .

Finally, to prove Proposition 20, only minor adaptations to the proofs of Lemma 10, Lemma 11, Proposition 12, Lemma 14,
and Proposition 15 are required.

I Proof of Lemma 23
Since there exist classes for which query answering is PTIME-hard and at the same time they are P-combined first-order
rewritable (e.g., GUARDED[c, d]), it suffices to show that a PTIME-hard language does not enjoy the PWP. To this aim, we
are going to show that the PWP implies that query answering is feasible in AC0 in data complexity, and the claim follows since
AC0 (PTIME. Consider a set Σ that falls in a Datalog∃ class which enjoys the PWP, and a BCQ q. As shown in (Gottlob
and Schwentick 2012), a non-recursive Datalog rewriting qΣ can be constructed such that D ∪ Σ |= q iff D |= qΣ, for every
database D where D ⊇ {zero(0), one(1)} ∪ {neq(a, b) | a, b ∈ dom(D) and a ̸= b}. In other words, for every database D,
qΣ evaluated over D yields exactly the same result as q evaluated against D and Σ, as long as D contains two unary predicates

zero and one which give access to the binary values 0 and 1, respectively, and also contains a binary predicate neq which stores
all the pairs of distinct constants occurring in D.

From the above result, given a database D, a set Σ which falls in a class that enjoys the PWP, and a BCQ q, we get an AC0

decision procedure (when the query and the set of rules are fixed) for the problem whether D ∪ Σ |= q. More precisely, from
q and Σ we can construct a first-order query FOq,Σ independently from D since the non-recursive Datalog query qΣ can be
equivalently rewritten as a first-order query. We also enrich D with the set of atoms {zero(0), one(1)} ∪ {neq(a, b) | a, b ∈
dom(D) and a ̸= b} in order to obtain D+. Obviously, the addition of zero(0) and one(1) can be done in constant time, while
the generation of {neq(a, b) | a, b ∈ dom(D) and a ̸= b} can be done by evaluating a fixed first-order query over D which is
feasible in AC0. Finally, we evaluate FOq,Σ over D+ which is feasible in AC0 in data complexity, and the claim follows.

J SUCC is P-combined First-order Rewritable
Given a BCQ q() ← ψ(W1, . . . ,Wm), a database D and a set Σ ∈ SUCC, we show how to rewrite in polynomial time q and
Σ into a first-order query qΣ in such a way that D ∪ Σ |= q iff D |= qΣ. In fact, since our construction does not rewrite D,
we prove that SUCC is not only P-combined first-order rewritable, but that it is even polynomial first-order rewritable. Before
showing how to construct qΣ, we need to introduce some straightforward notation.

Consider two (not necessarily distinct) constants c1, c2 ∈ C, and two tuples u and z of constants from {c1, c2}. Assuming
that c1 precedes (or is equal to) c2, we would like to write a first-order expression for characterizing all the pairs u, z where
u lexicographically precedes (or is equal to) z w.r.t. c1 and c2. More specifically, given a tuple of terms (X,Y,U,Z) where
U = U1, . . . , Un and Z = Z1, . . . , Zn are tuples of constants and variables, we define the following first-order expression:

precEq(X,Y,U,Z) =

 ∧
j∈[n]

(Uj = Zj)

 ∨
 ∨

i∈[n−1]

Ui+1 = X ∧ Zi+1 = Y ∧
∧
j∈[i]

(Uj = Zj)

 .

Intuitively, if X = 0, Y = 1, U = (0, 0, 0, 1, 1) and Z = (0, 0, 1, 0, 1), then precEq(X,Y,U,Z) is true and we say that U
precedes Z w.r.t. X and Y . In this example, for i = 2, we have a disjunct in the above formula that evaluates to true.

Consider an atom a of the form num(X,Y, Z1, . . . , Zn), where (X,Y, Z1, . . . , Zn) is a tuple of terms (possibly with repeti-
tions). We define the rewriting of a, denoted by rew(a), as the following first-order formula:

rew(a) = ∃U1 . . .∃Un

∨
i∈{0,...,n}

(
ψi
1 ∧ ψi

2 ∧ ψi
3 ∧ ψi

4 ∧ precEq(X,Y, U1, . . . , Un−i, Zi+1, . . . , Zn)
)

where
• ψi

1 is p(X,Y, Z1, . . . , Zi, U1, . . . , Un−i) if i > 1, or p(X,Y, U1, . . . , Un) otherwise;
• ψi

2 is (Zi ̸= X) ∧ (Zi ̸= Y) if i > 1, or ⊤ otherwise;
• ψi

3 is
∧

j∈[n−i] (Uj = X ∨ Uj = Y);

• ψi
4 is

∧
j∈{i+1,...,n} (Zj = X ∨ Zj = Y);

Finally, we have:
qΣ = ∃W1 . . . ∃Wm

∧
a∈body(q)

rew(a)

Of course, qΣ can be constructed in polynomial time.

