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Attività didattica.
A.A. 2011/2012.

Titolare del corso di Analisi Matematica 4, Laurea di triennale in
Matematica.

A.A. 2012/2013.

Titolare del corso di Analisi Matematica 2, Laurea di triennale in
Matematica e Laurea di triennale in Fisica.
Titolare del corso di Analisi Matematica 4, Laurea di triennale in
Matematica.

A.A. 2013/2014

Titolare del corso di Analisi Matematica II, Laurea di triennale in
Fisica.
Titolare del corso di Analisi Matematica 3, Laurea di triennale in
Matematica.
Relatore per n.2 tesi di Laurea di triennale in Matematica.
Controrelatore per n.2 tesi di Laurea di magistrale in Matematica.

A.A. 2014/2015.

Titolare del corso di Analisi Matematica II, Laurea di triennale in
Fisica.
Titolare del corso di Analisi Matematica 3, Laurea di triennale in
Matematica.
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Altre attività didattiche.
Docente per il Piano Lauree Scientifiche 2014 - Università della Cal-
abria.

Attività organizzative e collegiali.
Membro del Consiglio di Corso di Studi in Matematica.
Membro del Collegio dei docenti del Corso di Dottorato in Matematica
e Informatica.

3



Attività Scientifica.
Pubblicazioni.
I seguenti articoli sono stati accettati per la pubblicazione tra il 24
Febbraio 2012 e il 24 Febbraio 2015:

[A] V. Colao, G. Marino, D.R. Sahu, A general inexact iterative method
for monotone operators, equilibrium problems and fıxed point
problems of semigroups in Hilbert spaces, Fixed Point Theory
and Applications 2012 (1), 1-19 (2012).

[B] D.R. Sahu, V. Colao, G. Marino, Strong convergence theorems for
approximating common fixed points of families of nonexpansive
mappings and applications, Journal of Global Optimization
56 (4), 1631-1651 (2013).

[C] D. R. Sahu, V. Colao and G. Marino, On the convergence of ap-
proximants of pseudo-contractive semigroups in Banach spaces,
Journal of Nonlinear and Convex Analysis, 15 (3), 547-556
(2014).

[D] V. Colao, L. Muglia, H.-K. Xu, Existence of solutions for a second-
order differential equation with non-instantaneous impulses and
delay, Annali di Matematica Pura e Applicata,
http://dx.doi.org/10.1007/s10231-015-0484-0 (2014).

[E] V. Colao, L. Muglia, A hierarchical approach to fixed point prob-
lems for uniformly asymptotically regular sequences, Journal of
Nonlinear and Convex Analysis, To appear (2015).

4



Alla data del 24 Febbraio 2015, il seguente articolo, sottomesso alla riv-
ista Fixed Point Theory and Applications, era in fase di revisione
perchè l’Editore aveva comunicato la necessità di correzioni minori:

[F] V. Colao, G. Marino, Krasnoselskii-Mann method for non-self map-
pings.

Descrizione dell’attività di ricerca.
La mia attività di ricerca si svolge nell’ambito della Teoria dei punti
fissi. In particolare, i problemi da me affrontati nel corso del triennio
riguardano principalmente la convergenza di metodi iterativi per l’ap-
prossimazione di punti fissi in spazi di Banach e l’esistenza di soluzioni
per equazioni differenziali impulsive con ritardo.

Metodi iterativi. Nel lavori [A], [B] e [C], si affronta lo studio di
alcuni algoritmi iterativi convergenti a punti fissi comuni di famiglie di
operatori soddisfacenti talune proprietà.

In particolare, diremo che una famiglia di operatori {T (t) : t ≥ 0},
definiti su uno spazio di Banach X, soddisfa la proprietà (A) rispetto
ad una famiglia {S(t) : t ≥ 0} se per ogni rete {xs} per cui si abbia
xs − S(s)xs → 0 quando s → ∞, ne segue che lims→∞ xs − T (t)xs = 0

per ogni t > 0. In [A], sono espresse alcune costruzioni abbastanza
generali di famiglie di operatori soddisfacenti tale proprietà. Sempre
in [A] e dati uno spazio di Hilbert H e una famiglia T = {T (t) : t ≥ 0}
di operatori non espansivi, da H in se e soddisfacente la proprietà illus-
trata, si prova la convergenza forte di uno schema implicito all’unico
punto fisso x∗, comune agli elementi della famiglia T , che soddisfi la
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diseguaglianza variazionale

〈(γf − A)x∗, p− x∗〉 ≤ 0 ∀p ∈ Fix(T ), (1)

dove γ è una opportuna costante, f : H → H una contrazione, A un
operatore lineare fortemente positivo e dove Fix(T ) denota l’insieme
dei punti fissi comuni agli elementi della famiglia T . Successivamente,
si prova la convergenza forte della successione generata da uno schema
esplicito inesatto alla stessa soluzione di (1).

Si puntualizza che la tecnica utilizzata permette di rilassare le
ipotesi sulla successione {en} degli errori, consentendo che essa sod-
disfi solo la condizione

lim
n→∞

‖en‖ = 0

a fronte dell’ipotesi
∞∑
n=0

‖en‖ < +∞,

utilizzata in risultati precedenti (si veda, ad esempio [1] e [2]).
Procedendo sulla stessa linea del precedente lavoro e per la medes-

ima categoria di operatori, in [B], si prova la convergenza forte di una
successione generata da un metodo implicito e da un nuovo algoritmo
esplicito inesatto, nel contesto degli spazi di Banach riflessivi e aventi
norma uniformemente Gâteaux differenziabile.

In entrambi gli articoli appena citati, sono esposte alcune appli-
cazioni dei risultati ottenuti a problemi inerenti l’approssimazione sia
di zeri di operatori monotoni e accretivi per mezzo di algoritmi prossi-
mali, introdotti da Martinet [3] e Rockafellar [1], che di soluzioni a
problemi di equilibrio (Combettes et al. [4]). I risultati ottenuti in [A]
e in [B] generalizzano alcune conclusioni contenute in lavori precedenti
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([5],[6],[7] e [8]).
In [C] si affrontano alcuni algoritmi inesatti per semigruppi di fun-

zioni Lipschitziane e pseudo contrattive e se ne prova la convergenza
forte ad un punto fisso comune agli elementi del semigruppo consid-
erato. Come conseguenza e nel contesto di alcuni spazi di Banach, si
risponde affermativamente ad un problema posto da H.-K. Xu in [9].

Nel lavoro [E], si introduce uno schema iterativo gerarchico per una
successione di funzioni soddisfacenti talune proprietà introdotte in [10]
e in [11]. Quindi, si prova che la convergenza della successione generata
dall’algoritmo è governata dal limite

lim
n→∞

αnβn
µn

,

dove {αn}, {βn} e {µn} sono successioni di coefficienti che intervengono
nell’espressione dell’algoritmo stesso.

Sia H uno spazio di Hilbert e sia K un suo sottoinsieme chiuso e
strettamente convesso. In [F], si propone un algoritmo di tipo Krasnoselskii-
Mann per mappe non espansive T : C → H soddisfacenti la condizione

Tx ∈ IK(x) ∀x ∈ K,

dove IK(x) := {x+ c(u− x) : c ≥ 1 e u ∈ K}.
In particolare, definita la funzione h : K → [0, 1] come h(x) :=
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inf{λ ∈ [0, 1] : λx+ (1− λ)Tx ∈ K}, si considerano le iterazioni

x0 ∈ K,

α0 := max{1
2 , h(x0)},

xn+1 := αnxn + (1− αn)Txn,

αn+1 := max{αn, h(xn+1)}

(2)

e si prova che tale algoritmo è ben definito. Successivamente, si mostra
che la successione {xn} così generata converge debolmente a un punto
fisso x∗ dell’operatore T e che tale convergenza è forte se x∗ ∈ ∂K.

L’algoritmo appena descritto non trova riscontro in letteratura poichè
i coefficienti {αn} non sono determinati a priori ma sono costruiti ad
ogni passo, di modo che l’algoritmo stesso sia ben posto.

Equazioni differenziali impulsive con ritardo. In [D], si prende
in esame un’equazione differenziale con ritardo, con impulsi non istan-
tanei e della forma

x′′(t) = Ax(t) + f(t, x(t), x(σ(t))), q.o. t ∈
⋃N

i=0(si, ti+1]

x(t) = γi(t, x(t)), t ∈
⋃N

i=1(ti, si],

x(t) = φ(t), t ∈ [−r, 0], x′(0) = φ′(0) = η,

dove x mappa [−r,+∞) in (Rn, | · |) (dove | · | non è necessariamente
la norma euclidea), T := {0 < t1 < . . . < tN} ⊂ [0,+∞)}, s0 = 0,

tN+1 := +∞, si ∈ (ti, ti+1) per ogni i = 1, . . . , N e A è una matrice
reale n× n.
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A differenza del caso impulsivo classico, esempi di equazioni differen-
ziali con impulsi non istantanei sono stati introdotti solo recentemente
(si veda [12]) e studiati solo in intervalli chiusi e limitati.

Al fine di provare l’esistenza di soluzioni limitate su [−r,+∞), si
dimostra un criterio di compattezza nello spazio delle funzioni continue
a tratti e limitate. Tale criterio permette di applicare un teorema di
punto fisso di tipo Krasnoselskii e introdotto in [13]. Un opportuno
corollario prova che l’esistenza di soluzioni non necessariamente limi-
tate è garantita da condizioni più deboli.
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Abstract

Let H be a real Hilbert space. Consider on H a nonexpansive family
T = {T(t) : 0 ≤ t < ∞} with a common fixed point, a contraction f with the
coefficient 0 <a < 1, and a strongly positive linear bounded self-adjoint operator A
with the coefficient γ̄ > 0. Assume that 0 < γ < γ̄ /α and that
S = {S (t) : 0 ≤ t < ∞} is a family of nonexpansive self-mappings on H such that
F(T ) ⊆ F(S) and T has property (A) with respect to the family S. It is proved that
the following schemes (one implicit and one inexact explicit):

xt = btγ f (xt) + (I − btA) S (t) xt

and

x0 ∈ H, xn+1 = αnγ f (xn) + βnxn + ((1 − βn) I − αnA) S (tn) xn + en, n ≥ 0

converge strongly to a common fixed point x∗ ∈ F(T ), where F(T ) denotes the set
of common fixed point of the nonexpansive semigroup. The point x* solves the
variational in-equality 〈(gf −A)x*, x−x*〉 ≤ 0 for all x ∈ F(T ). Various applications to
zeros of monotone operators, solutions of equilibrium problems, common fixed
point problems of nonexpansive semigroup are also presented. The results presented
in this article mainly improve the corresponding ones announced by many others.
2010 Mathematics Subject Classification: 47H09; 47J25.

Keywords: nonexpansive semigroup, common fixed point, contraction, variational
inequality

1. Introduction
Let H be a real Hilbert space and T be a nonlinear mapping with the domain D(T). A

point x Î D(T) is a fixed point of T provided Tx = x. Denote by F (T) the set of fixed

points of T; that is, F(T) = {x Î D(T): Tx = x}. Recall that T is said to be nonexpansive

if

||Tx − Ty|| ≤ ||x − y||, ∀x, y ∈ D (T) .

Recall that a family T = {T(s) : s ≥ 0} of mappings from H into itself is called a one-

parameter nonexpansive semigroup if it satisfies the following conditions:

(i) T(0)x = x, ∀x Î H;

(ii) T(s + t)x = T(s)T(t)x, ∀s, t ≥ 0 and ∀x Î H;

Colao et al. Fixed Point Theory and Applications 2012, 2012:83
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(iii) ||T(s)x − T(s)y|| ≤ ||x − y||, ∀s ≥ 0 and ∀x, y Î H;

(iv) for all x Î C, s ↦ T(s)x is continuous.

We denote by F(T ) the set of common fixed points of T , that is,

F (T ) = ∩0≤s≤∞ F (T (s)) . For each t > 0 and x Î C, st(x) is the average defined by

σt (x) = 1
t

∫ t
0 T (s) x ds. It is known that F(T ) is closed and convex; see [1]. Let C be a

nonempty closed and convex subset of H. One classical way to study nonexpansive

mappings is to use contractions to approximate a nonexpansive mapping; see [2,3].

More precisely, take t Î (0, 1) and define a contraction Tt : C ® C by

Ttx = tu + (1 − t) Tx, x ∈ C,

where u Î C is a fixed element. Banach’s contraction mapping principle guarantees

that Tt has a unique fixed point xt in C. It is unclear, in general, what the behavior of

{xt} is as t ® 0, even T has a fixed point. However, in the case of T having a fixed

point, Browder [2] proved the following well-known strong convergence theorem.

Theorem B. Let C be a closed convex bounded subset of a Hilbert space H and let T

be a nonexpansive mapping on C. Fix u Î C and define zt Î C as zt = tu + (1 - t)Tzt
for t Î (0, 1). Then as t ® 0, {zt} converges strongly to an element of F(T) nearest to u.

As motivated by Theorem B, Halpern [4] considered the following explicit iteration:

x0 ∈ C, xn+1 = αnu + (1 − αn) Txn, n ≥ 0, (1:1)

and proved the following theorem.

Theorem H. Let C be a closed convex bounded subset of a Hilbert space H and let T

be a nonexpansive mapping on C. Define a real sequence {an} in [0, 1] by an = n−θ ,

0 < θ <1. Define a sequence {xn} by (1.2). Then {xn} converges strongly to the element of

F(T) nearest to u.

In 1977, Lions [5] improved the result of Halpern, still in Hilbert spaces, by proving

the strong convergence of {xn} to a fixed point of T where the real sequence {an} satis-

fies the following conditions:

(C1) limn®∞ an = 0;

(C2)
∑∞

n=1
αn = ∞;

(C3) limn→∞ αn+1 − αn

α2
n+1

= 0.

It was observed that both Halpern’s and Lions’s conditions on the real sequence {an}

excluded the canonical choice αn = 1
n + 1 . This was overcome in 1992 by Wittmann [6],

who proved, still in Hilbert spaces, the strong convergence of {xn} to a fixed point of T

if {an} satisfies the following conditions:

(C1) limn®∞ an = 0;

(C2)
∑∞

n=1 αn = ∞;

(C4)
∑∞

n=1 |αn+1 − αn| < ∞.

Recall that a mapping f : H ® H is an a-contraction if there exists a constant a Î (0, 1)

such that

||f (x) − f
(
y
) || ≤ α||x − y||, ∀x, y ∈ H.

Recall that an operator A is strongly positive on H if there exists a constant γ̄ > 0

such that

Colao et al. Fixed Point Theory and Applications 2012, 2012:83
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〈Ax, x〉 ≥ γ̄ ||x||2, ∀x ∈ H.

Iterative methods for nonexpansive mappings have recently been applied to solve

convex minimization problems; see, e.g., [7-13] and the references therein. A typical

problem is to minimize a quadratic function over the set of the fixed points of a non-

expansive mapping on a real Hilbert space H:

min
x∈D

1
2

〈Ax, x〉 − 〈x, b〉 , (1:2)

where A is a linear bounded operator, D is the fixed point set of a nonexpansive

mapping T and b is a given point in H. In [11], it is proved that the sequence {xn}

defined by the iterative method below, with the initial guess x0 Î H chosen arbitrarily,

xn+1 = (I − αnA) Txn + αnb, n ≥ 0,

strongly converges to the unique solution of the minimization problem (1.2) pro-

vided the sequence {an} satisfies certain conditions.

Marino and Xu [10] studied the following continuous scheme

xt = tγ f (xt) + (I − tA) Txt,

where f is an a-contraction on a real Hilbert space H, A is a bounded linear strongly

positive operator and g >0 is a constant. They showed that {xt} strongly converges to a

fixed point x̄ of T. Also in [10] they introduced a general explicit iterative scheme by

the viscosity approximation method:

xn ∈ H, xn+1 = αnγ f (xn) + (I − αnA) Txn, n ≥ 0 (1:3)

and proved that the sequence {xn} generated by (1.3) converges strongly to a unique

solution of the variational inequality:
〈(

A − γ f
)

x∗, x − x∗〉 ≥ 0, ∀x ∈ F (T) ,

which is the optimality condition for the minimization problem:

min
x∈F(T)

1
2

〈Ax, x〉 − h (x) ,

where h is a potential function for gf (i.e., h’(x) = gf(x) for x Î H).

It is an interesting problem to study above (Browder’s, Halpern’s and so on) results

with respect to the nonexpansive semigroup case. So far, only partial answers have

been obtained. Recently, Plubtieng and Punpaeng [14] considered the iteration process

{xn} generated by

x0 ∈ H, xn+1 = αnf (xn) + βnxn + (1 − αn − βn)
1
sn

sn∫
0

T(s)xnds, n ≥ 0,

where {an}, {bn} ⊂ (0, 1) with an + bn <1 and {tn} is a positive real divergent

sequence. They proved, under certain appropriate conditions on {an}, that {xn} con-

verges strongly to a common fixed point of one-parameter nonexpansive semigroup

T = {T(s) : s ≥ 0}.
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In this article, motivated by Li et al. [8], Marino and Xu [10], Plubtieng and Pun-

paeng [14], Cianciaruso et al. [15], Shioji and Takahashi [16] and Shimizu and Takaha-

shi [17], we consider the following more general schemes (one implicit and one

inexact explicit):

xt = btγ f (xt) + (I − btA) S (t) xt

and

x0 ∈ H, xn+1 = αnγ f (xn) + βnxn + ((1 − βn) I − αnA) S (tn) xn + en, n ≥ 0

where T = {T(t) : 0 ≤ t < ∞} is a family of arbitrary nonexpansive self-mappings on

H with a common fixed point, S = {S (t) : 0 ≤ t < ∞} is a family of nonexpansive self-

mappings on H such that T has property (A) with respect to the family S and

F(T ) ⊆ F(S), g >0 is a constant, f : H ® H is an a-contraction, A is a bounded linear

strongly positive self-adjoint operator on H and {bt} is a net in (0, 1). Furthermore, by

applying these results, we obtain iterative algorithms for zeros of monotone operators,

equilibrium problems, and common fixed point problems of nonexpansive semigroups

in real Hilbert spaces.

The results presented in this article improve and extend the corresponding results

announced by Marino and Xu [10], Plubtieng and Punpaeng [14], Cianciaruso et al.

[15], Shioji and Takahashi [16], and Shimizu and Takahashi [17]. We remark that our

results are very similar to those of Li et al. [8]. However, it seems that can be a gap in

the proofs of Li et al. results. Indeed, their semigroups and the contraction are self-

mappings defined on a closed convex subset C of the Hilbert space H, while the

strongly positive linear bounded operator is defined on H. So both the schemes involve

not a convex combination, that this they are of interest only in the case C = H.

2. Preliminaries
This section collects some lemmas which will be used in the proofs for the main

results in the following section. Some of them are known; others are not hard to

derive.

Lemma 2.1. (Shimizu and Takahashi [[17], Lemma 2]). Let C be a nonempty closed

convex bounded subset of a Hilbert space H, and T = {T(t) : t ∈ R+}a strongly continu-

ous semigroup of nonexpansive mappings from C into itself. Let σt (x) := 1
t

∫ t
0 T (s)xds.

Then

lim
t→∞ sup

x∈D
||σt (x) − T (h) σt (x) || = 0 for all h > 0.

Lemma 2.2. ([[18], Corollary 5.6.4], [19]) (Demiclosedness principle) Let H be a Hil-

bert space, C is a closed convex subset of H, and T : C ® C a nonexpansive mapping.

Then I − T is demiclosed, i.e., if {xn} is a sequence in C weakly converging to x and if

{(I − T)xn} strongly converges to y, then (I − T)x = y.

Lemma 2.3. ([[18], Corollary 5.2.29]) Let C be a nonempty closed convex subset of a

strictly convex Banach space X and T : C ® C a nonexpansive mapping. Then F(T) is

closed and convex.

Lemma 2.4. Let C be a nonempty closed convex subset of a real Hilbert space H and

let PC be the metric projection from H onto C (i.e., for x Î H, PCx is the only point in C

Colao et al. Fixed Point Theory and Applications 2012, 2012:83
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such that ||x − PCx|| = inf{||x − z||: z Î C}). Given x Î H and z Î C. Then z = PCx if

and only if there holds the relations:
〈
x − z, y − z

〉 ≤ 0, ∀y ∈ C. (2:1)

Lemma 2.5. Let H be a real Hilbert space, f : H ® H an a-contraction, and A is a

strongly positive linear bounded self-adjoint operator on H with the coefficient γ̄ > 0.

Then, for 0 < γ < γ̄ /α,

〈
x − y,

(
A − γ f

)
x − (

A − γ f
)

y
〉 ≥ (γ̄ − γ α)

∥∥x − y
∥∥2, x, y ∈ H. (2:2)

That is, A − gf is strongly monotone with coefficient γ̄ − αγ .

Remark 2.6. Taking g = 1 and A = I, the identity mapping, we have the following

inequality:
〈
x − y,

(
I − f

)
x − (

I − f
)

y
〉 ≥ (1 − α) ||x − y||2, x, y ∈ H. (2:3)

Furthermore, if f is a nonexpansive mapping in Remark 2.6, we have
〈
x − y,

(
I − f

)
x − (

I − f
)

y
〉 ≥ 0, x, y ∈ H. (2:4)

Lemma 2.7.[10]. Assume A is a strongly positive linear bounded self-adjoint operator

on a real Hilbert space H with coefficient γ̄ > 0 and 0 <r ≤ ||A||−1. Then

‖I − ρA‖ ≤ 1 − ργ̄.

Lemma 2.8. [12]. Let {an} be a sequence of nonnegative real numbers satisfying the

following condition:

αn+1 ≤ (1 − γn) αn + γnσn, ∀n ≥ 0,

where {gn} is a sequence in (0, 1) and {sn} is a sequence of real numbers such that

(i) limn®∞ gn = 0 and
∑∞

n=0 γn = ∞,

(ii) either lim supn®∞ sn ≤ 0 or
∑∞

n=0 |γnσn| < ∞.

Then {αn}∞n=0 converges to zero.

Let C be a nonempty subset of a Banach space X. Throughout this article, G denotes

an unbounded set of R+ := [0, ∞) such that s + t Î G for all s, t Î G (often

G = Nor R+) and B(C) denotes collection of all bounded subsets of C. Let

T = {Ts : s ∈ G} be a family of mappings from C into itself. Then:

(i) a sequence {xn} in C is said to be an approximate fixed point sequence of T if

limn→∞ ‖xn − TT xn‖ = 0 for all τ Î G,

(ii) T = {Ts : s ∈ G} is said to uniformly asymptotically regular on C (for short, u.a.r.

on C) (see, [20]) if

lim
t∈G,t→∞

(sup
x∈C̃

||Ttx − TsTtx||) = 0 for all s ∈ G and C̃ ∈ B (C) .

A family T = {Ts : s ∈ G} satisfies property (A) if the following holds:

each {xs}s∈G ∈ B(C) with xs − Tsxs ® 0 as s ® ∞ ⇒ xs − Ttxs ® ∞ for all t Î G.

Remark 2.9. If T be a singleton, i.e., T = {T}, or Ts = T for all s in G, then {T} always

has property (A).

We further remark that the notion of uniform asymptotic regularity introduced by

Edelstein and O’Brien [21] plays an important role for studying property (A) of
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nonlinear Lipschitzian-type operators. Indeed, if T = {Ts : s ∈ G} is a nonexpansive

semigroup and u.a.r., then T has property (A). Indeed, for {ys} ∈ B(C) and t Î G,
∥∥ys − Ttys

∥∥ ≤ ∥∥ys − Tsys
∥∥ +

∥∥Tsys − TtTsys
∥∥ +

∥∥TtTsys − Ttys
∥∥

≤ 2
∥∥ys − Tsys

∥∥ + sup
y∈{yγ :γ∈G}

∥∥Tsy − TtTsy
∥∥ → 0 as s → ∞.

We now introduce property (A) of T with respect to the family G.
Let C be a nonempty subset of a Banach space X and T = {T(t) : t ∈ R+} be a family

of mappings from C into itself with ∩t>0 F(T(t)) ≠ ∅. Let G = {Gt : t ∈ R+} be a family

of mappings from C into itself such that ∩t>0 F(T(t)) ≠ ∩t>0 F(Gt). We say the family

T = {T(s) : s ∈ G} has property (A) with respect to the family G = {Gt : t ∈ R+} if the
following holds:

each {xs}s∈G ∈ B(C) with xs − Gsxs ® 0 as s ® ∞ ⇒ xs − T(t)xs ® 0 as s ® ∞ for all

t > 0.

Remark 2.10. If a family T = {T(s) : s ∈ G}has property (A), then T has property

(A)with respect to itself.

We now give some examples.

Example 2.11. Let C be a nonempty closed convex subset of a Banach space X and T

be a nonexpansive mapping from C into itself with F(T) ≠∅. For each t Î G, and

bt ∈ Rwith 0 <a ≤ bt ≤ b < 1, define Gt : C ® C by

Gtx = (1 − bt) x + btTx for all x ∈ C.

Then T has property (A)with respect to family {Gt : t Î G}.

Proof. Let {xt}t∈G ∈ B(C) such that || xt − Gt(xt)|| ® 0 as t ® ∞. Note that

‖xt − Txt‖ = bt ‖xt − Gt (xt)‖

and 0 <a ≤ bt ≤ b < 1 for all t Î G. Therefore, ||xt − Txt|| ® 0 as t ® ∞. □
The following proposition shows that in a uniformly convex Banach space, nonex-

pansive semigroup T = {T(t) : t ∈ R+} has property (A) with respect to a nonexpansive

semigroup {σt : t ∈ R
+} = { 1

t

∫ t

0
T (s) xds : t ∈ R

+}.
Example 2.12. Let D be a nonempty closed convex bounded subset of a Hilbert space

H, and T = {T(t) : t ∈ R+}be a strongly continuous semigroup of nonexpansive mappings

from D into itself. For each t > 0, let xt Î D such that ||xt − st(xt)|| ® 0 as t ® ∞.

Then ‖xt − T(T )xt → 0‖as t ® ∞ for each τ > 0.

Proof. Let τ > 0. Observe that

‖T (τ ) xt − xt‖ ≤ ‖T (τ ) xt − T (τ ) σt (xt)‖ + ‖T (τ ) σt (xt) − σt (xt)‖ + ‖σt (xt) − xt‖
≤ 2 ‖xt − σt (xt)‖ + ‖T (τ ) σt (xt) − σt (xt)‖
≤ 2 ‖xt − σt (xt)‖ + sup

x∈D
‖T (τ ) σt (x) − σt (x)‖ .

By Lemma 2.1, we obtain that ||xt − T(τ)xt|| ® 0 as t ® ∞ for each τ >0. □

3. Main results
Let H be a real Hilbert space and S = {S (t) : 0 ≤ t < ∞} a family of nonexpansive self-

mappings on H with F(S) �= ∅. By Lemma 2.3, F(S) is closed and convex. Let A be a

strongly positive linear bounded self-adjoint operator of H into itself with coefficient

γ̄ > 0 and f : H ® H an a-contraction. Assume that 0 < γ < γ̄ /α and {bt : t > 0} is
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a net in (0, ||A||−1) such that limt®∞ bt = 0. For each t > 0, the mapping Gt : H ® H

defined by

Gtx : = btγ f (x) + (I − btA) S (t) x, x ∈ H

is a contraction with Lipschitz constant 1 − bt (γ̄ − αγ ). Indeed, for all x, y Î H, we

have ∥∥Gtx − Gty
∥∥ ≤ ∥∥(1 − btA)

(
S (t) x − S (t) y

)∥∥ + γ bt
∥∥fx − fy

∥∥
≤ (1 − bt γ̄ )

∥∥x − y
∥∥ + γ btα

∥∥x − y
∥∥

=
[
1 − bt (γ̄ − αγ )

] ∥∥x − y
∥∥ .

By the Banach contraction principle, Gt has a unique fixed point, denoted by, xt in H,

which uniquely solves the fixed point equation

xt = btγ f (xt) + (I − btA) S (t) xt. (3:1)

Lemma 3.1. Let H be a real Hilbert space and S = {S (t) : 0 ≤ t < ∞}be a family of

nonexpansive self-mappings on H such that F(S) �= ∅. Let f : H ® H be an a-contrac-
tion, A is a strongly positive linear bounded self-adjoint operator of H into itself with

coefficient γ̄ > 0. Let {bt : t >0} be a net in (0, ||A||−1) such that limt®∞ bt = 0. Assume

that 0 < γ < γ̄ /α and xt is defined by (3.1). Then we have the following:

(a) There is a nonempty closed convex bounded subset D of H such that D is S(t)-

invariant for each t >0 and {xt} is in D.

(b) ||xt - S(t)xt|| ® 0 as t ® ∞.

Proof. (a) Taking p ∈ F(S), we have∥∥xt − p
∥∥ =

∥∥btγ f (xt) + (I − btA) S (t) xt − p
∥∥

≤ bt
∥∥γ f (xt) − Ap

∥∥ + (1 − btγ̄ )
∥∥S (t) xt − p

∥∥
≤ bt

∥∥γ f (xt) − Ap
∥∥ + (1 − bt γ̄ )

∥∥xt − p
∥∥

≤ btγ
∥∥ f (xt) − f

(
p
)∥∥ + bt

∥∥γ f
(
p
) − Ap

∥∥ + (1 − btγ̄ )
∥∥xt − p

∥∥
≤ [

1 − bt (γ̄ − γ α)
] ∥∥xt − p

∥∥ + bt
∥∥γ f

(
p
) − Ap

∥∥ .

It follows that

∥∥xt − p
∥∥ ≤ 1

γ̄ − αγ

∥∥γ f
(
p
) − Ap

∥∥ .

This implies that {xt} is bounded. Let D be the ball B(p, r), centered in p and with radius

r = 1
γ̄ −αγ

∥∥γ f
(
p
) − Ap

∥∥, i.e., D =
{
w ∈ H :

∥∥w − p
∥∥ ≤ 1

γ̄ −αγ

∥∥γ f
(
p
) − Ap

∥∥}
.

Then {xt} is contained in set D. Moreover,∥∥S (t) xt − p
∥∥ =

∥∥S (t) xt − S (t) p
∥∥

≤ ∥∥xt − p
∥∥

≤ 1
γ̄ − γ α

∥∥γ f
(
p
) − Ap

∥∥ .

Thus, D is a nonempty closed convex bounded subset of H and S(t)-invariant.

(b) The boundedness of {xt} implies that {fxt} and {AS(t)xt} are bounded. Thus,

‖xt − S (t) xt‖ = bt
∥∥γ f (xt) − AS (t) xt

∥∥ → 0 as t → ∞. □
We now establish our strong convergence theorems.

Theorem 3.2. (Implicit scheme) Let H be a real Hilbert space H and

T = {T(t) : 0 ≤ t < ∞}be a family of nonexpansive self-mappings on H such that
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F(T ) �= ∅. Let f : H ® H be an a-contraction and A be a strongly positive linear

bounded self-adjoint operator on H with the coefficient γ̄ > 0. Let

S = {S (t) : 0 ≤ t < ∞}be a family of nonexpansive self-mappings on H such that T has

property (A)with respect to the family Sand F(T ) ⊆ F(S). Assume that

0 < γ < γ̄ /α and that {bt : t > 0} is a net in (0, ||A||−1) such that limt®∞ bt = 0.

Then {xt} defined by (3.1) strongly converges as t ® ∞ to x∗ ∈ F(T ), where

x∗ = PF(T )(I − A + γ f )is a solution of the following variational inequality
〈(

γ f − A
)

x∗, p − x∗〉 ≤ 0, ∀p ∈ F (T ) . (3:2)

Proof. The uniqueness of the solution of the variational inequality (3.2) is a conse-

quence of the strong monotonicity of A−gf (Lemma 2.5). Next, we shall use x∗ ∈ F(T )

to denote the unique solution of (3.2). To prove that xt ® x* (t ® ∞), we write, for a

given p ∈ F(T ),

xt − p = bt
(
γ f (xt) − Ap

)
+ (I − btA)

(
S (t) xt − p

)
.

Using xt − p to make inner product, we obtain that

∥∥xt − p
∥∥2 =

〈
(I − btA)

(
S (t) xt − p

)
, xt − p

〉
+ bt

〈
γ f (xt) − Ap, xt − p

〉
≤ (1 − btγ̄ )

∥∥xt − p
∥∥2 + bt

〈
γ f (xt) − Ap, xt − p

〉
.

It follows that

∥∥xt − p
∥∥2 ≤ 1

γ̄

(
γ

〈
f (xt) − f

(
p
)

, xt − p
〉

+
〈
γ f

(
p
) − Ap, xt − p

〉)

≤ γ α

γ̄

∥∥xt − p
∥∥2 +

1
γ̄

〈
γ f

(
p
) − Ap, xt − p

〉
,

which yields that

∥∥xt − p
∥∥2 ≤ 1

γ̄ − αγ

〈
γ f

(
p
) − Ap, xt − p

〉
. (3:3)

Since H is a Hilbert space and {xt} is bounded as t ® ∞, there exists a sequence {tn}

in (0, ∞) such that tn ® ∞ and xtn ⇀ x̄ ∈ H. By Lemma 3.1(b), we have ||xt − S(t)xt||

® 0 as t ® ∞. Since T has property (A) with respect to the family S, it follows that
xt − T(T )xt → 0 as t ® ∞ for all τ >0. Hence, by Lemma 2.2, x̄ ∈ F (T ) ⊆ F (S). By

(3.3), we see xtn → x̄. We next prove that x̄ solves the variational inequality (3.2).

From (3.1), we arrive at

(
A − γ f

)
xt = − 1

t
(I − tA) [xt − S (t) xt] .

For p ∈ F(T ), it follows from (2.4) that

〈(
A − γ f

)
xt, xt − p

〉
= − 1

t

〈
(I − tA) [xt − S (t) xt] , xt − p

〉

= − 1
t

〈[
(I − S (t)) xt − (I − S (t)) p

]
, xt − p

〉
+

〈
A(I − S(t))xt , xt − p

〉
≤ 〈

A (I − S (t)) xt, xt − p
〉
.
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Since xtn ⇀ x̄, we obtain〈(
A − γ f

)
x̄, x̄ − p

〉 ≤ 0,

i.e., x̄ satisfies the variational inequality (3.2). By the uniqueness, it follows x̄ = x∗.
In a summary, we have shown that each cluster point of {xt} (as t ® ∞) equals x*.

Therefore, xt ® x* as t ® ∞. The variational inequality (3.2) can be rewritten as〈[(
I − A + γ f

)
x∗] − x∗, x∗ − p

〉 ≥ 0, p ∈ F (T ) .

This, by Lemma 2.4, is equivalent to

PF(T )
(
I − A + γ f

)
x∗ = x∗.

This completes the proof. □
Theorem 3.3. (Inexact explicit scheme) Let H be a real Hilbert space H and

T = {T(t) : 0 ≤ t < ∞}be a family of nonexpansive self-mappings on H such that

F(T ) �= ∅, f : H ® H be an a-contraction and A be a strongly positive linear bounded

self-adjoint operator on H with the coefficient γ̄ > 0. Let {tn} be a positive real divergent

sequence and let 	 =
{
Stn : n ∈ N

}
be a sequence nonexpansive self-mappings on H

such that F (T ) ⊆ ∩n∈N F
(
Stn

)
. For x0 Î H, let {xn} be a sequence in H generated by

xn+1 = αnγ f (xn) + βnxn + ((1 − βn) I − αnA) Stn (xn) + en, n ≥ 0 (3:4)

where {an} ⊂ (0, 1], {bn} ⊂ [0, 1], and {en} is an error sequence in H satisfying the fol-

lowing conditions:

(R1) limn®∞ an = limn®∞ bn = 0 and
∑∞

n=0
αn = ∞,

(R2) lim
n→∞

‖en‖
αn

= 0.

Assume that 0 < γ < γ̄ /α and that
{
Stn (xn)

}
is an approximating fixed point

sequence of family T . Assume that x∗ ∈ F(T ), which solves the variational inequality

(3.2). Then {xn} strongly converges to x*.

Proof. Set yn = Stn (xn) . We divide the proof into three parts.

Step 1. Show the sequences {xn} and {yn} are bounded.

Noticing that limn®∞ an = limn®∞ bn = 0, we may assume, with no loss of generality,

that αn
1−βn

< ‖A‖−1 for all n ≥ 0. From Lemma 2.7, we know that

|| (1 − βn) I − αnA|| ≤ (1 − βn − αnγ̄ ). Noticing that x∗ ∈ F(T ), which solves the

variational inequality (3.2). By assumption (R2), we have that { ||en||
αn

} is bounded. Then,
there exists a nonnegative real number K such that

∥∥γ f
(
x∗) − Ax∗∥∥ +

‖en‖
αn

≤ K for all n ≥ 0.

From (3.4), we have

||xn+1 − x∗||
= ||αn

(
γ f (xn) − Ap

)
+ βn

(
xn − x∗) + ((1 − βn) I − αnA)

(
Stn (xn) − x∗) + en||

≤ αn||γ f (xn) − Ax∗|| + βn||xn − x∗|| + (1 − βn − αnγ̄ ) ||Stn (xn) − x∗|| + ||en||
≤ αnγ ||f (xn) − f

(
x∗) || + αn||γ f

(
p
) − Ap|| + βn||xn − x∗||

+ (1 − βn − αnγ̄ ) ||xn − x∗|| + ||en||

≤ [1 − αn (γ̄ − γ α)] ||xn − x∗|| + αn

(
||γ f

(
p
) − Ap|| +

||en||
αn

)

≤ [1 − αn (γ̄ − γ α)] ||xn − x∗|| + αnK.
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By simple inductions, we see that

∥∥xn − x∗∥∥ ≤ max
{∥∥x0 − x∗∥∥ ,

K
γ̄ − γ α

}
= : R, (3:5)

which yields that the sequence {xn} is bounded. Note that

∥∥yn − x∗∥∥ ≤ ∥∥xn − x∗∥∥ ,

and hence the sequence {yn} is bounded.

Step 2. Show that

lim sup
n→∞

〈(
γ f − A

)
x∗, yn − x∗〉 ≤ 0,

where x* is the solution of the variational inequality (3.2).

Let D be the ball centered in x* and with radius R, i.e.,

D : =
{

w ∈ H :
∥∥w − x∗∥∥ ≤ max

{∥∥x0 − x∗∥∥ ,
K

γ̄ − γ α

}}
. (3:6)

From (3.5) we see that D is a nonempty closed convex bounded subset of H which is

T(t)-invariant for each t Î [0, ∞) and contain {xn}. Therefore, we assume, without loss

of generality, T = {T(t) : 0 ≤ t < ∞} is a family nonexpansive self-mappings on D.

Taking a suitable subsequence
{
yni

}
of {yn}, we see that

lim sup
n→∞

〈(
γ f − A

)
x∗, yn − x∗〉 = lim

i→∞
〈(

γ f − A
)

x∗, yni − x∗〉 .

Since the sequence {yn} is also bounded, we may assume that yni ⇀ x̄. Note that {yn}

is an approximating fixed point sequence of family T , i.e.,

lim
n→∞

∥∥yn − T (h) yn
∥∥ = 0 for all 0 ≤ h < ∞. (3:7)

Using (3.7) we obtain, from the demiclosedness principle, that x̄ ∈ F (T ). Therefore,

we have

lim sup
n→∞

〈(
γ f − A

)
x∗, yn − x∗〉 =

〈(
γ f − A

)
x∗, x̄ − x∗〉 ≤ 0. (3:8)

On the other hand, we have
∥∥xn+1 − yn

∥∥ ≤ αn
∥∥γ f (xn) − Axn

∥∥ + βn
∥∥xn − yn

∥∥ .

From the assumption limn®∞ an = limn®∞ bn = 0 that lim
n→∞

∥∥xn+1 − yn
∥∥ = 0, which

combines with (3.8) gives that

lim sup
n→∞

〈(
γ f − A

)
x∗, xn+1 − x∗〉 ≤ 0.

Step 3. Show xn ® x* as n ® ∞.

Since the sequence {xn} is bounded, we may assume a nonnegative real number L

such that ||xn − x*|| ≤ L for all n ≥ 0. Note that
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∥∥xn+1 − x∗∥∥2

= 〈αn(γ f (xn) − Ax∗) + βn(xn − x∗) + ((1 − βn) I − αnA)(yn − x∗) + en, xn+1 − x∗〉
= αn〈γ f (xn) − Ax∗, xn+1 − x∗〉 + βn〈xn − x∗, xn+1 − x∗〉

+ 〈((1 − βn)I − αnA)(yn − x∗) + en, xn+1 − x∗〉
≤ αn

(
γ 〈f (xn) − f (x∗), xn+1 − x∗〉 + 〈γ f (x∗) − Ax∗, xn+1 − x∗〉)

+ βn||xn − x∗|| ||xn+1 − x∗|| + ||(1 − βn)I − αnA|| ||yn − x∗|| ||xn+1 − x∗|| + ||en||L
≤ αnαγ ||xn − x∗|| ||xn+1 − x∗|| + αn〈γ f (x∗) − Ax∗, xn+1 − x∗〉

+ βn||xn − x∗|| ||xn+1 − x∗|| + (1 − βn − αnγ̄ )||xn − x∗|| ||xn+1 − x∗|| + ||en||L
= [1 − αn(γ̄ − γ α)]||xn − x∗|| ||xn+1 − x∗|| + αn

〈
γ f (x∗) − Ax∗, xn+1 − x∗〉 + ||en||L

≤ 1 − αn(γ̄ − γ α)
2

(||xn − x∗||2 + ||xn+1 − x∗||2) + αn〈γ f (x∗) − Ax∗, xn+1 − x∗〉 + ||en||L

≤ 1 − αn(γ̄ − γ α)
2

||xn − x∗||2 +
1
2

||xn+1 − x∗||2 + αn〈γ f (x∗) − Ax∗, xn+1 − x∗〉 + ||en||L.

It follows that

||xn+1−x∗||2 ≤ [1−αn(γ̄−γ α)]||xn−x∗||2+αn

(
2〈γ f (x∗) − Ax∗, xn+1 − x∗〉 +

2||en||
αn

L
)

.

By using Lemma 2.8, we can obtain the desired conclusion easily. □

4. Applications
4.1. Applications to zeros of maximal monotone operators

Let H be a real Hilbert space. Let A ⊂ H × H be an operator on H. The set D(A)

defined by D(A) = {x ∈ H : Ax �= ∅} is called the domain of A, the set R(A) defined by

R(A) = ∪x∈XAx is called the range of A and the set G(A) defined by

G(A) = {(x, y) ∈ H × H : x ∈ D(A), y ∈ Ax} is called the graph of A. An operator

A ⊂ H × H with domain D(A) is said to be monotone if for each xi ∈ D(A) and

yi ∈ Axi(i = 1, 2), we have 〈x1 − x2, y1 − y2〉 ≥ 0. A monotone operator A is said to be

maximal monotone if the graph G(A) is not properly contained in the graph of any

other monotone operator on H. If A : H → 2H is maximal monotone, then we can

define, for each l >0, a nonexpansive single-valued mapping JAλ : H → H by

JAλ = (I + λA)−1. It is called the resolvent of A. Let

N (A) = A−10 = {x ∈ D(A) : 0 ∈ Ax}. It is known that N (A) is closed and convex.

Lemma 4.1. ([22]) Let A ⊂ H × Hbe a maximal monotone operator. Then

1
r
||Jtx − JAr JAt x|| ≤ 1

t
||x − JAt x|| for all x ∈ H and r, t > 0.

Proposition 4.2 shows that the family {JAt : t > 0} of resolvent operators of a maxi-

mal monotone operator A enjoys property (A).

Proposition 4.2. Let A ⊂ H × Hbe a maximal monotone operator. Let

{zt}t>0 ∈ B(H)such that
∥∥zt − JAt zt

∥∥ → 0 as t ® ∞. Then
∥∥zt − JAr zt

∥∥ → 0 as t ® ∞

for each r > 0.

Proof. Let r, t >0. By Lemma 4.1, we have

1
r
||JAt zt − JAr JAt zt|| ≤ 1

t
||zt − JAt zt||. (4:1)
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Using (4.1), we have

||zt − JAr zt|| ≤ ||zt − JAt zt|| + ||JAt zt − JAr JAt zt|| + ||JAr JAt zt − JAr zt||
≤

(
2 +

r
t

)
||zt − JAt zt|| → 0 as t → ∞.

□
Given a monotone operator A ⊂ H × H, we consider the following problem of find-

ing z Î H such that:

0 ∈ Az. (P)

The Problem (P) can be regarded as a unified formulation of several important pro-

blems. For an appropriate choice of the operator A, Problem (P) covers a wide range

of mathematical applications; for example, variational inequalities, complementarity

problems, and non-smooth convex optimization. Problem (P) has applications in phy-

sics, economics, and in several areas of engineering. Therefore, one of the most inter-

esting and important problems in the theory of maximal monotone operators is to find

an efficient iterative algorithm to compute approximately zeroes of maximal monotone

operators. One method for finding zeros of maximal monotone operators is the proxi-

mal point algorithm. Let A be a maximal monotone operator in a Hilbert space H.

The proximal point algorithm generates, for starting x1 Î H, a sequence {xn} in H by

xn+1 = JArn
xn for all n ∈ N, (4:2)

where {rn} is a regularization sequence in (0, ∞). Note that (4.2) is equivalent to

0 ∈ 1
rn

(xn+1 − xn) + Axn+1 for all n ∈ N.

This was first introduced by Martinet [23]. If ψ : H → R ∪ {∞} is a proper lower

semicontinuous convex function, then the algorithm reduces to

xn+1 = arg min
y∈H

{
ψ(y) +

1
2rn

||xn − y||2
}

for all n ∈ N.

Rockafellar [24] studied the proximal point algorithm in the framework of Hilbert

space and he proved the following:

Theorem 4.3. Let H be a Hilbert space and A ⊂ H × Ha maximal monotone opera-

tor. Let {xn} be a sequence in H defined by (4.2), where {rn} is a sequence in (0, ∞) such

that lim infn®∞ rn > 0. If A−10 �= ∅, then the sequence {xn} converges weakly to an ele-

ment of A−10.

Rockafellar [24] has given a more practical method which is an inexact variant of the

method

en ∈ xn − xn−1 + rnAxn,

where {en} is regarded as an error sequence. The method is called inexact proximal

point algorithm. It was shown in Rockafellar [24] that if en ® 0 quickly enough such

that
∑∞

n=1
||en|| < ∞, then xn ⇀ z Î H with 0 Î A(z). In 2002, Xu [12] modified the

proximal point algorithm for solving Problem (P) and gave strong convergence of the

algorithm in a Hilbert space setting under the same assumption
∑∞

n=1
||en|| < ∞.
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The criteria
∑∞

n=1
||en|| < ∞ imposed for convergence of inexact proximal point

algorithms (see [12,24]) is somewhat undesirable, because it impose increasing preci-

sion along the iterative process. This brings us to the following natural question:

Question 4.4. Is it possible to further modify inexact proximal point algorithm with-

out the assumption
∑∞

n=1
||en|| < ∞, so that it can generate a strongly convergent

sequence?

Recently, Sahu and Yao [25] introduced and studied the prox-Tikhonov method for

solving Problem (P) in the Banach space setting and they partially answered Question

4.4. We now establish more general results in the Hilbert space setting:

Theorem 4.5. Let H be a real Hilbert space H. Let A ⊂ H × Hbe a maximal mono-

tone operator with N (A) �= ∅, f : H ® H an a-contraction and A a strongly positive

linear bounded self-adjoint operator on H with the coefficient γ̄ > 0. Assume that

0 < γ < γ̄ /α and that {bt : t > 0} is a net in (0, ||A||−1) such that limt®∞ bt = 0.

Then {xt} defined by

xt = btγ f (xt) + (I − btA)JAt xt.

strongly converges as t ® ∞ to x∗ ∈ N (A), where x∗ ∈ PN (A)(I − A + γ f )x∗is a solu-

tion of the following variational inequality:

〈(γ f − A)x∗, p − x∗〉 ≤ 0, ∀p ∈ N (A). (4:3)

Proof. Set T (t) : = JAt for t >0. Then {T(t): t >0} is a family of nonexpansive mappings

with F(T(t)) = N (A) for each t > 0. Proposition 4.2 shows that the family{
JAt : t > 0

}
of resolvent operators enjoys property (A). Therefore, Theorem 4.5 fol-

lows from Theorem 3.2. □
Theorem 4.6. Let H be a real Hilbert space H. Let A ⊂ H × Hbe a maximal mono-

tone operator with N (A) �= ∅, f : H ® H an a-contraction and A a strongly positive

linear bounded self-adjoint operator on H with the coefficient γ̄ > 0. Assume that

0 < γ < γ̄ /α and {tn} is a positive real divergent sequence. For x0 Î H, let {xn} be a

sequence in H generated by

xn+1 = αnγ f (xn) + βnxn + ((1 − βn)I − αnA)JAtn (xn) + en, n ≥ 0

where {an} ⊂ (0, 1], {bn} ⊂ [0, 1] and {en} is an error sequence in H satisfying condi-

tions (R1) and (R2). Then {xn} strongly converges to x*, where

x∗ = PN (A)(I − A + γ f )x∗is a solution of the variational inequality (4.3).

Proof. Set Stn := JAtnand yn := Ssn (xn). Then it remains to show that {yn} is an approxi-

mating fixed point sequence of the family
{
JAt : t > 0

}
of resolvent operators of A. As

in the proof of Theorem 3.3, one can show that {xn} and {yn} are bounded. Then, there

positive real number M such that
∥∥xn − JAtn xn

∥∥ ≤ M for all n ≥ 0. For any fixed r > 0,

by Lemma 4.1, we have

||JAtn xn − JAr JAtn xn|| ≤ r
tn

||xn − JAtn xn||

≤ r
tn

M.
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Thus, in particular, we derive

||yn − JAr yn|| → 0 as n → ∞.

for all r >0. Therefore, Theorem 4.6 follows from Theorem 3.3. □
Theorem 4.6 is more general than results of Kamimura and Takahashi [26] and Xu

[12]. In particular, Theorem 4.6 provides an affirmative answer of Question 4.4 in the

context of finding solution of variational inequality (4.3).

4.2. Applications to equilibrium problems

Let H be a Hilbert space and G : H × H → R be an equilibrium function, that is

G (u, u) = 0 for every u ∈ H.

The equilibrium problem is defined as follows,

Find x̃ ∈ H such that G
(
x, y

) ≥ 0 for all y ∈ H.

A solution x̃ of the equilibrium problem is called an equilibrium point and the set of

all equilibrium points will be denoted by EP(G). The topic has been considered by sev-

eral authors (see [27,28]). We shall assume some mild conditions over G in such a way

that results can be applied in several cases including optimization problems, fixed

point problems, variational problems, variational inequality problems, and convex vec-

tor minimization problems [29,30].

Lemma 4.7. ([29]) Let C be a nonempty closed convex subset of H and

G : C × C → Rsatisfy,

(A1) for all x Î C, G(x, x) = 0;

(A2) G is monotone, i.e., G(x, y) + G(y, x) ≤ 0 for all x, y Î C;

(A3) for all x, y, z Î C,

lim sup G
(
tz + (1 − t) x, y

) ≤ G
(
x, y

)
as t → 0;

(A4) for all x Î C, y a G(x, y) is convex and lower semicontinuous.

For × Î C and r >0, set Sr : H ® C to be the resolvent for G,

Sr(x) :=
{

z ∈ C : G(z, y) +
1
r

〈y − z, z − x〉 ≥ 0, ∀y ∈ C
}

,

then Sr is well defined and the following hold:

(1) Sr is single-valued;

(2) Sr is firmly nonexpansive, i.e.,

||Srx − Sry||2 ≤ 〈Srx − Sry, x − y〉,

for all x, y Î H;

(3) F(Sr) = EP(G);

(4) EP(G) is closed and convex.

In order to show that the family {St : t > 0} of resolvent operators of G enjoys prop-

erty (A), we need the following technical lemma.

Lemma 4.8. Let G be an equilibrium function satisfying the assumptions of Lemma

4.7. Then
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||St(x) − SrSt(x)|| ≤ r
t
||x − St(x)||

for all × Î H and r, t >0.

Proof. Let x, y Î H and r, t > 0. By the definition of St, we have

G(St(x), z) +
1
t
〈z − St(x), St(x) − x〉 ≥ 0, ∀z ∈ H (4:4)

and

G(Sr(y), z) +
1
r
〈z − Sr(y), Sr(y) − y〉 ≥ 0, ∀z ∈ H. (4:5)

Put z = Sr(y) in (4.4) and z = St(x) in (4.5), we obtain

G(St(x), Sr(y)) +
1
t
〈Sr(y) − St(x), St(x) − x〉 ≥ 0 (4:6)

and

G(Sr(y), St(x)) +
1
r
〈St(x) − Sr(y), Sr(y) − y〉 ≥ 0, (4:7)

respectively. Since G is monotone, from (4.6) and (4.7), we have
〈
St(x) − Sr(y),

Sr(y) − y
r

− St(x) − x
t

〉
≥ 0. (4:8)

Set y = St(x) in (4.8), we get
〈
St(x) − SrSt(x),

SrSt(x) − St(x)
r

− St(x) − x
t

〉
≥ 0

and hence

1
r
||St(x)−SrSt(x)||2 ≤

〈
St(x) − SrSt(x),

x − St(x)
t

〉
≤ 1

t
||St(x)−SrSt(x)|| ||x−St(x)||.

Therefore,

||St(x) − SrSt(x)|| ≤ r
t
||x − St(x)||.

□
From this, we deduce the property (A) for the family {St : t > 0} of resolvent opera-

tors of G.

Lemma 4.9. Let G be an equilibrium function satisfying the assumptions of Lemma

4.7. Then the family {St : t > 0} enjoys property (A).

Proof. Let {zt} ∈ B(H) such that zt − Stzt ® 0. Then, for any fixed r >0,

||zt − Srzt|| ≤ ||zt − Stzt|| + ||Stzt − SrStzt|| + ||SrStzt − Srzt||
≤

(
2 +

r
t

)
||zt − Stzt||

by nonexpansivity and Lemma 4.8. In particular, we derive that zt −Srzt ® 0 as t ®
∞. □
From this last and from Theorem 3.2, we have
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Theorem 4.10. Let H be a real Hilbert space H. Let G : H × H → Rbe an equili-

brium function satisfying the assumptions of Lemma 4.7 and let {St : t > 0} be the

family of resolvent operators for G. Let f : H ® H be an a-contraction and A be a

strongly positive linear bounded self-adjoint operator on H with the coefficient γ̄ > 0.

Assume that EP(G) ≠∅ and 0 < γ < γ̄ /α. Let {bt : t >0} be a net in (0, ||A||−1) such

that limt®∞ bt = 0. Then {xt} defined by

xt = btγ f (xt) + (I − btA)Stxt. (4:9)

strongly converges as t ® ∞ to x* Î EP(G), where x* = PEP(G))(I −A + gf)x* is a solu-

tion of the following variational inequality:

〈(γ f − A)x∗, p − x∗〉 ≤ 0, ∀p ∈ EP(G). (4:10)

Proof. Note that {St : t > 0} is a family of resolvent operators for G such that F (St) =

EP(G) for each t > 0. Lemma 4.9 shows that the family {St : t > 0} of resolvent opera-

tors of G enjoys property (A). Therefore, Theorem 4.10 follows from Theorem 3.2. □
Theorem 4.11. Let H be a real Hilbert space H. Let G : H × H → Rbe an equili-

brium function satisfying the assumptions of Lemma 4.7 and let {St : t >0} be the family

of resolvent operators for G such that EP(G) ≠∅. Let f : H ® H be an a-contraction
and A be a strongly positive linear bounded self-adjoint operator on H with the coeffi-

cient γ̄ > 0. Assume that 0 < γ < γ̄ /α and {tn} is a positive real divergent sequence.

For x0 Î H, let {xn} be a sequence in H generated by

xn+1 = αnγ f (xn) + βnxn + ((1 − βn)I − αnA)Stn (xn) + en, n ≥ 0 (4:11)

where {an} ⊂ (0, 1], {bn} ⊂ [0, 1] and {en} is an error sequence in H satisfying condi-

tions (R1) and (R2). Then {xn} strongly converges to x* Î EP(G), where x* = PEP(G))(I −

A + gf)x* is a solution of the variational inequality (4.10).

Proof. Set yn : = Stn (xn). Then it remains to show that {yn} is an approximating fixed

point sequence of the family {St : t > 0} of resolvent operators of G. As in the proof of

Theorem 3.3, one can show that {zn} and
{
Stn (xn)

}
are bounded. Then, there positive

real number M such that ||xn − Stn xn|| ≤ M for all n ≥ 0. For any fixed r > 0, by

Lemma 4.8, we have

||Stn xn − SrStn xn|| ≤ r
tn

M.

In particular, we derive ||yn − Sryn|| ® 0 as n ® ∞. for all r >0. Therefore, Theorem

4.11 follows from Theorem 3.3. □
Theorem 4.11 extends the corresponding result of Song et al. [31] in the context of

the variational inequality (4.10).

4.3. Applications to common fixed point problems

In this section, we deduce some results by using Theorems 3.2 and 3.3. As a direct

consequence of Theorem 4.12, we first have the following result.

Theorem 4.12. Let H be a real Hilbert space H and T = {T(t) : 0 ≤ t < ∞}be a non-

expansive semigroup on H such that F(T ) �= ∅. Let f : H ® H be an a-contraction and

A be a strongly positive linear bounded self-adjoint operator on H with the coefficient

γ̄ > 0. Assume that 0 < γ < γ̄ /α and that {bt : t > 0} is a net in (0, ||A||-1) such

that limt®∞ bt = 0. Then {xt} define by
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xt = btγ f (xt) + (I − btA)
1
t

t∫
0

T(s) xtds.

strongly converges as t ® ∞ to x∗ ∈ F(T ), where x∗ = PF(T )(I − A + γ f )x∗is a solution

of the variational inequality (3.2).

Proof. Example 2.12 implies that nonexpansive semigroupT = {T(t) : t ∈ R+} has
property (A) with respect to a nonexpansive semigroup {σt : t ∈ R+}. Therefore, Theo-
rem 4.12 follows from Theorem 3.2. □
Remark 4.13. Theorem 4.12 which include the corresponding results of Shioji and

Takahashi [16]as a special case is reduced to Plubtieng and Punpaeng [14]when A = I,

the identity mapping and g = 1.

Theorem 4.14. Let H be a real Hilbert space H and T = {T(t) : 0 ≤ t < ∞}a nonex-

pansive semigroup such that F(T ) �= ∅. Let f : H ® H be an a-contraction and A a

strongly positive linear bounded self-adjoint operator on H with the coefficient γ̄ > 0.

Assume that 0 < γ < γ̄ /α and {tn} is a positive real divergent sequence. For x0 Î H,

let {xn} be a sequence in H generated by

xn+1 = αnγ f (xn) + βnxn + ((1 − βn)I − αnA)
1
tn

tn∫
0

T(s)xnds + en, n ≥ 0

where {an} ⊂ (0, 1], {bn} ⊂ [0, 1] and {en} is an error sequence in H satisfying condi-

tions (R1) and (R2). Then {xn} strongly converges to x∗ ∈ F(T ), where

x∗ = PF(T )(I − A + γ f )x∗is a solution of the variational inequality (3.2).

Proof. For eachn ∈ N, defineyn = Stn (xn). Note that {yn} is in a bounded set D defined

by (3.6). As in the the proof of Theorem 3.3, T = {T(t) : 0 ≤ t < ∞} is a semigroup of

nonexpansive self-mappings on D. It follows from Lemma 2.1 that {yn} is an approxi-

mating fixed point sequence of semigroup T . □
Remark 4.15. If g = 1 and A = I, the identity mapping, then Corollary 2.4 is reduced

to Theorem 3.3 of Plubtieng and Punpaeng [14].

If the sequence {bn} ≡ 0, then Theorem 4.14 reduces to the following:

Corollary 4.16. Let H be a real Hilbert space H and T = {T(t) : 0 ≤ t < ∞}be a non-

expansive semigroup such that F(T ) �= ∅. Let f : H ® H be an a-contraction and A be

a strongly positive linear bounded self-adjoint operator on H with the coefficient γ̄ > 0.

Assume that 0 < γ < γ̄ /α and {tn} is a positive real divergent sequence. For x0 Î H,

let {xn} be a sequence in H generated by

xn+1 = αnγ f (xn) + (I − αnA)
1
tn

tn∫
0

T(s)xnds + en, n ≥ 0

where {an} ⊂ (0, 1] and {en} is an error sequence in H satisfying the following

conditions:

(R3) limn®∞ an = 0 and
∑∞

n=0
αn = ∞,

(R4). lim
n→∞

‖en‖
αn

= 0

Then {xn} strongly converges to x∗ ∈ F(T ), where x∗ = PF(T )(I − A + γ f )x∗is a solution

of the variational inequality (3.2).
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Remark 4.17. Corollary 4.16 includes Theorem 2 of Shimizu and Takahashi [17]as a

special case.

Remark 4.18. Theorem 2.2 and Corollary 4.16 improve Theorems 3.2 and 3.4 of

Marino and Xu [10]from a single nonexpansive mapping to a nonexpansive semigroup,

respectively.

Using [[17], Lemma 1], we derive the following result, which generalizes Theorem 1

of Shimizu and Takahashi [17].

Corollary 4.19. Let H be a real Hilbert space H and let S, T : H ® H be two com-

muting nonexpansive mappings such that F(S) ∩ F(T ) ≠∅. Let f : H ® H be an a-con-
traction and A be a strongly positive linear bounded self-adjoint operator on H with the

coefficient γ̄ > 0 Assume that 0 < γ < γ̄ /α. For x0 Î H, let {xn} be a sequence in H

generated by

xn+1 = αnγ f (xn) + (I − αnA)
2

(n + 1)(n + 2)

n∑
k=0

∑
i+j=k

SiTjxn + en, n ≥ 0

where {an} ⊂ (0, 1] and {en} is an error sequence in H satisfying conditions (R3) and

(R4). Then {xn} strongly converges to x*Î F(S) ∩ F (T), where x* = PF(S)∩F(T)(I − A + gf)x*

is a solution of the following variational inequality:

〈(γ f − A)x∗, p − x∗〉 ≤ 0, ∀p ∈ F(S) ∩ F(T).
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Abstract An implicit algorithm for finding common fixed points of an uncountable family
of nonexpansive mappings is proposed. A new inexact iteration method is also proposed for
countable family of nonexpansive mappings. Several strong convergence theorems based on
our main results are established in the setting of Banach spaces. Both algorithms are applied
for finding zeros of accretive operators and for solving convex minimization, split feasibility
and equilibrium problems.
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1 Introduction

From a theoretical point of view, many problems which arise from real-world applications
can be translated into equivalent fixed point problems. This approach had been successfully
applied in different topics, including convex minimization, split feasibility and equilibrium
problems, as well as for finding zeros of accretive operators.

In order to find an approximate solution of the above mentioned problems a theoretical
framework was developed in which the study of iterative methods in abstract spaces plays
an important role. We also note that a qualitative analysis of the results obtained in the
abstract model had only been studied in few papers (see, e.g., [23,38] and the references
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therein). However, a qualitative examination can be generally and more easily performed on
the algorithm, when it is implemented for specific problems.

The aim of this paper is to study iterative algorithms for countable families of nonexpan-
sive mappings in the setting of Hilbert and Banach spaces. We study implicit and explicit
methods, and we prove the strong convergence of the generated sequences to a common fixed
point of the family of mappings. To this end, for a family T of nonexpansive mappings, we
introduce an asymptotic regularity condition, namely property (A ), which is weaker than the
uniform asymptotic regularity introduced in [27]. We prove that important and frequently
used families of mappings satisfy property (A ), so that our results apply. In particular, if
A ⊂ H × H is a maximal monotone operator on a Hilbert space H and if {cn}n∈N is a
sequence in (0,∞), the family {J A

cn
}n∈N of resolvents of A satisfies the property (A ). We

mention that such family plays a fundamental role in convex analysis and it is a common
tool to approximate zeros of the operator A.

One of the first and mostly celebrated result in this direction is due to Rockafellar [48]. In
his work, he introduced and studied an inexact proximal point method which can be described
as follows

Take an arbitrary z0 ∈ H and zk+1 ≈ J A
ck

zk .

Then the sequence {zk} weakly converges to a zero of A, provided that ‖zk+1 − J A
ck

zk‖ ≤ εk

and that {εk}k∈N ⊂ (0,∞) satisfies

∞∑

k=1

εk < ∞. (1.1)

Later, Eckstein and Berstekas [25] extended a related result due to Gol’shtein and Tret’yakov
[30] by introducing and studying the iterations

zk+1 = (1 − ρk)zk + ρkwk,

where {ρk}k∈N ⊂ (0, 2) and ‖wk − J A
ck

zk‖ ≤ εk . Moreover, they proved that under the
assumption (1.1), the method weakly converges to a zero of A.

A question naturally arising from the above mentioned results is if it is possible to con-
struct an iterative sequence which converges under weaker assumptions on the error sequence
{εn}n∈N. Indeed, condition (1.1) is somewhat undesirable as it implies a fast increasing
precision along the iterative process. In this paper, we formulate an inexact iterative algo-
rithm for which the conditions on the error sequence can be relaxed. Moreover, our results
hold in the more general setting of Banach spaces and accretive operators.

Let H be a Hilbert space and let G : H × H → R be a bifunction. The equilibrium
problem for G is stated as

find x̃ ∈ H such that G(x̃, y) ≥ 0 for all y ∈ H. (1.2)

The above mentioned problem had been considered by several authors (see, for instance,
[2,8–10,28,46]) and it contains as special cases optimization problems, problems of Nash
equilibria and complementarity problems, among others.

In [24], it had been proved that under mild assumptions on G and for any r > 0, the
mapping Sr : H → H defined by

x 
→
{

z ∈ H : G(z, y)+ 1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ H

}
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is single-valued and nonexpansive. Moreover, the fixed point set F(Sr ) coincides with the
solutions set of the problem (1.2). The family {Sr }r∈(0,∞) is called the family of resolvents
of G.

In this paper, we prove that the family {Sr }r∈(0,∞) satisfies the property (A ), so our results
apply in this setting. It is also shown that our algorithm can be successfully applied and with
the same results for finding solutions to convex minimization and split feasibility problems.

For an arbitrary sequence of nonexpansive mappings {Tn}n∈N which lacks of asymptotic
regularity, a partial workaround had been introduced in [3] by constructing the sequence
of nonexpansive auxiliary mappings {Sn}n∈N, defined by Sn(x) := ∑n

k=1 βk,nTk(x), where
{βk,n} ⊂ R

+ satisfies particular conditions. In the same paper, the improved asymptotic
behaviour of the family {Sn} is then used to prove a convergence result for an iterative
sequence in Banach spaces. We suspect, although we have no proof, that the sequence {Tn}n∈N

satisfies the property (A ) with respect to the family {Sn}n∈N.

2 Preliminaries

Let C be a nonempty subset of a normed space X and let T : C → C be a nonexpansive
mapping, i.e., ‖T x −T y‖ ≤ ‖x − y‖ for all x, y ∈ C.The set C is called a retract of X if there
exists a continuous mapping P from X onto C such that Px = x for all x in C.We call such
P a retraction of X onto C. A retraction P is said to be sunny if P(Px + t (x − Px)) = Px
for each x in X and all t ≥ 0. If a sunny retraction P is also nonexpansive, then C is said to
be a sunny nonexpansive retract of X.

Remark 2.1 (cf. [50]) If X is a smooth Banach space, then there is at most one sunny non-
expansive retraction Q from X onto C.

Let C be a nonempty subset of a Banach space X , let B(C) denote the collection of all
bounded subsets of C and let S1, S2 : C → X be two mappings. The deviation between S1

and S2 on B ∈ B(C) (see [51]), denoted by DB(S1, S2), is defined by

DB(S1, S2) = sup
x∈B

‖S1x − S2x‖.

Throughout this paper, G denotes an unbounded subset of R+ := [0,∞) such that s + t ∈ G
for all s, t ∈ G (often G = N or R+). Let T := {Ts : s ∈ G} be a family of map-
pings from C into itself. We denote by F(T ) the common fixed points set of T , that is,
F(T ) = ⋂

t∈G F(Tt ). A family T is said to be uniformly asymptotically regular on C (for
short u.a.r. on C) (see [1,6,27]) if

lim
t∈G,t→∞(sup

x∈C̃

‖Tt x − Ts Tt x‖) = 0 for all s ∈ G and C̃ ∈ B(C).

A family T := {Ts : s ∈ G} satisfies the property (A ) if the following holds, for any
{xs}s∈G ∈ B(C) which satisfies xs − Ts xs → 0 as s → ∞ we have that xs − Tt xs → 0 as
s → ∞ for all t ∈ G.

Remark 2.2 If T is a singleton, i.e., T = {T }, or Ts = T for all s in G, then {T } always
satisfies the property (A ).

We further remark that the notion of uniform asymptotic regularity introduced by
Edelstein and O’Brine [27] plays an important role for studying the property (A ) of nonlinear
Lipschitzian-type operators. Indeed, if T := {Ts : s ∈ G} is a nonexpansive semigroup and
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a.u.r., then T has property (A ). Indeed, for any {ys}s∈G ∈ B(C) with xs − Ts xs → 0 as
s → ∞, we have for all t ∈ G

‖ys − Tt ys‖ ≤ ‖ys − Ts ys‖ + ‖Ts ys − Tt Ts ys‖ + ‖Tt Ts ys − Tt ys‖
≤ 2‖ys − Ts ys‖ + sup

y∈{yγ :γ∈G}
‖Ts y − Tt Ts y‖ → 0 as s → ∞.

Let G = {Gs : s ∈ G} be a family of mappings from C into itself. We say the family
T := {Tt : t ∈ R

+} has property (A ) with respect to the family G = {Gs : s ∈ G} if the
following holds:
for any {xs}s∈G ∈ B(C)which satisfies xs −Gs xs → 0 as s → ∞,we have xs −Tt xs → 0
as s → ∞ for all t > 0.

Remark 2.3 (1) If a family T := {Tt : t ∈ R
+} has the property (A ), then T has the

property (A ) with respect to itself.

(2) If a family T := {Tt : t ∈ R
+} has the property (A ) with respect to a family S :=

{Tn : n ∈ N}, then the following holds:
for any {xn}n∈N ∈ B(C) which satisfies xn − Sn xn → 0 as n → ∞, we have
xn − Tt xn → 0 as n → ∞ for all t > 0.

We now give an example.

Example 2.4 Let C be a nonempty, closed and convex subset of the Banach space X and T
be a nonexpansive mapping from C into itself with F(T ) �= ∅. For each t ∈ G, and bt ∈ R

with 0 < a ≤ bt ≤ b < 1, define Gt : C → C by

Gt x = (1 − bt )x + bt T x for all x ∈ C.

Then T has property (A ) with respect to the family {Gt : t ∈ G}.
Proof Let {xt }t∈G ∈ B(C) such that ‖xt − Gt (xt )‖ → 0 as t → ∞. Note that

‖xt − T xt‖ = bt‖xt − Gt (xt )‖
and 0 < a ≤ bt ≤ b < 1 for all t ∈ G. Therefore, ‖xt − T xt‖ → 0 as t → ∞. ��

Let l∞ be the space of all bounded and real-valued sequences and let (a0, a1, . . .) ∈ l∞.
For a functional φ on l∞, we write φnan instead of φ(a0, a1, . . .).

Definition 2.5 A Banach limit L I M is a continuous and linear functional on ł∞ such that

(1) ‖L I M‖ = L I Mn1 = 1,
(2) L I Mnan+1 = L I Mnan for all (a0, a1, . . .) ∈ l∞.

The normalized duality mapping J from X into 2X∗
is defined by

J (x) := { f ∗ ∈ X∗ : 〈x, f ∗〉 = ‖x‖2 = ‖ f ∗‖2}.
Lemma 2.6 Let X be a Banach space. Then for each x, y ∈ X, there exists j (x + y) ∈
J (x + y) such that

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j (x + y)〉.
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Lemma 2.7 (cf. [32, Lemma 1]) Let X be a Banach space with a uniformly Gâteaux dif-
ferentiable norm, C be a nonempty, closed and convex subset of X and {xn} be a bounded
sequence in X. Let L I M be a Banach limit and let y ∈ C be such that L I Mn‖xn − y‖2 =
inf
x∈C

L I Mn‖xn − x‖2. Then L I Mn〈x − y, J (xn − y)〉 ≤ 0 f or all x ∈ C.

Lemma 2.8 (cf. [29, Lemma 13.1]) Let C be a convex subset of a smooth Banach space
X, D be a nonempty subset of C and Q be a retraction from C onto D. Then the following
are equivalent,

(a) Q is a sunny and nonexpansive.
(b) 〈x − Qx, J (z − Qx)〉 ≤ 0 for all x ∈ C, z ∈ D.
(c) 〈x − y, J (Qx − Qy)〉 ≥ ‖Qx − Qy‖2 for all x, y ∈ C.

Lemma 2.9 (cf. [44]) Let {γn}, {αn} and {εn} be sequences of nonnegative numbers satisfy-
ing limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and limn→∞ εn/αn = 0. Assume

γ 2
n ≤ γ 2

n−1 − αnψ(γn)+ εn, ∀n ∈ N,

whereψ : [0,∞) → [0,∞) is a strictly increasing function such that it is positive on (0,∞)

and ψ(0) = 0. Then limn→∞ γn = 0.

3 Main results

First, we prove a strong convergence result of Browder’s type for a family T = {Tt : t > 0}
of nonexpansive mappings in a Banach space.

Theorem 3.1 Let X be a reflexive Banach space X with a uniformly Gâteaux differentiable
norm and let C be a nonempty, closed and convex subset of X. Let T = {Tt : t > 0} be a fam-
ily of nonexpansive mappings from C into itself such that F(T ) �= ∅. Let S = {Sn : n ∈ N}
be a sequence of nonexpansive mappings from C into itself such that T has the property (A )
with respect to the family S and F(T ) ⊆ F(S). Let {bn} be a sequence in (0, 1) such that
limn→∞ bn = 0. Assume that the family T has common fixed point in every weakly compact,
convex and T −invariant subset of C. Then we have the following,

(a) for each u ∈ C, the unique fixed point yn ∈ C of the contraction C � y 
→ bnu + (1 −
bn)Sn y converges strongly to Qu ∈ F(T ) as n → ∞;

(b) the mapping Q is a sunny nonexpansive retraction from C onto F(T ).

Proof (a) Let u be an element in C . From the Banach contraction principle, for every
n ∈ N, the unique fixed point yn ∈ C of the contraction C � y 
→ bnu + (1 − bn)Sn y,
is defined by

yn = bnu + (1 − bn)Sn yn . (3.1)

One can easily see that {yn} is bounded. Hence

‖yn − Sn yn‖ = bn‖yn − u‖ → 0 as n → ∞.

Since T has property (A ) with respect to the family S, it follows that yn − Tr yn → 0 for all
r > 0.

Define the function ϕ : C → R+ by ϕ(x) = L I Mn‖yn − x‖2, x ∈ C and set M :=
{y ∈ C : ϕ(y) = infx∈C ϕ(x)}. Since X is reflexive, ϕ(x) → ∞ as ‖x‖ → ∞ and ϕ is
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a continuous convex function. From [5, Theorem 1.2, p. 79] we have that M is nonempty.
From [55, Theorem 1.3.2, p. 22] and the above considerations, we see that M is also closed,
convex and bounded. Moreover, M is invariant under Tr for each r > 0, i.e., Tr (M) ⊂ M
for all r > 0. In fact, we have for each y ∈ M ,

ϕ(Tr y) = L I Mn‖yn − Tr y‖2 ≤ L I Mn‖Tr yn − Tr y‖2 ≤ L I Mn‖yn − y‖2 = ϕ(y).

Noticing that the set M is weakly compact, convex and T −invariant. By assumption, the
family T has a common fixed point in M , that is, F(T ) ∩ M �= ∅. Let y∗ ∈ F(T ) ∩ M .
From Lemma 2.7, we get

L I Mn〈z − y∗, J (yn − y∗)〉 ≤ 0 for all z ∈ C. (3.2)

The proof now follows similarly as in [6, Theorem 3.1]. We sketch here the proof for the
sake of completeness. Fix p ∈ F(T ). From (3.1), we have

‖yn − p‖2 = 〈yn − p, J (yn − p)〉
= 〈bn(u − p)+ (1 − bn)(Sn yn − p), J (yn − p)〉
≤ bn〈u − p, J (yn − p)〉 + (1 − bn)‖yn − p‖2,

which implies that

‖yn − p‖2 ≤ 〈u − p, J (yn − p)〉. (3.3)

From (3.2) and (3.3) with p = y∗, we get

L I Mn‖yn − y∗‖2 ≤ L I Mn〈u − y∗, J (yn − y∗)〉 ≤ 0.

Then there exists a subsequence {ynk } of {yn} such that ynk → y∗. If we assume the existence
of another subsequence {yni } of {yn} such yni → z∗, then z∗ ∈ F(T ) and hence from (3.3)
we get

‖y∗ − z∗‖2 ≤ 〈u − y∗, J (y∗ − z∗)〉.
By repeating last steps for {yni }, it follows that

‖z∗ − y∗‖2 ≤ 〈u − z∗, J (z∗ − y∗)〉.
Summing last inequalities yields y∗ = z∗.

In a summary, we have shown that each cluster point of {yn}, equals y∗. Define Qu =
limn→∞ yn . Then Qu is the unique solution the following variational inequality

〈Qu − u, J (Qu − p)〉 ≤ 0 for all p ∈ F(T ).

(b) By applying Lemma 2.8, we obtain that Q is a sunny nonexpansive retraction from C
onto F(T ). ��

Remark 3.2 We note that the assumption that the family T has a common fixed point in every
convex, weakly compact and T −invariant subset of X had been widely investigated in the
past (see, e.g., [37]).

We now prove strong convergence of a new inexact iteration method is for an uncountable
family of nonexpansive mappings.
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Theorem 3.3 Let X be a reflexive Banach space whose norm is uniformly Gâteaux differ-
entiable and let C be a nonempty, closed and convex subset of X. Let T = {Tt : t > 0} be a
family of nonexpansive mappings from C into itself such that F(T ) �= ∅. Let S = {Sn : n ∈ N}
be a sequence of nonexpansive mappings from C into itself such that T has the property (A )
with respect to the family S and F(T ) ⊆ F(S). Assume that the family T has a common fixed
point in every weakly compact, convex and T −invariant subset of C. For any u, x1 ∈ C, let
{xn} be a sequence in C generated by

{
yn = (1 − δn)u + δnPen, n ∈ N,

xn+1 = (1 − λn)xn + λn Sn xn + λnθn(yn − xn),
(3.4)

where {λn}, {θn} and {δn} are three sequences of real numbers in (0, 1] with λn(1 + θn) ≤
1, {en} is an error sequence in X and P is a retraction from X onto C. Assume that {Pen} is
bounded and that the following conditions hold,

(C1) limn→∞ θn = 0;
(C2) limn→∞ λn/θn = 0;
(C3)

∑∞
n=1 λnθn = ∞;

(C4) limn→∞ |θn−1 − θn |/(λnθ
2
n ) = 0;

(C5) limn→∞ δn = 0.

Define

Eu =
{

z ∈ C : z = θn

1 + θn
u + 1

1 + θn
Snz, n ∈ N

}
. (3.5)

Assume that the following condition holds:

(C6) limn→∞ DEu (Sn, Sn−1)/(λnθ
2
n ) = 0.

Then {xn} converges strongly to Qu ∈ F(T ), where Q is a sunny nonexpansive retraction
from C onto F(T ).

Proof Let {bn} be a sequence in (0, 1/2] defined by bn = θn
1+θn

for all n ∈ N. Let {zn} be a
sequence in C implicitly defined by

zn =
(

1 − 1

1 + θn

)
u +

(
1

1 + θn

)
Snzn (3.6)

From Theorem 3.1 we know that there exists a sunny nonexpansive retraction Q : C → F(T )
such that zn → Q(u) as n → ∞.

Now the idea underlying the present proof is inspired by [21]. Firstly, we prove that {xn}
is bounded. Let d := ‖Q(u)− u‖ and σn := ‖xn − Q(u)‖. From (3.4), we have

σn+1 ≤ (1 − λn(1 + θn))‖xn − Q(u)‖ + λn‖Sn xn − Q(u)‖ + λnθn‖yn − Q(u)‖
≤ (1 − λn(1 + θn))σn + λn‖Sn xn − Sn Q(u)‖ + λnθn((1 − δn)d + δn‖Pen − Q(u)‖)
≤ (1 − λnθn)σn + λnθn(d + δn‖Pen − Q(u)‖).

From the boundedness of {Pen −Q(u)}, there is a constant K1 ≥ 0 such that ‖Pen −Q(u)‖ ≤
K1 for all n ∈ N. Thus,

σn+1 ≤ (1 − λnθn)σn + λnθn(d + K1)

≤ max{σn, d + K1}
≤ max{σ1, d + K1}.
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Since {xn}, {Sn xn} and {yn} are bounded, we have

‖xn+1 − xn‖ = ‖(1 − λn(1 + θn))xn − xn + λn Sn xn + λnθn yn‖
≤ λn(‖Sn xn‖ + (1 + θn)‖xn‖ + θn‖yn‖)
≤ λn K2 (3.7)

for all n ∈ N and for some K2 > 0. From (3.7), we have

lim
n→∞ ‖xn+1 − xn‖ = 0.

Now, we will prove that {xn} converges to Q(u). From (3.6) that

θn(u − zn) = zn − Snzn . (3.8)

Set B := {zn}, γn = ‖xn+1 − zn‖ and

εn = ‖zn − zn−1‖(2‖xn − zn−1‖ + ‖zn − zn−1‖)+ 2λnθn‖xn+1 − xn‖‖xn+1 − zn‖
+ 2λnθnδn‖u − Pen‖‖xn+1 − zn‖ + 4λn‖xn+1 − xn‖‖xn+1 − zn‖.

We now claim that

lim
n→∞

εn

λnθn
= 0.

We infer that

εn

λnθn
= ‖zn − zn−1‖

λnθn
(2‖xn − zn−1‖ + ‖zn − zn−1‖)+ 2‖xn+1 − xn‖‖xn+1 − zn‖

+ 2δn‖u − Pen‖‖xn+1 − zn‖ + 4
‖xn+1 − xn‖‖xn+1 − zn‖

θn
. (3.9)

Since Sn is nonexpansive, it is well known that I − Sn is an accretive operator, i.e., for any
x, y and r > 0 it holds

‖x − y‖ ≤ ‖x − y + 1

r
((I − Sn)x − (I − Sn)y)‖.

Then we have

‖zn − zn−1‖ ≤
∥∥∥∥zn − zn−1 + 1

θn
((zn − Snzn)− (zn−1 − Snzn−1))

∥∥∥∥

≤
∥∥∥∥zn − zn−1 + 1

θn
((zn − Snzn)− (zn−1 − Sn−1zn−1))

∥∥∥∥

+ 1

θn
‖Snzn−1 − Sn−1zn−1‖.

It follows from (3.8) that

‖zn − zn−1‖ ≤ |θn−1 − θn |
θn

‖zn−1 − u‖ + 1

θn
DB(Sn, Sn−1).

We get from limn→∞ |θn−1−θn |
λnθ2

n
= 0 and Condition (C6) that

lim
n→∞

‖zn − zn−1‖
λnθn

= 0.
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Moreover, from (3.7) we obtain

‖xn+1 − xn‖‖xn+1 − zn‖
θn

≤ K2 sup
k∈N

‖xk+1 − zk‖λn

θn
→ 0 as n → ∞,

since limn→∞ λn/θn = 0. Hence, from (3.9), we obtain

lim
n→∞

εn

λnθn
= 0.

Note that

yn = (1 − δn)u + δnPen,

and hence from (3.8) we get

θn(yn − zn)− (zn − Snzn) = θnδn(Pen − u).

From Lemma 2.6 we have

‖xn+1 − zn‖2 = ‖(1 − λn)xn + λn Sn xn + λnθn(yn − xn)− zn‖2

≤ ‖xn − zn‖2 + 2〈(1 − λn)xn + λn Sn xn

+ λnθn(yn − xn)− xn, J (xn+1 − zn)〉
= ‖xn − zn‖2 + 2〈λnθn(zn − xn+1 + xn+1 − zn)− λn xn

+ λn Sn xn + λnθn(yn − xn), J (xn+1 − zn)〉
and hence

‖xn+1 − zn‖2 ≤ ‖xn − zn‖2 − 2λnθn‖xn+1 − zn‖2

+ 2λn〈θn(xn+1 − zn)− (xn − Sn xn)

+ θn(yn − xn), J (xn+1 − zn)〉
= ‖xn − zn‖2 − 2λnθn‖xn+1 − zn‖2

+ 2λn〈θn(xn+1 − xn)+ θn(yn − zn)− (zn − Snzn)

+ (zn − Snzn)− (xn+1 − Sn xn+1)

+ (xn+1 − Sn xn+1)− (xn − Sn xn), J (xn+1 − zn)〉.
From the nonexpansivity of Sn, we obtain

‖xn+1 − zn‖2 ≤ ‖xn − zn‖2 − 2λnθn‖xn+1 − zn‖2

+ 2λnθn‖xn+1 − xn‖‖xn+1 − zn‖
+ 2λnθnδn‖u − Pen‖‖xn+1 − zn‖
+ 4λn‖xn+1 − xn‖‖xn+1 − zn‖,

which leads to

‖xn+1 − zn‖2 ≤ (‖xn − zn−1‖ + ‖zn−1 − zn‖)2 − 2λnθn‖xn+1 − zn‖2

+ 2λnθn‖xn+1 − xn‖‖xn+1 − zn‖
+ 2λnθnδn‖u − Pen‖‖xn+1 − zn‖
+ 4λn‖xn+1 − xn‖‖xn+1 − zn‖.

The previous inequality can be written as

γ 2
n ≤ γ 2

n−1 − 2λnθnγ
2
n + εn .
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Now, from Lemma 2.9, we deduce

lim
n→∞ ‖xn+1 − zn‖ = lim

n→∞ γn = 0.

From Theorem 3.1, we know that zn → Q(u) as n → ∞ and so xn → Q(u) as required.
��

Corollary 3.4 Let X be a reflexive Banach space with a uniformly Gâteaux differentiable
norm, let C be a nonempty, closed and convex subset of X which has the fixed-point property
for nonexpansive mappings and let P be a retraction from X onto C. Let T : C → C be a
nonexpansive mapping with F(T ) �= ∅ and let {λn}, {θn} and {δn} be three sequences of real
numbers in (0, 1] with λn(1 + θn) ≤ 1 satisfying Conditions (C1)–(C5) of Theorem 3.3. For
any u, x1 ∈ X, let {xn} be a sequence in C generated by

xn+1 = (1 − λn(1 + θn))xn + λnT xn + λnθn((1 − δn)u + δnPen),

where {en} is an error sequence in X such that {Pen} is bounded. Then {xn} converges
strongly to Qu ∈ F(T ), where Q is a sunny nonexpansive retraction from C onto F(T ).

Now, let X be a strictly convex Banach space and let T = {Tn} be an infinite family
of nonexpansive mappings from a nonempty, closed and convex subset C of X into itself
with F(T ) �= ∅. Let {λn}, {θn} and {δn} be three sequences of real numbers in (0, 1] with
λn(1 + θn) ≤ 1 satisfying condition conditions (C1)–(C5) and let {βn,k} be a family of
nonnegative numbers with indices n, k ∈ N with k ≤ n such that

∑n
k=1 βn,k = 1 for each

n ∈ N.
We now construct an auxiliary sequence of nonexpansive mappings S = {Sn} as follows:

For x ∈ C ,

Sn x =
n∑

k=1

βn,k Tk x, n ∈ N. (3.10)

Then from the condition
∑n

k=1 βn,k = 1, each Sn is also a nonexpansive mapping of C into
itself such that ∩k∈N F(Tk) ⊆ ∩n∈N F(Sn).

Theorem 3.5 Let X be a reflexive Banach space whose norm is uniformly Gâteaux differ-
entiable and let C be a nonempty, closed and convex subset of X. Let T = {Tn} be an infinite
family of nonexpansive mappings from C into itself with F(T ) �= ∅. Assume that the family
T has a common fixed point in every weakly compact, convex and T −invariant subset of
C. Let {λn}, {θn} and {δn} be three sequences of real numbers in (0, 1] with λn(1 + θn) ≤ 1
satisfying Conditions (C1)–(C5) of Theorem 3.3 and let {βn,k} be a family of nonnegative
numbers with indices n, k ∈ N with k ≤ n such that

(B1)
∑n

k=1 βn,k = 1 for each n ∈ N;
(B2) limn→∞ 1

λnθ2
n

∑n−1
k=1 |βn−1,k − βn,k | = 0.

Suppose that S = {Sn} be a sequence of nonexpansive mappings defined in (3.10) and that
T has the property (A ) with respect to S. For any u, x1 ∈ C, let {xn} be a sequence in C
generated by (3.4), where {en} is an error sequence in X and P is a retraction from X onto
C. Assume that {Pen} is bounded. Then {xn} converges strongly to Qu ∈ F(T ), where Q is
a sunny nonexpansive retraction from C onto F(T ).
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Proof Noticing that the set Eu defined by (3.5) is in B(C). Let K ∗ = sup{‖Tnz‖ : z ∈
Eu and n ∈ N}. By using argument of [3], we see that

DEu (Sn, Sn+1) ≤ 2
n∑

k=1

∣∣βn,k − βn+1,k
∣∣ K ∗.

From the condition (B2), we obtain limn→∞ DEu (Sn, Sn−1)/(λnθ
2
n ) = 0. Therefore, Theo-

rem 3.5 follows from Theorem 3.3. ��
Remark 3.6 In view of [12], some convergence theorems are established in [3,51] under the
following assumptions:

(i)
∑n

k=1 βn,k = 1 for each n ∈ N;
(ii) limn→∞ βn,k > 0 for each k ∈ N;

(iii)
∑∞

n=1
∑n

k=1 |βn+1,k − βn,k | < ∞.

4 Applications

4.1 Zeros of accretive operators

In the general setting of Banach spaces, let A ⊂ X × X be an operator on the Banach space
X . The set D(A) defined by D(A) = {x ∈ X : Ax �= ∅} is called the domain of A, the set
R(A) defined by R(A) = ⋃

x∈X Ax is called the range of A and the set G(A) defined by
G(A) = {(x, y) ∈ X × X : x ∈ D(A), y ∈ Ax} is called the graph of A. A zero (or root) of
A is a point z ∈ D(A) such that 0 ∈ Az. We denote by A−10 the zeros set of A. An operator
A ⊂ X × X is said to be

(1) accretive if, for each xi ∈ D(A) and yi ∈ Axi (i = 1, 2), there is j ∈ J (x1 − x2) such
that 〈y1 − y2, j〉 ≥ 0;

(2) maximal accretive if it is accretive and the inclusion G(A) ⊆ G(B), with B accretive,
implies G(A) = G(B);

(3) m-accretive if A is accretive and R (I + μA) = X for any μ > 0.

If A is an m-accretive operator, A has no proper accretive extension. However, not every
maximal accretive operator is m-accretive.

An accretive operator A defined on a Banach space X is said to satisfy the range condition
if D(A) ⊂ R(I + λA) for all λ > 0, where D(A) denotes the closure of the domain of A. If
A is an accretive operator, the resolvent of A defined for each λ > 0, as the nonexpansive sin-
gle-valued mapping J A

λ : R(I +λA) → D(A) by J A
λ = (I +λA)−1. It is well known that for

an accretive operator A which satisfies the range condition, A−1(0) = F(J A
λ ) for all λ > 0.

The Yosida approximation Ar defined by Ar = (I − J A
r )/r . We know that Ar x ∈ AJ A

r x for
all x ∈ R(I + r A) and ‖Ar x‖ ≤ |Ax | = inf{‖y‖ : y ∈ Ax} for all x ∈ D(A) ∩ R(I + r A).

Accretive operators were introduced independently in 1967 by Browder [11] and Kato
[36]. Interest in such maps stems mainly from their firm connection with evolution equations.
It is known (see, e.g., [62]) that many physically significant problems can be modeled by
initial-value problems of the form

x ′(t)+ Ax(t) = 0, x(0) = x0, (4.1)

where A : X → X is an accretive operator in an appropriate Banach space. Typical exam-
ples where such evolution equations occur can be found in the heat, wave or Schr̈odinger
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equations. The solutions of the problem

find z ∈ X such that Az = 0

are precisely the equilibrium points of the system (4.1). Consequently, considerable research
efforts have been devoted, especially within the past 25 years or so, to iterative methods for
approximating these equilibrium points.

In case of a Hilbert space H , accretive operators are also called monotone. An interesting
fact is that a monotone operator A on H is maximal if and only if R(I + A) = H . This was
originally due to Minty [43] who provided a crucial characterization of maximal monotone
operators. The best-known example of maximal monotone operator is the subgradient map-
ping ∂ψ of a closed, proper and convex function ψ : H → R∪{∞} (see for instance, [48]).
In the case that A is the subdifferential map ∂ψ of a convex function ψ, A−10 is the set of
all global minima of ψ . In this paper, we study a more general situation.

Given an accretive operator A ⊂ X × X , we consider the following problem

find z ∈ X such that 0 ∈ Az. (P)

The Problem (P) can be regarded as a unified formulation of several important problems.
For an appropriate choice of the operator A, Problem (P) covers a wide range of mathe-
matical applications; for example, variational inequalities, complementarity problems and
non-smooth convex optimization. Problem (P) has applications in physics, economics and
in several areas of engineering. Therefore, one of the most interesting and important prob-
lems in the theory of maximal monotone operators is to find an efficient iterative algorithm
to compute approximately zeroes of maximal monotone operators. One method for finding
zeros of maximal monotone operators is the proximal point algorithm. Let A be a maximal
monotone operator in a Hilbert space H . The proximal point algorithm generates, for starting
x1 ∈ H , a sequence {xn} in H by

xn+1 = J A
rn

xn (4.2)

where {rn} is a regularization sequence in (0,∞). Note that (4.2) is equivalent to

0 ∈ 1

rn
(xn+1 − xn)+ Axn+1.

This method was first introduced by Martinet [42]. If ψ : H → R ∪ {∞} is a proper, lower
semicontinuous and convex function, then the algorithm reduces to

xn+1 = argminy∈H {ψ(y)+ 1

2rn
‖xn − y‖2}

Rockafellar [49] studied the proximal point algorithm in the framework of Hilbert space and
he proved the following result.

Theorem 4.1 Let H be a Hilbert space and let A ⊂ H × H be a maximal monotone opera-
tor. Let {xn} be a sequence in H defined by (4.2), where {rn} is a sequence in (0,∞) such that
lim infn→∞ rn > 0. If A−10 �= ∅, then the sequence {xn} converges weakly to an element of
A−10.

Güler [31] constructed a counterexample showing that the sequence generated by (4.2)
does not converge strongly, in general. This brings us a natural question on how to modify
the proximal point algorithm so that strongly convergence is guaranteed. Recently, motivated
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by Halpern [33], some authors (see, for examples Benavides, Acedo and Xu [7], Kamimura
and Takahashi [35], Mainge [39], Marino and Xu [41], Takahashi and Ueda [54] and Nakajo
[45]) modified the proximal point algorithm to generate strongly convergent sequences.

However, as pointed out in Eckstein [26], this ideal form of the proximal point method
is often impractical, since in many cases the exact iteration (4.2) may require a computation
as difficult as solving the original Problem (P). Rockafellar [49] has given a more practical
method which is an inexact variant of the method

en ∈ xn − xn−1 + rn Axn,

where {en} is an error sequence. The method is called inexact proximal point algorithm. It
was shown in Rockafellar [49] that if en → 0 quickly enough such that

∑∞
n=1 ‖en‖ < ∞,

then xn ⇀ z ∈ H with 0 ∈ A(z). In 2002, Xu [57] modified the proximal point algorithm
for solving Problem (P) and proved strong convergence of the algorithm in a Hilbert space
under the same assumption

∑∞
n=1 ‖en‖ < ∞.

The criteria
∑∞

n=1 ‖en‖ < ∞ imposed for convergence of inexact proximal point algo-
rithms is somewhat undesirable, because it impose increasing precision along the iterative
process. This brings us to the following natural question,

Question 4.2 Is it possible to further modify inexact proximal point algorithm without the
assumption

∑∞
n=1 ‖en‖ < ∞, so that it can generate a strongly convergent sequence in

Banach space setting?

Recently, Sahu and Yao [53] introduced and studied the prox-Tikhonov method for solving
Problem (P) in Banach space and they partially answered Question 4.2.

Before pressing our results, we need the following:

Proposition 4.3 (cf. [55]) Let X be a Banach space X and let A ⊂ X × X be an accretive
operator satisfying the range condition, i.e., D(A) ⊂ R(I + t A) for all t > 0. Then

1

r
‖Jt x − J A

r J A
t x‖ ≤ 1

t
‖x − J A

t x‖ f or all x ∈ R(I + r A) and r, t > 0.

Lemma 4.4 (cf. [56, Corollary 3.4]) Let X be a reflexive Banach space with a uniformly
Gâteaux differentiable norm, C be a nonempty, closed and convex subset of X and let
A ⊂ X ×X be an accretive operator such that A−10 �= ∅ and D(A) ⊂ C ⊂ ⋂

t>0 R(I +t A).
Suppose that every closed, convex and bounded subset of C has the fixed point property for
nonexpansive self-mappings. Then we have the following

(a) for each x ∈ C, {Jt x} converges strongly to Qx as t → ∞, where Q is the sunny
nonexpansive retraction from C onto A−10,

(b) the set A−10 is a sunny nonexpansive retract of C.

The following proposition shows that for an accretive operator A, the family {J A
t : t > 0}

of resolvent operators enjoys property (A ).

Proposition 4.5 Let C be a nonempty, closed and convex subset of a Banach space X and
let A ⊂ X × X be an accretive operator such that D(A) ⊂ C ⊂ ⋂

t>0 R(I + t A). Then:

(a) The family {J A
t : t > 0} of resolvent operators enjoys property (A ).

(b) If {tn} is a sequence in (0,∞) such that inf{tn : n ∈ N} > 0, then the family {J A
t : t >

0} of resolvent operators enjoys property (A ) with respect to the sequence {J A
tn : n ∈

N}.
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(c) For λ,μ > 0 and B ∈ B(C), it holds:

DB(J
A
λ , J A

μ ) ≤ |λ− μ|
λ

sup
x∈B

‖x − J A
λ x‖ for all x ∈ B.

Proof (a) Let r > 0 and let {zt }t>0 ∈ B(C) such that ‖zt − J A
t zt‖ → 0 as t → ∞. From

Proposition 4.3, we have

1

r
‖J A

t zt − J A
r J A

t zt‖ ≤ 1

t
‖zt − J A

t zt‖. (4.3)

Using (4.3), we have

‖zt − J A
r zt‖ ≤ ‖zt − J A

t zt‖ + ‖J A
t zt − J A

r J A
t zt‖ + ‖J A

r J A
t zt − J A

r zt‖
≤

(
1 + r

t

)
‖zt − J A

t zt‖ + ‖J A
t zt − zt‖ → 0 as t → ∞.

(b) Assume that {tn} is a sequence in (0,∞) such that inf{tn : n ∈ N} > 0. Let r > 0 and
let {zn} be a bounded sequence in C such that ‖zn − J A

tn zn‖ → 0 as n → ∞. From
Proposition 4.3, we have

‖zn − J A
r zn‖ ≤ ‖zn − J A

tn zn‖ + ‖J A
tn zn − J A

r J A
tn zn‖ + ‖J A

r J A
tn zn − J A

r zn‖
≤ 2‖zn − J A

tn zn‖ + ‖J A
tn zn − J A

r J A
tn zn‖

≤ 2‖zn − J A
tn zn‖ + r

tn
‖zn − J A

tn zn‖.

Since inf{tn : n ∈ N} > 0 and ‖zn − J A
tn zn‖ → 0 as n → ∞, we obtain ‖zn − J A

r zn‖ →
0 as n → ∞.

(c) Let λ,μ > 0 and B ∈ B(C). From [3,55] and x ∈ B, we have

‖J A
λ x − J A

μ x‖ ≤ |λ− μ|
λ

‖x − J A
λ x‖. (4.4)

It follows from (4.4), we have

DB(J
A
λ , J A

μ ) ≤ |λ− μ|
λ

sup
x∈B

‖x − J A
λ x‖.

��
Theorem 4.6 Let X be a reflexive Banach space with a uniformly Gâteaux differentiable
norm and let C be a closed and convex subset of X. Let A ⊂ X × X be an accretive operator
with resolvent J A

t for t > 0 such that A−10 �= ∅ and D(A) ⊂ C ⊂ ⋂
t>0 R(I + t A). For

t > 0, assume that J A
t has a fixed point in every weakly compact, convex and J A

t -invariant
subset of C. Then we have the following

(a) for each fixed u ∈ C, the unique fixed point yn ∈ C of the contraction C � y 
→
bnu + (1 − bn)J A

tn y converges strongly as n → ∞ to Q(u), where Q is a sunny
nonexpansive retraction from C onto A−10, {tn} is a sequence in (0,∞) and {bn} is a
sequence in (0, 1) with bn → 0 as n → ∞.

(b) The set A−10 is a sunny nonexpansive retract of C.

Proof Theorem 4.6 follows from Theorem 3.1. ��
Remark 4.7 The conclusion of Theorem 4.6 slightly differs from that of Lemma 4.4.
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Theorem 4.8 Let X be a reflexive Banach space with a uniformly Gâteaux differentia-
ble norm, let C be a nonempty, closed and convex subset of X and let P be a retrac-
tion from X onto C. Let A ⊂ X × X be an accretive operator such that A−10 �= ∅ and
D(A) ⊂ C ⊂ ⋂

t>0 R(I + t A). For t > 0, assume that J A
t has a fixed point in every weakly

compact, convex and J A
t -invariant subset of C. Let {λn}, {θn} and {δn} be three sequences

of real numbers in (0, 1] with λn(1 + θn) ≤ 1 satisfying the Conditions (C1)–(C5) of Theo-
rem 3.3. For any u, x1 ∈ C, let {xn} be a sequence in C generated by

{
yn = (1 − δn)u + δnPen, n ∈ N,

xn+1 = (1 − λn)xn + λn J A
tn xn + λnθn(yn − xn),

where {en} is an error sequence in X and {tn} is a sequence in (0,∞) such that inf{tn :
n ∈ N} > 0 and limn→∞ |tn − tn−1|/(λnθ

2
n ) = 0. Assume that {Pen} is bounded. Then {xn}

converges strongly to Qu ∈ A−10, where Q is a sunny nonexpansive retraction from C onto
A−10.

Proof Let {bn} be a sequence in (0, 1/2] defined by bn = θn
1+θn

for all n ∈ N and let {zn} be

a sequence in C defined by zn = (1 − bn)u + bn J A
tn zn . Proposition 4.5 (b) implies that the

family J A := {J A
t : t > 0} satisfies the property (A ) with respect S A := {J A

tn : n ∈ N}.
Noticing that F(J A) = F(S A) = A−10. It follows from Theorem 3.1 that there exists a
sunny nonexpansive retraction Q : C → A−10 such that zn → Q(u) as n → ∞. Set
Sn := J A

tn and B = {zn}. We now show that the Condition (C6) holds. From Proposition 4.5
(c), we get that

DB(Sn, Sn−1) ≤ |tn − tn−1|
tn

sup
zn∈B

‖zn − J A
tn−1

zn‖

≤ |tn − tn−1|
tn

sup
zn∈B

(‖zn − Q(u)‖ + ‖J A
tn−1

zn − Q(u)‖)

≤ |tn − tn−1|
tn

sup
k∈N

(2‖zk − Q(u)‖).

By assumption, we conclude that DB(Sn, Sn−1)/(λnθ
2
n ) → 0 as n → ∞. Therefore, Theo-

rem 4.8 follows from Theorem 3.3. ��

Remark 4.9 An example of the sequences {λn}, {θn} and {δn} which satisfy the hypotheses
of Theorem 4.8 is

λn = 1

n2/3 , θn = 1
n1/6 and δn = 1

n
.

Remark 4.10 (i) Theorem 4.8 provides an algorithm for finding solutions of the problem:

find z ∈ X such that 0 ∈ A(z) ∩ C.

(ii) We suspect, although we have no proof, that property (A ) for the family {Sn} is granted
by the fact that {J A

t } does satisfy such property.
(iii) The assumption “acceptably” paired for the sequences {λn} and {θn} are used the for

finding zeros of accretive operators in [9,13,50]. In our results the sequences {λn} and
{θn} are not necessarily acceptably paired.
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4.2 Minimization

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let
ψ : H → R ∪ {∞} be a proper, lower semicontinuous and convex function, where H is an
Hilbert space. The subdifferential ∂ψ of ψ is defined by

∂ψ(z) = {w ∈ H : f (y) ≥ f (z)+ 〈y − z, w〉, y ∈ H}
If A = ∂ψ , then A is a maximal monotone operator (see, Rockafellar [48, Theorem 4]). We
also know that

(i) 0 ∈ Av if and only if v = argminz∈H f (z),
(ii) J A

t x = argminz∈H {ψ(z)+ ‖z − x‖2/2t} for all t > 0 and x ∈ H.

As direct a consequence of Theorem 3.1, we obtain the following result.

Theorem 4.11 Let H be a Hilbert space and let ψ : H → R ∪ {∞} be a proper, lower
semicontinuous and convex function with (∂ψ)−10 �= ∅. Let A = ∂ψ. Then for each fixed
u ∈ H and any sequence {bn} in (0, 1) such that bn → 0 as n → ∞, the sequence {yn}
defined as

yn = bnu + (1 − bn)zn,

where {tn} is a sequence in (0,∞) and zn = argminz∈H {ψ(z)+‖z− yn‖2/2tn} for all n ∈ N,
strongly converges to PA−1(0)(u).

4.3 Split feasibility problems

Let C be a nonempty, closed and convex subset of real Hilbert space H and let A : C → H
be a nonlinear operator. We say that A is

(a) η-strongly monotone if there exists a constant η > 0 such that

〈Ax − Ay, x − y〉 ≥ η‖x − y‖2 for all x, y ∈ C,

(b) ν-inverse strongly monotone (ν-ism) if there exists a constant ν > 0 such that

〈Ax − Ay, x − y〉 ≥ ν‖Ax − Ay‖2 for all x, y ∈ C.

Recall that a mapping T in a Hilbert space H is said to be averaged if T can be written as
(1 − α)I + αS, where α ∈ (0, 1) and S is nonexpansive on H .
Construction of fixed points of nonexpansive operators is an important subject in the theory
of nonexpansive operators and its applications in a number of applied areas, in particular,
in image recovery and signal processing (see, e.g., [15,47,60,61]).
For instance, split feasibility problem (SFP) was first introduced by Censor and Elfving
[16] in finite dimensional Hilbert spaces and finds applications in medical image recon-
struction [14] and to model the intensity-modulated radiation therapy [17–20]. Iterative
algorithms for approaching solutions for the SFP in infinite-dimensional Hilbert spaces,
had been recently studied by Xu in [59].
The SFP is formulated as follows:

find a point x ∈ C such that Ax ∈ Q, (4.5)

here C is a closed and convex subset of a Hilbert space H1, Q is a closed and convex
subset of another Hilbert space H2 and A : H1 → H2 is a bounded linear operator. The
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SFP is said to be consistent if (4.5) has a solution. It is easy to see that SFP is consistent
if and only if the following fixed point problem has a solution:

find x ∈ C such that x = PC (I − γ A∗(I − PQ)A)x, (4.6)

where PC and PQ are the orthogonal projections onto C and Q, respectively; γ > 0, and
A∗ is the adjoint of A. Note that for sufficient small γ > 0, the operator PC (I −γ A∗(I −
PQ)A) is nonexpansive. Set q(x) := 1

2‖Ax − PQ Ax‖2 for all x ∈ C .
Consider the minimization problem:

find z ∈ C such that z ∈ min
x∈C

q(x).

From [4], the gradient of q is

∇q = A∗(I − PQ)A.

Since I − PQ is nonexpansive, it follows that ∇q is L-Lipschitzian with L = ‖A‖2.
Therefore, ∇q is 1/L − ism (cf. [4]) and for any 0 < γ < 2/L , I − γ∇q is averaged.
Therefore, the composite PC (I − ∇q) is also averaged. Set T := PC (I − ∇q). Note that
solution set of SFP(4.5) is denoted by F(T ).

It is well known that the sequence {T n x} of iterates of nonexpansive operator T at a point
x ∈ C may, in general, not behave well. This means that it may not converge (even in the
weak topology). One way to overcome this difficulty is to use the Krasnoselskii-Mann (KM)
iteration method (see, [15]) that produces a sequence {xn} via the recursive manner:

xn+1 = (1 − αn)xn + αnT xn,

where the initial guess x1 ∈ C is chosen arbitrarily. It is worth noting that the KM iteration
process is a well known process for finding fixed points of nonexpansive operators (see,
[15]) and it is further developed in a general context in [58]. See also [52] for improved
convergence results.

We now apply the result established in Sect. 3 for finding solutions of SFP (4.5).

Theorem 4.12 Assume that SFP(4.5) is consistent. Let {λn}, {θn} and {δn} be three sequences
in (0, 1] with λn(1 + θn) ≤ 1 satisfying the Conditions (C1)–(C5) of Theorem 3.3. For any
u, x1 ∈ H, let {xn} be a sequence in H generated by

xn+1 = (1 − λn(1 + θn))xn + λn PC (I − γ∇q)xn + λnθn((1 + δn)u + δnen), n ∈ N,

where 0 < γ < 2/L and {en} is a bounded error sequence in H. Then {xn} converges
strongly to the solution of SFP(4.5) nearest to u.

Proof Since T := PC (I −λ∇q) is nonexpansive, Theorem 4.12 follows from Corollary 3.4.
��

4.4 Equilibrium problems

Let H be a Hilbert space and let G : H × H → R be an equilibrium function, that is

G(u, u) = 0 for every u ∈ H.

The equilibrium problem is defined by

find x̃ ∈ H such that G(x̃, y) ≥ 0 for all y ∈ H.

123



1648 J Glob Optim (2013) 56:1631–1651

A solution x̃ of the equilibrium problem is called an equilibrium point and the set of all
equilibrium points will be denoted by E P(G). The topic has been considered by several
authors (see, for instance, [2,8–10,28,46]) with the purpose of extending results concerning
particular problems to more general settings. We assume some mild conditions over G in such
a way that the results can be applied in several cases including optimization problems, fixed
point problems, variational problems, variational inequality problems, and convex vector
minimization problems [24,34].

Lemma 4.13 (cf. [24]).Let C be a nonempty, closed and convex subset of H and assume
that G : C × C → R satisfy

(A1) for all x ∈ C,G(x, x) = 0;
(A2) G is monotone, i.e. G(x, y)+ G(y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim sup G(t z + (1 − t)x, y) ≤ G(x, y) as t → 0;
(A4) for all x ∈ C, y 
→ G(x, y) is convex and lower semicontinuous.

For x ∈ H and r > 0, set Sr : H → C to be the resolvent of G,

Sr (x) :=
{

z ∈ C : G(z, y)+ 1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
,

then Sr is well defined and the following hold:

(1) Sr is single-valued;
(2) Sr is firmly nonexpansive, i.e.,

‖Sr x − Sr y‖2 ≤ 〈Sr x − Sr y, x − y〉,
for all x, y ∈ H ;

(3) F(Sr ) = E P(G);
(4) E P(G) is closed and convex.

Lemma 4.14 (cf. [40]) For any fixed x ∈ H and t, r > 0 it holds

‖St x − Sr St x‖ ≤
(

1 +
∣∣∣∣
t − r

t

∣∣∣∣

)
‖x − St x‖.

From this, we deduce the property (A ).

Lemma 4.15 Let G be an equilibrium function satisfying the assumptions of Lemma 4.13.
Then the family {St : t > 0} enjoys the property (A ).

Proof Let {zt } ∈ B(H) such that zt − St zt → 0. Then, for any fixed r > 0,

‖zt − Sr zt‖ ≤ ‖zt − St zt‖ + ‖St zt − Sr St zt‖ + ‖Sr St zt − Sr zt‖
≤

(
3 +

∣∣∣∣
t − r

t

∣∣∣∣

)
‖zt − St zt‖

by the nonexpansivity and Lemma 4.14. In particular, we get

lim
t→∞ ‖zt − Sr zt‖ = 0.

��
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Similarly, we have

Lemma 4.16 Let G be an equilibrium function satisfying the assumptions of Lemma 4.13
and let {tn} be a sequence in (0,∞). Then the family {St : t > 0} enjoys property (A ) with
respect the sequence {Stn : n ∈ N}.
Theorem 4.17 Let H be a Hilbert space. Let G : H × H → R be an equilibrium function
satisfying the assumptions of Lemma 4.13. Let {λn}, {θn} and {δn} be three sequences of real
numbers in (0, 1] with λn(1 + θn) ≤ 1 satisfying the Conditions (C1)–(C5) of Theorem 3.3.
Let {Stn } be a family of resolvent operators for G, where {tn} is a sequence in (0,∞) such
that inf{tn : n ∈ N} > 0 and limn→∞ |tn − tn−1|/(λnθ

2
n ) = 0. For any u, x1 ∈ H, let {xn}

be a sequence in H generated by
{

yn = (1 − δn)u + δnen, n ∈ N,

xn+1 = (1 − λn)xn + λn Stn xn + λnθn(yn − xn),

where {en} is a bounded error sequence in H. Then {xn} converges strongly to PE P(G)(u).

Proof Note that the family {St : t > 0} enjoys the property (A ) with respect the sequence
{Stn : n ∈ N} by Lemma 4.16. Moreover, from Lemma 4.13 (3), we get that F(Stn ) =⋂

k F(Stk ) for any n ∈ N.

To proceed as in Theorem 4.8, we have only to show that

‖Stn x − Stn−1 x‖ ≤ |tn − tn−1|
tn

(‖Stn x‖ + ‖x‖), x ∈ H.

This last inequality had been implicitly proved in [22, Lemma 5]. ��
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ON THE CONVERGENCE OF APPROXIMANTS OF PSEUDO-CONTRACTIVE

SEMIGROUPS IN BANACH SPACES

D. R. SAHU, V. COLAO, AND G. MARINO

Abstract. The purpose of this paper is to estabilish some results on the convergence of approxi-
mated fixed point sequences for uniformly lipschitzian semigroups of pseudo-contractive mappings.

1. Introduction

Let X be a Banach space and let C be a nonempty, closed and convex subset of X. Let T : C → C
be a mapping, we denote by the symbol F (T ) := {x ∈ C : Tx = x} the set of fixed points for T and
by k(T ) we denote, whenever it exists, the Lipschitz constant defined by

k(T ) := inf{k ∈ [0,∞) : ‖Tx− Ty‖ ≤ k‖x− y‖for all x, y ∈ C}.
We recall that T is called

(1) L−lipschitzian if k(T ) = L <∞,
(2) nonexpansive if k(T ) = 1 and
(3) contraction if k(T ) < 1.

One classical method to approximate fixed points for a nonexpansive mapping T is by passing through
fixed points of particular contractive mappings.
More precisely, for a fixed element u ∈ C, define for each t ∈ (0, 1), a contraction Gt by Gtx =
tu+ (1− t)Tx for all x ∈ C. Let xt be the fixed point of Gt, i.e.,

(1.1) xt = tu+ (1− t)Txt.
Browder [2] proved that xt strongly converges, as t → 0, to a fixed point of the mapping T, in the
setting of Hilbert spaces. Later, Reich [12] extended the result to uniformly smooth Banach spaces.
Similarly, many authors have studied the behaviour of the approximants {xε} defined by

0 = εRxε + (1− ε)(I − T )xε.

for nonexpansive self-mappings T in Banach spaces, where R = I−A and A : C → C is a contraction
mapping. In [6], Gwinner proved strong convergence of inexact approximants {ỹn} in a uniformly
convex Banach space as follows:

Theorem 1.1. Let X be a uniformly convex Banach space with a weakly sequentially continuous
duality mapping J : X → X∗. Let C be a nonempty closed convex subset of X and T : C → C
a nonexpansive with F (T ) 6= ∅. Let R : C → X be a continuous, bounded operator. Suppose R is
strongly φ-accretive. Let {bn} be a sequence in (0, 1) and let {δn} be a sequence in (0,∞) such that
limn→∞ bn = limn→∞

δn
bn

= 0. If the approximate solutions ỹn ∈ C satisfy

(1.2) ‖bnRỹn + (1− bn)(I − T )ỹn‖ ≤ δn for all n ∈ N,
then {ỹn} converges strongly to an element y∗ ∈ F (T ) which uniquely solves the variational inequality:

〈Ry∗, J(y∗ − v)〉 ≤ 0 for all v ∈ F (T ).(1.3)

Let R+ be the set of nonnegative real numbers and let F := {T (t) : t ∈ R+} be a one-parameter
family of mappings from C to itself. F is said to be a strongly continuous semigroup of mappings if

Mathematics subject classification: 47H09, 47H10

Key words and phrases: Φ-strongly accretive operator, Pseudo-contractive operators, Reflexive Banach spaces,
Uniformly Gâteaux differentiable norm.
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(i) T (0)x = x for all x ∈ C;
(ii) T (s+ t) = T (s)T (t) for all s, t ∈ R+;

(iii) for each x ∈ C, the mapping T (·)x from R+ into C is continuous.

Moreover, F is said to be an uniformly continuous semigroup of mappings, if condition (iii) holds
uniformly over any bounded subset of C.

We denote by F (F ) the set of all common fixed points of F , i.e., F (F ) :=
⋂
t∈R+ F (T (t)).

An interesting problem is to modify Browder’s result (1.1) to approximate a common fixed point
for a semigroup of nonexpansive mappings. Suzuki [15] proved the following implicit iteration process
in a Hilbert space.

Theorem 1.2. Let C be a nonempty closed convex subset of a Hilbert space H. Let F = {T (t) : t ∈
R+} be a strongly continuous semigroup of nonexpansive mappings from C into itself with F (F ) 6= ∅.
Let {bn} be a sequence in (0, 1) and {tn} a sequence in (0,∞) satisfying limn→∞ tn = limn→∞ bn/tn =
0. Fix u ∈ C and define a sequence {yn} by

(1.4) yn = bnu+ (1− bn)T (tn)yn for all n ∈ N.
Then {yn} converges strongly to the element of F (F ) nearest to u.

Xu [18] extended Suzuki’s result to uniformly convex Banach spaces with weakly sequentially
continuous duality mappings and he posed the following question. Can the iteration sequence (1.4)
provide the same result in Banach spaces that include the Lp spaces, 1 < p <∞?
To give a partial answer to the question, we deal with an important and widely studied generalization
of nonexpansive mappings, that is the class of pseudo-contractions. We say that a mapping T : C →
C is said to be

(1) pseudo-contractive if for all x, y in C, there exists j(x − y) in J(x − y) satisfying 〈Tx −
Ty, j(x− y)〉 ≤ ‖x− y‖2;

(2) φ-strongly pseudo-contractive if there exists a strictly increasing function φ : [0,∞)→ [0,∞)
with φ(0) = 0 such that for all x, y in C, there exists j(x − y) in J(x − y) satisfying 〈Tx −
Ty, j(x− y)〉 ≤ ‖x− y‖2 − φ(‖x− y‖)‖x− y‖;

(3) generalized Φ-pseudo-contractive (cf.[17]) if there exists a strictly increasing function Φ :
[0,∞) → [0,∞) with Φ(0) = 0 such that for all x, y in C, there exists j(x − y) in J(x − y)
satisfying 〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − Φ(‖x− y‖).

We remark that R = I − T is accretive (resp. φ-strongly accretive, uniformly accretive) if T is
pseudo-contractive (resp. φ-strongly pseudo-contractive, generalized Φ-pseudo-contractive), where I
is the identity operator.

Recently, applications of semigroups on the existence of solutions to certain partial differential
equations had been explored by Hester and Morales in [7]. They proved that the semigroup result
directly implies the existence of a unique global solution to a time evolution equation of the form
u′ = Au, where A is a combination of derivatives.
Our concern now is the following:

Problem 1.3. Does iteration process (1.4) provide the same result for Lipschitz pseudo-contractive
semigroups F even in uniformly convex spaces?

In this paper, we prove a version of Theorem 1.1 for a uniformly continuous semigroup of pseu-
docontractive mappings in a Banach space much more general than uniformly convex spaces. This
partially settles the open problem posed by Xu [18] and Problem 1.3.

2. Preliminaries

Throughout this paper, N denotes the set of natural numbers, X is a real Banach space, C is a
nonempty, closed and convex subset of X, X∗ is the dual space of X and J is the normalized duality
mapping from X to 2X

∗
defined by

J(x) := {j ∈ X∗ : 〈x, j〉 = ||x||2 = ||j||2},
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where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if X∗ is strictly convex,
then J is single-valued.

Recall that X is said to be smooth provided the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x and y in SX = {x ∈ X : ‖x‖ = 1}. In this case, the norm of X is said to be Gâteaux
differentiable and it is said to be uniformly Gâteaux differentiable if for each y ∈ S, this limit is
attained uniformly for x ∈ S. X is said to be uniformly smooth if the limit is attained uniformly for
x, y ∈ X. Classical examples of uniformly smooth Banach spaces are the Lp spaces, for 1 < p < ∞
(see e.g., [1, 4]).
Let {xn} be a bounded sequence in X. Consider the functional ra(·, {xn}) : X → R+ defined by

ra(x, {xn}) = lim sup
n→∞

‖xn − x‖, x ∈ X.

The infimum of ra(·, {xn}) over C is said to be the asymptotic radius of {xn} with respect to C and
is denoted by ra(C, {xn}). A point z ∈ C is said to be an asymptotic center of the sequence {xn}
with respect to C if

ra(z, {xn}) = inf{ra(x, {xn}) : x ∈ C}.
The set of all asymptotic centers of {xn} with respect to C is denoted by Za(C, {xn}).
X is said to satisfy property (I) (cf. [9]) if asymptotic center of every bounded sequence in X with

respect to closed convex subsets of X consists of exactly one point.

Uniformly convex spaces are examples of this type Banach spaces (cf. [1, 5]). It is known (cf.
Lim [8]) that Za(C, {xn}) consists of a single point if X is reflexive and uniformly convex in every
direction.

We need the following known fact (cf. Morales [11, Proposition 11]).

Lemma 2.1. Let X be a reflexive Banach space with a uniformly Gâteaux differentiable norm and let
C be a closed and convex subset of X. Suppose {xn} is a bounded sequence in C and v ∈ Za(C, {xn}).
Then, there exists a subsequence {xnk

} of {xn} such that

lim sup
k→∞

〈u− v, J(xnk
− v)〉 ≤ 0 for all u ∈ C.

A semigroup F := {T (t) : t ∈ R+} of Lipschitzian mappings from C into itself, is said uniformly
Lipschitzian if there exists a constant L > 0 such that ‖T (t)x − T (t)y‖ ≤ L‖x − y‖ holds for any
t ∈ R+ and for any x, y ∈ C.
Let C be a nonempty, closed and convex subset of a smooth Banach space X and D a nonempty
subset of C. Given an accretive operator R : C → X, we consider the following variational inequality
V ID(C,R):

find z ∈ D such that 〈Rz, J(z − v)〉 ≤ 0 for all v ∈ D.
We denote by ΩD(C,R) the set of solutions of variational inequality V ID(C,R).

Remark 2.2. If R is uniformly accretive and if ΩD(C,R) is nonempty, then this last consists of a
unique element.

Proof. Let z1, z2 ∈ ΩD(C,R). Then

〈Rz1, J(z1 − z2)〉 ≤ 0

and
〈Rz2, J(z2 − z1)〉 ≤ 0.

Summing the two inequalities and by the uniform accretivity of R, we get

Φ(‖z1 − z2‖) ≤ 〈Rz1 −Rz2, J(z1 − z2)〉 ≤ 0

for some strictly increasing function Φ, with Φ(0) = 0. From this last, it is easily derived that
z1 = z2. �
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3. Main results

Firstly, we prove a result on the existence of common fixed points for a semigroup of pseudo-
contractions.We assume the existence of an approximated fixed point sequence only for countable
many elements of the semigroup.

Lemma 3.1. Let X be a reflexive Banach space satisfying property (I) and let C be a nonempty
closed convex subset of X. Let T = {T (t) : t ∈ R+} be a strongly continuous semigroup of continuous
pseudo-contractive mappings from C into itself and let {tn} be a sequence in (0,∞) converging to 0.
Let {yn} be a bounded sequence in C such that limn→∞ ‖yn− T (tm)yn‖ = 0 for all m ∈ N and let y∗

be the unique element in Za(C, {yn}), then F (T ) is nonempty and y∗ ∈ F (T ).

Proof. Fix m ∈ N. Since T (tm) is continuous and pseudo-contractive, we derive from [10, Theorem
6] that gm := (2I − T (tm))−1 is a nonexpansive mapping from C into itself.
Since

lim sup
n→∞

‖yn − gm(y∗)‖ ≤ lim sup
n→∞

‖gm(yn)− gm(y∗)‖

+ lim sup
n→∞

‖yn − gm(yn)‖

≤ lim sup
n→∞

‖yn − y∗‖

+ lim sup
n→∞

‖(2I − T (tm))−1(2yn − T (tm)yn)− (2I − T (tm))−1(yn)‖

≤ lim sup
n→∞

‖yn − y∗‖+ lim sup
n→∞

‖yn − T (tm)yn‖

= lim sup
n→∞

‖yn − y∗‖,

it follows that gm(y∗) ∈ Za(C, {yn}) and hence gm(y∗) = y∗ for any m ∈ N.
As a consequence, y∗ ∈

⋂
n∈N F (tn), where {tn} ⊂ (0,∞) converges to 0. Applying [16, Proposition

1], it is easily derived that y∗ ∈ F (F ). �

Our second lemma proves the existence of approximating fixed point sequences for a lipschitz
semigroup under mild assumptions on the Banach space.

Lemma 3.2. Let X be a Banach space and let C be a nonempty closed convex subset of X. Let
A : C → X be a bounded mapping (i.e. A maps bounded sets into bounded sets) and let F = {T (t) :
t ∈ R+} be a uniformly continuous semigroup of uniformly Lipschitz mappings.
Let {bn} be a sequence in (0, 1) and let {tn} and {δn} be two sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

bn/tn = lim
n→∞

δn/tn = 0.

If {yn} ⊂ C is a bounded sequence of approximate solutions, i.e. it satisfies

(3.1) ‖bn(I −A)yn + (1− bn)(I − T (tn))yn‖ ≤ δn for all n ∈ N
then limn→∞ ‖yn − T (tm)yn‖ = 0 for all m ∈ N.

Proof. Let L > 0 be the Lipschitz constant of the semigroup F and assume that {yn} is a bounded
sequence in C satisfying (3.1).
Without loss of generality, we may assume that {bn} is a sequence in (0, δ] for some δ ∈ (0, 1). Since
{yn} and {Ayn} are bounded, there exists a constant K ≥ 0 such that ‖(I−A)yn‖ ≤ K for all n ∈ N.
Note that

‖(I − T (tn))yn‖ = (1− bn)−1‖(1− bn)(I − T (tn))yn + bn(I −A)yn − bn(I −A)yn‖(3.2)

≤ (1− bn)−1(δn + bn‖(I −A)yn‖)
≤ (1− δ)−1(δn +Kbn).

Let d̃ be the metric on X defined by

d̃(x, y) := sup
s∈R+

‖T (s)x− T (s)y‖.
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By standard arguments, it is easily derived that

(3.3) ‖x− y‖ ≤ d̃(x, y) ≤ L‖x− y‖ for any x, y ∈ C,

and that for any n ∈ N, T (tn) is nonexpansive with respect to d̃.
Let [·] be the integer part and fix m ∈ N. Then, for any n ≥ m,

‖yn − T (tm)yn‖ ≤ d̃(yn, T (tm)yn)(3.4)

≤
[tm/tn]−1∑

i=0

d̃(T (itn)yn, T ((i+ 1)tn)yn) + d̃(T ([tm/tn]tn)yn, T (tm)yn)

=

[tm/tn]−1∑
i=0

d̃(T i(tn)yn, T
i(tn)T (tn)yn)

+d̃(T [tm/tn](tn)yn, T
[tm/tn](tn)T (tm − [tm/tn]tn)yn)

≤ (tm/tn)d̃(yn, T (tn)yn) + d̃(yn, T (sn)yn),

where sn := tm − [tm/tn]tn ≥ 0.
Note that by (3.2) and (3.3), we have

d̃(yn, T (tn)yn) ≤ L(1− δ)−1(δn +Kbn),

thus (3.4) becomes

(3.5) ‖yn − T (tm)yn‖ ≤ L(tm(1− δ)−1(δn/tn +Kbn/tn) + sup
y∈{yn}

‖y − T (sn)y‖).

Observe that

sn = tm − [tm/tn]tn ≤ tn → 0

and hence

(3.6) lim
n→∞

sup
y∈{yn}

‖y − T (sn)y‖ = 0,

by the uniform continuity of F .
On the other hand and by hypothesis,

lim
n→∞

tm(1− δ)−1(δn/tn +Kbn/tn) = 0,

which, together with (3.6) and (3.5), implies limn→∞ ‖yn − T (tm)yn‖ = 0 for any fixed m ∈ N. �

We now prove our main result.

Theorem 3.3. Let X be a uniformly smooth Banach space, which satisfies property (I). Let C ⊂ X
be nonempty, closed and convex. Let A : C → X be a bounded and continuous generalized Φ-pseudo-
contractive mapping and F = {T (t) : t ∈ R+} a uniformly continuous semigroup of uniformly
Lipschitz pseudo-contractive mappings from C into itself. Let {bn} be a sequence in (0, 1) and let
{tn} and {δn} be two sequences in (0,∞) such that

(3.7) lim
n→∞

tn = lim
n→∞

bn/tn = lim
n→∞

δn/tn = lim
n→∞

δn/bn = 0.

If the approximate solutions yn ∈ C satisfy (3.1) and {yn} is bounded, then

(a) F (F ) is nonempty,
(b) F (F ) ∩ ΩF (F )(I −A,C), is nonempty and
(c) {yn} converges strongly to the unique element y∗ ∈ F (F ) ∩ ΩF (F )(I −A,C)

Proof. (a) Assume that the approximate solutions yn ∈ C satisfy (3.1) and {yn} is bounded. By
Lemma 3.2, we have yn − T (tm)yn → 0 as n→∞ for all m ∈ R.
Since X has property (I), it follows from Lemma 3.1 that F (F ) ∩ Za(C, {yn}) is nonempty and
singleton. In particular, F (F ) 6= ∅.
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(b) Let v ∈ F (F ). Set βn = 〈bn(I−A)yn+(1−bn)(I−T (tn))yn, J(yn−v)〉 and cv = supn∈N ‖yn−v‖.
Observe that βn ≤ δncv and

〈yn − T (tn)yn, J(yn − v)〉 = 〈yn − v + T (tn)v − T (tn)yn, J(yn − v)〉
= ‖yn − v‖2 − 〈T (tn)yn − T (tn)v, J(yn − v)〉
≥ 0 for all n ∈ N.

Thus,

〈(I −A)yn, J(yn − v)〉 = b−1n 〈bn(I −A)yn + (1− bn)(I − T (tn))yn

−(1− bn)(I − T (tn))yn, J(yn − v)〉
= b−1n βn − b−1n (1− bn)〈(I − T (tn))yn, J(yn − v)〉
≤ b−1n βn

≤ b−1n δncv.(3.8)

Let y∗ be the unique element of Za(C, {yn}), which also lies in F (F ). By Lemma 2.1, there exists
a subsequence {ynk

} such that

(3.9) lim sup
k→∞

〈Ay∗ − y∗, J(ynk
− y∗)〉 ≤ 0.

From (3.8), we have

‖ynk
− y∗‖2 = 〈ynk

−Aynk
+Aynk

−Ay∗ +Ay∗ − y∗, J(ynk
− y∗)〉

≤ b−1n δnk
cy∗ + ‖ynk

− y∗‖2 − Φ(‖ynk
− y∗‖) + 〈Ay∗ − y∗, J(ynk

− y∗)〉,
which gives us that

Φ(‖ynk
− y∗‖) ≤ b−1nk

δnk
cy∗ + 〈Ay∗ − y∗, J(ynk

− y∗)〉.(3.10)

Together with (3.9), this last implies that {ynk
} strongly converges to y∗.

Let v ∈ F (F ) and observe that, by (3.8),

〈y∗ −Ay∗, J(y∗ − v)〉 = 〈(I −A)y∗, J(y∗ − v)〉 − 〈(I −A)y∗, J(ynk
− v)〉

+〈(I −A)y∗, J(ynk
− v)〉 − 〈(I −A)ynk

, J(ynk
− v)〉

+〈(I −A)ynk
, J(ynk

− v)

≤ |〈(I −A)y∗, J(y∗ − v)〉 − 〈(I −A)y∗, J(ynk
− v)〉|

+‖(I −A)ynk
− (I −A)y∗‖‖J(ynk

− v)‖+ b−1nk
δnk

cv.

Since the duality mapping J is single-valued and norm to weak∗ uniformly continuous on any bounded
subset of a Banach space X with a uniformly Gâteaux differentiable norm and {ynk

} converges to
y∗, we have

〈y∗ −Ay∗, J(y∗ − v)〉 ≤ 0 for any v ∈ F (F ),

i.e. y∗ ∈ F (F ) ∩ ΩF (F )(I −A,C) 6= ∅.

(c) Suppose that the sequence {yn} does not converge to y∗. As a consequence, there exists ε0 > 0
and a subsequence {ynm}, such that for any m ∈ N,
(3.11) ‖ynm − y∗‖ ≥ ε0.
Let z∗ be the unique element in Za(C, {ynm}) and note that by Lemma 3.1, z∗ also belongs to F (F ).
By Lemma 2.1 and passing to a further subsequence, if necessary, we can assume that

lim sup
m→∞

〈Az∗ − z∗, J(ynm − z∗)〉 ≤ 0.

Following the same arguments as in (b), we then derive that ynm → z∗ and that z∗ ∈ F (F ) ∩
ΩF (F )(I − A,C). Since ΩF (F )(I − A,C) is singleton, we obtain that z∗ = y∗, which contradicts
(3.11). Hence limn→∞ yn = y∗. �

By the next proposition, we prove the existence of a sequence satisfying (3.1). Moreover we obtain
an answer to the problem posed by Xu in [18].
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Proposition 3.4. Let C be a nonempty closed convex subset of a smooth Banach space X, A : C → C
a continuous generalized Φ-pseudo-contractive mapping and F = {T (t) : t ∈ R+} a semigroup of
pseudo-contractive mappings from C into itself. Let {bn} be a sequence in (0, 1) and {tn} a sequence
in (0,∞). For each n ∈ N, define Gn : C → C by Gnz := bnAz+ (1− bn)T (tn)z, y ∈ C. Then, there
exists exactly one fixed point zn in C of Gn defined by

(3.12) zn = bnAzn + (1− bn)T (tn)zn for all n ∈ N.

Proof. Set Φn(·) := bnΦ(·) for each n ∈ N. Then the mapping Gn : C → C is continuous and
generalized Φn-pseudo-contractive. Indeed, for x, y in C, we have

〈Gnx−Gny, J(x− y)〉 = bn〈Ax−Ay, J(x− y)〉+ (1− bn)〈T (tn)x− T (tn)y, J(x− y)〉
≤ bn(‖x− y‖2 − Φ(‖x− y‖)) + (1− bn)‖x− y‖2

= ‖x− y‖2 − Φn(‖x− y‖).
Note also that Φn(·) is a strictly increasing function with Φn(0) = 0. By Xiang [17, Theorem 2.1],
Gn has a unique fixed point zn in C. �

Corollary 3.5. Let X be a uniformly smooth Banach space, which satisfies property (I). Let C ⊂ X
be nonempty, closed and convex. Let A : C → X be a bounded and continuous generalized Φ-pseudo-
contractive mapping and F = {T (t) : t ∈ R+} a uniformly continuous semigroup of uniformly
Lipschitz pseudo-contractive mappings from C into itself. Let {bn} be a sequence in (0, 1), let {tn}
and {δn} be two sequences in (0,∞) such that

(3.13) lim
n→∞

tn = lim
n→∞

bn/tn = lim
n→∞

δn/tn = lim
n→∞

δn/bn = 0

and let {zn} be defined by (3.12).
If {zn} is bounded then

(a) F (F ) is nonempty,
(b) F (F ) ∩ ΩF (F )(I −A,C), is nonempty and
(c) {zn} converges strongly to the unique element y∗ ∈ F (F ) ∩ ΩF (F )(I −A,C)

Remark 3.6. We remark that,

(a) in both Lemma 3.2 and Theorem 3.3, if the sequence {tn} can be chosen so that, for n ≥
m, tm/tn ∈ N (e.g. tn = a−n for some a ∈ N), the uniform continuity condition on the
semigroup can be weakened by only assuming strong continuity;

(b) in Theorem 3.3, we prove the existence of a solution of a variational inequality problem on
the set F (F ), which can fail to be convex.

(c) the asymptotic center technique is used in Theorem 3.3. Therefore, our approach is different
from the results recently studied in Sahu, Wong and Yao [13].

References

[1] R. P. Agarwal, Donal O’Regan and D. R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications,
Series: Topological Fixed Point Theory and Its Applications, 6, Springer New York, 2009.

[2] F. E. Browder, Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces,
Archive for Rational Mechanics and Analysis, 24 (1967), 82–90.

[3] C.E. Chidume and H. Zegeye, Strong convergence theorems for common fixed points of uni- formly L-Lipschitzian
pseudocontractive semigroups, Appl. Anal., 86 (2007), 353–366.

[4] L. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Kluwer Aacademic Publish-
ers, Dordrecht, 1990.

[5] M. Edelstein, Fixed point theorems in uniformly convex Banach spaces, Proc. Amer. Math. Soc., 44 (1974),
369-374.

[6] J. Gwinner, On the Convergence of Some Iteration Processes in Uniformly Convex Banach Spaces, Proc. Amer.
Math. Soc., 71 (1978), 29–35.

[7] A. Hester and C. H. Morales, Semigroups generated by pseudo-contractive mappings under the Nagumo condition,
J. Diff. Eq., 245 (2008), 994–1013.

[8] T. C. Lim, On asymptotic centres and fixed points for nonexpansive mappings, Canad. J. Math., 32 (1980), 421–430.
[9] G. Marino and H. K. Xu, Asymptotic centers, inward sets and fixed points, Comm. Pure Appl. Anal., 10(2003),55–

63.



8 SAHU, COLAO, AND MARINO

[10] R. H. Martin, Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc., 179 (1973),
399-414.

[11] C. H. Morales, Variational inequalities for Φ-pseudo-contractive mappings, Nonlinear Analysis, 75 (2012), 477–484.
[12] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl.,

75 (1980), 287-292.
[13] D. R. Sahu, N. C. Wong, and J.C. Yao, A unified hybrid iterative method for solving variational inequalities

involving generalized pseudo-contractive mappings, SIAM J. Control Opt., 2012, in press.
[14] D. R. Sahu, Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces, Comment. Math.

Univ. Carolin., 46 (2005), 653–666.
[15] T. Suzuki, On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces, Proc.

Amer. Math. Soc., 131 (2002), 2133–2136.
[16] T. Suzuki, The set of common fixed points of a one-parameter continuous semigroup of mappings is F (T (1)) ∩

F (T (
√

2)) Proc. Amer. Math. Soc., 134 (2006), 673–681
[17] Chang He Xiang, Fixed point theorem for generalized Φ-pseudo-contractive mappings, Nonlinear Anal., 70 (2009),

277–279.
[18] H. K. Xu, A strong convergence theorem for contraction semigroups in Banach spaces, Bull. Austral. Math. Soc.,

72 (2005), 371–379.
[19] N. C. Wong, D. R. Sahu, and J.C. Yao, Solving variational inequalities involving nonexpansive type mappings,

Nonlinear Anal., 69 (2008) 4732–4753.

(D. R. Sahu) Department of Mathematics, Banaras Hindu university, Varanasi-221005, INDIA
E-mail address, D. R. Sahu: drsahudr@gmail.com

(V. Colao, G. Marino) Dipartimento di Matematica, Universita della Calabria, 87036 Arcavacata di
Rende (Cs), Italy

E-mail address, V. Colao: colao@mat.unical.it

E-mail address, G. Marino: gmarino@unical.it



Annali di Matematica
DOI 10.1007/s10231-015-0484-0

Existence of solutions for a second-order differential
equation with non-instantaneous impulses and delay

Vittorio Colao · Luigi Muglia · Hong-Kun Xu

Received: 25 July 2014 / Accepted: 9 December 2014
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2015

Abstract We establish existence of solutions for a second-order differential equation with
non-instantaneous impulses and delay on an unbounded interval. A compactness criterion
in a certain class of functions is established, which then permits to reduce the differential
equation to an equivalent fixed-point problem.

Keywords Impulsive differential equation · Fixed-point theorem · Compactness ·
Unbounded interval

Mathematics Subject Classification 34K45 · 46B50 · 47D09 · 47H10

1 Introduction

We are concerned with the existence of solutions for a differential equation with non-
instantaneous impulses and delay of the form

V. Colao (B) · L. Muglia
Dipartimento di Matematica e Informatica, Università della Calabria, 87036, Arcavacata di Rende,
Cosenza, Italy
e-mail: colao@mat.unical.it

L. Muglia
e-mail: muglia@mat.unical.it

H.-K. Xu
Department of Mathematics, School of Science, Hangzhou Dianzi University,
Hangzhou 310018, Zhejiang, China

H.-K. Xu
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
e-mail: xuhk@math.nsysu.edu.tw

123



V. Colao et al.

(P)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′′(t) = Ax(t)+ f (t, x(t), x(σ (t))), a.e.t ∈ (0, t1] ∪ ⋃N
i=1(si , ti+1]

x(t) = γi (t, x(t)), t ∈ ⋃N
i=1(ti , si ],

x(t) = φ(t), t ∈ [−r, 0], x ′(0) = φ′(0) = η,

where x maps [−r,+∞) into (Rn, | · |) (| · | being a norm, but not necessarily the Euclidean
norm), T := {0 < t1 < · · · < tN } ⊂ [0,+∞), tN+1 := +∞, si ∈ (ti , ti+1) for each
i = 1, . . . , N and A is a real n × n matrix.

Impulsive differential equations have been widely investigated (see [11,13,14,16,18,20,
22,23] and references therein), but only the instantaneous case has been deeply studied. On
the other hand, in many real-world applications, the reaction of a system is transitory but
lasts for a finite time interval.

To give a concrete example in Hernandez and O’Regan [13], the following simplified
situation concerning the hemodynamical equilibrium has been pointed out. In the case of a
hyperglycemic patient, an intravenous drug can be prescribed (insulin). The introduction of
the drug into the bloodstream causes an abrupt change in the system, followed by a continuous
process until the drug is completely absorbed.

We model the situation by considering a non-instantaneous impulse which starts with a
jump and continuously proceeds for a finite time.

On the other hand, delay differential equations have been deeply studied and incorporated
into models in different branches of science (see, for example, [4,5,25] and the book [7]).

Focusing our attention to pharmacokinetics, we observe that in Perelson et al [19], delay
equations have been applied to the study of the correlation between the administration of
drugs and the decline of the viral load in HIV infections.

Our approach consists in translating the problem (P) into a fixed point problem in the
Banach space

BPCT[−r,+∞) := {y : [−r,+∞) \ T → R
n |y is bounded and continuous in t /∈ T,

there exist y(t−k ) = y(tk) and y(t+k ) < ∞, tk ∈ T},
where y(t+k ) and y(t−k ) represent the right limit and the left limit at tk , respectively. This
space is endowed with the supremum norm

‖y‖∞ := sup{|y(t)| : t ∈ [−r,+∞)}.
We shall introduce two operators, one concerning the differential equation and the other
related to the non-instantaneous impulses, in order to equivalently convert the solution of the
problem (P) to a fixed point of the sum of the above-mentioned operators.

To this end, we use a generalization, given in [9], of the following well-known theorem.

Theorem 1.1 (Krasnosel’skii [15]) Let C be a closed, convex and bounded subset of a
Banach space. Let T = A + B, where A is a contraction, B is completely continuous and
T (C) ⊂ C. Then, T has a fixed point in C.

To the best of our knowledge, this approach represents a new strategy for differential
equations with non-instantaneous impulses.

Finally, we remark that we will prove the existence of strong solutions defined on an
unbounded interval, i.e., the existence of a function x ∈ BPCT[−r,+∞) twice differentiable
for any t 	∈ T and which satisfies (P). In this direction, our result represents a step forward
in the study of this class of equations.
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The rest of the paper is structured as follows. In the next section, notations are introduced
together with preliminary results. Incidentally, a new compactness criterion for piecewise
continuous functions is obtained. In Sect. 3, problem (P) is translated into a fixed-point
problem, by introducing a compact integral operator. In Sect. 4, our main result is proved
and the existence of solutions is obtained (Theorem 4.1 and Corollary 4.2).

2 Notations and preliminaries

In the sequel, we indicate by |x | the norm of a vector x ∈ R
n and by |||A||| := sup{|Ax | :

|x | = 1} the norm of a linear operator A in R
n (i.e., an n × n matrix). If Q is a topological

space, we denote by BC(Q) the space of continuous and bounded functions defined in Q
into R

n endowed with the supremum norm

‖u‖∞ := sup
t∈Q

|u(t)|,

whenever u ∈ BC(Q).
Let r > 0 and let Θ := {0 < d1 < · · · < dM } be a finite subset of [−r,+∞). By

BPCΘ [−r,+∞), we denote the Banach space of bounded and continuous functions y :
[−r,+∞) \Θ → R

n such that the limits

y(d−
k ) := lim

t→d−
k

y(t) = y(dk) and y(d+
k ) := lim

t→d+
k

y(t) < +∞,

exist for any k = 1, . . . ,M .
Let E be a Banach space and let C be a subset of E . We also cite the following well-known

definition.

Definition 2.1 [1] The Hausdorff measure of noncompactness of a bounded set C is
defined as

χ(C) := inf{ε > 0 : there exists a finite ε-net for C}.
We recall the following properties of χ :

1. χ(C) = 0 if and only if C is compact,
2. χ(co C) = χ(C),
3. χ([0, 1] · C) = χ(C),
4. χ(D) ≤ χ(C) for D ⊂ C ,
5. χ(λC) = |λ|χ(C),
6. χ(C + D) ≤ χ(C)+ χ(D),
7. χ(C ∪ D) = max{χ(C), χ(D)},

whenever C and D are bounded subsets of E and λ is a real number.

Definition 2.2 A map F : C → E is said to be completely continuous if it is continuous
and maps bounded subsets of C to relatively compact sets.

2.1 Compactness criteria in BPCΘ [−r,+∞)

Definition 2.3 A subset Ω in BPCΘ [−r,+∞) is quasi-equicontinuous if, for every u ∈ Ω
and ε > 0, there exists δ > 0 such that |u(τ1) − u(τ2)| < ε whenever |τ1 − τ2| < δ and
τ1, τ2 ∈ [−r, d1], τ1, τ2 ∈ (dk, dk+1] for some k = 1, . . . ,M or τ1, τ2 ∈ (dM ,+∞).
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For a closed and bounded domain, the following is well known.

Lemma 2.4 A set Ω ⊂ PC[a, b] is relatively compact in PC[a, b] if and only if Ω is
bounded and quasi-equicontinuous.

For unbounded domains, the above conditions do not guarantee the relative compactness,
as the next example shows.

Example 2.5 Let {un} ⊂ BC(R) be the sequence defined by un(t) = arctan(t + n). Then,
it can be easily seen that the set {un} is bounded and equicontinuous, but it is not relatively
compact.

For the space of continuous and bounded functions on a general topological space Q, we
point out the following compactness criteria due to Bartle.

Theorem 2.6 [2] Let Ω ⊂ BC(Q) be a bounded subset. The following is equivalent:

1. Ω is relatively compact.
2. For any positive ε, there is a partition A1, . . . , An of Q such that if s, t belong to the

same set Ai then

| f (t)− f (s)| < ε

for every f ∈ Ω .

To the best of our knowledge, the next lemma represents a new result.

Lemma 2.7 A bounded set Ω of BPCΘ [−r,+∞) is relatively compact if and only if it is
quasi-equicontinuous and has the property that for any ε > 0, there exists L = L(ε) > dM

such that
χ(Ω|[L ,+∞)) < ε. (2.1)

Proof It is easy to see that if Ω is relatively compact, and then, it is quasi-equicontinuous
and χ(Ω|[L ,+∞)) = 0 for any L .

To prove the converse, fix ε > 0 and note that (2.1) implies that there exists L > dM and
a finite ε/3−net {ϕi : i = 1 . . . ,m} for Ω|[L ,+∞). Since the set {ϕ1, . . . , ϕm} is compact in
BC[L ,+∞), by Theorem 2.6, there exists a partition {V1, . . . , Vp} of subsets of [L ,+∞)

with the property that
|ϕi (t)− ϕi (s)| < ε/3, (2.2)

whenever i ∈ {1, . . . ,m} and t, s ∈ Vj , for some index j .
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For j ∈ {1, . . . , p}, let t, s ∈ Vj and v ∈ Ω . Since {ϕi : i = 1 . . . ,m} is a ε/3−net for
Ω , there exists î ∈ {1, . . . ,m} such that

‖u − ϕî‖∞ < ε/3.

Combining this last with (2.2), we obtain

|u(t)− u(s)| = |(u(t)− ϕî (t))+ (ϕî (t)− ϕî (s))+ (ϕî (s)− u(s))|
≤ 2‖u − ϕî‖∞ + |ϕî (t)− ϕî (s)| ≤ ε, (2.3)

uniformly on u ∈ Ω . Let Q := [−r, d1) ∪ ⋃M−1
k=1 (dk, dk+1) ∪ (dM , L). By the quasi-

equicontinuity ofΩ , it follows that there exists a finite partition U1, . . . ,Ul with the property
that

|u(t)− u(s)| < ε,

whenever u ∈ Ω and t, s ∈ U j for some j ∈ {1, . . . , l}.
It is a consequence of (2.3) that, for any ε > 0, there exists a finite partition Ξ :=

{U1, . . . ,Ul , V1, . . . , Vp} of Q with the property that |u(t) − u(s)| < ε, whenever u ∈ Ω

and t and s belong to the same element of Ξ . By Theorem 2.6 and since BPCΘ [−r,+∞) is
a closed subspace of BC(Q), it turns that Ω is relatively compact in BPCΘ [−r,+∞). ��
Corollary 2.8 Let F : BPCΘ [−r,+∞) → BPCΘ [−r,+∞) be an operator. Suppose that
for any bounded set Ω ⊂ BPCΘ [−r,+∞), F(Ω) is a bounded and quasi-equicontinuous
subset of BPCΘ [−r,+∞). Suppose also that for any ε > 0, there exists L > dM such that

χ(F(Ω)|[L ,+∞)) < ε. (2.4)

Then, F is a compact operator.

2.2 Cosine family of bounded linear mappings

Firstly, we recall definitions, notations and useful facts regarding the cosine families (see
[8,10,24] for more details).

Definition 2.9 A one-parameter family (C(t))t∈R of bounded linear mappings on R
n into

itself is called a strongly continuous cosine family if and only if:

1. C(t + s)+ C(t − s) = 2C(t)C(s), for all t, s ∈ R;
2. C(0) = I , where I is the identity map;
3. C(·)x ∈ C(R,Rn), for all x ∈ R

n .

The sine family (S(t))t∈R is defined as

S(t)x :=
∫ t

0
C(s)xds.

The relations below follow immediately from the above definition:

(u1) S(t)x is continuous in t ∈ R, S(0) = 0 and S(−t) = −S(t), for all t ∈ R;
(u2) C(t) = C(−t), for all t ∈ R;
(u3) C(t)S(s) = S(s)C(t), C(t)C(s) = C(s)C(t) and S(t)S(s) = S(s)S(t) for all t, s ∈ R;
(u4) S(t + s)+ S(t − s) = 2S(t)C(s), for all t, s ∈ R;
(u5) S(t + s) = S(t)C(s)+ C(t)S(s), for all t, s ∈ R.
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Definition 2.10 [24] The infinitesimal generator of a strongly continuous cosine family is
the operator A : Dom(A) ⊂ R

n → R
n defined by

A := d2

dt2 C(t)
∣
∣
∣
t=0

and Dom(A) := {x ∈ R
n : C(t)x is continuously differentiable at t = 0}.

Note that, for x ∈ R
n and t ∈ R,

d2

dt2 C(t)x = AC(t)x = C(t)Ax

and
d

dt
C(t)x =

∫ t

0
AC(s)xds = A

∫ t

0
C(s)xds = AS(t)x . (2.5)

Then, it is easily derived from (u5) that

(u6) C(t + s) = C(t)C(s)+ AS(t)S(s), for all t, s ∈ R.

Definition 2.11 [24] A cosine family (C(t))t∈R (resp. a sine family (S(t))t∈R) is uniformly
bounded if there exists MC > 0 (resp. MS > 0) such that

|||C(t)||| ≤ MC (resp., |||S(t)||| ≤ MS), t ∈ R.

If MC = 1 (resp., MS = 1), we say that the family is 1-uniformly bounded.

The above definition is illustrated in the following examples.

Example 2.12 Let us consider R
n with the maximum norm. Let A be a bounded and linear

operator in R
n such that A =

(−a2
i, j

n

)

i, j∈{1,...,n}
with ai, j ≥ 1. Then,

C(t) = 1

n

⎛

⎜
⎜
⎜
⎝

cos(a1,1t) cos(a1,2t) . . . cos(a1,nt)
cos(a2,1t) cos(a2,2t) . . . cos(a2,nt)
...

...
...

...

cos(an,1t) cos(an,2t) . . . cos(an,nt)

⎞

⎟
⎟
⎟
⎠

is a 1-uniformly bounded cosine family generated by

A = d2

dt2 C(t)
∣
∣
∣
t=0
.

Indeed,

|C(t)x | = 1

n
max

1≤i≤n
|

n∑

j=1

cos(ai, j t)x j | ≤ 1

n

n∑

j=1

|x j | ≤ |x |.

The sine family is given by

S(t) = 1

n

(
1

ai, j
sin(ai, j t)

)

i, j∈{1,...,n}
.

Again S(t) is 1-uniformly bounded.

We also give an example in an infinite-dimensional Banach space.
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Example 2.13 [8,12] Let E = L2[0, π ] and define A by A f (ξ) := f ′′(ξ) with D(A) =
{ f ∈ H2(0, π) : f (0) = 0, f (π) = 0}. The operator A is the generator of a cosine family
on E defined by

C(t) f =
∞∑

n=1

cos(nt)〈 f, zn〉zn

where zn(ξ) =
√

2
π

sin(nξ). The sine family is given by

S(t) f =
∞∑

n=1

sin(nt)

n
〈 f, zn〉zn .

Moreover, |||C(t)||| = |||S(t)||| = 1.

Remark 2.14 We stress that the case depicted in Example 2.12 can be generalized to obtain
sufficient conditions for an operator A to generate 1-uniformly bounded families of cosine
and sine. Indeed, let A be a self-adjoint operator on a Hilbert space. Assume that A satisfies
the coercivity condition

〈Ax, x〉 ≤ −‖x‖2 ∀x ∈ D(A).

Then, A is the infinitesimal generator of the cosine family C(t) = ∑∞
n=0

t2n

(2n)! An . Moreover,
|||C(t)||| ≤ 1 and |||S(t)||| ≤ 1. (See [8, pp. 145–147] and [24]).

From now on, we shall assume that the cosine and sine families are 1-uniformly bounded.
We note that the uniform boundedness of cosine and sine families guarantees their uniform

continuity in t , as the following remark explains.

Remark 2.15 The sine family satisfies the property

|(S(τ1)− S(τ2))x | ≤
∫ τ2

τ1

|C(s)x |ds ≤ |τ1 − τ2||x |, τ1, τ2 ∈ R.

The uniform continuity of S(t)x , therefore, follows for all fixed x . As a rule, S(t) is uniformly
continuous. Furthermore, from (2.5),

|(C(τ1)− C(τ2))x | ≤
∫ τ2

τ1

|AS(s)x |ds ≤ |||A||||τ1 − τ2||x |

and the uniform continuity of C(t) follows.

2.3 A fixed-point theorem

In order to prove our results, we will use a Krasnoselskii’s type fixed-point theorem proved
by Garcia-Falset [9].

Definition 2.16 [3,9,21] We say that S : C → E is a ρ-contraction if there exists a continu-
ous nondecreasing function ρ : [0,+∞) → [0,+∞) and ρ(t) < t for which the inequality
‖S(x)− S(y)‖ ≤ ρ(‖x − y‖) holds for any x, y ∈ C .

We note that each ρ-contraction is continuous and has at most one fixed point. Moreover,
ρ-contractions are a proper generalization of classical contractions. In fact, a classical k-
contraction is a ρ-contraction with ρ(t) = kt , but the converse does not hold as the following
example shows.
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Example 2.17 [17] Let X = C(R, [0, 1]) and S : X → X defined as

(S(x))(t) = x(t)− x4(t)− sin2(t)

4
.

[17, Conclusion 4.2] ensures that, if ρ(t) = t
(

1 − t3

8

)
, then

‖S(x)− S(y)‖∞ ≤ ρ(‖x − y‖∞).

However, S fails to be a contraction.

Theorem 2.18 [9,21] Let E be a Banach space. Let F, S : E → E be mappings satisfying:

(i) S is a ρ-contraction,
(ii) F is completely continuous.

Let

ζ(F + S) := {x ∈ E : x = λS(
x

λ
)+ λFx, 0 < λ < 1}.

Then, either ζ(F + S) is unbounded or F + S has a fixed point.

The following corollary easily follows from the above theorem.

Corollary 2.19 Let T1 and T2 be finite (and disjoint) subsets of [−r,+∞). Suppose

1. T : BPCT1∪T2 [−r,+∞) → BPCT1∪T2 [−r,+∞) is completely continuous,
2. Γ : BPCT1∪T2 [−r,+∞) → BPCT1∪T2 [−r,+∞) is a ρ-contraction,
3. T : BPCT1∪T2 [−r,+∞) → BPCT1 [−r,+∞) (i.e., Tx is continuous on T2) such that

Tx = T x + Γ x .

If the set

ζ(T + Γ ) := {x ∈ BPCT1∪T2 : x = λΓ
( x

λ

)
+ λT x for 0 < λ < 1}

is bounded, then T admits fixed points in BPCT1 [−r,+∞).

3 The integral problem

From now on, we assume that the functions f, φ, σ, γi and the matrix A satisfy the following
properties:

(h A) The linear operator A : Dom(A) ⊂ R
n → R

n is the infinitesimal generator of a
strongly continuous, 1-uniformly bounded cosine family (C(t))t∈R. Assume, in addition,
that the corresponding sine family (S(t))t∈R is 1-uniformly bounded, as well.
(h f ) f : [0,+∞)× R

n × R
n → R

n is such that

• f (t, ·, ·) : R
n × R

n → R
n is continuous for a.e. fixed t ∈ [0,+∞);

• there exist a Lebesgue integrable function p : [0,+∞) → [0,+∞) and a continuous
nondecreasing function Ψ : [0,+∞) → [1,+∞) for which

| f (t, x, y)| ≤ p(t)Ψ (|x | + |y|), for a.e. t ≥ 0, x, y ∈ R
n,

and ∫ ∞

0

ds

Ψ (s)
= +∞. (3.1)
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(hσ ) σ : [0,+∞) → [−r,+∞) is a continuous and increasing function, such that
σ(t) ≤ t for any t ∈ [0,+∞).
(hφ,γ ) The function φ belongs to C1([−r, 0],Rn), and for any i = 1, . . . , N , γi :
(ti , si ]× R

n → R
n is a ρ-contraction with respect to the second variable, such that there

exists γi (t
+
i , x) for all x ∈ R

n and

|γi (t, x)| ≤ ai (t)+ bi |x |
where ai (t) is a bounded function and bi ∈ (0, 1).

LetΣ := {s1, . . . , sN }. In order to apply Theorem 2.18 and Corollary 2.19 we define, for
x ∈ BPCT∪Σ [−r,+∞),

T0x(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0]

C(t)φ(0)+ S(t)η +
∫ t

0
S(t − s) f (s, x(s), x(σ (s)))ds, t ∈ (0, t1]

0, otherwise.

(3.2)

For all i = 1, . . . , N , taking into account the assumption tN+1 := +∞, we define

Ti x(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

C(t − si )γi (si , x(si ))+
∫ t

si

S(t − s) f (s, x(s), x(σ (s)))ds, t ∈ (si , ti+1]

0, otherwise
(3.3)

and

Γ x(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

γi (t, x(t)), t ∈ (ti , si ] and i = 1, . . . , N

0, otherwise.
(3.4)

In this way, we can write

T x(t) :=
N∑

i=0

Ti x(t) and Tx(t) := T x(t)+ Γ x(t)

or equivalently

Tx(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0]

C(t)φ(0)+ S(t)η +
∫ t

0
S(t − s) f (s, x(s), x(σ (s)))ds, t ∈ (0, t1]

γi (t, x(t)), t ∈ (ti , si ]
i = 1, . . . , N

C(t − si )γi (si , x(si ))+
∫ t

si

S(t − s) f (s, x(s), x(σ (s)))ds, t ∈ (si , ti+1].
i = 1, . . . , N

(3.5)
In the next propositions, we will prove some properties of the operator T which will be

useful in the sequel.
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Proposition 3.1 The operator T maps BPCT∪Σ [−r,+∞) into BPCT[−r,+∞). Moreover,
for any fixed x ∈ BPCT[−r,+∞), Tx is twice differentiable in t ∈ (0, t1] ∪ ⋃N

i=1(si , ti+1].
In addition, the fixed points of T are solutions of the problem (P).

Proof At first, we show that T maps BPCT∪Σ [−r,+∞) into BPCT[−r,+∞), that is, for
any fixed x ∈ BPCT∪Σ [−r,+∞), Tx is continuous at each (si )i=1,...,N and right-continuous
at each (ti )i=1,...,N .

Indeed, for any fixed i = 1, . . . , N , we have

lim
t→s+

i

Tx(t) = lim
t→s+

i

C(t − si )γi (si , x(si ))+
∫ t

si

S(t − s) f (s, x(s), x(σ (s)))ds

= γi (si , x(si )),

since C(t) is strongly continuous and C(0) = I . On the other hand,

lim
t→s−

i

Tx(t) = γi (si , x(si )) = Tx(si ).

Moreover, by assumption (hφ,γ ) and for any fixed k = 1, . . . , N , there exists

lim
t→t+k

Tx(t) = lim
t→t+k

Γ x(t) = lim
t→t+k

γk(t, x(t)).

Now, we prove that Tx is a bounded function. To this end, we note that by (hφ,γ ), (h f ) and
the 1-uniform boundedness of C(·) and S(·), for t ∈ [−r, t1]:

|Tx(t)| = |T0x(t)| ≤ ‖φ‖∞ + |η| + Ψ (2‖x‖∞)
∫ t1

0
p(s)ds. (3.6)

In a similar way, for fixed i ∈ {1, . . . , N } and t ∈ [si , ti+1], we get

|Tx(t)| = |Ti x(t)| ≤ ‖ai‖∞ + bi‖x‖∞ + Ψ (2‖x‖∞)
∫ ti+1

si

p(s)ds. (3.7)

On the other hand, (hφ,γ ) guarantees that for t ∈ ⋃N
i=1(ti , si ]

|Γ x(t)| ≤ max{‖ai‖∞ + bi‖x‖∞ : i = 1, . . . , N }. (3.8)

By (3.6), (3.7), (3.8), we conclude that for all t ∈ [−r,+∞)

|(Tx)(t)| ≤ |T0x(t)| +
N∑

i=1

|Ti x(t)| + |Γ x(t)|

≤ ‖φ‖∞ + |η| + Ψ (2‖x‖∞)
∫ t1

0
p(s)ds

+
N∑

i=1

(

‖ai‖∞ + bi‖x‖∞ + Ψ (2‖x‖∞)
∫ ti+1

si

p(s)ds

)

+ max{‖ai‖∞ + bi‖x‖∞ : i = 1, . . . , N }
≤ ‖φ‖∞ + |η| + Ψ (2‖x‖∞)‖p‖1

+(N + 1)max
i

{‖ai‖∞ + bi‖x‖∞}. (3.9)

This implies that ‖Tx‖∞ < ∞, and so, T maps BPCT∪Σ [−r,+∞) into BPCT[−r,+∞).
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By Torricelli–Barrow’s classical result, the assumption (h f ) and the properties of C(·)x
and S(·)x , (Tx)(t) are differentiable, and for almost every t ∈ (0, t1] ∪ ⋃N

i=1(si , ti+1], it
follows that:

(Tx)′(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

AS(t)φ(0)+ C(t)η +
∫ t

0
C(t − s) f (s, x(s), x(σ (s)))ds,

a.e. t ∈ (0, t1]
AS(t − si )γi (si , x(si ))+

∫ t

si

C(t − s) f (s, x(s), x(σ (s)))ds,

a.e. t ∈ ⋃N
i=1(si , ti+1].

(3.10)

By the same argument, we obtain that Tx(t) is twice differentiable and

(Tx)′′(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

AC(t)φ(0)+ AS(t)η +
∫ t

0
AS(t − s) f (s, x(s), x(σ (s)))ds

+ f (t, x(t), x(σ (t))), a.e. t ∈ (0, t1]
AC(t − si )γi (si , x(si ))+

∫ t

si

AS(t − s) f (s, x(s), x(σ (s)))ds

+ f (t, x(t), x(σ (t))), a.e. t ∈ ⋃N
i=1(si , ti+1].

Consequently, it is not hard to find that

(Tx)′′(t) = ATx(t)+ f (t, x(t), x(σ (t))), a.e. t ∈
N⋃

i=1

(si , ti+1].

Since Tx |[−r,0] = φ, (Tx)′(0) = η and Tx(t)|(ti ,si ] = γi (t, x(t)), for all i = 1, . . . , N , we
obtain that the fixed points of T are solutions of the differential system (P). ��
Proposition 3.2 The operator Γ : BPCT∪Σ [−r,+∞) → BPCT∪Σ [−r,+∞) is a ρ-
contraction.

Proof Let us note that, for any x, y ∈ BPCT∪Σ [−r,+∞):

|Γ x(t)− Γ y(t)| =
{ |γi (t, x(t))− γi (t, y(t))|, (ti , si ], i = 1, . . . , N ,

0, otherwise.

So, for all t ∈ [−r,+∞) \ {T ∪Σ},
|Γ x(t)− Γ y(t)| ≤ ρ(|x(t)− y(t)|) ≤ ρ(‖x − y‖∞).

The claim follows by passing to the supremum in the left side of the inequality. ��
Proposition 3.3 The operator T : BPCT∪Σ [−r,+∞) → BPCT∪Σ [−r,+∞) defined by

T x(t) :=
N∑

i=0

Ti x(t) (3.11)

is completely continuous.

Proof In order to prove the continuity of T , let t ∈ [−r,+∞) be fixed and let {xn} be a
sequence in BPCT∪Σ [−r,+∞) converging to x . From (3.2) and (h f ), it follows that

|T0xn(t)− T0x(t)| ≤ |
∫ t

0
S(t − s) ( f (s, xn(s), xn(σ (s)))− f (s, x(s), x(σ (s)))) ds|

≤ ‖ f (·, xn(·), xn(σ (·)))− f (·, x(·), x(σ (·)))‖1.
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In a similar way, by (3.3),

|Ti xn(t)− Ti x(t)| ≤ |C(t − si ) (γi (si , xn(si ))− γi (si , x(si ))) |
+‖ f (·, xn(·), xn(σ (·)))− f (·, xn(·), xn(σ (·)))‖1

≤ ρ(‖xn − x‖∞)+ ‖ f (·, xn(·), xn(σ (·)))− f (·, x(·), x(σ (·)))‖1

for any fixed i = 1, . . . , N .
From the above inequalities and (3.11), it is readily derived that

‖T xn(t)− T x(t)‖ ≤ Nρ(‖xn − x‖∞)+ (N + 1)‖ f (·, xn(·), xn(σ (·)))
− f (·, x(·), x(σ (·)))‖1 (3.12)

By using (h f ) again, we note that f (t, xn(t), xn(σ (t))) converges to f (t, x(t), x(σ (t))), and
for a.e., t ∈ [0,+∞)

| f (t, xn(t), xn(σ (t)))| ≤ p(t) sup
n∈N

Ψ (2‖xn‖∞).

Then, since {xn} is bounded, from the Lebesgue dominated convergence theorem, it follows
that

‖ f (·, xn(·), xn(σ (·)))− f (·, xn(·), xn(σ (·)))‖1 → 0.

This last relation, together with (3.12), implies that ‖T xn − T x‖∞ → 0 as n → ∞. For a
fixed R > 0, let

BR := {u ∈ BPCT∪Σ [−r,+∞) : ‖u‖∞ ≤ R}.
Corollary 2.8 ensures that, in order to prove the compactness of T , it is enough to show that
T (BR) is a bounded set, quasi-equicontinuous and that for every ε > 0, there exists L > tN

such that

χ
(
T (BR)|[L ,+∞)

)
< ε.

By using (3.9), for all x ∈ BR :

|T x(t)| ≤ ‖φ‖∞ + |η| + Ψ (2R)‖p‖1 + max
k=1,...,N

(‖ak‖∞ + bk R);

which implies that T (BR) is bounded.
Let ε > 0. We first prove the quasi-equicontinuity on [−r,+∞) \ (T ∪ Σ) by dividing

the proof into steps.
Step 1. If τ1, τ2 ∈ [−r, 0] then

|(T x)(τ1)− (T x)(τ2)| = |φ(τ1)− φ(τ2)|.
Let τ1, τ2 be in (0, t1] with τ2 ≥ τ1. Then,

|(T x)(τ1)− (T x)(τ2)| = |(T0x)(τ1)− (T0x)(τ2)|
≤ |||C(τ1)− C(τ2)||||φ(0)| + |||S(τ1)− S(τ2)||||η|

+
∣
∣
∣
∣

∫ τ1

0
[S(τ1 − s)− S(τ2 − s)] f (s, x(s), x(σ (s)))ds

∣
∣
∣
∣

(3.13)

+
∣
∣
∣
∣

∫ τ2

τ1

S(τ2 − s) f (s, x(s), x(σ (s)))ds

∣
∣
∣
∣ . (3.14)
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Now, by property (u5), we obtain that

S(τ2 − s)− S(τ1 − s) = [S(τ2)− S(τ1)]C(s)− [C(τ2)− C(τ1)]S(s).
It turns out that

∣
∣
∣
∣

∫ τ1

0
[S(τ1 − s)− S(τ2 − s)] f (s, x(s), x(σ (s)))ds

∣
∣
∣
∣

≤ |||S(τ2)− S(τ1)|||
∫ τ1

0
|||C(s)|||| f (s, x(s), x(σ (s)))|ds

+|||C(τ2)− C(τ1)|||
∫ τ1

0
|||S(s)|||| f (s, x(s), x(σ (s)))|ds

≤ (|||S(τ2)− S(τ1)||| + |||C(τ2)− C(τ1)|||)Ψ (2R)‖p‖1. (3.15)

Substituting this into (3.13), we get

|(T x)(τ1)− (T x)(τ2)| = |(T0x)(τ1)− (T0x)(τ2)|
= |||C(τ1)− C(τ2)||||φ(0)| + |||S(τ1)− S(τ2)||||η|

+(|||S(τ2)− S(τ1)||| + |||C(τ2)− C(τ1)|||)Ψ (2R)‖p‖1

+
∣
∣
∣
∣

∫ τ2

τ1

S(τ2 − s) f (s, x(s), x(σ (s)))ds

∣
∣
∣
∣ .

Using (h f ), we also obtain that

∣
∣
∣

∫ τ2

τ1

S(τ2 − s) f (s, x(s), x(σ (s)))ds
∣
∣
∣ ≤ Ψ (2R)

[∫ τ2

τ1

p(s)ds
]
. (3.16)

A further substitution into (3.14) gives that

|(T x)(τ1)− (T x)(τ2)| = |(T0x)(τ1)− (T0x)(τ2)|
≤ |||C(τ1)− C(τ2)|||(|φ(0)| + Ψ (2R)‖p‖1)

+|||S(τ1)− S(τ2)|||(|η| + Ψ (2R)‖p‖1)

+Ψ (2R)
[∫ τ2

0
p(s)ds −

∫ τ1

0
p(s)ds

]
.

So, calling ϑ = Ψ (2R)‖p‖1 + max{|φ(0)|, |η|}, we have if τ1, τ2 ∈ [−r, t1]:
|(T x)(τ1)− (T x)(τ2)| = |(T0x)(τ1)− (T0x)(τ2)|

≤ ϑ |||C(τ1)− C(τ2)||| + ϑ |||S(τ1)− S(τ2)|||
+Ψ (2R)

[∫ τ2

0
p(s)ds −

∫ τ1

0
p(s)ds

]

+|φ(τ1)− φ(τ2)|.
Step 2. Suppose that, for i = 1, . . . , N , τ1, τ2 ∈ (si−1, ti ] or τ1, τ2 ∈ (si ,+∞) with

τ2 ≥ τ1. We have

|(T x)(τ1)− (T x)(τ2)| = |(Ti x)(τ1)− (Ti x)(τ2)|
≤ |||C(τ1 − si )− C(τ2 − si )||||γi (si , x(si ))| (3.17)
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+
∣
∣
∣
∣

∫ τ1

si

[S(τ1 − s)− S(τ2 − s)] f (s, x(s), x(σ (s)))ds

∣
∣
∣
∣

(3.18)

+
∣
∣
∣
∣

∫ τ2

τ1

S(τ2 − s) f (s, x(s), x(σ (s)))ds

∣
∣
∣
∣ . (3.19)

In (3.17), we use (u6) to derive

|||C(τ1 − si )− C(τ2 − si )||||γi (si , x(si ))|
≤ (|||C(τ1)− C(τ2)||| + |||A||||||S(τ1)− S(τ2)|||)(|ai (si )| + bi |x(si )|).

In (3.18), we use (3.15) to get
∣
∣
∣
∣

∫ τ1

si

[S(τ1 − s)− S(τ2 − s)] f (s, x(s), x(σ (s)))ds

∣
∣
∣
∣

≤ (|||S(τ2)− S(τ1)||| + |||C(τ2)− C(τ1)|||)Ψ (2R)‖p‖1.

Now using (3.16), we deduce

|(T x)(τ1)− (T x)(τ2)| = |(Ti x)(τ1)− (Ti x)(τ2)|
≤ (|||C(τ1)− C(τ2)||| + |||A||||||S(τ2)− S(τ1)|||)(|ai (si )| + bi |x(si )|)
+ (|||S(τ2)− S(τ1)||| + |||C(τ2)− C(τ1)|||)Ψ (2R)‖p‖1

+ Ψ (2R)

[∫ τ2

0
p(s)ds −

∫ τ1

0
p(s)ds

]

.

Thus, in view of Step 1, we can redefine

ϑ := Ψ (2R)‖p‖1 + max
i=1,...,N

{|φ(0)|, |η|,max{1, |||A|||}(|ai (si )| + bi |x(si )|)}

to get that, for t ∈ [−r, t1] ∪
(⋃N

i=1(si , ti+1]
)

:

|(T x)(τ1)− (T x)(τ2)| ≤
4∑

k=1

|ψk(τ1)− ψk(τ2)|,

where ψ1(t) = ϑC(t), ψ2(t) = ϑS(t), ψ3(t) = Ψ (2R)
∫ t

0 p(s)ds and ψ4(t) = φ(t).
By the uniform continuity of C(·), S(·) and φ, we have that there exists δ > 0 such that if

|τ1−τ2| < δ for τ1, τ2 ∈ [−r, t1] or τ1, τ2 ∈ (si , ti+1], for some i = 1, . . . , N (tN+1 = +∞),
then

|(T x)(τ1)− (T x)(τ2)| < ε.

Let us note that if τ1 < 0 < τ2 with |τ1 − τ2| < δ, then

|(T x)(τ1)− (T x)(τ2)| = |φ(τ1)− (T0x)(τ2)|
≤ |φ(τ1)− C(τ2)φ(0)| + |S(τ2)− S(0)||η|

+
∣
∣
∣
∣

∫ τ2

0
S(τ2 − s) f (s, x(s), x(σ (s)))ds

∣
∣
∣
∣

≤ |φ(τ1)− φ(0)| + |||C(τ2)− C(0)||||φ(0)|
+|||S(τ2)− S(0)||||η| +

∣
∣
∣
∣Ψ (2R)

∫ τ2

0
p(s)ds

∣
∣
∣
∣ < ε
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since |τ2 − 0| < |τ2 − τ1| < δ. We also note that if τ1, τ2 ∈ (ti , si ) for some i = 1, . . . , N ,
(T x)(τ1) = (T x)(τ2) = 0. So, T is quasi-equicontinuous on [−r,+∞) \ (T ∪Σ).

To conclude the proof, note that since by (h f ), p is integrable. Thus, for an arbitrary
ε > 0, there exists L > tN such that:

∫ +∞

L
p(s)ds < ε.

So, for x ∈ BR ,

(T x)|[L ,+∞)(t) = C(t − sN )γN (sN , x(sN ))+
∫ t

sN

S(t − s) f (s, x(s), x(σ (s)))ds. (3.20)

On the other hand,

K :=
{

C(· − sN )γN (sN , x(sN ))+
∫ L

sN

S(· − s) f (s, x(s), x(σ (s)))ds : x ∈ BR

}

is a finite dimensional and bounded subset of BPCT∪Σ [L ,+∞) and hence relatively compact.
Fix t ≥ L; then,
∣
∣
∣
∣(T x)|[L ,+∞)(t)− C(t − sN )γN (sN , x(sN ))−

∫ L

sN

S(t − s) f (s, x(s), x(σ (s)))ds

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ t

L
S(t − s) f (s, x(s), x(σ (s)))ds

∣
∣
∣
∣ ≤

∫ +∞

L
p(s)ds < ε.

It turns out that

T (BR)|[L ,+∞) ⊂ K + Bε

and

χ
(
T (BR)|[L ,+∞)

)
< χ(K )+ χ(Bε) ≤ ε.

As a consequence, (2.4) holds and T (BR) is relatively compact. ��

4 Main result

Theorem 4.1 Assume the hypotheses (h A), (h f ), (hσ ), (hφ,γ ). Then, the problem (P) has
at least one strong solution.

Proof Our problem (P) can equivalently be reduced, by Proposition 3.1, to a fixed-point
problem for the operator T. We shall make use of Theorem 2.18 and Lemma 2.19. We have
already proved that:

– T maps BPCT∪Σ [−r,+∞) into BPCT[−r,+∞) by Proposition 3.1.
– Γ : BPCT∪Σ [−r,+∞) → BPCT∪Σ [−r,+∞) is a ρ-contraction by Proposition 3.2.
– T : BPCT∪Σ [−r,+∞) → BPCT∪Σ [−r,+∞) is a completely continuous operator by

Proposition 3.3.

It remains to prove that the set

ζ(T + Γ ) := {x ∈ BPCT∪Σ [−r,+∞) : x = λΓ
( x

λ

)
+ λT x f or0 < λ < 1}

is bounded.
The idea is to divide the proof into four steps and proceed as in [6].
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Assume x = λΓ ( x
λ
)+ λT x with λ ∈ (0, 1). Then:

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λφ(t), t ∈ [−r, 0],

λ
∑N

i=1 γk

(
t, x(t)

λ

)
χ(ti ,si ](t), t ∈ ⋃N

i=1(ti , si ],

λ
∑N

i=0(Ti x)(t), t ∈ (0, t1] ∪ ⋃N
i=1(si , ti+1].

(4.1)

Step 1. For t ∈ [−r, 0), we have

|x(t)| = λ|φ(t)| ≤ ‖φ‖∞.

Step 2. For all ξ ∈ [0, t1], we have

|x(ξ)| = λ|(T0x)(ξ)| ≤ |φ(0)| + |η| +
∫ ξ

0
p(s)Ψ (|x(s)| + |x(σ (s))|)ds. (4.2)

So, for ξ ∈ [−r, t1],
|x(ξ)| ≤ ‖φ‖∞ + |φ(0)| + |η|

+
∫ ξ

0
p(s)Ψ (|x(s)| + |x(σ (s))|)ds

≤ 2‖φ‖∞ + |η|
+

∫ ξ

0
p(s)Ψ (|x(s)| + |x(σ (s))|)ds (4.3)

Fix t ∈ [−r, t1] and let us define the function μx : [0, t1] → [0,+∞) by

μx (t) := sup{|x(ξ)| : −r ≤ ξ ≤ t}.
As σ(t) ≤ t for t ≥ 0, one has

sup
0≤s≤t

|x(σ (s))| = sup
σ(0)≤s≤σ(t)

|x(s)| ≤ sup
−r≤s≤t

|x(s)| = μx (t).

Taking the supremum over [−r, t] in the inequality (4.3), we obtain

μx (t) ≤ 2‖φ‖∞ + |η| +
∫ t

0
p(s)Ψ (2μx (s))ds.

Denoting by vx (t) the right-hand side of the last inequality, we have that the function vx is
absolutely continuous,

c := vx (0) = 2‖φ‖∞ + |η|
and μx (t) ≤ vx (t) for t ∈ [0, t1]. Moreover, since Ψ is nondecreasing,

v′
x (t) = p(t)Ψ (2μx (t)) ≤ p(t)Ψ (2vx (t)) a.e.

This implies that for a.e. t ∈ [0, t1]
v′

x (t)

Ψ (2vx (t))
≤ p(t),

and for any t ∈ [0, t1],
∫ t

0

v′
x (s)

Ψ (2vx (s))
ds ≤

∫ t

0
p(s)ds =: Gt < ∞.
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Note that vx is absolutely continuous and nondecreasing. Since v′
x is nonnegative, it follows

that
∫ 2vx (t)

2c

ds

2Ψ (s)
≤ Gt . (4.4)

We will show by contradiction that

sup
x∈ζ(T +Γ )

‖vx‖∞ < ∞.

Indeed, suppose that there exists an unbounded sequence {vn := vxn (tn)} and

∫ +∞

2c

ds

2Ψ (s)
= lim

n→+∞

∫ 2vn

2c

ds

2Ψ (s)
< ∞ (4.5)

holds as a consequence.
To conclude, we note that inequality (4.5), together with condition (3.1), permits us to

conclude that (vx )x∈ζ(T +Γ ) is bounded by a constant Δ1 depending only on the functions
Ψ , p, η and φ.

Step 3. For t ∈ (t1, s1], we have

|x(t)| = λ

∣
∣
∣
∣γ1

(

t,
x(t)

λ

)∣
∣
∣
∣

≤ λ|a1(t)| + b1|x(t)| ≤ |a1(t)| + b1|x(t)|
so,

|x(t)| ≤ 1

1 − b1
‖a1‖∞ := δ1.

This implies that for t ∈ [−r, s1],
|x(t)| ≤ Δ̃1 := Δ1 + δ1.

Step 4. Let ξ ∈ (s1, t2], we have

|x(ξ)| = λ|(T1x)(ξ)| ≤ ‖a1‖∞ + b1|x(s1)| +
∫ ξ

s1

p(s)Ψ (|x(s)| + |x(σ (s))|)ds

and so, for ξ ∈ [−r, t2],

|x(ξ)| ≤ Δ̃1 + ‖a1‖∞ + b1|x(s1)| +
∫ ξ

s1

p(s)Ψ (|x(s)| + |x(σ (s))|)ds. (4.6)

We reason as for (4.3) in Step 1. Let us fix t ∈ [−r, t2] and define the function μx : [0, t2] →
[0,+∞) by

μx (t) := sup{|x(ξ)| : −r ≤ ξ ≤ t}.
Observe now that μx is not necessarily continuous at t1 and s1, but the right limits exist. For
σ(t) ≤ t for t ≥ 0, one has

sup
0≤s≤t

|x(σ (s))| = sup
σ(0)≤s≤σ(t)

|x(s)| ≤ sup
−r≤s≤t

|x(s)| = μx (t).

So, by taking the supremum over [−r, t] in the inequality (4.6), we obtain
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μx (t) ≤ Δ̃1 + ‖a1‖∞ + b1μx (t)+
∫ t

0
p(s)Ψ (2μx (s))ds ⇒

μx (t) ≤ 1

1 − b1

(

Δ̃1 + ‖a1‖∞ +
∫ t

0
p(s)Ψ (2μx (s))ds

)

.

Denoting by vx (t) the right-hand side of the last inequality, we have that the function vx is
continuous,

c := vx (0) = 1

1 − b1

(
Δ̃1 + ‖a1‖∞

)

and μx (t) ≤ vx (t) for t ≥ 0. Moreover, since Ψ is nondecreasing, for t 	= t1, t 	= s1,

v′
x (t) = p(t)Ψ (2μx (t)) ≤ p(t)Ψ (2vx (t)).

This implies that

v′
x (t)

Ψ (2vx (t))
≤ p(t), t 	= t1, t 	= s1

and so, for any b > 0,
∫ b

0

v′
x (t)

Ψ (2vx (t))
dt ≤

∫ b

0
p(t)dt := Γb < ∞.

Since v′
x is a continuous function for all t 	= t1, t 	= s1, we have

∫ 2vx (b)

2c

ds

2Ψ (s)
≤ Γb.

This, together with condition (3.1), permits us to conclude that vx is bounded by a constant
Δ2 depending only on the functions a1, a2, Ψ, p, η, φ and the values b1, b2.

By repeating the last two steps N -times, we obtain that if x ∈ ζ(T +Γ ) and t ∈ [−r,+∞),
then there exits ΔN+1 := ΔN+1(η, φ, Ψ, p, (ai )i=1,...,N , (bi )i=1,...,N ) such that

|x(t)| ≤ μx (t) ≤ vx (t) ≤ ΔN+1 < +∞.

This completes the proof. ��
As a side result of Theorem 4.1, we have proved that the obtained solution is bounded

in [−r,+∞). We stress that hypothesis (h f ) can be lowered at the expense of losing the
boundedness of the solutions, as the following corollary shows.

Corollary 4.2 Assume the hypotheses (h A), (hσ ), (hφ,γ ). Assume also the following condi-
tion is satisfied:

(h∗
f ) f : [0,+∞)×R

n ×R
n → R

n is such that a nonnegative function p∗ ∈ L1
loc[0,+∞)

and a continuous nondecreasing function Ψ : [0,+∞) → [1,+∞) exist for which

| f (t, x, y)| ≤ p∗(t)Ψ (|x | + |y|), t ≥ 0, x, y ∈ R
n,

and ∫ ∞

0

ds

Ψ (s)
= +∞. (4.7)

Then, the problem (P) admits at least one (not necessarily bounded) strong solution.

Proof The proof follows a standard argument which we sketch in the sequel.
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Fix n ∈ N such that n ≥ tN and let

in(t) :=
{

1, if t ∈ [0, n]
0, otherwise

be the indicator function of the set [0, n].
Let fn(t, x, y) := in(t) f (t, x, y) and pn(t) := in(t)p∗(t). Then, it holds that fn satisfies

the condition (h f ), with p = pn ∈ L1[0,+∞).
From Theorem 4.1, it follows that the problem

(Pn)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′′(t) = Ax(t)+ fn(t, x(t), x(σ (t))), t ∈ (0, t1] ∪ ⋃N
i=1(si , ti+1]

x(t) = γi (t, x(t)), t ∈ ⋃N
i=1(ti , si ],

x(t) = φ(t), t ∈ [−r, 0], x ′(0) = φ′(0) := η

has a solution xn . For t ∈ [0,+∞), let n(t) := minn∈N{n ≥ t} and define x : [−r,+∞) →
R

n by

x(t) := xn(t)(t).

Then, it easily follows that x is a solution of the problem (P). ��

5 Conclusions

Theorem 4.1 differs from previous results on the subject (see [12] and [13]) in several ways.
At first, we analyzed a second-order system with non-instantaneous impulses, while the
previous literature concerns only the first-order case. On the other hand, the problem is stated
and studied on unbounded intervals and with an ad hoc technique. Lastly, the delay introduced
exploits the role played by the non-instantaneous impulses.

In our opinion, the results can be of interest for modeling the actions of chemotherapeutic
drugs. Indeed, in this case:

1. Second-order differential systems naturally arise in models where the spatial components
play an important role (e.g., cancers), as well as in the so-called two-compartment models.

2. By using an unbounded interval, we can shape a multiscale model, where the jump at each
point of discontinuity may represent the diffusion of the drug in the bloodstream (which
occurs in few minutes), the non-instantaneous part represents the absorption of the drugs
by the cells (which can be measured in days), while the differential system defined on
the unbounded interval models the whole trend from the first chemotherapeutic session
up to the end of the cure, which may last years.

3. By following [19], the delay can shape the behavior of the affected cells. Indeed, we
stress that in case of chemotherapy, the cells react to the drugs by committing “suicide”
only after the DNA checking cycle, i.e., with a delay.
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A HIERARCHICAL APPROACH TO FIXED POINT PROBLEMS

FOR UNIFORMLY ASYMPTOTICALLY REGULAR SEQUENCES.

VITTORIO COLAO, LUIGI MUGLIA

Abstract. We study the hierarchical iterative scheme defined by x1 ∈ H and

xn+1 = αnxn + (1−αn)(I − µnD)Wnxn +αnβn(S − I)xn (n ≥ 1), involving

a UAR sequence (Wn)n∈N . We prove that the limit point depends from the

value τ := limn→∞ αnβn/µn.

1. Introduction and Motivations

The approximation of solutions for Variational Inequality Problems (VIPs) had
always been a wide and catalyzing research area. This is due, among other moti-
vations, to the fact that many real-world problems can be modeled as VIPs. To
recognize eligible problems, we refer to the Cabot’s paper [8], Deutsch and Yamada’s
paper [15], Combettes and Hirstoaga’s paper [13], Yamada’s paper [33] on mono-
tone inclusions, Solodov’s paper [27]) on convex optimization and [11, 21, 22, 30, 32]
on quadratic minimization over fixed point.
It is well known that if D is a monotone operator and C is a closed and convex
subset of the Hilbert space H, then the existence of solutions for the (VIP)

Find x∗ ∈ C such that 〈Dx∗, y − x〉 ≥ 0, ∀y ∈ C (1.1)

is not guaranteed. Nevertheless, under the assumption that A is continuous, the
set of solution is nonempty.
In this paper we consider a strongly monotone and Lipschitzian operator D, i.e. D
satisfies

〈Dx−Dy, x− y〉 ≥ σ2‖x− y‖2 and ‖Dx−Dy‖ ≤ L‖x− y‖,

for any x, y ∈ C. By this assumption, the set of solution for the problem (1.1) is
reduced to a unique point (see Browder and Petryshyn [6] or Deimling [14]).
Despite the fact that the above mentioned hypothesis may appear tricky, several
examples of (VIPs) involving strongly monotone and Lipschitz operators can be
easily found in the literature.

For instance, if we fix u ∈ H and set Dx = x−u, the inequality in (1.1) becomes

〈x∗ − u, y − x〉 ≥ 0, ∀y ∈ C.

In this case x∗ is the solution of the minimum distance problem

‖x∗ − u‖ = min
x∈C
‖x− u‖.

2000 Mathematics Subject Classification. 47H09,58E35,47H10,65J25.
Key words and phrases. hierarchical fixed point problems, variational inequalities, nonexpan-

sive mappings, two-step algorithms.
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In 2006, Marino and Xu [22], studied the problem of minimizing a quadratic
function over the set Fix(T ) of the fixed points of a nonexpansive mapping T on a
real Hilbert space H, i.e.

min
x∈Fix(T )

1

2
〈Ax, x〉 − h(x)

where h is a potential function of a contraction f (i.e., h′(x) = γf(x) for x ∈ H)
and A is a strongly positive linear and bounded operator.
We note that x∗ ∈ Fix(T ) solves the minimization problem if and only if

〈(A− γf)x∗, x∗ − z〉 ≥ 0, z ∈ Fix(T ),

where D = (A− γf) is strongly monotone and Lipschitzian.
Reich and Xu in [26] considered the constrained least squares problem:

min
x∈

⋂
i∈I Ci

1

2
‖Ax− b‖2, (1.2)

where A is a bounded linear operator on H, {Ci}i∈I is a family of closed and convex
subsets of H and b ∈ H is fixed. Since this problem may be ill-posed (i.e. it may
have more than one solution), its Tichonov regularization

min
x∈C

1

2
(‖Ax− b‖2 + ε‖x‖2) (1.3)

is introduced and studied by translating (1.3) into te following:

Find x∗ ∈ ∩i∈ICi such that 〈(A∗A+ εI)xε −A∗b, x− xε〉 ≥ 0, x ∈ ∩i∈ICi,
where A∗ is the self adjoint operator of A and (A∗A + εI) becomes a strongly
monotone and Lipschitzian operator.

We point out that (1.2) belongs from an interesting case of (VIPs), i.e. the class
of convex feasibility problems (CFPs). The convex feasibility problem can be stated
as follows,

min
x∈∩i∈ICi

Φ(x),

where Φ represents a cost-function to be minimized and {Ci}i∈I are convex and
closed property sets, representing the constraints.
Firstly applied in Optimization, (CFPs) gained importance in different branches of
sciences and they are currently used to model problems arising in image reconstruc-
tion, linear prediction theory and signal processing (see [5]), among others. For an
exhaustive introduction on the subject, one can refer to [3].
Apart from the linear case, where {Ci}i∈I is a family of half-planes, it can be con-
venient to threat each Ci as the fixed point set Fix(Ti) for a nonexpansive operator
Ti, so that ∩iICi represents the set of common fixed points of a family of nonex-
pansive mappings. The solution is then reached by means of iterations involving
the family {Ti}i∈I (see [1, 2, 3, 4, 10, 18, 21] and references therein).
In [20] and [21], an unifying approach to the problem had been proposed, by in-
troducing the UAR−class of procedures. This approach consists into introduce a
sequence of mappings (Wn)n∈N that preserves the fixed points of the family (Ti)i∈I
and such that the following conditions are satisfied:

(h1) Wn : H → H are nonexpansive mappings, uniformly asymptotically regular
on bounded subsets B ⊂ H, i.e.

lim
n→∞

sup
x∈B
‖Wn+1x−Wnx‖ = 0,
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(h2) it is possible to define a nonexpansive mapping W : H → H, with Wx :=
lim
n→∞

Wnx such that if F :=
⋂
n∈N Fix(Wn) 6= ∅ then Fix(W ) = F.

Classes of UAR−procedures can be widely found in the existing literature, as the
following examples show.
Example 1.1 have been introduced by Atsushiba and Takahashi, while Shimoji
and Takahashi developed the construction in example 1.2. Both results had been
essential to detect the role of (h1) and (h2). We emphasize that the introduction
of families of auxiliary mappings, essentially due to Professor Takahashi, represents
the starting point of wide and deep line of research.

Example 1.1 (Atsushiba-Takahashi, [1] 1999). Let E be a strictly convex Banach
space. Let Σ = {Ti}Ni=1 be a family of nonexpansive mappings from C to C with
N⋂
i=1

Fix(Ti) 6= ∅. Let (Λn)n∈N = (λ1,n, . . . , λN,n) ⊂ (0, 1)N such that λi,n → λi ∈

(0, 1), as n→∞, for all i = 1, . . . , N .
Let 

U1,n = λ1,nT1 + (1− λ1,n)I

U2,n = λ2,nT2U1,n + (1− λ2,n)I
...

Wn = WΣ,Λn
:= UN,n = λN,nTNUN−1,n + (1− λN,n)I.

(1.4)

The mappings (Wn)n∈N satisfies (h1) and (h2) and the proof of this fact is con-
tained in Lemma 3.1 and Lemma 3.2 of [1] (see [12, 21] for details). In particular
N⋂
i=1

Fix(Ti) =
⋂
n∈N

Fix(Wn) = Fix(W ).

Example 1.2 (Shimoji-Takahashi, [28] 2001). Let X be a strictly convex Banach
space and C ⊂ X closed and convex.

Let (Tn)n∈N be a sequence of nonexpansive mappings from C to C with
⋂
n∈N

Fix(Tn) 6=

∅. Let Λ := (λn)n∈N ⊂ (0, b] ⊂ (0, 1). Let consider the following construction:

Un,n+1 := I,
Un,n := λnTnUn,n+1 + (1− λn)I,
...
Un,k := λkTkUn,k+1 + (1− λk)I,
...
Un,2 := λ2T2Un,3 + (1− λ2)I,
Wn ≡ Un,1 := λ1T1Un,2 + (1− λ1)I.

(1.5)

The Shimoji-Takahashi’s approach in (1.5) satisfies (h1) and (h2) and the proof eas-

ily follows by Lemma 3.1 and 3.2 in [28] (see [20]). Also in this case
⋂
i∈N

Fix(Ti) =⋂
n∈N

Fix(Wn) = Fix(W ).

Example 1.3. Let A be a δ-inverse strongly monotone operator, i.e. satisfies:

〈Ax−Ay, x− y〉 ≥ δ‖Ax−Ay‖2.
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with A−10 6= ∅ (see [29]). Let (λn)n∈N ⊂ (0, 2δ] be a sequence converging to λ ∈
(0, 2δ].

Then Wn := (I − λnA) is a family of nonexpansive mappings (see page 419 in
[29]) with common fixed point set F = A−10, satisfying (h1) and (h2).

Our last example is due to Gu et.al. in [17].

Example 1.4. Let (Tn)n∈N be a sequence of nonexpansive mappings with at least
one common fixed point. Let (λn)n∈N ⊂ (0, 1) a strictly decreasing sequence such

that λ0 = 1 and

∞∑
i=1

(λi−1 − λi) <∞. Let, for every n ≥ 1

Wnx =

∑n
i=1(λi−1 − λi)Tix

1− λn
Note that all Wn are nonexpansive mappings such that,

‖Wn+1x−Wnx‖ ≤

∥∥∥∥∥
∑n+1
i=1 (λi−1 − λi)Tix

1− λn+1
−
∑n
i=1(λi−1 − λi)Tix

1− λn

∥∥∥∥∥
≤

∣∣∣∣ 1

1− λn+1
− 1

1− λn

∣∣∣∣ n∑
i=1

(λi−1 − λi)‖Tix‖+
(λn − λn+1)‖Tn+1x‖

1− λn+1

=
λn − λn+1

1− λn+1

(∑n
i=1(λi−1 − λi)‖Tix‖

1− λn
+ ‖Tn+1x‖

)
So, if x lies in a bounded set, by an opportune M > 0

‖Wn+1x−Wnx‖ ≤
λn − λn+1

1− λn+1
M

(∑n
i=1(λi−1 − λi)

1− λn
+ 1

)
= 2M

λn − λn+1

1− λn+1

Thus, since

∞∑
i=1

(λi−1 − λi) < ∞,

∞∑
n=1

‖Wn+1x − Wnx‖ converges and this guar-

antees that (Wn)n∈N is pointwise convergent and uniformly asymptotically regular

on the bounded subset of C. Notice that, since
λi−1 − λi

1− λn
∈ [0, 1], for all i and∑n

i=1(λi−1 − λi)
1− λn

= 1 for all n then
⋂
i∈N Fix(Ti) =

⋂
n∈N Fix(Wn) = Fix(W ) by

Lemma 3, page 257, proved in [7].

Here we consider a sequence of mapping (Wn)n∈N with common fixed points to
emphasize the role played by (h1) and (h2) to the convergence of the method.

The hierarchical approach draws on from Moudafi in [25], where the following
explicit algorithm is carried out:

xn+1 = (1− αn)xn + αn(σnSxn + (1− σn)Txn). (1.6)

In the same paper, it is proved a weak convergence result of the method (1.6) to a
solution of

〈(I − S)x∗, y − x∗〉 ≥ 0, ∀y ∈ Fix(T ). (1.7)
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Following [23] and [24], Cianciaruso et al., in [9] studied the following scheme:{
yn = βnSxn + (1− βn)xn

xn+1 = αnf(xn) + (1− αn)Tyn, n ≥ 1
(1.8)

and proved three convergence results to solutions of variational inequality problems.
Inspired by the above mentioned results, we investigate the convergence of the
iterative method generated by x1 ∈ H and

xn+1 = αnxn + (1− αn)(I − µnD)Wnxn + αnβn(S − I)xn, n ≥ 1 (1.9)

where D is a strongly monotone and Lipschitzian operator, Wn is a sequence of
mappings satisfying (h1) and (h2) and S is a nonexpansive mapping.
In particular we will show that the iterative method (3.1) converges to a solution
of a variational inequality problem that involves the operators D and (I − S) and
that such convergence depends by the value

τ := lim
n→∞

αnβn
µn

.

2. Preliminar results

We recall some general results about Hilbert spaces and monotone operators.

Lemma 2.1. For all x, y ∈ H, there holds the inequality

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.
‖tx+ (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2

If K is closed convex subset of a real Hilbert space H, the metric projection
PK : H → K is the mapping defined as follows: for each x ∈ H, PKx is the only
point in K with the property

||x− PKx|| = inf
y∈K
||x− y|| .

Lemma 2.2. [6] Let K be a nonempty closed convex subset of a real Hilbert space
H and let PK be the metric projection from H onto K. Given x ∈ H and z ∈ K,
z = PKx if and only if

〈x− z, y − z〉 ≤ 0 ∀ y ∈ K .

Lemma 2.3. [16] Let W : C → C be a nonexpansive mapping. Then, for all
x, y ∈ C:

• the mapping (I −W ) is 1
2 -inverse strongly monotone that is

〈(I −W )x− (I −W )y, x− y, 〉 ≥ 1

2
‖(I −W )x− (I −W )y‖2.

• The operator (D+(I−W )) is a σ-strongly monotone operator and

(
σ

L
+

1

2

)
-

inverse strongly monotone operator.

Lemma 2.4. [31] Let D : H → H be a σ−strongly monotone and L-lipschitazian

operator. If µ <
2σ

L2
, ρ =

2σ − µL2

2
and (µn)n∈N ⊂ (0, µ] then:

‖(I − µnD)x− (I − µnD)y‖ ≤ (1− µnρ)‖x− y‖
i.e. (I − µnD) is a (1− µnρ)-contraction.
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Finally, we conclude this section with a lemma due to Xu on real sequences which
has a fundamental role in the sequel.

Lemma 2.5. [30] Assume (an)n∈N is a sequence of nonnegative numbers such that

an+1 ≤ (1− γn)an + δn, n ≥ 0,

where (γn)n∈N is a sequence in (0, 1) and (δn)n∈N is a sequence in R such that,

(1)
∑∞
n=1 γn =∞;

(2) lim supn→∞ δn/γn ≤ 0 or
∑∞
n=1 |δn| <∞.

Then limn→∞ an = 0.

3. Properties and Convergence of the Iterative Algorithm

Let (Wn) be a sequence of mappings with common fixed point set F := ∩n∈NFix(Wn) 6=
∅ and satisfying the properties

(h1) Wn : H → H are nonexpansive mappings, uniformly asymptotically regular
on bounded subsets B ⊂ H, i.e.

lim
n→∞

sup
x∈B
‖Wn+1x−Wnx‖ = 0,

(h2) it is possible to define a nonexpansive mapping W : H → H, with Wx :=
lim
n→∞

Wnx such that if F :=
⋂
n∈N Fix(Wn) 6= ∅ then Fix(W ) = F.

Let D : H → H be a σ-strongly monotone and L-lipschitzian operator on H, i.e.
D satisfies

〈Dx−Dy, x− y〉 ≥ σ2‖x− y‖2 and ‖Dx−Dy‖ ≤ L‖x− y‖

and let S : H → H be a nonexpansive mapping.
Moreover, fix α ∈ (0, 1) and µ ∈ (0, 2σ

L2 ) and consider the sequences (αn)n∈N ⊂
(0, α], (βn)n∈N ⊂ (0, 1) and (µn)n∈N ⊂ (0, µ), with the property that there exists
the limit

τ := lim
n→∞

αnβn
µn

.

We introduce the iterative scheme defined by x1 ∈ H

xn+1 = αnxn + (1− αn)BnWnxn + αnβn(S − I)xn, n ≥ 1, (3.1)

where Bn := (I − µD) and we will prove that the convergence of the iterated
sequence mainly depends on τ.

Lemma 3.1. Assume that either

τ < +∞, (H1)

(i) F ∩ Fix(S) 6= ∅, or
(ii) S has bounded range.

Then (xn)n∈N is bounded.
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Proof. Let z ∈ F be a fixed element.
Assume that (H1) holds and, as a consequence, that αnβn

µn
is bounded from above

by some constant γ > 0. We have then,

‖xn+1 − z‖ ≤ ‖αn(xn − z) + (1− αn)(BnWnxn −Bnz) + (1− αn)(Bnz − z)
+αnβn(Sxn − xn)‖

= ‖αn(xn − z) + (1− αn)(BnWnxn −Bnz) + (1− αn)(Bnz − z)
+αnβn(Sxn − Sz) + αnβn(Sz − z) + αnβn(z − xn)‖

= ‖αn(1− βn)(xn − z) + (1− αn)(BnWnxn −Bnz) + (1− αn)(Bnz − z)
+αnβn(Sxn − Sz) + αnβn(Sz − z)‖

≤ αn(1− βn)‖xn − z‖+ (1− αn)‖BnWnxn −Bnz‖+ (1− αn)‖Bnz − z‖
+αnβn‖Sxn − Sz‖+ αnβn‖Sz − z‖

≤ αn‖xn − z‖+ αnβn‖Sz − z‖
+(1− αn)(1− µnρ)‖xn − z‖+ (1− αn)µn‖Dz‖

≤ (1− (1− αn)µnρ)‖xn − z‖+ µn‖Dz‖+ αnβn‖Sz − z‖ (3.2)

≤ (1− (1− αn)µnρ)‖xn − z‖+ µn(‖Dz‖+ γ‖Sz − z‖)

So, by an inductive process, one can see that

‖xn − z‖ ≤ max

{
‖x1 − z‖,

‖Dz‖+ γ‖Sz − z‖
ρ

}
.

so the claim follows.

Suppose that (i) holds. In this case, z can be chosen in Fix(S) ∩ F, so that
‖Sz − z‖ = 0. By using (3.2), it is easily derived that

‖xn+1 − z‖ ≤ (1− (1− αn)µnρ)‖xn − z‖+ µn‖Dz‖

and

‖xn − z‖ ≤ max

{
‖x1 − z‖,

‖Dz‖
ρ

}
.

Lastly, note that

‖xn+1 − z‖ = ‖αn ((1− βn)(xn − z) + βn(Sxn − z))
+(1− αn)(BnWnxn −Bnz +Bnz − z)‖

≤ αn((1− βn)‖xn − z‖+ βn‖Sxn − z‖)

+(1− αn)

(
(1− µnρ)‖xn − z‖+ µnρ

‖Dz‖
ρ

)
≤ αn max{‖xn − z‖, ‖Sxn − z‖}+ (1− αn) max

{
‖xn − z‖,

‖Dz‖
ρ

}
≤ max

{
‖xn − z‖, ‖Sxn − z‖,

‖Dz‖
ρ

}
.

If we assume that (ii) holds, i.e. that

‖Sxn − z‖ ≤M,
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for some constant M > 0, then it is promptly derived that

‖xn − z‖ ≤ max

{
‖x1 − z‖,M,

‖Dz‖
ρ

}
.

�

Lemma 3.2. Assume that (xn)n∈N is bounded and asymptotically regular; if µn →
0 and αnβn → 0 as n→ +∞ then:

(1) lim
n→∞

‖xn −Wnxn‖ = 0;

(2) the set of weak cluster points of (xn)n∈N are fixed points, i.e.

ωw(xn) ⊂ F.

Proof. To prove claim (1) is enough to note that:

‖xn −Wnxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 −Wnxn‖ (3.3)

≤ ‖xn − xn+1‖+ αn‖xn −Wnxn‖
+(1− αn)µn‖DWnxn‖+ αnβn‖(I − S)xn‖ ⇒

(1− αn)‖xn −Wnxn‖ ≤ ‖xn − xn+1‖+ µn‖DWnxn‖+ αnβn‖(I − S)xn‖
and the claim directly follows.
Moreover, observe that

ωs(xn) = ωs(Wnxn) and ωw(xn) = ωw(Wnxn).

Suppose that (2) does not hold. As a consequence, let p0 ∈ ωw(xn) \F and denote
by (xnk

)k∈N a subsequence of (xn) such that xnk
⇀ p0. By using (3.3), by the

asymptotical regularity and by the Opial’s property of a Hilbert space:

lim inf
k→∞

‖xnk
− p0‖ < lim inf

k→∞
‖xnk

−Wp0‖

≤ lim inf
k→∞

[‖xnk
−Wnk

xnk
‖+ ‖Wnk

xnk
−Wnk

p0‖

+‖Wnk
p0 −Wp0‖]

≤ lim inf
k→∞

[‖xnk
−Wnk

xnk
‖+ ‖xnk

− p0‖+ ‖Wnk
p0 −Wp0‖]

≤ lim inf
k→∞

‖xnk
− p0‖

which is a contradiction. Then p0 ∈ F as required. �

Theorem 3.3. Suppose that

(H2) lim
n→∞

µn = 0,
∑
n∈N

µn =∞ and lim
n→∞

|µn−1 − µn|
µn

= 0;

(H3) lim
n→∞

supz∈B ‖Wnz −Wn−1z‖
µn

= 0, with B ⊂ H bounded.

(H4) lim
n→∞

|αn−1 − αn|
µn

= 0.

Moreover, suppose that
τ = 0 (H1∗)

holds.
Then the sequence generated by x1 ∈ H and the iteration (3.1) strongly converges
to x∗ ∈ F that is the unique solution of the variational inequality

〈Dx∗, y − x∗〉 ≥ 0, ∀y ∈ F. (3.4)
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Remark 3.4. The choice:

αn = µn = βn =
1√
n
, n ≥ 1

satisfies our hypotheses.
Moreover, let A be a δ-inverse strongly monotone operator with A−10 6= ∅ (see [29])
and let (λn)n∈N ⊂ (0, 2δ] be a sequence converging to λ ∈ (0, 2δ].
We have already stated that Wn := (I−λnA) is a family of nonexpansive mappings
with common fixed points F = A−10 satisfying (h1) and (h2) (see page 419 in [29]).
In this particular case, case (H3) of Theorem 3.3 reduces to

lim
n→∞

n|λn−1 − λn| = 0.

To prove our first converge result we use the following proved in [20] as Theorem
2.2.

Lemma 3.5. Let (Wn)n∈N a sequence of nonexpansive mappings defined on H with
common fixed points set F 6= ∅ satisfying (h1) and (h2).
Let D : H → H be a σ−strongly monotone and L−lipschitzian operator.

Let us choose (µn)n∈N ⊂ (0, µ) with µ <
2σ

L2
such that (H2) and (H3) hold.

Let us choose (αn)n∈N ⊂ (0, α] ⊂ (0, 1) such that (H4) holds.
Then the sequence generated by x0 ∈ H and the iteration

xn+1 = αnxn + (1− αn)(I − µnD)Wnxn

strongly converges to x∗ ∈ F that is the unique solution of the variational inequality

〈Dx∗, y − x∗〉 ≥ 0, ∀y ∈ F (3.5)

Proof of Theorem 3.3. Fix x1 ∈ H and consider the sequence (an)n∈N , where an :=
‖xn − zn‖ and (zn)n∈N is generated by the iteration{

z1 = x1;

zn+1 = αnzn + (1− αn)(I − µnD)Wnzn, n ≥ 1.
(3.6)

Note that by Theorem 2.2 in [20], (zn)n∈N strongly converges to the unique solution
x∗ of the VIP (3.4).
To complete the proof, we have only to prove that an converges to 0. To this end,
we compute

an+1 = ‖xn+1 − zn+1‖
≤ αn‖xn − zn‖+ (1− αn)‖BnWnxn −BnWnzn‖+ αnβn‖Sxn − xn‖
≤ (1− (1− αn)µnρ)‖xn − zn‖+ αnβn‖Sxn − xn‖
= ((1− (1− αn)µnρ)an + αnβn‖Sxn − xn‖
= (1− γn)an + αnβn‖Sxn − xn‖,

where γn := (1 − αn)µnρ. Note that ‖Sxn − xn‖, since (xn)n∈N is bounded by
Lemma 3.1 and S is nonexpansive. Hence, it holds

lim
n

αnβn‖Sxn − xn‖
γn

= 0
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by (H1∗).
By this last an (H2), we can apply Lemma 2.5 to obtain that an → 0 and

lim
n
‖xn − x∗‖ = lim

n
an + ‖zn − x∗‖ = 0.

�

Theorem 3.6. Suppose that

(H2) lim
n→∞

µn = 0,
∑
n∈N

µn =∞ and lim
n→∞

|µn − µn−1|
αnβnµn

= 0;

(H5) lim
n→∞

supz∈B ‖Wnz −Wn−1z‖
αnβnµn

= 0, with B ⊂ H bounded.

(H6) lim
n→∞

|αnβn − αn−1βn−1|
αnβnµn

= 0;

(H7) there exists K > 0 such that

∣∣∣∣ 1

αnβn
− 1

αn−1βn−1

∣∣∣∣ ≤ Kµn.

Moreover, assume that
τ ∈ (0,+∞). (H1∗∗)

Then xn → x̃, as n → ∞, where x̃ ∈ F is the unique solution of the variational
inequality

〈 1

τ
Dx̃+ (I − S)x̃, y − x̃〉 ≥ 0, ∀y ∈ F. (3.7)

Remark 3.7. We note that conditions (H2)-(H7) cannot be satisfied by the same
sequence of Remark 3.4, since

lim
n→∞

1

µn

∣∣∣∣ 1

αnβn
− 1

αn−1βn−1

∣∣∣∣ = lim
n→∞

√
n =∞.

However a simple calculation shows that

µn =
2√
n

and αn = βn =
1
4
√
n
, n ≥ 1

satisfy the hypotheses of Theorem 3.6.

Proof. At first, we point out that the problem is well-posed. Indeed, Lemma 2.3
ensures that

(
1
τD + (I − S)

)
is a strongly monotone operator, so that (3.7) has a

unique solution x̃.
Moreover, observe that (xn)n∈N is bounded by (H1∗∗) and Lemma 3.1.
We compute

xn − xn+1 = (1− αn)(xn −BnWnxn) + αnβn(I − S)xn

= (1− αn)(xn −Wnxn + µnDWnxn) + αnβn(xn − Sxn)

= (1− αn)(I −Wn)xn + (1− αn)µnDWnxn + αnβn(I − S)xn

and define

vn :=
xn − xn+1

αnβn
= (I − S)xn +

1− αn
αnβn

(I −Wn)xn +
(1− αn)µn
αnβn

DWnxn. (3.8)

We will prove that vn → 0 as n → ∞; this means that (xn)n∈N is asymptotically
regular with respect to (αnβn)n∈N, i.e.

lim
n→∞

‖xn+1 − xn‖
αnβn

= 0.
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To do so, we compute

xn+1 − xn = αn(xn − xn−1) + (αn − αn−1)(xn−1 −Bn−1Wn−1xn−1)

+(1− αn)(BnWnyn −Bn−1Wn−1yn−1)

+αnβn(Sxn − xn)− αn−1βn−1(Sxn−1 − xn−1) (3.9)

and note that

αnβn(Sxn − xn)− αn−1βn−1(Sxn−1 − xn−1)

= αnβnSxn − αnβnxn − αn−1βn−1Sxn−1 + αn−1βn−1xn−1)

= αnβn(Sxn − Sxn−1) + (αnβn − αn−1βn−1)Sxn−1

−αnβn(xn − xn−1)− (αnβn − αn−1βn−1)xn−1

= αnβn(Sxn − Sxn−1) + (αnβn − αn−1βn−1)(Sxn−1 − xn−1)

−αnβn(xn − xn−1) (3.10)

By means of (3.10), computation (3.9) becomes

xn+1 − xn = αn(xn − xn−1) + (αn − αn−1)(xn−1 −Bn−1Wn−1xn−1)

+(1− αn)(BnWnyn −Bn−1Wn−1yn−1)

+αnβn(Sxn − Sxn−1) + (αnβn − αn−1βn−1)(Sxn−1 − xn−1)

−αnβn(xn − xn−1)

= αn(1− βn)(xn − xn−1) + (αn − αn−1)(xn−1 −Bn−1Wn−1xn−1)

+(1− αn)(BnWnyn −Bn−1Wn−1yn−1)

+αnβn(Sxn − Sxn−1) + (αnβn − αn−1βn−1)(Sxn−1 − xn−1),

so, passing to the norm and using the nonexpansivity of S

‖xn+1 − xn‖ ≤ αn‖xn − xn−1‖+ |αn − αn−1|‖xn−1 −Bn−1Wn−1xn−1‖
+(1− αn)‖BnWnyn −Bn−1Wn−1yn−1‖
+|αnβn − αn−1βn−1|‖Sxn−1 − xn−1‖. (3.11)

Moreover

‖BnWnxn −Bn−1Wn−1xn−1‖ ≤ ‖BnWnxn −BnWn−1xn−1‖
+‖BnWn−1xn−1 −Bn−1Wn−1xn−1‖

≤ (1− µnρ)‖Wnxn −Wn−1xn−1‖
+‖Wn−1xn−1 − µnDWn−1xn−1

−Wn−1xn−1 + µn−1DWn−1xn−1‖
≤ (1− µnρ)‖xn − xn−1‖+ ‖Wnxn−1 −Wn−1xn−1‖

+|µn − µn−1|‖DWn−1xn−1‖ (3.12)
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By means of (3.12), in (3.11) we have that

‖xn+1 − xn‖ ≤ αn‖xn − xn−1‖+ |αn − αn−1|‖xn−1 −Bn−1Wn−1xn−1‖
+(1− αn)(1− µnρ)‖xn − xn−1‖+ (1− αn)‖Wnxn−1 −Wn−1xn−1‖
+(1− αn)|µn − µn−1|‖DWn−1xn−1‖
+|αnβn − αn−1βn−1|‖Sxn−1 − xn−1‖

= (1− (1− αn)µnρ)‖xn − xn−1‖+ |αn − αn−1|‖xn−1 −Bn−1Wn−1xn−1‖
+‖Wnxn−1 −Wn−1xn−1‖+ |µn − µn−1|‖DWn−1xn−1‖
+|αnβn − αn−1βn−1|‖Sxn−1 − xn−1‖.

By this last and by the boundedness of (xn)n∈N , there exists M > 0 such that

‖xn+1 − xn‖ ≤ (1− (1− αn)µnρ)‖xn − xn−1‖+ ‖Wnxn−1 −Wn−1xn−1‖
(‖µn − µn−1|+ |αnβn − αn−1βn−1|+ |αn − αn−1|)M. (3.13)

Moreover, by (H5)

lim
n→∞

‖Wnxn−1 −Wn−1xn−1‖
µn

= 0

and by (H6)

lim
n→∞

|µn − µn−1|+ |αn − αn−1|+ |αnβn − αn−1βn−1|
µn

= 0.

We can apply Lemma 2.5 to obtain that (xn)n∈N is asymptotically regular.
Dividing by αnβn in (3.13), it can be observed that

‖xn+1 − xn‖
αnβn

≤ (1− (1− αn)µnρ)
‖xn − xn−1‖

αnβn
+
‖Wnxn−1 −Wn−1xn−1‖

αnβn

+
|µn − µn−1|+ |αn − αn−1|+ |αnβn − αn−1βn−1|

αnβn
M

≤ (1− (1− αn)µnρ)
‖xn − xn−1‖
αn−1βn−1

+ ‖xn−1 − xn‖
∣∣∣∣ 1

αnβn
− 1

αn−1βn−1

∣∣∣∣
+
‖Wnxn−1 −Wn−1xn−1‖

αnβn

+
|µn − µn−1|+ |αn − αn−1|+ |αnβn − αn−1βn−1|

αnβn
M

by (H7) ≤ (1− (1− αn)µnρ)
‖xn − xn−1‖
αn−1βn−1

+ µnK‖xn−1 − xn‖

+
‖Wnxn−1 −Wn−1xn−1‖

αnβn

+
|µn − µn−1|+ |αn − αn−1|+ |αnβn − αn−1βn−1|

αnβn
M

Since (H2), (H5) and (H6) hold, we can apply again Lemma 2.5 to obtain that

lim
n→∞

vn = lim
n→∞

‖xn+1 − xn‖
αnβn

= 0.
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Now, fix z ∈ F ; by (3.8) it results

〈vn, xn − z〉 = 〈(I − S)xn, xn − z〉+
1− αn
αnβn

〈(I −Wn)xn, xn − z〉

+
(1− αn)µn
αnβn

〈DWnxn, xn − z〉

= 〈(I − S)xn − (I − S)z, xn − z〉+ 〈(I − S)z, xn − z〉

+
1− αn
αnβn

〈(I −Wn)xn − (I −Wn)z, xn − z〉

+
(1− αn)µn
αnβn

〈DWnxn −Dxn, xn − z〉

+
(1− αn)µn
αnβn

〈Dxn −Dz, xn − z〉+
(1− αn)µn
αnβn

〈Dz, xn − z〉

By using the strong monotonicity of D and the monotonicity of (I − S) we have

〈vn, xn − z〉 ≥ 〈(I − S)z, xn − z〉+
(1− αn)µn
αnβn

〈Dz, xn − z〉 (3.14)

+
(1− αn)µn
αnβn

〈DWnxn −Dxn, xn − z〉+
(1− αn)µnσ

αnβn
‖xn − z‖2

Since D is Lipschitzian and by claim (1) of Lemma 3.2 we easily show that both
(‖DWnxn −Dxn‖)n∈N and (vn)n∈N are null sequences.
Passing to the limit (3.14), we obtain that all weak cluster points of (xn)n∈N are
strong cluster points, i.e.

ωw(xn) = ωs(xn)

and in light of claim (1) of Lemma 3.2

ωw(xn) = ωs(xn) = ωw(Wnxn) = ωs(Wnxn).

Note that ωw(xn) is not empty since (xn)n∈N is a bounded sequence in a Hilbert
space. To end the proof, let x′ ∈ ωw(xn) and let (xnk

)k∈N be a subsequence of
(xn)n∈N converging to x′. Then, by (3.8),

〈vnk
, xnk

− z〉 ≥ 〈(I − S)xnk
, xnk

− z〉+
(1− αnk

)µnk

αnk
βnk

〈DWnxnk
, xnk

− z〉

For any z ∈ F.
Passing to k →∞ we obtain

1

τ
〈Dx′, x′ − z〉+ 〈(I − S)z, x′ − z〉 ≤ 0 ∀z ∈ F

which coincides with (3.7). From the uniqueness of the solution of this last, we
deduce that x′ = x̃, i.e. ωw(xn) = ωs(xn) = {x̃} and this, of course, ensures that
xn → x̃, as n→∞. �

It remains to investigate the case

τ = +∞. (H1∗∗∗)

Theorem 3.8. Assume that (H1∗∗∗) holds. Moreover, suppose that

(H2) lim
n→∞

µn = 0,
∑
n∈N

µn =∞ and lim
n→∞

|µn − µn−1|
αnβnµn

= 0;
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(H5) lim
n→∞

supz∈B ‖Wnz −Wn−1z‖
αnβnµn

= 0, with B ⊂ H bounded;

(H6) limn→∞ αn = 0 and lim
n→∞

|αnβn − αn−1βn−1|
αnβnµn

= 0;

(H7) there exists K > 0 such that
1

αnµn

∣∣∣∣ 1

βn
− 1

βn−1

∣∣∣∣ ≤ K.

If (xn)n∈N is bounded, then every v ∈ ωw(xn) is solution of the variational inequality

〈(I − S)v, v − x〉 ≤ 0, ∀x ∈ F.

Proof. Following Theorem 3.6, the boundedness of (xn)n∈N permits to prove that

lim
n→∞

‖xn+1 − xn‖
αnβn

= 0.

From this last and by applying Lemma 3.2, we obtain that ωw(xn) ⊂ F. By using
the same notations adopted in the proof of Theorem 3.6 and by (3.14), we have
that

〈vn, xn − z〉 ≥ 〈(I − S)z, xn − z〉+
(1− αn)µn
αnβn

〈Dz, xn − z〉

+
(1− αn)µn
αnβn

〈DWnxn −Dxn, xn − z〉

holds for all z ∈ F . Thus let v ∈ ωw(xn), xnk
⇀ v ∈ F and note that by

(H1∗∗∗), lim
k→∞

µnk

αnk
βnk

= 0. Moreover, (xn)n∈N is bounded , vn → 0 and ‖(DWnxn−

Dxn)‖ → 0 as n→∞. Then, we have

〈(I − S)z, v − z〉 = lim
k
〈(I − S)z, xnk

− z〉

≤ lim
k

[〈vnk
, xnk

− z〉+
(1− αnk

)µnk

αnk
βnk

〈Dz, xnk
− z〉

+
(1− αnk

)µnk

αnk
βnk

〈DWnk
xnk
−Dxnk

, xnk
− z〉]

≤ 0

for any z ∈ F.
Since F is the fixed point set of a nonexpansive mappings by assumption (h2), we
can substitute z with v + µ(z − v), µ ∈ (0, 1) to obtain

〈(I − S)(v + µ(z − v)), v − z〉 ≤ 0.

Finally, letting µ→ 0,

〈(I − S)v, v − z〉 ≤ 0, ∀z ∈ F.

�

Remark 3.9. An example of sequences satisfying the above conditions is given by

αn = βn = µn =
1
4
√
n
.

We note that the boundedness requirement on (xn)n∈N is justified by the next
example.
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Example 3.10. Let H = R, x0 = 1, Wnx := x for any n ∈ N, Sx = x + 1,
αn = 1√

n
, βn = 1, µn = 1

n and Bn(x) =
(
1− 1

n

)
x. Our method becomes:

xn+1 =
1√
n
xn +

(
1− 1

n

)(
1− 1√

n

)
xn +

1√
n

and the sequence is not bounded. Indeed, suppose the contrary, i.e. that there exists
M > 0 with the property that |xn| ≤M. Then

xn+1 − xn =
1√
n
−
(

1− 1√
n

)
1

n
xn ≥

(
1√
n
− M

n

)
+

1√
n3

≥
(

1√
n
− M

n

)
≥ 1

2
√
n

for any n ≥ 4M2, which contradicts the divergence of
∑∞
n=1 n

−1/2.

Lemma 3.1 states that if S has a fixed point in F, then the sequence (xn) is
bounded. In this case, Problem (1.7) could be ill-posed because every fixed point is a
solution. We will show that in this situation, the operatorD acts as a regularization.

Theorem 3.11. Suppose that:

(H2) lim
n→∞

µn = 0,
∑
n∈N

µn =∞ and lim
n→∞

|µn−1 − µn|
µn

= 0;

(H3) lim
n→∞

supz∈B ‖Wnz −Wn−1z‖
µn

= 0, with B ⊂ H bounded.

(H4) lim
n→∞

|αn−1 − αn|
µn

= 0.

(H8) lim
n→∞

|αn−1βn−1 − αnβn|
µn

= 0.

Morover, assume that lim
n→∞

αnβn = θ 6= 0.

If the set F ∩ Fix(S) is not empty, then the sequence generated by x1 ∈ H and the
iteration (3.1) strongly converges to x∗ ∈ F ∩Fix(S) that is the unique solution of
the variational inequality

〈Dx∗, y − x∗〉 ≥ 0, ∀y ∈ F ∩ Fix(S). (3.15)

Proof. By Lemma 3.1, since Fix(S)∩F 6= ∅, we know that (xn)n∈N is bounded by
some constant M > 0. By using (3.13) in Theorem 3.6 we have

‖xn+1 − xn‖ ≤ (1− (1− αn)µnρ)‖xn − xn−1‖+ ‖Wnxn−1 −Wn−1xn−1‖
(‖µn − µn−1|+ |αnβn − αn−1βn−1|+ |αn − αn−1|)M (3.16)

Let us observe that by (H2), (H4) and (H8),

lim
n→∞

|µn − µn−1|+ |αn − αn−1|+ |αnβn − αn−1βn−1|
µn

= 0;

moreover, (H3) guarantees that

lim
n→∞

‖Wnyn−1 −Wn−1yn−1‖
µn

= 0.
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Hence, we can apply Lemma 2.5 to ensure that (xn)n∈N is asymptotically regular.
Fix v ∈ Fix(S) ∩ F, then:

‖xn+1 − v‖2 ≤ αn‖βn(Sxn − v) + (1− βn)(xn − v)‖2 + (1− αn)‖BnWnxn − v‖2

≤ αnβn‖Sxn − v‖2 + αn(1− βn)‖xn − v‖2 − αnβn(1− βn)‖Sxn − xn‖2

+(1− αn)‖(Wnxn − v)− µnDWnxn‖2

≤ αn‖xn − v‖2 − αnβn(1− βn)‖Sxn − xn‖2 + (1− αn)‖Wnxn − v‖2

+µ2
n‖DWnxn‖2 − 2(1− αn)µn〈Wnxn − v,DWnxn〉. (3.17)

By the boundedness of (xn), there exists L > 0 such that:

αnβn(1− βn)‖Sxn − xn‖2 ≤ +µ2
n‖DWnxn‖2 + ‖xn − v‖2 − ‖xn+1 − v‖2

−2(1− αn)µn〈Wnxn − v,DWnxn〉
≤ (µn + ‖xn − xn+1‖)M (3.18)

Then ‖Sxn−xn‖ → 0 as n→∞ and, by demiclosedness principle, the weak cluster
points of (xn)n∈N are fixed points of S, i.e. ωw(xn) ⊂ Fix(S).
Moreover, following (3.3), since αnβn → θ 6= 0 and ‖xn − Sxn‖ → 0 then ‖xn −
Wnxn‖ → 0 and, as a consequence, ‖xn+1 −Wnxn‖ → 0.

Let us show that ωw(xn) ⊂ F . Assume the contrary, i.e. suppose that there
exists p0 ∈ ωw(xn) and p0 /∈ F . By Opial’s property of Hilbert space:

lim inf
k→∞

‖xnk
− p0‖ < lim inf

k→∞
‖xnk

−Wp0‖

≤ lim inf
k→∞

[‖xnk
− xnk+1‖+ ‖xnk+1 −Wnk

xnk
‖

+‖Wnk
xnk
−Wnk

p0‖+ ‖Wnk
p0 −Wp0‖]

≤ lim inf
k→∞

[‖xnk
− xnk+1‖+ ‖xnk+1 −Wnk

xnk
‖

+‖xnk
− p0‖+ ‖Wnk

p0 −Wp0‖] ≤ lim inf
k→∞

‖xnk
− p0‖

that is a contradiction, so p0 ∈ F .
To conclude, if z is the unique solution of VIP (3.15),

‖xn+1 − z‖2 = ‖αn(xn − z) + (1− αn)(BnWnxn − z) + αnβn(S − I)xn‖2

= ‖αn(xn − z) + (1− αn)(BnWnxn −Bnz) + (1− αn)(Bnz − z)
+αnβn(S − I)xn‖2

≤ ‖αn(xn − z) + (1− αn)(BnWnxn −Bnz) + αnβn(Sxn ± z − xn)‖2

+2(1− αn)µn〈−Dz, xn+1 − z〉
≤ (1− αn)(1− µnρ)‖xn − z‖2 + αn‖xn − z‖2

+2(1− αn)µn〈−Dz, xn+1 − z〉
= (1− (1− αn)µnρ)‖xn − z‖2 + 2αn〈−Dz, xn+1 − z〉.

Since every weak cluster point of (xn)n∈N is in F ∩ Fix(S), let (xnk
) be such that

xnk
⇀ p0. Then, by passing to a further subsequence, if necessary, we have

lim sup
n→∞

〈−Dz, xn+1 − z〉 = lim
k→∞

〈−Dz, xnk
− z〉 = 〈−Dz, p0 − z〉 ≤ 0.

Applying Lemma 2.5, we get xn → z as n→∞. �

We stress that we can still recover the result of the previous theorem by slightly
changing the assumptions on the sequences, as the next result shows.
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Theorem 3.12. Suppose that (H2), (H5), (H6) and (H7).
Moreover, assume that lim

n→∞
αnβn = 0 and that F ∩ Fix(S) is not empty.

Then the sequence generated by x0 ∈ H and the iteration (3.1) strongly converges
to x∗ ∈ F ∩ Fix(S) that is the unique solution of the variational inequality

〈Dx∗, y − x∗〉 ≥ 0, ∀y ∈ F ∩ Fix(S).

Proof. The proof follows as in the previous case for the boundedness and the asymp-
totical regularity.

By proceeding as in Theorem 3.6, we can prove that

lim
n→∞

‖xn+1 − xn‖
αnβn

= 0.

Then in (3.18) we can divide by αnβn and pass to the limit to obtain that ‖Sxn −
xn‖ → 0 as n → ∞. The remaining part follows again as in the proof of the
previous theorem. �
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Dipartimento di Matematica, Universitá della Calabria, 87036, Arcavacata di Rende

(CS), ITALY

E-mail address, V. Colao: colao@mat.unical.it

E-mail address, L. Muglia: muglia@mat.unical.it



 1 

 
Professor Hong-Kun Xu, Chair Professor 
Department of Applied Mathematics 
Kaohsiung 80424, TAIWAN 
Tel: +886 7 525 2000, ext 3836 
Cell: 0916 817 009 
Fax: +886 7 525 3809 
E-mail: xuhk@math.nsysu.edu.tw 

                                                                                                                    

 
9 February 2015 

                              
Professors Vittorio Colao and Luigi Muglia 
Dipartimento di Matematica, Universita della Calabria, 87036, Arcavacata di Rende 
(CS), ITALY 
E-mail addresses: colao@mat.unical.it 

 muglia@mat.unical.it 
 
 
 
Dear Professor Colao and Muglia, 
 
I am delighted to let you know that your paper entitled 
“A hierarchical approach to fixed point problems for uniformly asymptotically regular sequences” 
Has been accepted for publication in the special issue of the Journal of Nonlinear and Convex Analysis 
(JNCA) that is dedicated to the 70th birthday of Professor Wataru Takahashi. Please check your paper once 
again for every detail and then send me the tex file at your earliest convenience. Thank you once again for 
your contribution to this special issue of JNCA. 
 
 
Sincerely yours, 
 

 
 
Hong-Kun Xu 
Editorial board member  
Journal of Nonlinear and Convex Analysis 

mailto:colao@mat.unical.it
mailto:muglia@mat.unical.it


Noname manuscript No.

(will be inserted by the editor)

Krasnoselskii-Mann method for non-self mappings

Vittorio Colao1 · Giuseppe Marino1,2

the date of receipt and acceptance should be inserted later

Abstract Let H be a Hilbert space and let C be a closed, convex and nonempty

subset of H. If T : C → H is a non-self and non-expansive mapping, we can de�ne

a map h : C → R by h(x) := inf{λ ≥ 0 : λx + (1 − λ)Tx ∈ C}. Then, for a �xed

x0 ∈ C and for α0 := max{1/2, h(x0)}, we de�ne the Krasnoselskii-Mann algorithm

xn+1 = αnxn + (1− αn)Txn, where αn+1 = max{αn, h(xn+1)}. We will prove both

weak and strong convergence results when C is a strictly convex set and T is an inward

mapping.

1 Introduction

Let C be a closed, convex and nonempty subset of a Hilbert space H and let T : C → H

be a non-expansive mapping, such that the �xed point set Fix(T ) := {x ∈ C : Tx = x}
is not empty.

For a real sequence {αn} ⊂ (0, 1), we will consider the iterations{
x0 ∈ C
xn+1 = αnxn + (1− αn)Txn.

(1)

If T is a self-mapping, the iterative scheme above had been studied in an impressive

amount of papers (see the book [1] and references therein) in the last decades and it

is often called �segmenting Mann� ([2], [3], [4]) or �Krasnoselskii-Mann� (e.g. [5],[6])

iteration.

A general result on the algorithm (1) is due to Reich [7] and states that the se-

quence {xn} weakly converges to a �xed point of the operator T under the following

assumptions:

(C1) T is a self-mapping, i.e. T : C → C and

1Department of Mathematics and Computer Science, Universitá della Calabria, Rende (CS),
Italy
2Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589,
Saudi Arabia
E-mail: (V. Colao) colao@mat.unical.it
E-mail: (G. Marino) giuseppe.marino@unical.it
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(C2) {αn} is such that
∑
n αn(1− αn) = +∞.

In this paper, we are interested in lowering condition (C1) by allowing T to be non-self,

at the price of strengthening the requirements on the sequence {αn} and on the set C.

Indeed, we will assume that C is a strictly convex set and that the non-expansive

map T : C → H is inward.

Historically, the inward condition and its generalizations had been widely used to

prove convergence results for both implicit ([8], [9], [10], [11]) and explicit (see, e.g.,

[12], [13], [1], [14]) algorithms.

However, we point out that the explicit case had been only studied in conjunction

with processes involving the calculation of a projection or a retraction P : H → C at

each step.

As an example, in [12], the following algorithm is studied:

xn+1 = P (αnf(xn) + (1− αn)Txn),

where T : C → H satis�es the weakly inward condition, f is a contraction and P :
H → C is a non-expansive retraction.

We point out that in many real world applications, the process of calculating P

can be a resource consumption task and it may require an approximating algorithm

by itself, even in the case when P is the nearest point projection.

To overcome the necessity of using an auxiliary mapping P, for an inward and

non-expansive mapping T : C → H, we will introduce a new search strategy for the

coe�cients {αn} and we will prove that the Krasnoselskii-Mann algorithm

xn+1 = αnxn + (1− αn)Txn,

is well-de�ned for this particular choice of the sequence {αn}. Also we will prove both

weak and strong convergence results for the above algorithm when C is a strictly convex

set.

We stress that the main di�erence between the classical Krasnoselskii-Mann and

our algorithm is that the choice of the coe�cient αn is not made a priori in the latter,

but it is constructed step to step and determined by the values of the map T and the

geometry of the set C.

2 Main Result

We will make use of the following

De�nition 1 A map T : C → H is said to be inward (or to satisfy the inward

condition) if, for any x ∈ C it holds

Tx ∈ IC(x) := {x+ c(u− x) : c ≥ 1 and u ∈ C}. (2)

We refer to [15] for a comprehensive survey on the properties of the inward mappings.

De�nition 2 A set C ⊂ H is said to be strictly convex if it is convex and with the

property that x, y ∈ ∂C and t ∈ (0, 1), implies that

tx+ (1− t)y ∈ C̊.

In other words, if the boundary ∂C does not contain any segment.
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De�nition 3 A sequence {yn} ⊂ C is Fejér-monotone with respect a set D ⊂ C if,

for any element y ∈ D

‖yn+1 − y‖ ≤ ‖yn − y‖ ∀n ∈ N.

For a closed and convex set C and a map T : C → H, we de�ne a mapping h : C → R
as

h(x) := inf{λ ≥ 0 : λx+ (1− λ)Tx ∈ C}. (3)

Note that the above quantity in a minimum, since C is closed. In the following lemma,

we group the properties of the function de�ned above.

Lemma 1 Let C be a non-empty, closed and convex set, let T : C → H be a mapping

and de�ne h : C → R as in (3). Then the following properties hold:

(P1) for any x ∈ C, h(x) ∈ [0, 1] and h(x) = 0 if and only if Tx ∈ C;
(P2) for any x ∈ C and any α ∈ [h(x), 1], αx+ (1− α)Tx ∈ C;
(P3) if T is an inward mapping, then h(x) < 1 for any x ∈ C and

(P4) whenever Tx 6∈ C, h(x)x+ (1− h(x))Tx ∈ ∂C.

Proof Properties (P1) and (P2) follows directly from the de�nition of h. To prove

(P3), observe that (2) implies

1

c
Tx+ (1− 1

c
)x ∈ C

for some c ≥ 1. As a consequence,

h(x) = inf{λ ≥ 0 : λx+ (1− λ)Tx ∈ C} ≤ (1− 1

c
) < 1.

In order to verify (P4), we �rst note that h(x) > 0 by property (P1) and that

h(x)x + (1 − h(x))Tx ∈ C. Let {ηn} ⊂ (0, h(x)) be a sequence of real numbers con-

verging to h(x) and note that, by the de�nition of h, it holds

zn := ηnx+ (1− ηn)Tx 6∈ C

for any n ∈ N. Since ηn → h(x) and

‖zn − h(x)x− (1− h(x))Tx‖ ≤ |ηn − h(x)|‖x− Tx‖,

it follows that zn → h(x)x + (1 − h(x))Tx ∈ C, so that this last must belong to ∂C.

ut

Our main result is the following:

Theorem 1 Let C be a convex, closed and nonempty subset of a Hilbert space H and

let T : C → H be a mapping. Then, the algorithm
x0 ∈ C,
α0 := max{12 , h(x0)},
xn+1 := αnxn + (1− αn)Txn,

αn+1 := max{αn, h(xn+1)}

(4)

is well-de�ned.

If we further assume that
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1. C is strictly convex and

2. T is a non-expansive mapping, which satis�es the inward condition (2) and such

that Fix(T ) 6= ∅,

then {xn} weakly converges to a point p ∈ Fix(T ). Moreover, if
∑∞
n=0(1 − αn) < ∞

then the convergence is strong.

Proof To prove that the algorithm is well-de�ned, it is su�cient to note that αn ∈
[h(xn), 1] for any n ∈ N; then, by recalling property (P2) from Lemma 1, it immediately

follows that

xn+1 = αnxn + (1− αn)Txn ∈ C.

Assume now that T satis�es the inward condition. In this case, by the property (P3)
of the previous lemma, we obtain that the non-decreasing sequence{αn} is contained
in (1

2 , 1). Also, since T is non-expansive and with at least one �xed point, it follows

by standard arguments that {xn} is Fejér-monotone with respect to Fix(T ) and, as a

consequence, both {xn} and {Txn} are bounded.
Firstly, assume that

∑∞
n=0(1 − αn) = ∞. Then, since αn ≥ 1

2 , we derive that∑∞
n=0 αn(1− αn) =∞ and from [16, Lemma 2] we obtain that

‖xn − Txn‖ → 0.

This fact, together with the Fejér-monotonicity of {xn} proves that the sequence weakly
converges in Fix(T ) (see [17, Proposition 2.1]).

Suppose that
∞∑
n=0

(1− αn) <∞. (5)

Since,

‖xn+1 − xn‖ = (1− αn)‖Txn − xn‖,

and by the boundedness of {xn} and {Txn}, it is promptly obtained that

∞∑
n=0

‖xn+1 − xn‖ <∞,

i.e. {xn} is a strongly Cauchy sequence and hence xn → x∗ ∈ C.
Note that T satis�es the inward condition. Then by applying the properties (P2)

and (P3) from Lemma 1, we obtain that h(x∗) < 1 and that for any µ ∈ (h(x∗), 1) it

holds

µx∗ + (1− µ)Tx∗ ∈ C. (6)

On the other hand, we observe that since limn→∞ αn = 1 by (5) and since αn =
max{αn−1, h(xn)} holds, it follows that we can choose a sub-sequence {xnk} with the

property that {h(xnk)} is non-decreasing and h(xnk)→ 1. In particular, for any µ < 1,

µxnk + (1− µ)Txnk 6∈ C (7)

eventually holds.
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Choose µ1, µ2 ∈ (h(x∗), 1) with µ1 6= µ2 and set v1 := µ1x
∗ + (1 − µ1)Tx∗

and v2 := µ2x
∗ + (1 − µ2)Tx∗. Then, whenever µ ∈ [µ1, µ2], by (6) we have that

v := µx∗ + (1− µ)Tx∗ ∈ C. Moreover,

µxnk + (1− µ)Txnk → v,

since xn → x∗. This last, together with (7), implies that v ∈ ∂C and [v1, v2] ⊂ ∂C,

since µ is arbitrary.

By the strict convexity of C, we derive that

µ1x
∗ + (1− µ1)Tx∗ = µ2x

∗ + (1− µ2)Tx∗

and x∗ = Tx∗ must necessarily hold, i.e. {xn} strongly converges to a �xed point of

T. ut

Remark 1 Following the same line of the proof, it can be easily seen that the same

results hold true if the starting coe�cient α0 = max{12 , h(x0)} is substituted by α0 =
max{b, h(x0)}, where b ∈ (0, 1) is a �xed and arbitrary value. In the statement of

Theorem 1, the value b = 1
2 had been taken to ease the notation.

We also note that the value h(xn) can be replaced, in practice, by hn = 1 − 1
2jn

,

where jn := min{j ∈ N : (1− 1
2j )xn + 1

2j Txn ∈ C}.

Remark 2 As it follows from the proof, the condition
∑
n(1 − αn) < ∞ provides a

localization result for the �xed point x∗ as a side result. Indeed, in this case, it holds

that x∗ = v1 = v2 belongs to the boundary ∂C of the set C.

Remark 3 In [18], for a closed and convex set C, the map

f(x) := inf{λ ∈ [0, 1] : x ∈ λC}

had been introduced and used in conjunction with an iterative scheme to approximate

a �xed point of minimum norm ( see also [19] ). Indeed, in the above mentioned paper,

it is proved that the iterative scheme
λn = max{f(xn), λn−1}
yn = αnxn + (1− αn)Txn

xn+1 = αnλnxn + (1− αn)yn,

strongly converges under the assumptions that {αn} is a sequence in (0, 1) such that

limn
αn

(1−λn) = 0 and that
∑
n(1 − λn)αn = ∞. We point out that the mentioned

conditions appear to be di�cult to be checked as they involve the geometry of the set

C.

We illustrate the statement of our results with a brief example.

Example 1 Let H = l2(R) and let C := B1 ∩ B2, where B1 := {(ti)i∈N : (t1 −
49.995)2 +

∑∞
i=2 t

2
i ≤ (50.005)2} and B2 := {(ti)i∈N :

∑∞
i=1 t

2
i ≤ 1}. then C is a

non-empty, closed and strictly convex subset of H. Let T : C → H be the map de�ned
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by T (t1, t2, . . . , ti, . . .) := (−t1, t2, . . . , ti, . . .), then T is a non-expansive inward map

with Fix(T ) = {(0, t2, . . . , ti, . . .) :
∑∞
i=2 t

2
i ≤ 1}. If we use the algorithm

x0 = (ti)i∈N ∈ C,
α0 := max{12 , h(x0)},
xn+1 := αnxn + (1− αn)Txn,

αn+1 := max{αn, h(xn+1)},

then, by the natural symmetry of the problem, we obtain the constant sequence

x1 = . . . = xn = (0, t2, . . . , ti, . . .) ∈ Fix(T ).

If we use the algorithm 
x0 = (ti)i∈N ∈ C,
α0 := max{0.01, h(x0)},
xn+1 := αnxn + (1− αn)Txn,

αn+1 := max{αn, h(xn+1)},

then {xn} still converges in Fix(T ), but {xn} ∩ Fix(T ) = ∅ whenever ti 6= 0.

We conclude the paper by including few question that appears to be still open, to the

best of our knowledge.

Question 1 It had been proved that the Krasnoselskii-Mann algorithm converges for

general classes of mappings (see, e.g., [20] and [21]). By maintaining the same assump-

tion on the set C and the inward condition of the involved map, it appears to be natural

to ask for which classes of mappings the same result of Theorem 1 still holds.

Question 2 Under which assumptions the algorithm (4) can be adapted to produce a

converging sequence to a common �xed point for a family of mappings? In other words,

does the algorithm 
x0 ∈ C,
α0 := max{12 , hn(x0)},
xn+1 := αnxn + (1− αn)Tnxn,

αn+1 := max{αn, hn+1(xn+1)}
converge to a common �xed point of the family {Tn}, where

hn(x) := inf{λ ≥ 0 : λx+ (1− λ)Tnx ∈ C}

and under suitable hypotheses?

We refer to [22] and [23] for two examples regarding the classical Krasnoselskii-

Mann algorithm.

Question 3 In the classical literature, it had been proved that the inward condition can

be often dropped, in favor of weaker condition. For example, a mapping T : C → X is

said to be weakly inward (or to satisfy the weakly inward condition) if

Tx ∈ IC(x) ∀x ∈ C.

Does Theorem 1 hold even for weakly inward mappings?

On the other hand, we observe that the strict convexity of the set C does appear

to be unusual for results regarding the convergence of Krasnoselskii-Mann iterations.

We do not know if our result can hold for a convex and closed set C, even at the price

of strengthening the requirements on the map T.
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The paper is well written and can open new research lines on this topic. Thus, I recommend acceptance
in Fixed Point Theory and Applications.
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Krasnoselskii-Mann method for non-self mappings

G. Marino and L. Muglia

The aim of this paper is to generalize the well-known Krasnoselskii - Mann algo-
rithm defined on a closed and convex subset C of a Hilbert space H by

(1) xn+1 = αnxn + (1− αn)Txn.

where xo ∈ C is a fixed starting point, {αn} ⊂ (0, 1) is a fixed sequence and
T : C → C is a nonexpansive mapping which has fixed points.
The main result of this paper is Theorem 1, which is a generalization of the formula
(1). More precisely mappings T considered in Theorem 2 are nonexpansive map-
pings defined on strictly convex, closed subsets of a Hilbert space. These mappings
have fixed points but they are not self-mappings like in formula (1). Instead of
that they satisfy so called invard condition (see p. 2 of the manuscript, Def. 1).
For fixed T : C → H as above, where C is a nonempty strictly convex and closed
subset of H, the authors define a function h : C → R by

h(x) = inf{λ ≥ 0 : λx+ (1− λ)Tx ∈ C}

Then having fixed xo ∈ C and αo = max{1/2, h(xo)} they prove the weak conver-
gence of the folowing scheme

xn+1 = αnxn + (1− αn)Txn,

αn+1 = max{αn, hxn+1}.

to a certain fixed point of T Moreover under the assumption
∑∞

n=0(1− αn) < ∞,
the convergence of the above scheme is strong. The main difference between (1)
and the method proposed in Theorem 1 is that the choice of coefficients {αn} is
not made a-priori.

In my opinion the results given in the paper under review are original, they
present a good mathematical level and the proofs of them are correct. Hence I
recommend the paper entitled Krasnoselskii-Mann method for non-self mappings
to be published in the Fixed Point Theory and Applications.

1


	Abstract
	1. Introduction
	2. Preliminaries
	3. Main results
	4. Applications
	4.1. Applications to zeros of maximal monotone operators
	4.2. Applications to equilibrium problems
	4.3. Applications to common fixed point problems

	Author details
	Authors' contributions
	Competing interests
	References
	Strong convergence theorems for approximating common fixed points of families of nonexpansive mappings  and applications
	Abstract
	1 Introduction
	2 Preliminaries
	3 Main results
	4 Applications
	4.1 Zeros of accretive operators
	4.2 Minimization
	4.3 Split feasibility problems
	4.4 Equilibrium problems

	References

	1. Introduction
	2. Preliminaries
	3. Main results
	References
	Existence of solutions for a second-order differential equation with non-instantaneous impulses and delay
	Abstract
	1 Introduction
	2 Notations and preliminaries
	2.1 Compactness criteria in BPC[-r,+infty)
	2.2 Cosine family of bounded linear mappings
	2.3 A fixed-point theorem

	3 The integral problem
	4 Main result
	5 Conclusions
	References


