A A DLP Program Simulating a Turing Machine

We next show how a Turing Machine can be encoded by a suitable DLP program simulating its computation. Let M be a Turing Machine given by the 4 -uple $\left\langle K, \Sigma, \delta, s_{0}\right\rangle$, where K is a finite set of states, $s_{0} \in K$ is the initial state, Σ is a finite set of symbols constituting the alphabet (with $\sqcup \notin \Sigma$ standing for the blank symbol), and $\delta: K \times \Sigma \rightarrow K \times \Sigma \times\{l, r, \lambda\}$ is the transition function describing the behavior of the machine. Given the current state and the current symbol, δ specifies the next state, the symbol to be overwritten on the current one, and the direction in which the cursor will move on the tape (l, r, λ standing for left, right, stay, respectively). Besides the initial state, there is another special state, which is called final state; the machine halts if the machine reaches this state at some point. Each configuration of M can be encoded in a program P_{M} by means of the following predicates.

- tape $(P, \operatorname{Sym}, T)$: the tape position P stores the symbol Sym at time step T. For each time step, there is an instance of such predicate for every actually used position of the tape.
- position (P, T) : the head of M reads the position P on tape at time step T. position has a single true ground instance for each time step.
- state $(S t, T)$: at time step $T M$ is in the state $S t$. state has a single true ground instance for each time step.
P_{M} encodes the transition function δ in the following way: For each $S t_{c}, S y m_{c}, S t_{n}, S y m_{n}, D$, such that $\delta\left(S t_{c}, S y m_{c}\right)=\left(S t_{n}, S y m_{n}, D\right)$ we add to P_{M} a fact of the form delta $\left(S t_{c}, S y m_{c}\right.$, $\left.S t_{n}, S y m_{n}, D\right)$. The initial input is encoded by a proper set of facts describing all tape positions at the first time step (facts of the form $\operatorname{tape}(P, S y m, 0)$), a fact of the form $\operatorname{state}\left(s_{0}, 0\right)$, and a fact of the form $\operatorname{position}(P, 0)$ where P is the initial position of the head. The rules defining the evolution of the machine configurations are reported next. For the sake of readability, we exploit some comparison built-ins, that could be easily simulated by means of suitable predicates.

```
(r
(r r) position (s(P),s(T)) :- position (P,T), state (St,T), tape(P,Sym,T), delta(St, Sym, _, -, r).
(rr) position (P,s(T)) :- position (P,T), state (St,T),\operatorname{tape}(P,Sym,T), delta (St, Sym,_,-, \lambda).
(r4) state(St1,s(T)) :- position (P,T), state(St,T), tape(P,Sym,T), delta(St,Sym,St1, , ,).
(r5) tape(P,Sym1,s(T)) :- position (P,T), state(St,T), tape(P,Sym,T), delta(St,Sym, _, Sym1,_).
(r6) tape(P,Sym,s(T)) :- position (P1,T),\operatorname{tape}(P,Sym,T),P\not=P1.
(r7) tape(P,\sqcup,T) :- position (P,T),\operatorname{lastUsedPos}(L,T),P>L.
(r
(r9) lastUsedPos(P,s(T)):- lastUsedPos(L,T),position (P,T),P>L.
```

First three rules encode how the tape position changes according to the transition function; the fourth updates the state. Rule r_{5} updates, for each time step, the current tape position with the new symbol to be stored, with rule r_{6} stating that all other positions remain unchanged. Rules r_{7}, r_{8}, r_{9} allow to manage the semi-infinite tape. Indeed, the whole tape is not explicitly encoded; rather, each tape position is initialized with a blank symbol when reached for the first time (moving right, the tape being limited at left).

Given a valid tape x encoded by means of a set X of facts of the form $\operatorname{tape}(p, s, 0)$, one can show that the computation of $\left(P_{M} \cup X\right)^{\gamma}$ follows in one-to-one correspondence the computation of M on the tape $x . \gamma$ is unique and contains a single component C having a corresponding module M. We have that $S_{0}=E D B\left(P_{M}\right)$, and $S_{1}=S_{0} \cup \Phi_{M, S_{0}}^{\infty}(\emptyset)$. Let $\Phi(t)=\Phi_{M, S_{0}}^{t}(\emptyset)$. Then, the value of $\Phi(t)$ directly corresponds to the step t of M. It is easy to note that, at step $t+1, \Phi(t+1)$ can be larger than $\Phi(t)$ only if, at step $t, \Phi(t)$ contains an atom state $(s t, t)$ for st not a final state. In such a case by means of rules r_{1} through r_{5}, new atoms of form $\operatorname{position}(p, \operatorname{sym}, t+1)$, state $(\operatorname{st}, t+1)$, $\operatorname{tape}(p, \operatorname{sym}, t+1)$ are added to $\Phi(t+1)$.

