
A A DLP Program Simulating a Turing Machine

We next show how a Turing Machine can be encoded by a suitable DLP program simulating its

computation. Let M be a Turing Machine given by the 4-uple 〈K, Σ, δ, s0〉, where K is a finite

set of states, s0 ∈ K is the initial state, Σ is a finite set of symbols constituting the alphabet (with

⊔ /∈ Σ standing for the blank symbol), and δ : K × Σ → K × Σ × {l, r, λ} is the transition

function describing the behavior of the machine. Given the current state and the current symbol,

δ specifies the next state, the symbol to be overwritten on the current one, and the direction in

which the cursor will move on the tape (l, r, λ standing for left, right, stay, respectively). Besides

the initial state, there is another special state, which is called final state; the machine halts if the

machine reaches this state at some point. Each configuration of M can be encoded in a program

PM by means of the following predicates.

– tape(P, Sym, T ): the tape position P stores the symbol Sym at time step T . For each time

step, there is an instance of such predicate for every actually used position of the tape.

– position(P, T ): the head of M reads the position P on tape at time step T . position has a

single true ground instance for each time step.

– state(St, T ): at time step T M is in the state St. state has a single true ground instance for

each time step.

PM encodes the transition function δ in the following way: For each Stc, Symc, Stn, Symn, D,

such that δ(Stc, Symc) = (Stn, Symn, D) we add to PM a fact of the form delta(Stc, Symc,

Stn, Symn, D). The initial input is encoded by a proper set of facts describing all tape positions

at the first time step (facts of the form tape(P, Sym, 0) ), a fact of the form state(s0, 0), and a

fact of the form position(P, 0) where P is the initial position of the head. The rules defining the

evolution of the machine configurations are reported next. For the sake of readability, we exploit

some comparison built-ins, that could be easily simulated by means of suitable predicates.

(r1) position(P, s(T )) :- position(s(P ), T ), state(St, T ), tape(s(P ), Sym, T ), delta(St, Sym, , , l).
(r2) position(s(P ), s(T )) :- position(P, T ), state(St, T ), tape(P, Sym, T ), delta(St, Sym, , , r).
(r3) position(P, s(T )) :- position(P, T ), state(St, T ), tape(P, Sym, T ), delta(St, Sym, , , λ).
(r4) state(St1, s(T )) :- position(P, T ), state(St, T ), tape(P, Sym, T ), delta(St, Sym, St1, , ).
(r5) tape(P, Sym1, s(T )) :- position(P, T ), state(St, T ), tape(P, Sym, T ), delta(St, Sym, , Sym1, ).
(r6) tape(P, Sym, s(T )) :- position(P1, T ), tape(P, Sym, T ), P 6= P1.
(r7) tape(P,⊔, T ) :- position(P, T ), lastUsedPos(L, T ), P > L.
(r8) lastUsedPos(L, s(T )) :- lastUsedPos(L, T ), position(P, T ), P ≤ L.
(r9) lastUsedPos(P, s(T )) :- lastUsedPos(L, T ), position(P, T ), P > L.

First three rules encode how the tape position changes according to the transition function;

the fourth updates the state. Rule r5 updates, for each time step, the current tape position with

the new symbol to be stored, with rule r6 stating that all other positions remain unchanged.

Rules r7, r8, r9 allow to manage the semi-infinite tape. Indeed, the whole tape is not explicitly

encoded; rather, each tape position is initialized with a blank symbol when reached for the first

time (moving right, the tape being limited at left).

Given a valid tape x encoded by means of a set X of facts of the form tape(p, s, 0), one can

show that the computation of (PM ∪X)γ follows in one-to-one correspondence the computation

of M on the tape x. γ is unique and contains a single component C having a corresponding

module M . We have that S0 = EDB(PM ), and S1 = S0 ∪ Φ∞
M,S0

(∅). Let Φ(t) = Φt
M,S0

(∅).
Then, the value of Φ(t) directly corresponds to the step t of M . It is easy to note that, at step

t + 1, Φ(t + 1) can be larger than Φ(t) only if, at step t, Φ(t) contains an atom state(st, t)
for st not a final state. In such a case by means of rules r1 through r5, new atoms of form

position(p, sym, t + 1), state(st, t + 1), tape(p, sym, t + 1) are added to Φ(t + 1).


