A A DLP Program Simulating a Turing Machine

We next show how a Turing Machine can be encoded by a suitable DLP program simulating its
computation. Let M be a Turing Machine given by the 4-uple (K, X, §, s¢), where K is a finite
set of states, sg € K is the initial state, X' is a finite set of symbols constituting the alphabet (with
LI ¢ X standing for the blank symbol), and § : K x ¥ — K x X' x {l,r, A} is the transition
function describing the behavior of the machine. Given the current state and the current symbol,
& specifies the next state, the symbol to be overwritten on the current one, and the direction in
which the cursor will move on the tape (I, r, A standing for left, right, stay, respectively). Besides
the initial state, there is another special state, which is called final state; the machine halts if the
machine reaches this state at some point. Each configuration of M can be encoded in a program
Py by means of the following predicates.

— tape(P, Sym,T): the tape position P stores the symbol Sym at time step 7'. For each time
step, there is an instance of such predicate for every actually used position of the tape.

— position(P, T): the head of M reads the position P on tape at time step 7. position has a
single true ground instance for each time step.

— state(St,T): at time step T' M is in the state St. state has a single true ground instance for
each time step.

Py encodes the transition function ¢ in the following way: For each St., Sym., St,, Sym,, D,
such that 0(St., Sym.) = (St,, Sym.,, D) we add to Py, a fact of the form delta(St., Sym.,
Stn, Sym.,, D). The initial input is encoded by a proper set of facts describing all tape positions
at the first time step (facts of the form tape(P, Sym,0) ), a fact of the form state(sg,0), and a
fact of the form position(P,0) where P is the initial position of the head. The rules defining the
evolution of the machine configurations are reported next. For the sake of readability, we exploit
some comparison built-ins, that could be easily simulated by means of suitable predicates.

(r1) position(P, s(T)) = position(s(P),T), state(St, T), tape(s(P), Sym, T), delta(St, Sym, _, _, 1).
(r2) position(s(P),s(T)) == position(P,T), state(St, T), tape(P, Sym,T), delta(St, Sym, -, _, 7).
(r3) position(P, s(T)) position(P, T), state(St, T), tape(P, Sym,T), delta(St, Sym, -, ., X).

(r4) state(St1, s(T)) = position(P, T), state(St, T'), tape(P, Sym,T), delta(St, Sym, St1, _, ).
(rs) tape(P, Syml,s(T)) - position(P,T), state(St,T), tape(P, Sym,T), delta(St, Sym, -, Sym1,_).

(re) tape(P, Sym, s(T')) position(P1,T), tape(P, Sym,T), P # P1.
(r7) tape(P,U,T) = position(P,T),lastUsedPos(L,T), P > L.
(rs) lastUsedPos(L, s(T)) - lastUsedPos(L,T), position(P,T), P < L.
(r9) lastUsedPos(P, s(T)) - lastUsedPos(L,T), position(P,T),P > L

First three rules encode how the tape position changes according to the transition function;
the fourth updates the state. Rule r5 updates, for each time step, the current tape position with
the new symbol to be stored, with rule r¢ stating that all other positions remain unchanged.
Rules r7, g, r9 allow to manage the semi-infinite tape. Indeed, the whole tape is not explicitly
encoded; rather, each tape position is initialized with a blank symbol when reached for the first
time (moving right, the tape being limited at left).

Given a valid tape = encoded by means of a set X of facts of the form tape(p, s, 0), one can
show that the computation of (Py; U X)” follows in one-to-one correspondence the computation
of M on the tape z. 7y is unique and contains a single component C' having a corresponding
module M. We have that Sp = EDB(Py), and S; = So U 937 5, (0). Let (1) = &4 5 (D).
Then, the value of ®(t) directly corresponds to the step ¢ of M. It is easy to note that, at step
t + 1, &(t + 1) can be larger than @(¢t) only if, at step ¢, $(¢) contains an atom state(st,t)
for st not a final state. In such a case by means of rules r; through 75, new atoms of form
position(p, sym,t + 1), state(st,t + 1), tape(p, sym,t + 1) are added to (¢t + 1).



