A A DLP Program Simulating a Turing Machine

We next show how a Turing Machine can be encoded by a suitable DLP program simulating its computation. Let M be a Turing Machine given by the 4-uple $\langle K, \varSigma, \delta, s_0 \rangle$, where K is a finite set of states, $s_0 \in K$ is the initial state, \varSigma is a finite set of symbols constituting the alphabet (with $\sqcup \notin \varSigma$ standing for the blank symbol), and $\delta: K \times \varSigma \to K \times \varSigma \times \{l, r, \lambda\}$ is the transition function describing the behavior of the machine. Given the current state and the current symbol, δ specifies the next state, the symbol to be overwritten on the current one, and the direction in which the cursor will move on the tape (l, r, λ) standing for left, right, stay, respectively). Besides the initial state, there is another special state, which is called final state; the machine halts if the machine reaches this state at some point. Each configuration of M can be encoded in a program P_M by means of the following predicates.

- tape(P, Sym, T): the tape position P stores the symbol Sym at time step T. For each time step, there is an instance of such predicate for every actually used position of the tape.
- position(P, T): the head of M reads the position P on tape at time step T. position has a single true ground instance for each time step.
- state(St, T): at time step T M is in the state St. state has a single true ground instance for each time step.

 P_M encodes the transition function δ in the following way: For each St_c , Sym_c , St_n , Sym_n , D, such that $\delta(St_c, Sym_c) = (St_n, Sym_n, D)$ we add to P_M a fact of the form $delta(St_c, Sym_c, St_n, Sym_n, D)$. The initial input is encoded by a proper set of facts describing all tape positions at the first time step (facts of the form tape(P, Sym, 0)), a fact of the form $state(s_0, 0)$, and a fact of the form position(P, 0) where P is the initial position of the head. The rules defining the evolution of the machine configurations are reported next. For the sake of readability, we exploit some comparison built-ins, that could be easily simulated by means of suitable predicates.

```
 \begin{array}{llll} (r_1) & position(P,s(T)) & \vdash position(s(P),T), state(St,T), tape(s(P),Sym,T), delta(St,Sym,\_,\_,l). \\ (r_2) & position(s(P),s(T)) & \vdash position(P,T), state(St,T), tape(P,Sym,T), delta(St,Sym,\_,\_,r). \\ (r_3) & position(P,s(T)) & \vdash position(P,T), state(St,T), tape(P,Sym,T), delta(St,Sym,\_,\_,\lambda). \\ (r_4) & state(St1,s(T)) & \vdash position(P,T), state(St,T), tape(P,Sym,T), delta(St,Sym,\_,\_,\lambda). \\ (r_5) & tape(P,Sym1,s(T)) & \vdash position(P,T), state(St,T), tape(P,Sym,T), delta(St,Sym,\_,Sym1,\_). \\ (r_6) & tape(P,Sym,s(T)) & \vdash position(P,T), tape(P,Sym,T), P \neq P1. \\ (r_7) & tape(P,\sqcup,T) & \vdash position(P,T), tape(P,Sym,T), P > L. \\ (r_8) & lastUsedPos(L,s(T)) & \vdash lastUsedPos(L,T), position(P,T), P > L. \\ (r_9) & lastUsedPos(P,s(T)) & \vdash lastUsedPos(L,T), position(P,T), P > L. \\ \end{array}
```

First three rules encode how the tape position changes according to the transition function; the fourth updates the state. Rule r_5 updates, for each time step, the current tape position with the new symbol to be stored, with rule r_6 stating that all other positions remain unchanged. Rules r_7, r_8, r_9 allow to manage the semi-infinite tape. Indeed, the whole tape is not explicitly encoded; rather, each tape position is initialized with a blank symbol when reached for the first time (moving right, the tape being limited at left).

Given a valid tape x encoded by means of a set X of facts of the form tape(p,s,0), one can show that the computation of $(P_M \cup X)^\gamma$ follows in one-to-one correspondence the computation of M on the tape x. γ is unique and contains a single component C having a corresponding module M. We have that $S_0 = EDB(P_M)$, and $S_1 = S_0 \cup \Phi_{M,S_0}^\infty(\emptyset)$. Let $\Phi(t) = \Phi_{M,S_0}^t(\emptyset)$. Then, the value of $\Phi(t)$ directly corresponds to the step t of M. It is easy to note that, at step t+1, $\Phi(t+1)$ can be larger than $\Phi(t)$ only if, at step t, $\Phi(t)$ contains an atom state(st,t) for st not a final state. In such a case by means of rules r_1 through r_5 , new atoms of form position(p, sym, t+1), state(st, t+1), tape(p, sym, t+1) are added to $\Phi(t+1)$.