
Computable Functions in ASP: Theory and Implementation?

Francesco Calimeri, Susanna Cozza, Giovambattista Ianni,and Nicola Leone

Department of Mathematics, University of Calabria, I-87036 Rende (CS), Italy
e-mail:{calimeri, cozza, ianni, leone}@mat.unical.it

Abstract. Disjunctive Logic Programming (DLP) under the answer set semantics, often
referred to as Answer Set Programming (ASP), is a powerful formalism for knowledge
representation and reasoning (KRR). The latest years witness an increasing effort for em-
bedding functions in the context of ASP. Nevertheless, at present no ASP system allows for
a reasonably unrestricted use of function terms. Functionsare either required to be nonre-
cursive or subject to severe syntactic limitations, if allowed at all in ASP systems.
In this work we formally define the new class of finitely-ground programs, allowing for
a powerful (possibly recursive) use of function terms in thefull ASP language with dis-
junction and negation. We demonstrate that finitely-groundprograms have nice computa-
tional properties: (i) both brave and cautious reasoning are decidable, and (ii) answer sets
of finitely-ground programs are computable. Moreover, the language is highly expressive,
as any computable function can be encoded by a finitely-ground program. Due to the high
expressiveness, membership in the class of finitely-groundprogram is clearly not decidable
(we prove that it is semi-decidable). We single out also a subset of finitely-ground pro-
grams, called finite-domain programs, which are effectively recognizable, while keeping
computability of both reasoning and answer set computation.
We implement all results in DLV, further extending the language in order to support list
and set terms, along with a rich library of built-in functions for their manipulation. The re-
sulting ASP system is very powerful: any computable function can be encoded in a rich and
fully declarative KRR language, ensuring termination on every finitely-ground program. In
addition, termination is “a priori” guaranteed if the user asks for the finite-domain check.

1 Introduction

Disjunctive Logic Programming (DLP) under the answer set semantics, often referred to as An-
swer Set Programming (ASP) [1, 10, 11, 13, 15], evolved significantly during the last decade, and
has been recognized as a convenient and powerful method for declarative knowledge represen-
tation and reasoning. Several systems supporting ASP have been implemented so far, thereby
encouraging a number of applications in many real-world contexts ranging, e.g., from informa-
tion integration, to frauds detection, to software configuration, and many others. On the one hand,
the above mentioned applications have confirmed the viability of the exploitation of ASP for ad-
vanced knowledge-based tasks. On the other hand, they have evidenced some limitations of ASP
languages and systems, that should be overcome to make ASP better suited for real-world ap-
plications even in industry. One of the most noticeable limitations is the fact that complex terms
like functions, sets and lists, are not adequately supported by current ASP languages/systems.
Therefore, even by using state-of-the-art systems, one cannot directly reason about recursive
data structures and infinite domains, such as XML/HTML documents, lists, time, etc. This is a
strong limitation, both for standard knowledge-based tasks and for emerging applications, such
as those manipulating XML documents.

? The material in the appendices is complementary, and will beskipped in the final version. It has been
included also to ease the work of the referees.

The strong need to extend DLP by functions is clearly perceived in the ASP community, and
many relevant contributions have been recently done in thisdirection [2, 19, 14, 21, 5]. However,
we still miss a proposal which is fully satisfactory from a linguistic viewpoint (high expres-
siveness) and suited to be incorporated in the existing ASP systems. Indeed, at present no ASP
system allows for a reasonably unrestricted use of functionterms. Functions are either required
to be nonrecursive or subject to severe syntactic limitations, if allowed at all in ASP systems.

This paper aims at overcoming the above mentioned limitations, toward a powerful enhance-
ment of ASP systems by functions. The contribution is both theoretical and practical, and leads
to the implementation of a powerful ASP system supporting (recursive) functions, sets, and lists,
along with libraries for their manipulations. The main results can be summarized as follows:

I We formally define the new class offinitely-ground (FG) DLP programs. This class allows
for (possibly recursive) function symbols, disjunction and negation. We demonstrate that
FG programs enjoy many relevant computational properties:
• both brave and cautious reasoning are computable, even for non-ground queries;
• answer sets are computable;
• each computable function can be expressed by aFG program.

I SinceFG programs express any computable function, membership in this class is obviously
not decidable (we prove that it is semi-decidable). For users/applications where termination
needs to be “a priori” guaranteed, we define the class offinite-domain (FD) programs:
• both reasoning and answer set generation are computable forFD programs (they are a

subclass ofFG programs), and, in addition,
• recognizing whether a program is anFD program is decidable.

I We extend the language with list and set terms, along with a rich library of built-in functions
for lists and sets manipulations.

I We implement all results and the full (extended) language inDLV, obtaining a very powerful
system where the user can exploit the full expressiveness ofFG programs (able to encode
any computable function), or require the finite-domain check, getting the guarantee of termi-
nation. The system is available for downloading [9], and already in use in many universities
and research centers throughout the world.

For space limitations, we cannot include detailed proofs. Further documentation and exam-
ples are available on the web site [9].

2 DLP with Functions

This section reports the formal specification of the DLP language with function symbols allowed.

2.1 Syntax and notations A term is either asimple termor a functional term. A simple
term is either a constant or a variable. Ift1 . . . tn are terms andf is a function symbol (functor)
of arity n, then:f(t1, . . . , tn) is a functional term. We say that eachti, 1 ≤ i ≤ n, is a subterm
of f(t1, . . . , tn). The subterm relation is reflexive and transitive, that is:(i) each term is also a
subterm of itself; and(ii) if t1 is a subterm oft2 andt2 is subterm oft3 thent1 is also a subterm
of t3.

Each predicatep has a fixed arityk ≥ 0; by p[i] we denote itsi-th argument. Ift1, . . . , tk
are terms, thenp(t1, . . . , tk) is anatom. A literal l is of the forma or not a, wherea is an
atom; in the former casel is positive, and in the latter casenegative. A rule r is of the form
α1 ∨ · · · ∨ αk :- β1, . . . , βn, notβn+1, . . . , notβm. wherem ≥ 0, k ≥ 0; α1, . . . , αk and
β1, . . . , βm are atoms. We defineH(r) = {α1, . . . , αk} (the headof r) andB(r) = B+(r)
∪B−(r) (the bodyof r), whereB+(r) = {β1, . . . , βn} (the positive bodyof r) andB−(r)

GA(P) G(P) GC(P)

Fig. 1. Argument, DependencyandComponentGraphs of the program in Example 1.

= {not βn+1, . . . , not βm} (the negative bodyof r). If H(r) = ∅ thenr is a constraint; if
B(r) = ∅ and|H(r)| = 1 thenr is referred to as afact.

A rule is safe if each variable in that rule also appears in at least one positive literal in the
body of that rule. For instance, the rulep(X, f(Y, Z)) :- q(Y), not s(X). is not safe, because of
both X andZ. From now on we assume that all rules are safe and there is no constraint.1 A
DLP program is a finite setP of rules. As usual, a program (a rule, a literal) is said to beground
if it contains no variables. LetA be a set of atoms andp be a predicate. Given a programP ,
according with the database terminology, a predicate occurring only in facts is referred to as an
EDB predicate, all others asIDB predicates. The set of all facts ofP is denoted by Facts(P); the
set of instances of all EDB predicates is denoted by EDB(P) (note that EDB(P)⊆ Facts(P)). The
set of all head atoms inP is denoted byHeads(P) =

⋃
r∈P H(r).

2.2 Semantics The most widely accepted semantics for DLP programs is basedon the
notion of answer-set, proposed by Gelfond and Lifschitz in [11] as a generalization of the concept
of stable model [10].

Given a programP , theHerbrand universeof P , denoted byUP , consists of all (ground)
terms that can be built combining constants and functors appearing inP . TheHerbrand base
of P , denoted byBP , is the set of all ground standard atoms obtainable from the atoms ofP by
replacing variables with elements fromUP . A substitutionfor a ruler ∈ P is a mapping from
the set of variables ofr to the setUP of ground terms. Aground instanceof a ruler is obtained
applying a substitution tor. Given a programP the instantiation (grounding)grnd(P) of P is
defined as the set of all ground instances of its rules. Given aground programP , aninterpretation
I for P is a subset ofBP . A positive literall = a (resp., a negative literall = not a) is true w.r.t.
I if a ∈ I (resp.,a /∈ I); it is false otherwise. Given a ground ruler, we say thatr is satisfied
w.r.t. I if some atom appearing inH(r) is true w.r.t.I or some literal appearing inB(r) is false
w.r.t. I. Given a ground programP , we say thatI is amodel of P , iff all rules in grnd(P) are
satisfied w.r.t.I. A modelM is minimal if there is no modelN for P such thatN ⊂ M .

TheGelfond-Lifschitz reduct[11] of P , w.r.t. an interpretationI, is the positive ground pro-
gramP I obtained fromgrnd(P) by: (i) deleting all rules having a negated literal that is false
w.r.t. I; (ii) deleting all negated literals from the remaining rules.I ⊆ BP is ananswer setfor a
programP iff I is a minimal model for the positive programP I . The set of all answer sets for
P is denoted byAS(P).

2.3 Dependency GraphsWe next define three graphs that point out dependencies among
arguments, predicates, and components of a program.

1 Under Answer Set semantics, a constraint :- B(r) can be simulated through the introduction of a standard
rule fail :- B(r), not fail, where fail is a fresh predicate not occurring elsewhere in the program.

Definition 1. TheArgument GraphGA(P) of a programP contains a node for each argument
p[i] of a predicatep of P ; there is an edge(q[j], p[i]) if there is a ruler ∈ P such that:(a) an
atomp(t) appears in the head ofr; (b) an atomq(v) appears in the positive body ofr; (c) p(t)
andq(v) share the same variable within the i-th and j-th term, respectively.

Given a programP , an argumentp[i] is said to be recursive withq[j] if there exists a cycle
in GA(P) involving bothp[i] andq[j]. Roughly speaking, this graph keeps track of (body-head)
dependencies between the arguments of predicates sharing some variable. It is actually a more
detailed version of the commonly used (predicate) dependency graph, defined below.

Definition 2. TheDependency GraphG(P) of P is a directed graph whose nodes are the IDB
predicates appearing inP . There is an edge(p2, p1) in G(P) iff there is some ruler with p2

appearing inB+(r) andp1 in H(r), respectively.

The graphG(P) suggests to split the set of all predicates ofP into a number of sets (called
components), one for each strongly connected component (SCC)2 of the graph itself. Given a
predicatep, the componentp belongs to is denoted bycomp(p); with a small abuse of notation,
we define alsocomp(l) andcomp(a), wherel is a literal anda is an atom, accordingly.

In order to single out dependencies among components, a proper graph is defined next.

Definition 3. Given a programP and its Dependency GraphG(P), theComponent Graphof P ,
denotedGC(P), is a directed labelled graph having a node for each stronglyconnected compo-
nent ofG(P) and:(i) an edge(B, A), labelled “+”, if there is a ruler in P such that there is
a predicateq ∈ A occurring in the head ofr and a predicatep ∈ B in a positive literal of the
body ofr; (ii) an edge(B, A), labelled “-”, if there is a ruler in P such that there is a predicate
q ∈ A occurring in the head ofr and a predicatep ∈ B occurring in the negative the body ofr,
and there is no edge(B, A), with label “+”.

Example 1.Consider the following programP , wherea is an EDB predicate:

q(g(3)). s(X) ∨ t(f(X)) :- a(X), not q(X).
p(X,Y) :- q(g(X)), t(f(Y)). q(X) :- s(X), p(Y,X).

GraphsGA(P), G(P) andGC(P) are respectively depicted in Figure 1. There are threeSCC in
G(P): C{s} = {s}, C{t} = {t} andC{p,q} = {p, q} which are the three nodes ofGC(P).

An ordering among the rules, respecting dependencies pointed out byGC(P), is defined next.

Definition 4. A path inGC(P) is namedstrongif all its edges are labelled with “+”. If, on the
contrary, there is at least an edge in the path labelled with “-”, the path is said to beweak. A
component orderingfor a given programP is a total ordering〈C1, . . . , Cn〉 of all components
of P s.t., for anyCi, Cj with i < j, both the following conditions hold:(i) there are no strong
paths fromCj to Ci; (ii) if there is a weak path fromCj to Ci, then there must be a weak path
also fromCi to Cj .3

Example 2.Consider the graphGC(P) of previous example. BothC{s} andC{t} are connected
to C{p,q} through a strong path, while a weak path connects:C{s} to C{t}, C{t} to C{s}, C{p,q}

to C{s} andC{p,q} to C{t}. Both γ1 = 〈C{s}, C{t}, C{p,q}〉 andγ2 = 〈C{t}, C{s}, C{p,q}〉
constitute component orderings for the programP .

2 We recall here that a strongly connected component of a directed graph is a maximal subsetS of the
vertices, such that each vertex inS is reachable from all other vertices inS.

3 Note that, given the component orderingγ, Ci stands for the i-th component inγ, andCi < Cj means
thatCi precedesCj in γ (i.e.,i < j).

By means of the graphs defined above, it is possible to identify a set of subprograms (also
calledmodules) of P , allowing for a modular bottom-up evaluation. We say that a rule r ∈ P
definesa predicatep if p appears inH(r). Once a component orderingγ = 〈C1, . . . , Cn〉 is
given, for each componentCi we define themoduleof Ci, denoted by P(Ci), as the set of all
rulesr defining some predicatep ∈ Ci excepting those that define also some other predicate
belonging to a lower component (i.e., certainCj with j < i in γ).

Example 3.Consider the programP of Example 1. If we consider the component orderingγ1,
the corresponding modules are:

P (C{s}) = { s(X) ∨ t(f(X)) :- a(X), not q(X). }, P (C{t}) = ∅,
P (C{p,q}) = {p(X, Y) :- q(g(X)), t(f(Y))., q(X) :- s(X), p(Y,X)., q(g(3)). }.

The modules ofP are defined, according to a component orderingγ, with the aim of properly
instantiating all rules. It is worth remembering that we deal only with safe rules, i.e., all variables
appear in the positive body; it is therefore enough to instantiate the positive body. Furthermore,
any component orderingγ guarantees that, whenr ∈ P (Ci) is instantiated, each nonrecursive
predicatep appearing inB+(r) is defined in a lower component (i.e., in someCj with j < i in
γ). It is also worth remembering that, according to how the modules ofP are defined, ifr is a
disjunctive rule, then it is associated only to a unique module P (Ci), chosen in such a way that,
among all componentsCj such thatcomp(a) = Cj for somea ∈ H(r), it always holdsi ≤ j
in γ (that is, the disjunctive rule is associated only to the (unique) module corresponding to the
lowest component among those “covering” all predicates featuring some instance in the head of
r). This implies that the set of the modules ofP constitute an exact partition for it.

3 Finitely-Ground Programs

In this section we introduce a subclass of DLP programs, namely finitely-ground (FG) programs,
having some nice computational properties.

Since the ground instances of a rule might be infinite (because of the presence of function
symbols), it is crucial to try to identify those that really matters in order to compute answer
sets. Supposing thatS contains all atoms that are potentially true, next definition singles out the
relevant instances of a rule.

Definition 5. Given a ruler and a setS of ground atoms, anS-restrictedinstance ofr is a ground
instancer′ of r such thatB+(r′) ⊆ S. The set of all S-restricted instances of a programP is
denoted asInstP (S).

Note that, for anyS ⊆ BP , InstP (S) ⊆ grnd(P). Intuitively, this helps selecting, among
all ground instances, those somehowsupportedby a given setS.

Example 4.Consider the following programP :
t(f(1)). t(f(f(1))). p(1). p(f(X)) :- p(X), t(f(X))).

The setInstP (S) of all S-restricted instances ofP , w.r.t.S = Facts(P) is:
t(f(1)). t(f(f(1))). p(1). p(f(1)) :- p(1), t(f(1)).

The presence of negation allows for identifying some further rules which do not matter for the
computation of answer sets, and for simplifying the bodies of some others. This can be properly
done by exploiting a modular evaluation of the program that relies on a component ordering.

Definition 6. Given a programP , a component ordering〈C1, . . . , Cn〉, a setSi of ground
rules forCi, and a set of ground rulesR for the components precedingCi, the simplification
Simpl(Si, R) of Si w.r.t. R is obtained fromSi by:

1. deletingeach rule whose body contains some negative body literalnot a s.t.a ∈ Facts(R),
or whose head contains some atoma ∈ Facts(R);

2. eliminatingfrom the remaining rules each literall s.t.:
– l = a is a positive body literal anda ∈ Facts(R), or
– l = not a is a negative body literal,comp(a) = Cj with j < i, anda /∈ Heads(R).

Assuming thatR contains all instances of the modules precedingCi, Simpl(Si, R) deletes
from Si all rules whose body is certainly false or whose head is certainly already true w.r.t.R,
and simplifies the remaining rules by removing from the bodies all literals that are true w.r.t.R.

Example 5.Consider the following programP :

t(1). s(1). s(2).
q(X) :- t(X). p(X) :- s(X), not q(X).

It is easy to see that〈C1 = {q}, C2 = {p}〉 is the only component ordering forP . If we consider
R = EDB(P) = { t(1)., s(1). s(2). } andS1 = {q(1) :- t(1).}, thenSimpl(S1, R) =
{q(1).} (i.e., t(1) is eliminated from body). Considering thenR = {t(1)., s(1)., s(2)., q(1).}
andS2 = { p(1) :- s(1), not q(1)., p(2) :- s(2), not q(2). }, after the simplification we have
Simpl(S2, R) = {p(2).}. Indeed,s(2) is eliminated as it belongs toFacts(R) andnot q(2)
is eliminated becausecomp(q(2)) = C1 precedesC2 in the component ordering andq(2) /∈
Heads(R); in addition, rulep(1) :- s(1), not q(1). is deleted, sinceq(1) ∈ Facts(R).

We are now ready to define an operatorΦ that acts on a module of a programP in order
to: (i) select only those ground rules whose positive body is contained in a set of ground atoms
consisting of the heads of a given set of rules;(ii) perform a further simplification among these
rules by means of theSimpl operator.

Definition 7. Given a programP , a component ordering〈C1, . . . , Cn〉, a componentCi, the
moduleM = P (Ci), a setX of ground rules ofM , and a setR of ground rules belonging only
to EDB(P) or to modules of componentsCj with j < i, let ΦM,R(X) be the transformation
defined as follows:ΦM,R(X) = Simpl(InstM(Heads(R ∪ X)), R).

Example 6.Let P be the program of Example 1 where the extension of EDB predicate a is
{a(1)}. Considering the componentC1 = {s}, the moduleM = P (C1), and the setsX = ∅
andR = {a(1)}, we have:
ΦM,R(X) = Simpl(InstM(Heads(R ∪ X)), R) =

= Simpl(InstM({a(1)}), {a(1).}) =

= Simpl({s(1) ∨ t(f(1)) :-a(1), not q(1).}, {a(1).}) =

= {s(1) ∨ t(f(1)) :- not q(1).}.

The operator defined above has the next important property.

Proposition 1. ΦM,R always admits a least fixpointΦ∞
M,R(∅).

Proof. (Sketch) The statement follows from Tarski’s theorem [22]), noting thatΦM,R is a mono-
tonic operator and that a set of rules forms a meet semilattice under set containment. �

By properly composing consecutive applications ofΦ∞ to a component ordering, we can
obtain an instantiation which drops many useless rules w.r.t. answer sets computation.

Definition 8. Given a programP and a component orderingγ = 〈C1, . . . , Cn〉 for P , the
intelligent instantiationP γ of P for γ is the last elementSn of the sequence s.t.S0 = EDB(P),
Si = Si−1 ∪ Φ∞

Mi,Si−1
(∅), whereMi is the program moduleP (Ci).

Example 7.Let P be the program of Example 1 where the extension of EDB predicate a is
{a(1)}; considering the component orderingγ = 〈C1 = {s}, C2 = {t}, C3 = {p, q}〉 we have:

– S0 = {a(1).};
– S1 = S0 ∪ Φ∞

M1,S0
(∅) = {a(1)., s(1) ∨ t(f(1)) :- not q(1).};

– S2 = S1 ∪ Φ∞
M2,S1

(∅) = {a(1)., s(1) ∨ t(f(1)) :- not q(1).};
– S3 = S2 ∪ Φ∞

M3,S2
(∅) = {a(1)., s(1) ∨ t(f(1)) :- not q(1).,

q(g(3))., p(3, 1) :- q(g(3)), t(f(1))., q(1) :- s(1), p(3, 1).}.

Thus, the resulting intelligent instantiationP γ of P for γ is:

a(1). q(g(3)). s(1) ∨ t(f(1)) :- not q(1).
p(3, 1) :- q(g(3)), t(f(1)). q(1) :- s(1), p(3, 1).

We are now ready to define the class ofFG programs.

Definition 9. A programP is finitely-ground(FG) if P γ is finite, for every component order-
ing γ for P .

Example 8.The program of Example 1 isFG: P γ is finite both whenγ = 〈C{s}, C{t}, C{p,q}〉
and whenγ = 〈C{t}, C{s}, C{p,q}〉 (i.e., for both the only two component orderings forP).

4 Properties of Finitely-Ground Programs

In this section the class ofFG programs is characterized by identifying some key properties.
The next theorem shows that we can compute the answer sets of an FG program by consid-

ering intelligent instantiations, instead of the theoretical (possibly infinite) ground program.

Theorem 1. Let P be anFG program andP γ be the intelligent instantiation ofP w.r.t. a com-
ponent orderingγ for P . Then,AS(P) = AS(P γ) (i.e.,P andP γ have the same answer sets).

Proof. (Sketch) Givenγ = 〈C1, . . . , Cn〉, let denote, as usual, byMi the program module
P (Ci), and consider the setsS0, . . . , Sn as defined in Definition 8. SinceP =

⋃n
i=0 Mi the

theorem can be proven by showing that:

AS(Sk) = AS(
⋃k

i=0 Mi) for 1 ≤ k ≤ n

whereM0 denotesEDB(P). The equation clearly holds fork = 0. Assuming that it holds for
all k ≤ j, we can show that it holds fork = j + 1. The equation above can be rewritten as:

AS(Sk−1 ∪ Φ∞
Mk,Sk−1

(∅)) = AS(
⋃k−1

i=0 Mi ∪ Mk)) for 1 ≤ k ≤ n

The induction hypothesis allows us to assume that the equivalenceAS(Sk−1) = AS(
⋃k−1

i=0 Mi)

holds. A careful analysis is needed of the impact that the addition of Mk to
⋃k−1

i=0 Mi has on
answer sets ofSk; in order to prove the theorem, it is enough to show that the set Φ∞

Mk,Sk−1
(∅)

does not drop any “meaningful” rule w.r.t.Mk.
If we disregard the application of theSimpl operator, i.e. we consider the operatorΦ per-

forming onlyInstMk
(Heads(Sk−1 ∪ ∅)), thenΦ∞

Mk,Sk−1
(∅) clearly generates all rules having

a chance to have a true body in any answer set; omitted rules have a false body in every answer
set, and are therefore irrelevant.

The application ofSimpl does not change the scenario: it relies only on previously derived
facts, and on the absence of atoms from heads of previously derived ground rules.4 If a factq has
been derived in a previous component, then any rule featuring q in the head ornot q in the body
is deleted, as it is already satisfied and cannot contribute to any answer set. The simplification
operator also drops, from the bodies, positive atoms of lower components appearing as facts,
as well as negative atoms belonging to lower components which do not appear in the head of
any already generated ground rule. The presence of facts in the bodies is obviously irrelevant,
and the deleted negative atoms are irrelevant as well. Indeed, by construction of the component
dependency graph, while instantiating a module, all rules defining atoms of lower components
have been already instantiated. Thus, atoms of lower components not appearing in the head of
any generated rule, have no chances to be true in any answer set. �

Corollary 1. Every answer set of anFG program is finite.

Theorem 2. Given anFG programP , AS(P) is computable.

Proof. Note that by Theorem 1, answer sets ofP can be obtained by computing the answer sets
of P γ for a component orderingγ of choice, which can be easily computed. Then,P γ can be
obtained by computing the sequence of fixpoints ofΦ specified in Definition 8. Each fixpoint is
guaranteed to be finitely computable, since the program is finitely-ground. �

From this property, the main result below immediately follows.

Theorem 3. Cautious and brave reasoning overFG programs are computable. Computability
holds even for non-ground queries.

As the next theorem shows, the class ofFG programs allows for the encoding of any com-
putable function.

Theorem 4. Given a recursive functionf , there exists a DLP programPf such that, for any
input x for f , Pf ∪ θ(x) is finitely-ground andAS(Pf ∪ θ(x)) encodesf(x), for θ a simple
function encodingx by a set of facts.

Proof. (Sketch) We can build a positive programPf , which encodes the Turing machineMf

corresponding tof (see Appendix A). For any inputx to Mf , (Pf ∪ θ(x))γ is finite for any
component orderingγ, andAS(Pf ∪ θ(x)) contains an appropriate encoding off(x). �

Note that recognizingFG programs is semi-decidable, yet not decidable:

Theorem 5. Recognizing whetherP is anFG program is R.E.-complete.

Proof. (Sketch) Semi-decidability is shown by implementing an algorithm evaluating the se-
quence given in Definition 8, and answering “yes” if the sequence converges in finite time.

On the other hand, given a Turing machineM and an input tapex, it is possible to write a
corresponding programPM and a setθ(x) of facts encodingx, such thatM halts on inputx iff
PM ∪ θ(x) is finitely-ground. The programPM is the same as that in the proof of Theorem 4
and reported in Appendix A. �

4 Note that, due to the elimination of true literals performedby the simplification operatorSimpl, the
intelligent instantiation of a rule with a non empty body maygenerate some facts.

5 Finite-Domain Programs

In this section we single out a subclass ofFG programs, called finite-domain (FD) programs,
which ensures the decidability of recognizing membership in the class.

Definition 10. Given a programP , the set offinite-domain arguments (FD arguments)of P is
the maximal (w.r.t. inclusion) setFD(P) of arguments of P such that, for each each argument
q[k] ∈ FD(P), every ruler with head predicateq satisfies the following condition. Lett be the
term corresponding to argumentq[k] in the head ofr. Then,

1. eithert is variable-free, or
2. t is a subterm5 of (the term of) someFD argument of a positive body predicate, or
3. every variable appearing int also appears in (the term of) aFD argument of a positive body

predicate which is not recursive withq[k].

If all arguments of the predicates ofP areFD, thenP is said to be anFD program.

Observe thatFD(P) is well-defined; indeed, it is easy to see that there always exists, and
it is unique, a maximal set satisfying Definition 10 (trivially, given two setsA1 andA2 of FD
arguments for a programP , the setA1 ∪ A2 is also a set ofFD arguments forP).

Example 9.The following is an example ofFD program:

q(f(0)). q(X) :- q(f(X)).

Indeed q[1] is the only argument in the program and it is anFD argument since the two occur-
rences ofq[1] in a rule head satisfy first and second condition of Definition10 respectively.

Example 10.The following is not anFD program:

q(f(0)). q(X) :- q(f(X)).
s(f(X)) :- s(X). v(X) :- q(X), s(X).

We have that all arguments belong toFD(P), except fors[1]. Indeed,s[1] appears as head
argument in the third rule with termf(X), and:(i) f(X) is not variable-free;(ii) f(X) is not a
subterm of some term appearing in a positive bodyFD argument;(iii) there is no positive body
predicate which is not recursive withs and containsX .

By the following theorems we now point out two key propertiesof FD programs.

Theorem 6. Recognizing whetherP is anFD program is decidable.

Proof. (Sketch)An algorithm deciding whetherP isFD or not can be defined as follows. Argu-
ments of predicates inP are all supposed to beFD at first. If at least one rule is found, such that
for an argument of an head predicate none of the three conditions of Definition 10 holds, thenP
is recognized as not being anFD program. If no such rule is found, the answer is positive.�

Theorem 7. EveryFD program is anFG program.

5 The condition can be made less strict considering other notions, as, e.g., thenormof a term [6, 7, 18].

Proof. (Sketch) Given anFD programP , it is possible to finda priori an upper bound for the
maximum nesting level6 of the terms appearing inP γ , for any component orderingγ for P .
This is given bymax nl = (n + 1) ∗ m, wherem is the maximum nesting level of the terms
in P , andn is the number of components inγ. Indeed, given thatP is anFD program, it is
easy to see that the maximum nesting level cannot increase because of recursive rules, since, in
this case, the second condition of Definition 10 forces a sub-term relationships between head
and body predicates. Hence, the maximum nesting level can increase only because of body-head
dependencies among predicates of different components. Wecan now compute the set of all
possible ground termst obtained by combining all constants and function symbols appearing in
P , such that the nesting level oft is less or equal tomax nl. This is a finite set, and clearly a
superset of the ground terms appearing inP γ . Thus,P γ is necessarily finite. �

The results above allow us to state the following propertiesfor FD programs.

Corollary 2. Let P be anFD program, then:

1. AS(P) is computable;
2. every answer set inAS(P) is finite;
3. skeptical and credulous reasoning overP are computable. Computability holds even if the

query at hand is not ground.

6 An ASP System with functions, sets, and lists

In this section we briefly illustrate the implementation of an ASP system supporting the language
herein presented. Such system actually features an even richer language, that, besides functions,
explicitly supports also complex terms such as lists and sets, and provides a large library of
built-in predicates for facilitating their manipulation.Thanks to such extensions, the resulting
language becomes even more suitable for easy and compact knowledge representation tasks.

6.1 Language We next informally point out the peculiar features of the fully extended
language, with the help of some sample programs.

In addition to simple and functional terms, there might be alsolist andsetterms; a term which
is not simple is said to becomplex. A list term can be of two different forms:(i) [t1, . . . , tn],
wheret1, . . . ,tn are terms;(ii) [h|t], whereh (the head of the list) is a term, andt (the tail of the
list) is a list term. Examples for list terms are:[jan, feb, mar, apr, may, jun], [jan | [feb, mar,
apr, may, jun]], [[jan, 31] | [[feb, 28], [mar, 31], [apr, 30], [may, 31], [jun, 30]]].

Set terms are used to model collections of data having the usual properties associated with
the mathematical notion of set. They satisfy idempotence (i.e., sets have no duplicate elements)
and commutativity (i.e., two collections having the same elements but with a different order
represent the same set) properties. Aset termis of the form: {t1, . . . , tn}, wheret1, . . . , tn are
ground terms. Examples for set terms are:{red, green, blue}, {[red, 5], [blue, 3], [green, 4]},
{{red, green}, {red, blue}, {green, blue}}. Note that duplicated elements are ignored, thus the
sets:{red, green, blue} and{green, red, blue, green} are actually considered as the same.

As already mentioned, in order to easily handle list and set terms, a rich set of built-in func-
tions and predicates is provided. Functional terms prefixedby a# symbol arebuilt-in functions.
Such kind of functional terms are supposed to be substitutedby the values resulting from the ap-
plication of a functor to its arguments, according to some predefined semantics. For this reason,

6 The nesting level of a ground term is defined inductively as follows: (i) a constant term has nesting level
zero; (ii) a functional termf(t1, . . . , tn) has nesting level equal to the maximum nesting level among
t1, . . . , tn plus one.

built-in functions are also referred to asinterpretedfunctions. Atoms prefixed by# are, instead,
instances ofbuilt-in predicates. Such kind of atoms are evaluated as true or falseby means of
operations performed on their arguments, according to somepredefined semantics7. Some sim-
ple built-in predicates are also available, such as the comparative predicates equality, less-than,
and greater-than(=, <, >) and arithmetic predicates like successor, addition or multiplication,
whose meaning is straightforward. A pair of simple examplesabout complex terms and proper
manipulation functions follows. Another interesting example, i.e., the Hanoi Tower problem, is
reported in Appendix B.

Example 11.Given a directed graph, asimple pathis a sequence of nodes, each one appearing
exactly once, such that from each one (but the last) there is an edge to the next in the sequence.
The following program derives all simple paths for a directed graph, starting from a givenedge
relation:

path([X, Y]) :- edge(X,Y).
path([X|[Y |W]]) :- edge(X,Y), path([Y |W]), not #member(X, [Y |W]).

The first rule builds a simple path as a list of two nodes directly connected by an edge. The
second rule constructs a new path adding an element to the list representing an existing path.
The new element will be added only if there is an edge connecting it to the head of an already
existing path. The external predicate#member (which is part of the above mentioned library for
lists and sets manipulation) allows to avoid the insertion of an element that is already included
in the list; without this check, the construction would never terminate in the presence of circular
paths. Even if not anFD program, it is easy to see that this is anFG program; thus, the system
is able to effectively compute the (in this case unique) answer set.

Example 12.Let us imagine that the administrator of a social network wants to increase the
connections between users. In order to do that, (s)he decides to propose a connection to pairs of
users that result, from their personal profile, to share morethan two interests. If the data about
users are given by means of EDB atoms of the formuser(id, {interest1, . . . , interestn}), the
following rule would compute the set of common interests between all pairs of users:

sharedInterests(U1, U2, #intersection(S1, S2)) :-user(U1, S1), user(U2, S2), U1 6= U2.

where the interpreted function#intersection takes as input two sets and returns their inter-
section. Then, the predicate selecting all pairs of users sharing more than two interests could be
defined as follows:

proposeConnection(pair(U1, U2)) :- sharedInterests(U1, U2, S), #card(S) > 2.

Here, the interpreted function#card returns the cardinality of a given set, which is compared
to the constant2 by means of the built-in predicate “>”.

6.2 Implementation The presented language has been implemented on top of the state-
of-the-art ASP system DLV [12]. Complex terms have been implemented by using a couple
of built-in predicates for packing and unpacking them (see below). These functions, along with
the library for lists and sets manipulation have been incorporated in DLV by exploiting the
framework introduced in [8].

In particular, support for complex terms is actually achieved by suitably rewriting the rules
they appear in. The resulting rewritten program does not contain complex terms any more, but
a number of instances of proper built-in predicates. We briefly illustrate in the following how
the rewriting is performed in case of functional terms; the cases of list and set terms are treated
analogously. Firstly, any functional termt = f(X1, . . . , Xn), appearing in some ruler ∈ P , is
replaced by a fresh variableFt and then, one of the following atom is added toB(r):

7 The specification of the entire library for lists and sets manipulation is available at [9].

- #function pack(Ft, f, X1, . . . , Xn) if t appears inH(r);
- #function unpack(Ft, f, X1, . . . , Xn) if t appears inB(r).

This transformation is applied to the ruler until no functional terms appear in it. The role of
an atom#function pack is to build a functional term starting from a functor and its arguments;
while an atom#function unpack acts unfolding a functional term to give values to its argu-
ments. So, the former binds theFt variable, provided that all other terms are already bound, the
latter binds (checks values, in case they are already bound)theX1, . . . , Xn variables according
to the binding for theFt variable (the whole functional term).

Example 13.The rule: p(f(f(X))) :- q(X, g(X,Y)). will be rewritten as follow:

p(Ft1) :- #function pack(Ft1, f, F t2), #function pack(Ft2, f, X),
q(X, Ft3), #function unpack(Ft3, g, X, Y).

Note that rewriting the nested functional termf(f(X)) requires two#function pack atoms
in the body: (i) for the innerf function havingX as argument and (ii) for the outerf function
having as argument the fresh variableFt2, representing the inner functional term.

The resulting ASP system is indeed very powerful: the user can exploit the full expressiveness
of FG programs (plus the ease given by the availability of complexterms), at the price of giving
the guarantee of termination up. In this respect, it is worthstating that the system grounder fully
complies with the definition ofintelligent instantiation introduced in this work (see Section 3
and Definition 8). This implies, among other things, that thesystem is guaranteed to terminate
and correctly compute all answer sets for any program resulting as finitely-ground. Nevertheless,
the system comes equipped with a syntacticFD programs recognizer, based on the algorithm
sketched in Theorem 6. This kind of finite-domain check, which is active by default, ensures
computability for all accepted programs, without the need for knowing the membership toFG
programs class.

The system prototype is available at [9]; besides the systemitself, the above mentioned li-
brary for list and set terms manipulation is available for free download, together with a reference
guide and a number of examples.

7 Related Works

Functional terms are widely used in logic formalisms stemming from first order logic. Introduc-
tion and treatment of functional terms (or similar constructs) have been studied indeed in several
fields, such as Logic Programming and Deductive Databases. In the ASP community, the treat-
ment of functional terms has recently received quite some attention [2, 19, 14, 21, 5]. We next
focus on the main proposals for introducing functional terms in ASP.

Finitary Programs. Finitary programs [5, 2] are a major contribution to the introduction of re-
cursive functional terms (and thus infinite domains) in logic programming under stable model
semantics.

Given a normal (or-free) programP , a labelled dependency graphLDG(P) is associated
to grnd(P). The nodes are the (infinite) atoms inBP , there is an edge(A, B) (from A to B)
if there is a ruler ∈ grnd(P) such thatA ∈ H(r) andB ∈ B(r); in particular, the edge is
labelled¬ if B ∈ B−(r). ProgramP is finitary if: (i) from any node inLDG(P) only a finite
sets of nodes is reachable (i.e., the program isfinitely recursive, as any atom depends only on a
finite set of other atoms), and(ii) the dependency graphLDG(P) has only a finite number of
cycles with an odd number of negated (¬) edges (calledodd-cycles).

The class of finitary programs can be seen as a “dual” notion ofthe class of finitely-ground
programs. The former is suitable for a top-down evaluation,while the latter allows for a bottom-
up computation.

Comparing the computational properties of the two classes,we observe the following:

– Both finitary programs and finitely-ground programs can express any computable function.
– Ground queries are decidable for both finitary and finitely-ground programs; however, for

finitary programs, to obtain decidability one needs to additionally know (“a priori”) what is
the set of atoms involved in odd-cycles [3].

– Answer sets on finitely-ground programs are computable, while they are not computable on
finitary programs. The same holds for nonground queries.

– Recognizing if a program is finitely-ground is semi-decidable; while recognizing if a pro-
gram is finitary is undecidable.

Finitary andFG programs are not comparable: there are finitary programs that are not finitely-
ground, and finitely-ground programs that are not finitary. The syntactic restrictions imposed
by the two notions somehow come from the underlying computational approaches (top-down
vs bottom-up). Finitary programs impose that all rule variables must occur in the head; while
finitely-ground programs require that all rule variables occur in the positive body. Therefore,
p(X, Y) :- q(X). is safe for finitary programs, while it is not for finitely-ground programs (asY
is not range-restricted). On the contrary,p(X, Y) :- q(X, V), r(V, Y) is safe for finitely-ground
programs, while it is not admissible for finitary programs (because of the “local” variableV).
Similarly, for the nesting level of the functions: it cannotincrease head-to-body for finitary
programs, while it cannot increase body-to-head for finitely-ground programs. For instance,
p(X) :- p(f(X)). is not finitary, whilep(f(X)) :- p(X). is not finitely-ground. Importantly, fini-
tary programs are or-free; while finitely-ground programs allow for disjunctive rules. The class
of finitary programs has been extended to the disjunctive case in [4]. To this end, a third condi-
tion on the disjunctive heads is added to the definition of finitary programs, in order to guarantee
the decidability of ground querying.

Concluding, we observe that the bottom-up nature of the notion of finitely-ground programs
allows for an immediate implementation of this class in ASP systems (as ASP instantiators
are based on a bottom-up computational model). Indeed, we could enhance DLV to deal with
finitely-ground by small changes in its instantiator, keeping the database optimization techniques
which rely on the bottom-up model and significantly enhance the efficiency of the instantiation.
While an ASP instantiator should be replaced by a top-down grounder to deal with finitary pro-
grams.

ω-restricted Programs.The class ofω-restricted logic programs [21] allows for function sym-
bols under Answer Set semantics. It has been effectively implemented into SMODELS [20] -
a very popular ASP system. The notion ofω-restricted program relies on the concept ofω-
stratification. Anω-stratification corresponds, essentially, to a traditional stratification (i.e., a
function mapping each predicate name to alevelnumber) w.r.t. negation, extended by the (up-
permost)ω-stratum, which contains all predicates depending negatively on each other (basically,
this stratum contains entirely the unstratified part of the program). In order to avoid infinite-
ness/undecidability, programs must fulfill some syntacticconditions w.r.t. anω-stratification. In
particular, each variable appearing in a rule must also occur in a positive body literal belonging to
a strictly lower stratum than the head. The above restrictions are strong enough to guarantee the
computability of answer sets, yet losing recursive completeness. Thus,ω-restricted programs are
strictly less expressive than both finitary andFG programs (which can express all computable
functions). From a merely syntactic viewpoint, the class ofω-restricted programs is uncompa-
rable with that of finitary programs, while it is strictly contained in the class ofFD programs

(and thus, ofFG programs). Indeed, if a programP is ω-restricted, then each variable appearing
in a rule head fulfills Condition 3 of Definition 10 (thus,P is FD). On the contrary, there are
FD programs that are notω-restricted: for instance, theFD program made of the single rule
p(X) :- p(f(X)) isFD but it is notω-restricted.

FDNC programs. In [19] the class ofFDNC programs is introduced, which allows for function
symbols in DLP programs. In order to retain the decidabilityof the standard reasoning tasks,
the structure of any rule must be chosen among one out of sevenpredefined forms. These syn-
tactic restrictions ensure that programs have aforest-shaped modelproperty. Answer sets of
FDNC programs are in general infinite, but have a finite representation which can be exploited
for knowledge compilation and fast query answering. The class ofFDNC programs is less ex-
pressive than both finitary and finitely-ground programs. From a syntactic viewpoint,FDNC

programs are uncomparable with both finitary and finitely-ground programs. Notably,FDNC

programs are finitely recursive, but not necessarily finitary.

Other works. Recently, in [14], functions have been proposed as a tool forobtaining a more
direct and compact representation of problems, and for improving the performance of ASP com-
putation by reducing the size of resulting ground programs.The class of programs which is
considered is strictly contained inω-restricted programs: indeed, predicates as well as functions
must range over finite domains, which must be explicitly (andextensively) provided.

The idea ofFG programs is also related to termination studies of SLD-resolution for Pro-
log programs (see e.g. [18, 6, 7]). In this context, several notion ofnormfor complex terms were
introduced. Intuitively, proving that norms of sub-goals are non-increasing during top-down eval-
uation ensures decidability of a given program. Note that such techniques can not be applied in
a straightforward way to our setting, for a series of technical differences. First, propagation of
norm information should be studied from rules bodies to heads while traditional termination
analysis works the other way around. Also, top-down termination analysis often integrates right
recursion avoidance techniques, which are not required in the context of ASP.

As for the the deductive database field, we recall that one of the first comprehensive propos-
als has beenLDL [16], a declarative language featuring a non-disjunctive logic programming
paradigm based on bottom-up model query evaluation.LDL provides a rich data model includ-
ing the possibility to manage complex objects, lists and sets. The language allows for a strati-
fied form of negation, while functional terms are managed by means of “infinite” base relations
computed by external procedures; proper restrictions (called constraints) and checks based on
structural properties of the program (interdependencies between arguments) ensure that a finite
number of tuples are generated for each relation.

8 Conclusions

We have formally defined the class ofFG programs, which allows for (possibly recursive) com-
plex terms in the full ASP language (logic programs with disjunction and negation). We have
proven that, for each programP in this class, there exists a finite subsetP ′ of its instantiation
having precisely the same answer sets asP . Importantly, such a subsetP ′ is computable for
FG programs. It turns out that: (i) both cautious and brave reasoning tasks are computable for
finitely-ground, even if the query is not ground, (ii) the answer sets of the program are com-
putable as well. We have also demonstrated thatFG programs can express every computable
function. We have singled out also a subclass ofFG programs, called finite-domain programs,
which are efficiently recognizable, while keeping the computability of the reasoning tasks. We
have implemented all results in the the DLV system, further extending the language with list and

set terms, along with a rich library for their manipulation.The resulting system is very powerful:
it combines the expressiveness of functions, sets, and lists, with the knowledge modeling fea-
tures of ASP in a fully declarative framework. The system is available for downloading from [9],
where the user can find also a manual and further examples. Many users already reported a very
positive feedback.

Ongoing work focuses on the extensions of the classes of finitely-ground and finitely-domain
programs and on their combinations with the notion of finitary andFDNC programs.

References

1. C. Baral.Knowledge Representation, Reasoning and Declarative Problem Solving. CUP, 2003.
2. S. Baselice, P. A. Bonatti, and G. Criscuolo. On Finitely Recursive Programs. InICLP’07, LNCS

4670, pp. 89–103. 2007.
3. P. A. Bonatti. Erratum to: “Reasoning with infinite stablemodels”.Artificial Intelligence. Forthcoming.
4. P. A. Bonatti. Reasoning with infinite stable models II: Disjunctive programs. InProceedings of the

18th International Conference on Logic Programming (ICLP 2002), LNCS 2401, pp. 333–346. 2002.
5. P. A. Bonatti. Reasoning with infinite stable models.Artificial Intelligence, 156(1):75–111, 2004.
6. A. Bossi, N. Cocco, and M. Fabris. Norms on Terms and their use in Proving Universal Termination

of a Logic Program.Theoretical Computer Science, 124(2):297–328, 1994.
7. M. Bruynooghe, M. Codish, John P. Gallagher, S. Genaim, and W. Vanhoof. Termination analysis of

logic programs through combination of type-based norms.ACM TOPLAS, 29(2):10, 2007.
8. F. Calimeri, S. Cozza, and G. Ianni. External sources of knowledge and value invention in logic

programming.AMAI, 50(3–4):333–361, 2007.
9. F. Calimeri, S. Cozza, G. Ianni, and N. Leone.DLV-Complex homepage, since 2008.

http://www.mat.unical.it/dlv-complex.
10. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. InICLP/SLP 1988,

pp. 1070–1080, Cambridge, Mass., 1988. MIT Press.
11. M. Gelfond and V. Lifschitz. Classical Negation in LogicPrograms and Disjunctive Databases.NGC,

9:365–385, 1991.
12. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV System for

Knowledge Representation and Reasoning.ACM TOCL, 7(3):499–562, July 2006.
13. V. Lifschitz. Answer Set Planning. InICLP’99, pp. 23–37, Las Cruces, New Mexico, USA, 1999.
14. F. Lin and Y. Wang. Answer Set Programming with Functions. In KR 2008, 2008. To appear.
15. V.W. Marek and M. Truszczyński. Stable Models and an Alternative Logic Programming Paradigm.

In The Logic Programming Paradigm – A 25-Year Perspective, pp. 375–398. 1999.
16. S. Naqvi and S. Tsur.A logical language for data and knowledge bases. Computer Science Press, Inc.,

New York, USA, 1989.
17. C. Papadimitriou.Computational Complexity. 1994.
18. D. De Schreye and S. Decorte. Termination of Logic Programs: The Never-Ending Story.JLP,

19/20:199–260, 1994.
19. M. Simkus and T. Eiter. FDNC: Decidable Non-monotonic Disjunctive Logic Programs with Function

Symbols. InLPAR 2007, volume 4790 ofLNCS, pp. 514–530. 2007.
20. P. Simons, I. Niemelä, and T. Soininen. Extending and Implementing the Stable Model Semantics.

Artificial Intelligence, 138:181–234, 2002.
21. T. Syrjänen. Omega-restricted logic programs. InLPNMR 2001, Vienna, Austria, 2001. Verlag.
22. A. Tarski. A lattice-theoretical fixpoint theorem and its applications.Pacific J. Math, 5:285–309, 1955.

A A DLP Program Simulating a Turing Machine

We next show how a Turing Machine can be encoded by a suitable DLP program simulating
its computation. It is worth noting that this encoding is actually executable; it is available for
download at [9], together with the system prototype. LetM be a Turing Machine ([17]) given
by the 4-uple〈K, Σ, δ, s0〉, whereK is a finite set of states,s0 ∈ K is the initial state,Σ is
a finite set of symbols constituting the alphabet (witht /∈ Σ standing for the blank symbol),
andδ : K × Σ → K × Σ × {l, r, λ} is the transition function describing the behavior of the
machine. Given the current state and the current symbol,δ specifies the next state, the symbol
to be overwritten on the current one, and the direction in which the cursor will move on the tape
(l, r, λ standing for left, right, stay, respectively). Besides theinitial state, there is another special
state, which is called final state; the machine halts if the machine reaches this state at some point.
Each configuration ofM can be encoded in a programPM by means of the following predicates.

– tape(P, Sym, T): the tape positionP stores the symbolSym at time stepT . For each time
step, there is an instance of such predicate for every actually used position of the tape.

– position(P, T): the head ofM reads the positionP on tape at time stepT . position has a
single true ground instance for each time step.

– state(St, T): at time stepT M is in the stateSt. state has a single true ground instance for
each time step.

PM encodes the transition functionδ in the following way: For eachStc, Symc, Stn, Symn, D,
such thatδ(Stc, Symc) = (Stn, Symn, D) we add toPM a fact of the formdelta(Stc, Symc,
Stn, Symn, D). The initial input is encoded by a proper set of facts describing all tape positions
at the first time step (facts of the formtape(P, Sym, 0)), a fact of the formstate(s0, 0), and a
fact of the formposition(P, 0) whereP is the initial position of the head. The rules defining the
evolution of the machine configurations are reported next. For the sake of readability, we exploit
some comparison built-ins, that could be easily simulated by means of suitable predicates.

(r1) position(P, s(T)) :- position(s(P), T), state(St, T), tape(s(P), Sym, T), delta(St, Sym, , , l).
(r2) position(s(P), s(T)) :- position(P, T), state(St, T), tape(P, Sym, T), delta(St, Sym, , , r).
(r3) position(P, s(T)) :- position(P, T), state(St, T), tape(P, Sym, T), delta(St, Sym, , , λ).
(r4) state(St1, s(T)) :- position(P, T), state(St, T), tape(P, Sym, T), delta(St, Sym, St1, ,).
(r5) tape(P, Sym1, s(T)) :- position(P, T), state(St, T), tape(P, Sym, T), delta(St, Sym, , Sym1,).
(r6) tape(P, Sym, s(T)) :- position(P1, T), tape(P, Sym, T), P 6= P1.
(r7) tape(P, t, T) :- position(P, T), lastUsedPos(L, T), P > L.
(r8) lastUsedPos(L, s(T)) :- lastUsedPos(L, T), position(P, T), P ≤ L.
(r9) lastUsedPos(P, s(T)) :- lastUsedPos(L, T), position(P, T), P > L.

First three rules encode how the tape position changes according to the transition function;
the fourth updates the state. Ruler5 updates, for each time step, the current tape position with
the new symbol to be stored, with ruler6 stating that all other positions remain unchanged.
Rulesr7, r8, r9 allow to manage the semi-infinite tape. Indeed, the whole tape is not explicitly
encoded; rather, each tape position is initialized with a blank symbol when reached for the first
time (moving right, the tape being limited at left).

Given a valid tapex encoded by means of a setX of facts of the formtape(p, s, 0), one can
show that the computation of(PM ∪X)γ follows in one-to-one correspondence the computation
of M on the tapex. γ is unique and contains a single componentC having a corresponding
moduleM . We have thatS0 = EDB(PM), andS1 = S0 ∪ Φ∞

M,S0
(∅). Let Φ(t) = Φt

M,S0
(∅).

Then, the value ofΦ(t) directly corresponds to the stept of M . It is easy to note that, at step
t + 1, Φ(t + 1) can be larger thanΦ(t) only if, at stept, Φ(t) contains an atomstate(st, t)
for st not a final state. In such a case by means of rulesr1 throughr5, new atoms of form
position(p, sym, t + 1), state(st, t + 1), tape(p, sym, t + 1) are added toΦ(t + 1).

B Towers of Hanoi Example

We report next anFG program encoding the famous Towers of Hanoi puzzle. This program, as
well as other examples, is available online at [9].

% ——————————————————————— begin of logic program ———————————————————————
#include 〈ListAndSet〉

%—— initial settings ——
number of moves(15).
largest disc(4).
initial state(towers([4, 3, 2, 1], [], [])).
goal(towers([], [], [4, 3, 2, 1])).
disc(X) :- largest disc(X).
disc(X) :- disc(#succ(X)), X! = 0.
legalStack([]).
legalStack([T]) :- disc(T).
legalStack([T |[T1|S]]) :- legalStack([T1|S]), disc(T), T > T1.
% —— possible states ——
possible state(0, towers(S1, S2, S3)) :- initial state(towers(S1, S2, S3)).
possible state(I, towers(S1, S2, S3)) :- possible move(I, , towers(S1, S2, S3)),

legalStack(S1), legalStack(S2), legalStack(S3).
% —— possible moves ——
% from stack one to stack two.
possible move(#succ(I), towers([X|S1], S2, S3), towers(S1, [X|S2], S3)) :-

possible state(I, towers([X|S1], S2, S3)), legalMoveNumber(I), legalStack([X|S2]).
% from stack one to stack three.
possible move(#succ(I), towers([X|S1], S2, S3), towers(S1, S2, [X|S3])) :-

possible state(I, towers([X|S1], S2, S3)), legalMoveNumber(I), legalStack([X|S3]).
% from stack two to stack one.
possible move(#succ(I), towers(S1, [X|S2], S3), towers([X|S1], S2, S3)) :-

possible state(I, towers(S1, [X|S2], S3)), legalMoveNumber(I), legalStack([X|S1]).
% from stack two to stack three.
possible move(#succ(I), towers(S1, [X|S2], S3), towers(S1, S2, [X|S3])) :-

possible state(I, towers(S1, [X|S2], S3)), legalMoveNumber(I), legalStack([X|S3]).
% from stack three to stack one.
possible move(#succ(I), towers(S1, S2, [X|S3]), towers([X|S1], S2, S3)) :-

possible state(I, towers(S1, S2, [X|S3])), legalMoveNumber(I), legalStack([X|S1]).
% from stack three to stack two.
possible move(#succ(I), towers(S1, S2, [X|S3]), towers(S1, [X|S2], S3)) :-

possible state(I, towers(S1, S2, [X|S3])), legalMoveNumber(I), legalStack([X|S2]).
%—— actual moves ——
% a solution exists if and only if there is a“possible move” leading to the goal.
% in this case, starting from the goal, we proceed backward tothe initial state to single out the full set of moves.
move(I, towers(S1, S2, S3)) :- goal(towers(S1, S2, S3)), possible state(I, towers(S1, S2, S3)).
move(I, towers(S1, S2, S3)) ∨ nomove(I, towers(S1, S2, S3)) :- move(#succ(I), towers(A1, A2, A3)),

possible move(#succ(I), towers(S1, S2, S3), towers(A1, A2, A3)).

%—— precisely one move at each step ——
moveStepI(I) :- move(I,).
:- legalMoveNumber(I), not moveStepI(I).
:- legalMoveNumber(I), move(I, T1), move(I, T2), T1! = T2.
legalMoveNumber(0).
legalMoveNumber(#succ(I)) :- legalMoveNumber(I), number of moves(J), I < J.
% ——————————————————————— end of logic program ———————————————————————

By invoking the system at the command line as follows:
$ 〈DLV ∗ executable〉 〈programfilename〉 −fdnocheck −N = 15 −filter = move

the next (unique) answer set is output:
{move(15, towers([], [], [4, 3, 2, 1])), move(14, towers([], [4], [3, 2, 1])), move(13, towers([3], [4], [2, 1])),

move(12, towers([4, 3], [], [2, 1])), move(11, towers([4, 3], [2], [1])), move(10, towers([3], [2], [4, 1])),

move(9, towers([], [3, 2], [4, 1])), move(8, towers([], [4, 3, 2], [1])), move(7, towers([1], [4, 3, 2], [])),

move(6, towers([4, 1], [3, 2], [])), move(5, towers([4, 1], [2], [3])), move(4, towers([1], [2], [4, 3])),

move(3, towers([2, 1], [], [4, 3])), move(2, towers([2, 1], [4], [3])), move(1, towers([3, 2, 1], [4], [])),

move(0, towers([4, 3, 2, 1], [], []))}

