Computable Functions in ASP: Theory and Implementation*

Francesco Calimeri, Susanna Cozza, Giovambattista landiNicola Leone

Department of Mathematics, University of Calabria, I-88®3&nde (CS), Italy
e-mail: {calimeri, cozza, ianni, leo@mat.unical.it

Abstract. Disjunctive Logic Programming (DLP) under the answer setatics, often
referred to as Answer Set Programming (ASP), is a powerfurhé&tism for knowledge
representation and reasoning (KRR). The latest years sgtap increasing effort for em-
bedding functions in the context of ASP. Nevertheless, @égmt no ASP system allows for
a reasonably unrestricted use of function terms. Functioaither required to be nonre-
cursive or subject to severe syntactic limitations, ifakal at all in ASP systems.

In this work we formally define the new class of finitely-grauprograms, allowing for
a powerful (possibly recursive) use of function terms in fihié ASP language with dis-
junction and negation. We demonstrate that finitely-groprajrams have nice computa-
tional properties: (i) both brave and cautious reasoniegdacidable, and (i) answer sets
of finitely-ground programs are computable. Moreover, Hreggliage is highly expressive,
as any computable function can be encoded by a finitely-gf@uogram. Due to the high
expressiveness, membership in the class of finitely-grpuogram is clearly not decidable
(we prove that it is semi-decidable). We single out also assubf finitely-ground pro-
grams, called finite-domain programs, which are effeggivelcognizable, while keeping
computability of both reasoning and answer set computation

We implement all results in DLV, further extending the laaga in order to support list
and set terms, along with a rich library of built-in functgofor their manipulation. The re-
sulting ASP system is very powerful: any computable functian be encoded in a rich and
fully declarative KRR language, ensuring termination oarg\initely-ground program. In
addition, termination is “a priori” guaranteed if the useksafor the finite-domain check.

1 Introduction

Disjunctive Logic Programming (DLP) under the answer setatics, often referred to as An-
swer Set Programming (ASP) [1, 10, 11, 13, 15], evolved §icamtly during the last decade, and
has been recognized as a convenient and powerful metho@dtardtive knowledge represen-
tation and reasoning. Several systems supporting ASP hesm implemented so far, thereby
encouraging a number of applications in many real-worldexts ranging, e.g., from informa-
tion integration, to frauds detection, to software configion, and many others. On the one hand,
the above mentioned applications have confirmed the vigbilithe exploitation of ASP for ad-
vanced knowledge-based tasks. On the other hand, they Wigemeed some limitations of ASP
languages and systems, that should be overcome to make AteP déted for real-world ap-
plications even in industry. One of the most noticeabletitmns is the fact that complex terms
like functions, sets and lists, are not adequately sup@diyecurrent ASP languages/systems.
Therefore, even by using state-of-the-art systems, oneatatirectly reason about recursive
data structures and infinite domains, such as XML/HTML doents, lists, time, etc. This is a
strong limitation, both for standard knowledge-basedgasid for emerging applications, such
as those manipulating XML documents.

* The material in the appendices is complementary, and wilikigped in the final version. It has been
included also to ease the work of the referees.

The strong need to extend DLP by functions is clearly peegkia the ASP community, and
many relevant contributions have been recently done irdinéstion [2, 19, 14, 21, 5]. However,
we still miss a proposal which is fully satisfactory from aduistic viewpoint (high expres-
siveness) and suited to be incorporated in the existing AStm®s. Indeed, at present no ASP
system allows for a reasonably unrestricted use of fun¢éans. Functions are either required
to be nonrecursive or subject to severe syntactic limitetidf allowed at all in ASP systems.

This paper aims at overcoming the above mentioned limitatitoward a powerful enhance-
ment of ASP systems by functions. The contribution is bo#otktical and practical, and leads
to the implementation of a powerful ASP system supportiegyrsive) functions, sets, and lists,
along with libraries for their manipulations. The main iésgan be summarized as follows:

» We formally define the new class fiitely-ground (FG) DLP programs. This class allows
for (possibly recursive) function symbols, disjunctiondamegation. We demonstrate that
FG programs enjoy many relevant computational properties:

e both brave and cautious reasoning are computable, eveoifeground queries;
e answer sets are computable;
e each computable function can be expressed Byagrogram.

» SinceF G programs express any computable function, membershipsicitss is obviously
not decidable (we prove that it is semi-decidable). Fors/applications where termination
needs to be “a priori” guaranteed, we define the clasmié-domain D) programs:

e both reasoning and answer set generation are computabig@rograms (they are a
subclass ofFG programs), and, in addition,
e recognizing whether a program is &D program is decidable.

» We extend the language with list and set terms, along witbhalitbrary of built-in functions
for lists and sets manipulations.

» We implementall results and the full (extended) languad®liv, obtaining a very powerful
system where the user can exploit the full expressiveneggjoprograms (able to encode
any computable function), or require the finite-domain éhegetting the guarantee of termi-
nation. The system is available for downloading [9], and@aidly in use in many universities
and research centers throughout the world.

For space limitations, we cannot include detailed proofsttfer documentation and exam-
ples are available on the web site [9].

2 DLP with Functions
This section reports the formal specification of the DLP laage with function symbols allowed.

2.1 Syntax and notations A termis either asimple termor afunctional term A simple
termis either a constant or a variable{f. . . ¢,, are terms and is a function symbolf(incton
of arity n, then: f(t4, ..., ¢,) is afunctional term We say that each}, 1 < i < n, is a subterm
of f(t1,...,t,). The subterm relation is reflexive and transitive, thafiseach term is also a
subterm of itself; andi:) if ¢, is a subterm of; andt, is subterm ot thent; is also a subterm
of t3.

Each predicate has a fixed arityk > 0; by p[i] we denote its-th argument. Iftq, ...t

are terms, thep(tq, ..., t;) is anatom A literal [is of the forma or not a, wherea is an
atom; in the former caskis positive and in the latter caseegative A rule r is of the form
a1 V- Vag= B1,...,0n, not Bry1,...,n0tBy,. Wherem > 0,k > 0; ay,...,q; and

B1,---,0m are atoms. We definel (r) = {ay, ..., ax} (theheadof r) and B(r) = B*(r)
UB~(r) (the bodyof r), whereB*(r) = {31, ..., 3.} (the positive bodyof r) and B~ (r)

<§> oa

Fig. l.Argument, Dependen@ndComponenGraphs of the program in Example 1.

= {not By11, --., not B} (the negative bodyf r). If H(r) = () thenr is a constraint if
B(r) =0 and|H(r)| = 1thenr is referred to as &act

A rule is safe if each variable in that rule also appears ireastl one positive literal in the
body of that rule. For instance, the ryéx, (v, 2)) - q(Y),not s(X). is not safe, because of
both X and Z. From now on we assume that all rules are safe and there ismsiramt! A
DLP program is a finite se of rules. As usual, a program (a rule, a literal) is said tgtoeind
if it contains no variables. Letl be a set of atoms angdbe a predicate. Given a prograf)
according with the database terminology, a predicate oicguonly in facts is referred to as an
EDB predicate, all others dBB predicates. The set of all facts 6fis denoted by Facts(P); the
set of instances of all EDB predicates is denoted by EDB(&e(that EDB(PXC Facts(P)). The
set of all head atoms iR is denoted byl eads(P) = |, . p H(r).

2.2 Semantics The most widely accepted semantics for DLP programs is baseitie
notion of answer-set, proposed by Gelfond and Lifschitdit] ps a generalization of the concept
of stable model [10].

Given a programP, the Herbrand universeof P, denoted byUp, consists of all (ground)
terms that can be built combining constants and functorgapg in P. The Herbrand base
of P, denoted byBp, is the set of all ground standard atoms obtainable fromtibmsof P by
replacing variables with elements frotf-. A substitutionfor a ruler € P is a mapping from
the set of variables of to the selU/p of ground terms. Aground instancef a ruler is obtained
applying a substitution te. Given a progranP theinstantiation (groundingyrnd(P) of P is
defined as the set of all ground instances of its rules. Giggnand progran®?, aninterpretation
I for Pis asubset oBp. A positive literall = a (resp., a negative literdl= not a) is true w.r.t.
I'if a € I (resp.,a ¢ I); itis false otherwise. Given a ground rulewe say that is satisfied
w.r.t. I if some atom appearing i (r) is true w.r.t.I or some literal appearing iB(r) is false
w.r.t. I. Given a ground prograr®, we say that is amodel of P, iff all rules in grnd(P) are
satisfied w.r.tZ. A model M is minimalif there is no modelV for P such thatVv C M.

The Gelfond-Lifschitz redudtl1] of P, w.r.t. an interpretatiod, is the positive ground pro-
gram P’ obtained fromgrnd(P) by: (i) deleting all rules having a negated literal that is false
w.r.t. I; (ii) deleting all negated literals from the remaining rules. Bp is ananswer sefor a
programP iff I is a minimal model for the positive prografY. The set of all answer sets for
P is denoted byAS(P).

2.3 Dependency GraphsWe next define three graphs that point out dependencies among
arguments, predicates, and components of a program.

1 Under Answer Set semantics, a constrainB{r) can be simulated through the introduction of a standard
rule fail = B(r), not fail, where fail is a fresh predicate not occurring elsewetiarthe program.

Definition 1. The Argument GraptG“ (P) of a programP contains a node for each argument
pli] of a predicatey of P; there is an edgéq[j], p[i]) if there is a ruler € P such that(a) an
atomp(t) appears in the head of (b) an atomg(v) appears in the positive body of (c) p(?)
andq(v) share the same variable within the i-th and j-th term, retbpelg.

Given a progranP, an argumenp[i] is said to be recursive wit[j] if there exists a cycle
in G4(P) involving bothpl[i] andq[j]. Roughly speaking, this graph keeps track of (body-head)
dependencies between the arguments of predicates shanmg\ariable. It is actually a more
detailed version of the commonly used (predicate) depearygraph, defined below.

Definition 2. The Dependency Grapt(P) of P is a directed graph whose nodes are the IDB
predicates appearing iR. There is an edgéps, p1) in G(P) iff there is some rule with p,
appearing inB* (r) andp; in H(r), respectively.

The graphG(P) suggests to split the set of all predicatedbinto a number of sets (called
components), one for each strongly connected componer@)Sst the graph itself. Given a
predicatep, the component belongs to is denoted bymp(p); with a small abuse of notation,
we define als@omp(l) andcomp(a), wherel is a literal and: is an atom, accordingly.

In order to single out dependencies among components, @ipgogph is defined next.

Definition 3. Given a progran® and its Dependency Gragh P), theComponent Grapbf P,
denoted;“ (P), is a directed labelled graph having a node for each strazmiyected compo-
nent of G(P) and: (i) an edge(B, A), labelled “+”, if there is a rule: in P such that there is
a predicate; € A occurring in the head of and a predicatp € B in a positive literal of the
body ofr; (ii) an edgg B, A), labelled “-", if there is a rule- in P such that there is a predicate
g € A occurring in the head of and a predicatp € B occurring in the negative the body of
and there is no edgeB, A), with label “+".

Example 1.Consider the following prograrf?, wherea is an EDB predicate:

q(9(3))- s(X)Vi(f(X)) = a(X), not ¢(X).
p(X,Y) = q(g(X)), t(f(V)). a(X) = s(X), p(Y, X).

Graphsg4(P), G(P) andG® (P) are respectively depicted in Figure 1. There are ti$€€ in
G(P): C(sy = {s}, Cyyy = {t} andCy,, .1 = {p, ¢} which are the three nodes 6f (P).

An ordering among the rules, respecting dependenciesgubintt byG (P), is defined next.

Definition 4. A path inG®(P) is namedstrongif all its edges are labelled with “+”. If, on the
contrary, there is at least an edge in the path labelled wfthtlie path is said to baveak A
component orderindor a given progranP is a total orderingCs, ..., C,) of all components
of P s.t., for anyC;, C; with ¢ < j, both the following conditions holdz) there are no strong
paths fromC; to C;; (i7) if there is a weak path fror®; to C;, then there must be a weak path
also fromC; to C; .3

Example 2.Consider the grap§® (P) of previous example. Bott'y,, andCy,, are connected
to Cy,,4) through a strong path, while a weak path connects; to Cyyy, Cyyy 10 Cyyy, Cpp
to C{S} andC{p,q} to C{t}. Both~, = <C{5}, C{t}, C{p7q}> and~y; = <C{t}, C{S}, C{p7q}>
constitute component orderings for the progrBm

2 We recall here that a strongly connected component of atdilegraph is a maximal subsétof the
vertices, such that each vertexSris reachable from all other vertices $h

3 Note that, given the component orderingC; stands for the i-th component in andC; < C; means
thatC; precedes”; in vy (i.e.,i < j).

By means of the graphs defined above, it is possible to ideatifet of subprograms (also
calledmodule} of P, allowing for a modular bottom-up evaluation. We say thatile r € P
definesa predicate if p appears inH (r). Once a component ordering= (C1, ..., C,) is
given, for each componeut; we define thenoduleof C;, denoted by R{;), as the set of all
rulesr defining some predicate € C; excepting those that define also some other predicate
belonging to a lower component (i.e., certaipwith j < i in ~).

Example 3.Consider the progran? of Example 1. If we consider the component ordering
the corresponding modules are:

P(Csy) = {s(X) VEH(f(X)) = a(X), not ¢(X). }, P(Ciy) =0,

P(Cpqp) ={p(X,Y) = q(g(X)), t(f(Y))., a(X) = s(X), p(Y,X)., q(g(3)). }-

The modules of” are defined, according to a component ordesingith the aim of properly
instantiating all rules. It is worth remembering that weldwdy with safe rules, i.e., all variables
appear in the positive body; it is therefore enough to irt&athe positive body. Furthermore,
any component ordering guarantees that, whene P(C;) is instantiated, each nonrecursive
predicatep appearing inB ™ (r) is defined in a lower component (i.e., in sofigwith j < i in
7). It is also worth remembering that, according to how the uiesl of P are defined, if- is a
disjunctive rule, then it is associated only to a unique ni@d(C;), chosen in such a way that,
among all componentS; such thatomp(a) = C; for somea € H(r), it always holds < j
in 7 (that is, the disjunctive rule is associated only to theue) module corresponding to the
lowest component among those “covering” all predicatetiféay some instance in the head of
r). This implies that the set of the modules@fconstitute an exact partition for it.

3 Finitely-Ground Programs

In this section we introduce a subclass of DLP programs, hafinéely-ground (FG) programs,
having some nice computational properties.

Since the ground instances of a rule might be infinite (bexafishe presence of function
symbols), it is crucial to try to identify those that reallyatters in order to compute answer
sets. Supposing th&t contains all atoms that are potentially true, next definismgles out the
relevant instances of a rule.

Definition 5. Given aruler and a seb of ground atoms, a8-restrictednstance of- is a ground
instancer’ of r such thatB* (') C S. The set of all S-restricted instances of a progiaris
denoted agnstp(S).

Note that, for anyS C Bp, Instp(S) C grnd(P). Intuitively, this helps selecting, among
all ground instances, those somehswpportedy a given sefs.

Example 4.Consider the following prograrf:

t(f(1))- t(f(f(1)))- p(1). p(f(X)) = p(X), t(f(X))).
The setInstp(S9) of all S-restricted instances &, w.r.t. S = Facts(P) is:
t(f(1))- t(f(f(1)))- p(1). p(f(1) = p(1), t(f(1)).

The presence of negation allows for identifying some furthkes which do not matter for the
computation of answer sets, and for simplifying the bodfesome others. This can be properly
done by exploiting a modular evaluation of the program telé&s on a component ordering.

Definition 6. Given a programP, a component ordering"y, ..., C,), a setS; of ground
rules forC;, and a set of ground ruleR for the components precedir(g, the simplification
Simpl(S;, R) of S; w.r.t. R is obtained fronmf; by:

1. deletingeach rule whose body contains some negative body literak s.t.a € Facts(R),
or whose head contains some atora Facts(R);
2. eliminatingfrom the remaining rules each literias.t.:
— | = ais a positive body literal and € Facts(R), or
— [=not a is a negative body literabomp(a) = C; with j < ¢, anda ¢ Heads(R).

Assuming thatR contains all instances of the modules precedihgSimpl(S;, R) deletes
from S; all rules whose body is certainly false or whose head is icdytalready true w.r.tR,
and simplifies the remaining rules by removing from the bsdiéliterals that are true w.r.R2.

Example 5.Consider the following prograrf:

t(1). s(1). s(2).
q(X) - t(X). p(X) - s(X), not ¢(X).

Itis easy to see thdCC; = {q}, C2 = {p}) is the only component ordering fét. If we consider
R = EDB(P) = {t(1),, s(1). s(2). } andS; = {q(1)= ¢(1).}, thenSimpl(S1, R) =
{q(1).} (i.e.,t(1) is eliminated from body). Considering théh= {t(1)., s(1)., s(2)., q(1).}
andSs = { p(1) - s(1), not ¢q(1)., p(2) - s(2), not ¢(2). }, after the simplification we have
Simpl(S2, R) = {p(2).}. Indeed,s(2) is eliminated as it belongs tBacts(R) andnot ¢(2)
is eliminated becausemp(q(2)) = C; precedeg’; in the component ordering and2) ¢
Heads(R); in addition, rulep(1) = s(1), not q(1). is deleted, since(1) € Facts(R).

We are now ready to define an operafothat acts on a module of a prografhin order
to: (¢) select only those ground rules whose positive body is coathin a set of ground atoms
consisting of the heads of a given set of rulgs) perform a further simplification among these
rules by means of th&impl operator.

Definition 7. Given a programP, a component ordering’1, ..., C,), a componen€;, the
moduleM = P(C;), a setX of ground rules of\/, and a sef? of ground rules belonging only
to EDB(P) or to modules of componen®§ with j < 4, let &), r(X) be the transformation
defined as follows? s, g (X) = Simpl(Insty(Heads(RU X)), R).

Example 6.Let P be the program of Example 1 where the extension of EDB préalicas
{a(1)}. Considering the componett = {s}, the moduleM = P(C}), and the sets{ = {)
andR = {a(1)}, we have:

D r(X) = Simpl(Insty(Heads(RU X)), R) =

Simpl(Insty({a(1)}), {a(1).}) =

Simpl({s(1) V t(£(1)) = a(1),n0t q(1).}, {a(1).}) =

{s(1) Vt(f(1)) - not g(1).}.

The operator defined above has the next important property.

Proposition 1. &, always admits a least fixpoidt; »(0).

Proof. (Sketch) The statement follows from Tarski's theorem [28§ting thatb,, r is a mono-
tonic operator and that a set of rules forms a meet seméatticler set containment. O

By properly composing consecutive applicationgbsf to a component ordering, we can
obtain an instantiation which drops many useless rules atrswer sets computation.

Definition 8. Given a programP and a component ordering = (C4, ..., C,) for P, the
intelligent instantiationP” of P for is the last elemerfi,, of the sequence s.$, = EDB(P),
Si = Si-1 UP% 5., (0), whereM; is the program modul@(C;).

Example 7.Let P be the program of Example 1 where the extension of EDB préalicas
{a(1)}; considering the component ordering= (Cy = {s},C> = {t},C5 = {p, ¢}) we have:

- So ={a(1).};

— 81 = 50U B3%,.5,(0) = {a(1)., s(1) V£(f(1)) > not q(1).};
— Sy =S8 U &5,.5,(0) ={a(1)., s(1) V (f(1)) = not g(1).};
- S3=5U &%, 5,(0) = {a(1)., s(1) V£(f(1)) - not q(1).,

a(9(3))., p(3,1) = a(g(3)),t(f(1))., q(1)= s(1),p(3,1).}.

Thus, the resulting intelligent instantiatidty of P for v is:

a(1). q(9(3))- s(1) V(f(1)) - not g(1).
P 1) = q(9(3)), t(f(1). q(1) = s(1),p(3,1).

We are now ready to define the classF§ programs.

Definition 9. A programP is finitely-ground(FG) if P7 is finite, for every component order-
ing ~ for P.

Example 8.The program of Example 1 i8G: P is finite both wheny = (C'y, C3, Crp.q})
and wheny = (Cyy, Crsy, Cpp.q3) (i-€., for both the only two component orderings foy.

4 Properties of Finitely-Ground Programs

In this section the class 0fG programs is characterized by identifying some key proesrti
The next theorem shows that we can compute the answer sats’af arogram by consid-
ering intelligent instantiations, instead of the thea®t{possibly infinite) ground program.

Theorem 1. Let P be anFG program andP” be the intelligent instantiation df w.r.t. a com-
ponent ordering, for P. Then,AS(P) = AS(P") (i.e., P andP" have the same answer sets).

Proof. (Sketch) Givery = (C4,...,C),), let denote, as usual, by/; the program module
P(C;), and consider the sef%, ..., S, as defined in Definition 8. Sinc® = U?:O M; the
theorem can be proven by showing that:

AS(Sy) = AS(Ur_ M,)for1 <k <n

where M, denotesE D B(P). The equation clearly holds fér = 0. Assuming that it holds for
all £ < j, we can show that it holds fdr= j + 1. The equation above can be rewritten as:

AS(Sj1 U5y s, (0) = AS(USZg My UMy))forl <k <n

The induction hypothesis allows us to assume that the elgnivaAS(S;_1) = AS(Uf;ol M)
holds. A careful analysis is needed of the impact that thétiaddof 1/ to Uf;ol M; has on
answer sets afy; in order to prove the theorem, it is enough to show that the@$g 5 (0)
does not drop any “meaningful” rule w.ri/y.

If we disregard the application of th&impl operator, i.e. we consider the operadoper-
forming only Insty, (Heads(Sx—1U0)), thend3; o (0) clearly generates all rules having
a chance to have a true body in any answer set; omitted rulesehfalse body in every answer

set, and are therefore irrelevant.

The application ofSimpl does not change the scenario: it relies only on previoudiyeld
facts, and on the absence of atoms from heads of previoustedayround ruleé.If a factq has
been derived in a previous component, then any rule featyrim the head onot ¢ in the body
is deleted, as it is already satisfied and cannot contrilougany answer set. The simplification
operator also drops, from the bodies, positive atoms of laeenponents appearing as facts,
as well as negative atoms belonging to lower componentshadhdcnot appear in the head of
any already generated ground rule. The presence of fackeibddies is obviously irrelevant,
and the deleted negative atoms are irrelevant as well. thdgeconstruction of the component
dependency graph, while instantiating a module, all rulfinthg atoms of lower components
have been already instantiated. Thus, atoms of lower coemgemot appearing in the head of
any generated rule, have no chances to be true in any answer se |

Corollary 1. Every answer set of aG program is finite.
Theorem 2. Given anF G programP, AS(P) is computable.

Proof. Note that by Theorem 1, answer setgfdb€an be obtained by computing the answer sets
of P7 for a component ordering of choice, which can be easily computed. Théf, can be
obtained by computing the sequence of fixpoint@apecified in Definition 8. Each fixpoint is
guaranteed to be finitely computable, since the programitelfirground. O

From this property, the main result below immediately oo

Theorem 3. Cautious and brave reasoning oveg programs are computable. Computability
holds even for non-ground queries.

As the next theorem shows, the classf@ programs allows for the encoding of any com-
putable function.

Theorem 4. Given a recursive functioif, there exists a DLP prografi; such that, for any
input x for f, Py U 6(x) is finitely-ground andAS(P; U 6(z)) encodesf(z), for § a simple
function encoding: by a set of facts.

Proof. (Sketch) We can build a positive prograf, which encodes the Turing machiné,
corresponding tgf (see Appendix A). For any input to My, (Py U 6(z)) is finite for any
component ordering, andAS(Py U 6(x)) contains an appropriate encodingfdfr). O

Note that recognizingG programs is semi-decidable, yet not decidable:
Theorem 5. Recognizing whetheP is anFG program is R.E.-complete.

Proof. (Sketch) Semi-decidability is shown by implementing anosltpm evaluating the se-
quence given in Definition 8, and answering “yes” if the seg@econverges in finite time.

On the other hand, given a Turing machiheand an input tape, it is possible to write a
corresponding prograrf,, and a set(x) of facts encoding;, such that\/ halts on input iff
Py U O(x) is finitely-ground. The progran®,, is the same as that in the proof of Theorem 4
and reported in Appendix A. O

4 Note that, due to the elimination of true literals perfornmdthe simplification operato§impl, the
intelligent instantiation of a rule with a non empty body nggnerate some facts.

5 Finite-Domain Programs

In this section we single out a subclass§ programs, called finite-domaidF(D) programs,
which ensures the decidability of recognizing memberahihé class.

Definition 10. Given a progranP, the set ofinite-domain argumentsH{D argumentspf P is

the maximal (w.r.t. inclusion) s€fD(P) of arguments of P such that, for each each argument
qlk] € FD(P), every ruler with head predicate satisfies the following condition. Letbe the
term corresponding to argumeyik] in the head of-. Then,

1. eithert is variable-free, or

2. tis a subtern? of (the term of) someFD argument of a positive body predicate, or

3. every variable appearingiralso appears in (the term ofJ/&D argument of a positive body
predicate which is not recursive witfk].

If all arguments of the predicates 6fare 7D, thenP is said to be aiFD program

Observe that'D(P) is well-defined; indeed, it is easy to see that there alwajygsxand
it is unique, a maximal set satisfying Definition 10 (trialgiven two sets4; and A, of 7D
arguments for a program, the setd; U A, is also a set ofFD arguments forP).

Example 9.The following is an example of D program:

q(f(0). q(X) = q(f(X)).

Indeed g[1] is the only argument in the program and it is¥dh argument since the two occur-
rences of;[1] in a rule head satisfy first and second condition of DefinifiBrrespectively.

Example 10.The following is not anFD program:

q(f(0)). a(X) = q(f(X)).
s(f(X)) = s(X). w(X) = ¢(X), s(X).

We have that all arguments belong KD (P), except fors[1]. Indeed,s[1] appears as head
argument in the third rule with terffi(X'), and:(¢) f(X) is not variable-freefii) f(X) is nota
subterm of some term appearing in a positive b&dy argument(iii) there is no positive body
predicate which is not recursive withand containsy.

By the following theorems we now point out two key propertd€s~D programs.
Theorem 6. Recognizing whetheP is anFD program is decidable.
Proof. (Sketchin algorithm deciding whetheP is 7D or not can be defined as follows. Argu-
ments of predicates iR are all supposed to WED at first. If at least one rule is found, such that
for an argument of an head predicate none of the three conditif Definition 10 holds, theR

is recognized as not being & program. If no such rule is found, the answer is positive.]

Theorem 7. Every FD program is arnFG program.

5 The condition can be made less strict considering otheonstias, e.qg., theormof a term [6, 7, 18].

Proof. (Sketch Given anFD programP, it is possible to finda priori an upper bound for the
maximum nesting levélof the terms appearing iR”, for any component ordering for P.
This is given bymaxz_nl = (n 4+ 1) x m, wherem is the maximum nesting level of the terms
in P, andn is the number of components in Indeed, given thaP is an 7D program, it is
easy to see that the maximum nesting level cannot increaseaibe of recursive rules, since, in
this case, the second condition of Definition 10 forces ateufn-relationships between head
and body predicates. Hence, the maximum nesting level caease only because of body-head
dependencies among predicates of different componentcaWenow compute the set of all
possible ground termisobtained by combining all constants and function symbofseaping in
P, such that the nesting level ofis less or equal tenaxz_nl. This is a finite set, and clearly a
superset of the ground terms appearing’ih Thus,P” is necessarily finite. O

The results above allow us to state the following propeftes-D programs.
Corollary 2. Let P be anFD program, then:

1. AS(P)is computable;

2. every answer set iAS(P) is finite;

3. skeptical and credulous reasoning ofeare computable. Computability holds even if the
query at hand is not ground.

6 An ASP System with functions, sets, and lists

In this section we briefly illustrate the implementation of&SP system supporting the language
herein presented. Such system actually features an ever tamguage, that, besides functions,
explicitly supports also complex terms such as lists ang, setd provides a large library of
built-in predicates for facilitating their manipulatiomhanks to such extensions, the resulting
language becomes even more suitable for easy and compadikiye representation tasks.

6.1 Language We next informally point out the peculiar features of theyfidxtended
language, with the help of some sample programs.

In addition to simple and functional terms, there might lsekét andsetterms; a term which
is not simple is said to beomplex A list term can be of two different formgi) [¢1,...,t,],
wherety, ...,t, areterms(i:) [h|t], whereh (the head of the list) is a term, anhe tail of the
list) is a list term. Examples for list terms afg¢an, feb, mar, apr, may, jun], [jan | [feb, mar,
apr, may, jun]], [[jan, 31] | [[feb, 28], [mar, 31], [apr, 30], [may, 31], [jun, 30]]].

Set terms are used to model collections of data having thal psaperties associated with
the mathematical notion of set. They satisfy idempotenee @Gets have no duplicate elements)
and commutativity (i.e., two collections having the samenents but with a different order
represent the same set) propertieseAtermis of the form: {¢1,...,¢,}, wherety, ...,t, are
ground terms. Examples for set terms &rexd, green, blue}, {[red, 5], [blue, 3], [green, 4]},
{{red, green}, {red, blue}, {green,blue}}. Note that duplicated elements are ignored, thus the
sets:{red, green, blue} and{green, red, blue, green} are actually considered as the same.

As already mentioned, in order to easily handle list andesets, a rich set of built-in func-
tions and predicates is provided. Functional terms pretixeal# symbol arebuilt-in functions.
Such kind of functional terms are supposed to be substitutede values resulting from the ap-
plication of a functor to its arguments, according to sonezlpfined semantics. For this reason,

5 The nesting level of a ground term is defined inductively dievics: (i) a constant term has nesting level
zero; (ii) a functional termy (¢4, . . ., t») has nesting level equal to the maximum nesting level among
t1,...,tn plus one.

built-in functions are also referred to ederpretedfunctions. Atoms prefixed byt are, instead,
instances obuilt-in predicates. Such kind of atoms are evaluated as true orligiseeans of
operations performed on their arguments, according to soedefined semantitsSome sim-
ple built-in predicates are also available, such as the epatipe predicates equality, less-than,
and greater-thafi=, <, >) and arithmetic predicates like successor, addition oriplidation,
whose meaning is straightforward. A pair of simple examplesut complex terms and proper
manipulation functions follows. Another interesting exae i.e., the Hanoi Tower problem, is
reported in Appendix B.

Example 11.Given a directed graph,simple paths a sequence of nodes, each one appearing
exactly once, such that from each one (but the last) thene éxlge to the next in the sequence.
The following program derives all simple paths for a direageaph, starting from a givesige
relation:

path([X,Y]) - edge(X,Y).
path([X|[Y|W]]) = edge(X,Y), path([Y|W]), not #member(X,[Y|W]).

The first rule builds a simple path as a list of two nodes diyemtnnected by an edge. The
second rule constructs a new path adding an element to thefpiszsenting an existing path.
The new element will be added only if there is an edge conngdtito the head of an already
existing path. The external predicatenember (which is part of the above mentioned library for
lists and sets manipulation) allows to avoid the insertibaroelement that is already included
in the list; without this check, the construction would netegminate in the presence of circular
paths. Even if not atFD program, it is easy to see that this is&gG program; thus, the system
is able to effectively compute the (in this case unique) anset.

Example 12.Let us imagine that the administrator of a social network twda increase the
connections between users. In order to do that, (s)he detideopose a connection to pairs of
users that result, from their personal profile, to share rtttae two interests. If the data about
users are given by means of EDB atoms of the fawwr(id, {interesty,...,interest,}), the
following rule would compute the set of common interestsueen all pairs of users:

sharedInterests(Uy, Usa, #intersection(S1, S2)) - user(Ui, S1), user(Usz, S2), U1 # Us.

where the interpreted functioftintersection takes as input two sets and returns their inter-
section. Then, the predicate selecting all pairs of useasrsi more than two interests could be
defined as follows:

proposeConnection(pair(Uy,Us)) - sharedInterests(Ui,Us, S), #card(S) > 2.

Here, the interpreted functic#card returns the cardinality of a given set, which is compared
to the constart by means of the built-in predicate-".

6.2 Implementation The presented language has been implemented on top of the sta
of-the-art ASP system DLV [12]. Complex terms have been @nmmnted by using a couple
of built-in predicates for packing and unpacking them (selew). These functions, along with
the library for lists and sets manipulation have been inomafed in DLV by exploiting the
framework introduced in [8].

In particular, support for complex terms is actually ackidby suitably rewriting the rules
they appear in. The resulting rewritten program does notadercomplex terms any more, but
a number of instances of proper built-in predicates. Weflgriustrate in the following how
the rewriting is performed in case of functional terms; thees of list and set terms are treated
analogously. Firstly, any functional term= f(X;, ..., X,,), appearing in some rule € P, is
replaced by a fresh variablét and then, one of the following atom is added3¢r):

" The specification of the entire library for lists and sets ipalation is available at [9].

- #function_pack(Ft, f, X1,...,X,) if t appears irf (r);
- #function_unpack(Ft, f, X1,...,X,) if t appears inB(r).

This transformation is applied to the ruleuntil no functional terms appear in it. The role of
an atom# function_pack is to build a functional term starting from a functor and itguaments;
while an atom# function_unpack acts unfolding a functional term to give values to its argu-
ments. So, the former binds ti& variable, provided that all other terms are already boumal, t
latter binds (checks values, in case they are already bdbed,, ..., X,, variables according
to the binding for theF't variable (the whole functional term).

Example 13.The rule: p(f(f(X)))= q(X,g(X,Y)). will be rewritten as follow:

p(Ft1) - #function_pack(Ft1, f, Fta), # function_pack(F'ts, f, X),
q(X, Ft3), # function_unpack(F'ts, g, X,Y).

Note that rewriting the nested functional terftif (X)) requires two# function_pack atoms
in the body: (i) for the inneyf function havingX as argument and (i) for the outérfunction
having as argument the fresh variabble,, representing the inner functional term.

The resulting ASP system is indeed very powerful: the useeggloit the full expressiveness
of FG programs (plus the ease given by the availability of comfdems), at the price of giving
the guarantee of termination up. In this respect, it is wetéting that the system grounder fully
complies with the definition ointelligentinstantiation introduced in this work (see Section 3
and Definition 8). This implies, among other things, thatskistem is guaranteed to terminate
and correctly compute all answer sets for any program lieguds finitely-ground. Nevertheless,
the system comes equipped with a syntagti® programs recognizer, based on the algorithm
sketched in Theorem 6. This kind of finite-domain check, Whg active by default, ensures
computability for all accepted programs, without the nemdkhowing the membership t6 G
programs class.

The system prototype is available at [9]; besides the sydtif, the above mentioned li-
brary for list and set terms manipulation is available feefdownload, together with a reference
guide and a number of examples.

7 Related Works

Functional terms are widely used in logic formalisms stemgfrom first order logic. Introduc-
tion and treatment of functional terms (or similar constslibave been studied indeed in several
fields, such as Logic Programming and Deductive DatabasdéselASP community, the treat-
ment of functional terms has recently received quite sortentdn [2,19, 14,21, 5]. We next
focus on the main proposals for introducing functional teimASP.

Finitary Programs. Finitary programs [5, 2] are a major contribution to the aatuction of re-
cursive functional terms (and thus infinite domains) in togiogramming under stable model
semantics.

Given a normal (or-free) program, a labelled dependency gragiDG(P) is associated
to grnd(P). The nodes are the (infinite) atoms By, there is an edgé4, B) (from A to B)
if there is a ruler € grnd(P) such thatd € H(r) and B € B(r); in particular, the edge is
labelled— if B € B~ (r). ProgramP is finitary if: (i) from any node inL DG(P) only a finite
sets of nodes is reachable (i.e., the prografmigely recursive as any atom depends only on a
finite set of other atoms), an@d) the dependency graphDG(P) has only a finite number of
cycles with an odd number of negated edges (calleddd-cycles

The class of finitary programs can be seen as a “dual” notigheo€lass of finitely-ground
programs. The former is suitable for a top-down evaluatidrile the latter allows for a bottom-
up computation.

Comparing the computational properties of the two classesbserve the following:

— Both finitary programs and finitely-ground programs can egprany computable function.
— Ground queries are decidable for both finitary and finitalgemd programs; however, for
finitary programs, to obtain decidability one needs to addélly know (“a priori”) what is

the set of atoms involved in odd-cycles [3].

— Answer sets on finitely-ground programs are computablegwhey are not computable on
finitary programs. The same holds for nonground queries.

— Recognizing if a program is finitely-ground is semi-decigalwhile recognizing if a pro-
gram is finitary is undecidable.

Finitary andFG programs are not comparable: there are finitary programstianot finitely-
ground, and finitely-ground programs that are not finitaye Byntactic restrictions imposed
by the two notions somehow come from the underlying companat approaches (top-down
vs bottom-up). Finitary programs impose that all rule alea must occur in the head; while
finitely-ground programs require that all rule variableswcin the positive body. Therefore,
p(X,Y) = ¢(X). is safe for finitary programs, while it is not for finitely-grod programs (a%

is not range-restricted). On the contrargX,Y) - ¢(X,V),r(V,Y) is safe for finitely-ground
programs, while it is not admissible for finitary programsdbause of the “local” variabl®).
Similarly, for the nesting level of the functions: it canriotrease head-to-body for finitary
programs, while it cannot increase body-to-head for figitglound programs. For instance,
p(X) = p(f(X)).is notfinitary, whilep(f (X)) - p(X). is not finitely-ground. Importantly, fini-
tary programs are or-free; while finitely-ground prograttswafor disjunctive rules. The class
of finitary programs has been extended to the disjunctive tap}]. To this end, a third condi-
tion on the disjunctive heads is added to the definition ofdigiprograms, in order to guarantee
the decidability of ground querying.

Concluding, we observe that the bottom-up nature of theonaf finitely-ground programs
allows for an immediate implementation of this class in A§Btams (as ASP instantiators
are based on a bottom-up computational model). Indeed, wiel emhance DLV to deal with
finitely-ground by small changes in its instantiator, kegpthe database optimization techniques
which rely on the bottom-up model and significantly enhaheedfficiency of the instantiation.
While an ASP instantiator should be replaced by a top-downmgler to deal with finitary pro-
grams.

w-restricted Programs.The class ofv-restricted logic programs [21] allows for function sym-
bols under Answer Set semantics. It has been effectivelyemented into BIODELS [20] -

a very popular ASP system. The notion wirestricted program relies on the conceptusf
stratification. Anw-stratification corresponds, essentially, to a traditicsteatification (i.e., a
function mapping each predicate name tie\zel number) w.r.t. negation, extended by the (up-
permost)u-stratum, which contains all predicates depending neglgtan each other (basically,
this stratum contains entirely the unstratified part of thegpam). In order to avoid infinite-
ness/undecidability, programs must fulfill some syntactioditions w.r.t. anv-stratification. In
particular, each variable appearing in a rule must alsoran@positive body literal belonging to
astrictly lower stratum than the head. The above restrictions arag®nough to guarantee the
computability of answer sets, yet losing recursive congpiess. Thusy-restricted programs are
strictly less expressive than both finitary a@ programs (which can express all computable
functions). From a merely syntactic viewpoint, the class/a®stricted programs is uncompa-
rable with that of finitary programs, while it is strictly c@ained in the class af D programs

(and thus, ofF G programs). Indeed, if a prograiis w-restricted, then each variable appearing
in a rule head fulfills Condition 3 of Definition 10 (thu®, is D). On the contrary, there are
FD programs that are noi-restricted: for instance, th&D program made of the single rule
p(X) - p(f(X)) is FD but itis notw-restricted.

FDNC programs. In [19] the class of"DNC programs is introduced, which allows for function
symbols in DLP programs. In order to retain the decidabiitthe standard reasoning tasks,
the structure of any rule must be chosen among one out of greelefined forms. These syn-
tactic restrictions ensure that programs havierast-shaped modgiroperty. Answer sets of
FDNC programs are in general infinite, but have a finite represientavhich can be exploited
for knowledge compilation and fast query answering. Thelaf FDNC programs is less ex-
pressive than both finitary and finitely-ground programsnira syntactic viewpoinffDNC
programs are uncomparable with both finitary and finitelgegnd programs. NotablgFDNC
programs are finitely recursive, but not necessarily figitar

Other works. Recently, in [14], functions have been proposed as a tooblfidaining a more
direct and compact representation of problems, and foramipg the performance of ASP com-
putation by reducing the size of resulting ground prografie class of programs which is
considered is strictly contained inrestricted programs: indeed, predicates as well as fumsti
must range over finite domains, which must be explicitly (artnsively) provided.

The idea of 7G programs is also related to termination studies of SLD{te&m for Pro-
log programs (see e.g. [18, 6, 7]). In this context, sevastibn of normfor complex terms were
introduced. Intuitively, proving that norms of sub-goails aon-increasing during top-down eval-
uation ensures decidability of a given program. Note thahgachniques can not be applied in
a straightforward way to our setting, for a series of techhdifferences. First, propagation of
norm information should be studied from rules bodies to Bealtlile traditional termination
analysis works the other way around. Also, top-down tertineanalysis often integrates right
recursion avoidance techniques, which are not requirdukicontext of ASP.

As for the the deductive database field, we recall that onkeofitst comprehensive propos-
als has bee£DL [16], a declarative language featuring a non-disjunctdgid programming
paradigm based on bottom-up model query evaluaffd provides a rich data model includ-
ing the possibility to manage complex objects, lists and.sete language allows for a strati-
fied form of negation, while functional terms are managed leans of “infinite” base relations
computed by external procedures; proper restrictionse@aonstraints) and checks based on
structural properties of the program (interdependenaésden arguments) ensure that a finite
number of tuples are generated for each relation.

8 Conclusions

We have formally defined the class6%; programs, which allows for (possibly recursive) com-
plex terms in the full ASP language (logic programs with wigjtion and negation). We have
proven that, for each prograi in this class, there exists a finite sub&¥tof its instantiation
having precisely the same answer sets”agmportantly, such a subsé?’ is computable for
FG programs. It turns out that: (i) both cautious and braveaemg tasks are computable for
finitely-ground, even if the query is not ground, (ii) the aes sets of the program are com-
putable as well. We have also demonstrated fig@tprograms can express every computable
function. We have singled out also a subclass-¢f programs, called finite-domain programs,
which are efficiently recognizable, while keeping the cotapility of the reasoning tasks. We
have implemented all results in the the DLV system, furtiéerding the language with list and

set terms, along with a rich library for their manipulatidine resulting system is very powerful:
it combines the expressiveness of functions, sets, arg] \isth the knowledge modeling fea-
tures of ASP in a fully declarative framework. The systemvailable for downloading from [9],
where the user can find also a manual and further examples Wsns already reported a very
positive feedback.

Ongoing work focuses on the extensions of the classes d@lfirgiround and finitely-domain
programs and on their combinations with the notion of fiyitandFDNC programs.

References

1. C. Baral.Knowledge Representation, Reasoning and Declarativel®mo®olving CUP, 2003.
2. S. Baselice, P. A. Bonatti, and G. Criscuolo. On FiniteBcRsive Programs. IICLP'07, LNCS
4670, pp. 89-103. 2007.
3. P. A. Bonatti. Erratum to: “Reasoning with infinite stabledels”.Artificial Intelligence Forthcoming.
4. P. A. Bonatti. Reasoning with infinite stable models lIspDihctive programs. [Proceedings of the
18th International Conference on Logic Programming (ICL#®2), LNCS 2401, pp. 333-346. 2002.
. P. A. Bonatti. Reasoning with infinite stable moddsitificial Intelligence 156(1):75-111, 2004.
6. A. Bossi, N. Cocco, and M. Fabris. Norms on Terms and thesrin Proving Universal Termination
of a Logic ProgramTheoretical Computer SciencE24(2):297-328, 1994.
7. M. Bruynooghe, M. Codish, John P. Gallagher, S. Genaim V@nVanhoof. Termination analysis of
logic programs through combination of type-based norAGM TOPLAS29(2):10, 2007.
8. F. Calimeri, S. Cozza, and G. lanni. External sources ofw@dge and value invention in logic
programming.AMAI, 50(3—4):333-361, 2007.
9. F. Calimeri, S. Cozza, G. lanni, and N. Leone.DLV- Conpl ex homepage, since 2008.
http://www.mat.unical.it/dlv-complex.
10. M. Gelfond and V. Lifschitz. The Stable Model Semantadfogic Programming. IRCLP/SLP 1988
pp. 1070-1080, Cambridge, Mass., 1988. MIT Press.
11. M. Gelfond and V. Lifschitz. Classical Negation in Loglcograms and Disjunctive DatabassisC,
9:365-385, 1991.
12. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, Sri?and F. Scarcello. The DLV System for
Knowledge Representation and ReasonidgM TOCL, 7(3):499-562, July 2006.
13. V. Lifschitz. Answer Set Planning. I€LP’99, pp. 23-37, Las Cruces, New Mexico, USA, 1999.
14. F. Linand Y. Wang. Answer Set Programming with Functidnd&KR 2008 2008. To appear.
15. V.W. Marek and M. Truszczyhski. Stable Models and areative Logic Programming Paradigm.
In The Logic Programming Paradigm — A 25-Year Perspeciiyge 375-398. 1999.
16. S. Naqvi and S. TsuA logical language for data and knowledge bas&smputer Science Press, Inc.,
New York, USA, 1989.
17. C. PapadimitriouComputational Complexity1994.
18. D. De Schreye and S. Decorte. Termination of Logic Prograrhe Never-Ending StoryJLP,
19/20:199-260, 1994.
19. M. Simkus and T. Eiter. FDNC: Decidable Non-monotonisjDictive Logic Programs with Function
Symbols. InLPAR 2007 volume 4790 of.NCS pp. 514-530. 2007.
20. P. Simons, I. Niemela, and T. Soininen. Extending anplémenting the Stable Model Semantics.
Artificial Intelligence 138:181-234, 2002.
21. T. Syrjanen. Omega-restricted logic programs.PNMR 2001 Vienna, Austria, 2001. Verlag.
22. A. Tarski. A lattice-theoretical fixpoint theorem arslagpplicationsPacific J. Math 5:285-309, 1955.

ol

A A DLP Program Simulating a Turing Machine

We next show how a Turing Machine can be encoded by a suitable @pogram simulating
its computation. It is worth noting that this encoding isuadly executable; it is available for
download at [9], together with the system prototype. Léthe a Turing Machine ([17]) given
by the 4-uple(K, X, 4, so), whereK is a finite set of statesy, € K is the initial state,r is

a finite set of symbols constituting the alphabet (with¢ 3 standing for the blank symbol),
andé : K x ¥ — K x X x {l,r, A} is the transition function describing the behavior of the
machine. Given the current state and the current synibgpecifies the next state, the symbol
to be overwritten on the current one, and the direction incithe cursor will move on the tape
(I, v, X standing for left, right, stay, respectively). Besidesitligal state, there is another special
state, which is called final state; the machine halts if thehiree reaches this state at some point.
Each configuration of/ can be encoded in a prografy; by means of the following predicates.

— tape(P, Sym,T): the tape positior® stores the symbd'ym at time stefl". For each time
step, there is an instance of such predicate for every &used position of the tape.

— position(P, T): the head of\/ reads the positio® on tape at time step'. position has a
single true ground instance for each time step.

— state(St,T): attime stegl’” M is in the state5t. state has a single true ground instance for
each time step.

Py encodes the transition functiann the following way: For eacl8't., Sym., St,, Sym,, D,
such that (St., Sym.) = (Stn, Sym,, D) we add toP M a fact of the formdelta(St., Syme,
Stn, Sym,, D). The initial input is encoded by a proper set of facts degugihll tape positions
at the first time step (facts of the fortape(P, Sym,0)), a fact of the formstate(sp,0), and a
fact of the formposition(P, 0) whereP is the initial position of the head. The rules defining the
evolution of the machine configurations are reported nexttire sake of readability, we exploit
some comparison built-ins, that could be easily simulatethbans of suitable predicates.

(r1) position(P, s(T)) - position(s(P),T), state(St, T), tape(s(P), Sym, T), delta(St, Sym, _, _, 1).
(r2) position(s(P), s(T)) = position(P,T), state(St,T), tape(P, Sym,T), delta(St, Sym, -, _, 7).

(r3) position(P, s(T')) - position(P, T), state(St, T), tape(P, Sym, T), delta(St, Sym, -, ., X).

(ra) state(Stl, s(T)) - position(P,T), state(St, T), tape(P, Sym,T), delta(St, Sym, St1, _, _).
(rs) tape(P, Syml,s(T)) = position(P,T), state(St,T), tape(P, Sym,T), delta(St, Sym,_, Sym1,_).
(re) tape(P, Sym,s(T)) = position(P1,T), tape(P, Sym,T), P # P1.

(r7) tape(P, U, T) - position(P, T),lastUsedPos(L, T

(rs)

(ro)

), P> L.
lastUsedPos(L, s(T)) - lastUsedPos(L,T), position(P,T), P < L.
lastUsedPos(P, s(T)) - lastUsedPos(L,T), position(P,T), P > L.

First three rules encode how the tape position changesdingaio the transition function;
the fourth updates the state. Ruleupdates, for each time step, the current tape position with
the new symbol to be stored, with rulg stating that all other positions remain unchanged.
Rulesrz, rg, rg allow to manage the semi-infinite tape. Indeed, the whole tamot explicitly
encoded,; rather, each tape position is initialized withanklsymbol when reached for the first
time (moving right, the tape being limited at left).

Given a valid tape: encoded by means of a sEtof facts of the formtape(p, s,0), one can
show that the computation 65, U X) follows in one-to-one correspondence the computation
of M on the taper. « is unique and contains a single compon€énhhaving a corresponding
module)M. We have thaSy = EDB(Pyy), andS; = So U @35 5 (0). Let&(t) = &}, o (D).
Then, the value o®(t) directly corresponds to the stemf M. It is easy to note that, at step
t + 1, &(t + 1) can be larger thab(¢) only if, at stept, $(¢) contains an atorstate(st, t)
for st not a final state. In such a case by means of rulethroughrs, new atoms of form
position(p, sym,t + 1), state(st,t + 1), tape(p, sym,t + 1) are added t&@(¢ + 1).

B Towers of Hanoi Example

We report next aiF G program encoding the famous Towers of Hanoi puzzle. Thignam, as
well as other examples, is available online at [9].

% begin of logic program

#include (List AndSet)

% initial settings —

number_o f_moves(15).

largest_disc(4).

initial_state(towers([4,3,2,1],[],[])).

goal(towers([],[],[4,3,2,1])).

disc(X) - largest-disc(X).

disc(X) - disc(#suce(X)), X! =0.

legalStack([]).

legalStack([T]) - disc(T).

legalStack([T|[T1]S]]) - legalStack([T1|S]), disc(T), T > T1.

% possible states

possible_state(0, towers(S1, 52, S3)) - initial_state(towers(S1, S2,S3)).

possible_state(I, towers(S1, 52, 53)) - possible.move(I, _, towers(S1, 52, S3)),
legalStack(S1), legalStack(S2), legalStack(S3).

% possible moves —
% from stack one to stack two.
possible_move(#succ(I), towers([X|S1], 52, 53), towers(S1, [X|S2],S3)) -

possible_state(I, towers([X|S1], S2,53)), legalMoveNumber(I), legalStack([X]S2]).
% from stack one to stack three.
possible_move(#succ(l), towers([X]S1], 52, 53), towers(S1,S2,[X]|S3])) =

possible_state(I, towers([X|S1], S2,53)), legalMoveNumber(I), legalStack([X]S3]).
% from stack two to stack one.
possible_move(#succ(I), towers(S1,[X|S2], S3), towers([X|S1], S2,53)) -

possible_state(I, towers(S1,[X|S2], S3)), legalMoveNumber(I), legalStack([X|S1]).
% from stack two to stack three.
possible_move(#succ(I), towers(S1,[X]S2], S3), towers(S1, S2,[X|S3])) -

possible_state(I, towers(S1,[X|S2],S3)), legalMoveNumber(I), legalStack([X]S3]).
% from stack three to stack one.
possible-move(#succ(l), towers(S1, 52, [X|S3]), towers([X|S1], 52, S3)) =

possible_state(I, towers(S1, 52, [X|S3])), legal MoveNumber(I), legalStack([X|S1]).
% from stack three to stack two.
possible_move(#succ(I), towers(S1, 52, [X|S3]), towers(S1, [X]|S2], S3)) -

possible_state(I, towers(S1,52,[X|S3])), legal MoveNumber(I), legalStack([X|S2]).

% actual moves —

% a solution exists if and only if there is‘@ossible_move” leading to the goal.

% in this case, starting from the goal, we proceed backwatidetinitial state to single out the full set of moves.

move(I,towers(S1,52,53)) - goal(towers(S1,S2,S53)), possible_state(I, towers(S1,S52,S53)).

move(I,towers(S1,52,53)) V nomove(I,towers(S1,52,53)) = move(#succ(I), towers(Al, A2, A3)),
possible_move(#succ(l), towers(S1, 52, 53), towers(Al, A2, A3)).

% precisely one move at each step —

moveStepI(I) - move(l,.).

- legalMoveNumber(I), not moveStepI(I).

= legalMoveNumber(I), move(I,T1), move(I,T2), T1! =T2.

legal MoveNumber(0).
legal MoveNumber(#succ(I)) - legal MoveNumber(I), number_of_-moves(J), I < J.
% end of logic program

By invoking the system at the command line as follows:

$ (DLV x executable) (programfilename) —fdnocheck —N =15 — filter = move

the next (unique) answer set is output:;

{move(15, towers([],[],[4, 3, 2,1])), move(14, towers([], [4], [3, 2, 1])), move(13, towers([3], [4], [2, 1])),
move(12, towers([4,3],[], [2,1])), move(11, towers([4, 3], [2], [1])), move(10, towers([3], [2], [4, 1])),
move(9, towers([], [3, 2], [4,1])), move(8, towers([], [4, 3, 2], [1])), move(T7, towers([1], [4, 3, 2], [])),

(6, towers([4,1],[3,2],[])), move(5, towers([4, 1], [2], [3])), move(4, towers([1], [2], [4, 3])),

(3, towers([2,1],[], [4, 3])), move(2, towers([2, 1], [4], [3])), move(1, towers([3, 2, 1], [4],[])),
move(0, towers([4,3,2,1],[1,[]))}

move

move

