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Abstract. The support for function symbols in logic programming under answer set semantics allows to
overcome some modeling limitations of traditional Answer Set Programming (ASP) systems, such as the
inability of handling infinite domains. On the other hand, admitting function symbols in ASP makes inference
undecidable in the general case. Lately, the research community is focusing on finding proper subclasses of
programs with functions for which decidability of inference is guaranteed. The two major proposals, so
far, are finitary programs and finitely-ground programs. These two proposals are somehow complementary:
indeed, the former is conceived to allow decidable querying (by means of a top-down evaluation strategy),
while the latter supports the computability of answer-sets (by means of a bottom-up evaluation strategy). One
of the main advantages of finitely-ground programs is that they can be ”directly” evaluated by current ASP
systems, which are based on a bottom-up computational model. However, there are also some interesting
programs which are suitable for top-down query evaluation; but they do not fall in the class of finitely-ground
programs.

In this paper, we focus on disjunctive finitely-recursive positive (DFRP) programs. We design a version of the
magic-sets technique for DFRP programs, which ensures query equivalence under both brave and cautious
reasoning. We show that, if the input program is DFRP, then its magic-set rewriting is guaranteed to be
finitely-ground. Thus, reasoning on DFRP programs turns out to be decidable, and we provide an effective
method for its computation on the ASP system DLV.
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1. Introduction

Disjunctive Logic Programming (DLP) under the answer set semantics, often referred to as Answer Set Pro-
gramming (ASP) [2, 18, 19, 24, 27], evolved significantly during the last decade, and has been recognized as a
convenient and powerful method for declarative knowledge representation and reasoning. Lately, the ASP com-
munity has clearly perceived the strong need to extend ASP by functions, and many relevant contributions have
been done in this direction [33, 6, 7, 31, 26, 11, 12, 3, 23]. Supporting function symbols allows to overcome one

∗This paper is a significantly extended and revised version of papers appeared in CILC 2009, 24esimo Convegno di Logica
Computazionale, and LPNMR 2009, 10th International Conference on Logic Programming and Nonmonotonic Reasoning, pp 71–86.
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of the major limitation of traditional ASP systems, i.e. the ability of handling finite sets of constants only. On the
other hand, admitting function symbols in ASP makes the common inference tasks undecidable in the general
case. The identification of expressive decidable classes of ASP programs with functions is therefore an important
task. Two relevant decidable classes of ASP with functions, resulting from alternative approaches (top-down vs
bottom-up), are finitary programs [7] and finitely-ground programs [12].

Finitary programs [7] is a class that allows for function symbols, yet preserving decidability of ground query-
ing by imposing restrictions both on recursion and on the number of potential sources of inconsistency. Recursion
is restricted by requiring each ground atom to depend on finitely many ground atoms; programs respecting this
latter condition are called finitely recursive [3]. Moreover, potential sources of inconsistency are limited by re-
quiring that the set of odd-cycles (cycles of recursive calls involving an odd number of negative subgoals) is
finite. Thanks to these two restrictions, consistency checking and ground queries are decidable, provided that the
atoms involved in odd-cycles are known [8]; while non-ground queries are semi-decidable.

Finitely-ground (FG) programs [12], more recently proposed, can be seen as a “dual” class of finitary pro-
grams: the latter is suitable for a top-down evaluation, the former allows for a bottom-up computation. Basically,
for each program P in this class, there exists a finite subset P ′ of its instantiation, called intelligent instantiation,
having precisely the same answer sets as P . Importantly, such a subset P ′ is computable for FG programs.

Both finitary programs and FG programs can express any computable function, and preserve decidability
for ground queries (modulo the availability of odd cyclic atoms for finitary programs). However, answer sets
and non-ground queries are computable on FG programs, while they are not computable on finitary programs.
Furthermore, the bottom-up nature of the notion of FG programs allows an immediate implementation in ASP
systems (as ASP instantiators are based on a bottom-up computational model). Indeed, the DLV system [22], for
instance, has already been adapted to deal with FG program by extending its instantiator [13].

Finitary and FG programs are uncomparable. In particular, the class of FG programs does not include some
programs for which ground querying can be computed in a top-down fashion, like, in particular, ∨-free finitely-
recursive positive programs. Despite of its simplicity, this latter class includes many significative programs, such
as most of the standard predicates for lists manipulation. For instance, the following program, performing the
check for membership of an element in a list, is finitely recursive and positive, yet not finitely ground.

member(X, [X|Y ]). member(X, [Y |Z]) :- member(X,Z).

In this paper, we shed some light on the relationships between finitely recursive andFG programs, evidencing
a sort of “dual” behaviour of the two classes. We show that a suitable magic-set rewriting transforms finitely
recursive positive programs into FG programs. In this way, we devise a strategy for the bottom-up evaluation
of finitely-recursive positive programs. Importantly, we effectively deal also with disjunctive finitely-recursive
positive programs, which were unknown to be decidable so far. In summary, the paper focuses on disjunctive
finitely-recursive positive programs (DFRP programs) and queries, providing the following main contribution:

• We design a magic-sets rewriting technique for disjunctive programs with functions, which exploits the
peculiarities of finitely recursive programs.

• We show that our magic-sets rewriting RW (Q,P ) of a (ground) query Q on a DFRP program P enjoys
the following properties:

– for both brave and cautious reasoning, we have that P |= Q iff RW (Q,P ) |= Q;

– if Q belongs to the class of finitely recursive queries on P , then RW (Q,P ) is finitely ground.

– the size of RW (Q,P ) is linear in the size of the input program;
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• We then show that both brave and cautious reasoning on DFRP programs are decidable.

• Importantly, we provide not only a theoretical decidability result for reasoning on DFRP programs, but we
also supply a concrete implementation method. Indeed, by applying a light-weight magic-sets rewriting on
the input program,any query on a DFRP program can be evaluated by the ASP system DLV, or by any other
system supporting FG programs. Our proposal makes now possible to evaluate, by means of bottom-up
techniques, programs featuring ‘unsafe’ variables in the head of rules, such as, for instance, the program
shown before, defining the predicate ‘member’ for lists. Note that such programs cannot be handled by
any of the current bottom-up ASP solvers.

• Besides positive programs, DFRP programs allow for disjunction. In this respect, it is worth mentioning
that this proves to be useful when translating description logics to Answer Set Programming. Transla-
tions from description logics into disjunctive positive programs are known [20, 32]. However, currently,
a cumbersome passage for eliminating function symbols is required. It turns out that this last passage can
be avoided when the translated logic program falls in our class. Furthermore, the presence of disjunction
significantly increases the declarative nature of the language.

The remainder of the paper is structured as follows. Section 2 motivates our work by means of few signi-
ficative examples; for the sake of completeness, in Section 3 we report some needed preliminaries; Section 4
describes the magic-sets rewriting technique for function-free programs as already known in the literature, while
Section 5 illustrates our adaptation of such technique to the class of DFRP programs (with functions); in Sec-
tion 6 we present a number of theoretical results; Section 7 discusses related literature, and, eventually, Section 8
draws our conclusions.

2. Motivation

In the ∨-free (or-free) case, positive finitely-recursive programs might be seen as the simplest subclass of finitary
programs. As finitary programs, they enjoy all nice properties of this class. In particular, reasoning with ground
queries is decidable (while reasoning is semi-decidable in case of non ground queries). Unfortunately, even if an
∨-free program P is finitely recursive, it is not suited for the bottom-up evaluation for two main reasons:

1. A bottom-up evaluation of a finitely-recursive program would generate some new terms at each iteration,
thus iterating for ever.

Example 2.1. Consider the following program, defining the natural numbers:

nat(0). nat(s(X)) :- nat(X).

The above program is positive and finitely recursive; hence every ground query (such as for, instance,
nat(s(s(s(0))))?) can be answered in a top-down fashion; but its bottom-up evaluation would iterate for
ever, as, for any positive integer n, the n-th iteration would derive the new atom nat(sn(0)).

2. Finitely-recursive programs do not enforce the range of a head variable to be restricted by a body oc-
currence (i.e., “bottom-up” safety is not required). A bottom-up evaluation of these “unsafe” rules would
cause the derivation of non-ground facts, standing for infinite instances, which are not admissible by present
grounding algorithms.
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Example 2.2. As well-known, function symbols enable the possibility of modeling complex data struc-
tures such as lists. Let us consider the traditional program used for encoding the append predicate:

append([ ], L, L). append([X|Xs], L, [X|Ys]) :- append(Xs, L, Ys).

Ground queries like append([a], [ ], [a]) are decidable, although the above program is not safe.

It is worth noting that in this paper we deal also with disjunctive finitely recursive programs, which were not
even known to be decidable so far, also in the positive case.

Example 2.3. Consider the following program, computing all the possible 2-colorings for an infinite chain of
nodes and defining coupled nodes as pairs of nodes which are successive and share the same color.

color(X, b) ∨ color(X, g).
coupled(X, next(X), C) :- color(X,C), color(next(X), C).

(1)

The above program is positive and finitely recursive; nevertheless, a bottom-up evaluation is unfortunately
unfeasible: the first rule, indeed, represents an infinite set of atoms. Simple programs like this constitute a pattern
that might occur also in practical problems, such as guessing sequences with given properties in streams of data.

Example 2.4. The following program P2 defines the comparison operator ‘less than’ between two natural num-
bers (the function symbol s represents the successor of a natural number):

lessThan(X, s(X)).
lessThan(X, s(Y )) :- lessThan(X,Y ).

(2)

In this case, bottom-up evaluation is unfeasible, both because of the first rule, and because of the infinite recursion
in the second rule.

3. Preliminaries

In this section, we first provide the formal specification of the ASP language fragment we take into consideration
(positive disjunctive programs with functions); then, we briefly recall the class of finitely-ground programs [12].

3.1. ASP With Functions

A term is either a simple term or a functional term1. A simple term is either a constant or a variable. If t1, . . . , tn
are terms and f is a function symbol (functor) of arity n, then f(t1, . . . , tn) is a functional term.

Each predicate p has a fixed arity k ≥ 0. If t1, . . . , tk are terms and p is a predicate of arity k, then
p(t1, . . . , tk) is an atom. An atom having p as predicate name is usually referred as p(t).

A (positive) disjunctive rule r is of the form: α1 ∨ · · · ∨ αk :- β1, · · · , βn., where k > 0; α1, . . . , αk and
β1, . . . , βn are atoms. The disjunction α1 ∨ · · · ∨ αk is called head of r, while the conjunction β1, · · · , βn. is
the body of r. We denote by H(r) the set of the head atoms, by B(r) the set of body atoms; we refer to all atoms
occurring in a rule with Atoms(r) = H(r)∪B(r). A rule having precisely one head atom (i.e., k = 1 and then
|H(r)| = 1) is called a normal rule. If r is a normal rule with an empty body (i.e., n = 0 and then B(r) = ∅) we

1We will use traditional square-bracketed list constructors as shortcut for the representation of lists by means of nested functional terms
(see, for instance, [12]).
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usually omit the “ :- ” sign; and if it contains no variables, then it is referred to as a fact. An ASP program P is a
finite set of rules. A ∨-free program P is a program consisting of normal rules only.

Given a predicate p, a defining rule for p is a rule r such that some p(t) occurs in H(r). If all defining rules
of a predicate p are facts, then p is an EDB predicate; otherwise p is an IDB predicate2. The set of all facts of P
is denoted by Facts(P ); the set of instances of all EDB predicates is denoted by EDB(P ). A program (a rule,
an atom, a term) is ground if it contains no variables. A query Q is a ground atom.3

The most widely accepted semantics for ASP programs is based on the notion of answer-set, proposed in [19]
as a generalization of the concept of stable model [18]. Given a program P , the Herbrand universe of P ,
denoted by UP , consists of all terms that can be built combining constants and functors appearing in P . The
Herbrand base of P , denoted by BP , is the set of all atoms obtainable from the atoms of P by replacing variables
with elements from UP . Elements of UP and BP are called ground terms and ground atoms, respectively. A
substitution for a rule r ∈ P is a mapping from the set of variables of r to the set UP of ground terms. A ground
instance of a rule r is obtained applying a substitution to r. Given a program P , the instantiation (grounding)
grnd(P ) of P is the set of all ground instances of its rules. Given a ground program P , an interpretation I for P
is a subset of BP . An atom a is true w.r.t. I if a ∈ I; it is false otherwise. Given a ground rule r, we say that r is
satisfied w.r.t. I if some atom appearing in H(r) is true w.r.t. I or some atom appearing in B(r) is false w.r.t. I .
Given a ground program P , we say that I is a model of P , iff all rules in grnd(P ) are satisfied w.r.t. I .

A model M of P is an answer set of P if it is minimal, i.e., there is no model N for P such that N ⊂ M .
The set of all answer sets for P is denoted by AS(P ). A program P bravely entails (resp., cautiously entails) a
query Q, denoted by P |=b Q (resp., P |=c Q) if Q is true in some (resp., all) M ∈ AS(P ).

3.2. Finitely-Ground Programs

The class of finitely-ground (FG) programs [12] constitutes a natural formalization of programs which can be
finitely evaluated bottom-up.

Informally, the definition of finitely-ground program relies on the so-called “intelligent instantiation”, ob-
tained by means of an operator which is iteratively applied on program’s submodules, producing sets of ground
rules. In order to properly split a given program P into modules, it is taken in consideration the Dependency
Graph and the Component Graph. The first connects predicate names based on head-bodies dependencies,
while the latter connects strongly connected components of the former. Each module corresponds to a strongly
connected component (SCC)4 of the dependency graph. An ordering relation is then defined among mod-
ules/components: a component ordering γ for P is a total ordering such that the intelligent instantiation P γ

obtained iteratively, by following the sequence given by γ, has the same answer sets of grnd(P ).
For the sake of clarity, we shortly recall here some key concepts introduced in [12], tailoring them to the

positive case5, which is the one herein considered. For complete formal definitions, more details, and examples,
we refer the reader to the aforementioned paper. Given a program P , a component C is as set of predicates
which are strongly connected in the usual predicate dependency graph G(P ) considering head-body dependencies
between predicates.

The Component Graph of P , denoted GC(P ), is a directed graph having a node for each strongly connected
component of G(P ) and an edge B → A if there is a rule r ∈ P such that there is a predicate q ∈ A occurring in
the head of r and a predicate p ∈ B occurring in the body of r; A component ordering γ = 〈C0, . . . , Cn〉, is a

2EDB and IDB stand for Extensional Database and Intensional Database, respectively.
3Note that this definition of a query is not as restrictive as it may seem, as one can include appropriate rules in the program for expressing
unions of conjunctive queries (and more).
4We recall here that a strongly connected component of a directed graph is a maximal subset S of the vertices, such that each vertex in S
is reachable from all other vertices in S.
5It is worth noting that the class of programs considered in [12] allows also default negation in the bodies of rules.
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total ordering of all components of P s.t., for any Ci, Cj with i < j, there is no path from Cj to Ci in GC(P ). A
module P (Ci) is the set of rules defining predicates in Ci in a program P , excepting those that define also some
other predicate belonging to a lower component Cj , j < i in γ.

Definition 3.1. [12] Given a rule r and a set S of ground atoms, an S-restricted instance of r is a ground instance
r′ of r such that B(r′) ⊆ S. The set of all S-restricted instances of a program P is denoted as InstP (S).

Note that, for any S ⊆ BP , InstP (S) ⊆ grnd(P ). Intuitively, this helps selecting, among all ground
instances, those somehow supported by a given set S. Some further simplifications can be properly performed
by exploiting a modular evaluation of the program that relies on a component ordering.

Definition 3.2. (Adapted from [12]) Given a program P , a component ordering 〈C1, . . . , Cn〉, a set Si of ground
rules for Ci, and a set of ground rules R for the components preceding Ci, the simplification Simpl(Si, R) of
Si w.r.t. R is obtained from Si by: (i) deleting each rule whose head contains some atom a ∈ Facts(R); (ii)
eliminating from the remaining rules each atom a ∈ B(r) s.t. a ∈ Facts(R).

Assuming that R contains all ground instances obtained from the modules preceding Ci, Simpl(Si, R)
deletes from Si all rules whose head is certainly already true w.r.t. R, and simplifies the remaining rules by
removing from the bodies all atoms true w.r.t. R. We define now the operator Φ, combining Inst and Simpl.

Definition 3.3. [12] Given a program P , a component ordering 〈C1, . . . , Cn〉, a component Ci and its corre-
sponding module M , a set X of ground rules of P (Ci) = M , and a set R of ground rules belonging only to EDB
(P) or to modules of components Cj with j < i, let ΦM,R(X) be the transformation defined as :

ΦM,R(X) = Simpl(InstM (Heads(R ∪X)), R).

Intuitively, ΦM,R instantiates a given module of P exploiting the instantiation of previous modules, and
generates a subset of the theoretical instantiation; importantly, it always admit a least fixpoint Φ∞M,R(∅). The
intelligent instantiation P γ of P for γ is the last element Sn of the sequence Si = Si−1 ∪ Φ∞M,Si−1

(∅), for
S0 = EDB(P ). A nice characterization of the intelligent instantiation can be given in the case of normal
(∨-free) programs.

Proposition 3.1. Given a positive normal (∨-free) ground program P and an interpretation I , let TP (I) = {a |
a :- b1, . . . , bn ∈ P, {b1, . . . , bn} ⊆ I} be the traditional immediate consequence operator [35]. Then, for any
component ordering γ of P , P γ is a set of facts coinciding with the atoms contained in T ∞P (∅).

We provide now the definition of finitely-ground programs, and report next the main result about such class.

Definition 3.4. [12] A program P is finitely-ground (FG) if P γ is finite, for every component ordering γ for P .

Theorem 3.1. (Theorem 3 of [12]) Cautious and brave reasoning over FG programs are computable. Com-
putability holds even for non-ground queries.

4. The Magic-Sets Technique

In this Section we give some basics on the magic-sets technique and its adaptation to the disjunctive case.
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4.1. Basic Magic-Sets

It is commonly asserted that the magic-sets method is a strategy for simulating the top-down evaluation. Indeed,
and more precisely, the magic sets method does not actually execute a top-down evaluation: the technique tracks
down how a top-down evaluation would run on a given program P with a given query Q, and exploits the
collected information for building a modified version of P , this latter supposedly more efficient in its evaluation.

This new version of P is obtained by modification and addition of rules. As a result, the computation of Q
over P can be narrowed to a smaller ground program containing only atoms and rules which might have some
impact in answering Q. A simplistic versions of a bottom-up evaluation algorithm works as follows: given P ,
we compute grnd(P ) (or an equivalent subset thereof) and then apply an algorithm tailored at computing the
answer sets of grnd(P ). In many applications grnd(P ) can be of large size, and, indeed, efforts for restricting
grnd(P ) to an equivalent and considerably smaller program exist [12, 17, 21].

On the other hand, recall how intuitively a top-down evaluation works: a given query atom Q (the goal)
is matched against all the rules heads which Q unifies with; when a rule r is matched, all the body atoms of
r become in turn subgoals. Subgoals are obtained from body atoms by unification with previously matched
subgoals, so that the search space of possible matches to subgoals is usually considerably smaller: for instance,
for goal p(a,X) and matching rule p(X, Y ) :- e(X,Z), q(X, Z)., we obtain a subgoal atom e(a, Z). In turn,
q(X,Z) generates a range of subgoals q(a, z) depending on the domain of all values z for which the subgoal
e(a, z) is found to be true. In a sense, the range of the first argument of q(X, Z) can be seen as bound by the
value a, while the range of the second argument Z is bound by the allowed values of Z in e.

One might thus think at tracking the propagation of information due to variable bindings (sideway information
passing, in the literature), appearing in the query and in subgoals. This information can be valuably exploited in
order to generate a program (the magic program) which enforces the search space of each subgoal argument to
be smaller. Given a program P and a query Q, a magic program is generated: this is added to P , while magic
atoms are put in rule bodies of P in order to constrain, wherever possible, the domain of subgoal arguments.

We next provide a brief and informal description of the magic-sets rewriting technique, which has originally
been defined in [1] for non-disjunctive Datalog (i.e., with no function symbols) queries only. Note that, after-
wards, many generalizations have been proposed: the reader is referred to [34] for a detailed presentation. The
method is structured in four main phases which are informally illustrated below by example, considering the
query path(X, a) on the following program (edge is an EBD predicate):

path(X, Y ) :- edge(X, Y ). path(X,Y ) :- edge(X,Z), path(Z, Y ).

1. Adornment Step: First, suitable predicates (adorned predicates) with adornment labels attached to them,
are introduced. Adornments track how variable bindings can be possibly propagated from head atoms to body
atoms, and from body atoms to subsequent ones.

In order to ease the reader’s understanding, we will assume here that the order of evaluation for body atoms
(subgoals) goes from left to right, although different strategies for choosing a subsequent subgoal can be devised.6

Values of adornment labels can be b and f, denoting ‘bound’ and ‘free’ respectively, for each argument of an
IDB predicate. For instance pathfb is a binary predicate which intuitively is a subset of path: in particular its
second argument is meant to be restricted to a given domain (the magic set of pathfb) which is usually much
smaller than the ideal range of path on its second argument (in principle this range could be the full Herbrand
universe). Adorned predicates are created by starting from a given query atom Q, adorning it, and then recursively
traversing all the bodies of rules in which Q appears. If Q has some constant argument, then this is adorned as b.
Remaining arguments are adorned as f.

Adornment labels are then added to predicate names appearing in rules bodies, for each rule whose head
unifies with Q. Intuitively, how labels are chosen depends on the order of evaluation of subgoals within a
6We will see next that our simplified adornment strategy does not depend on the chosen ordering for body atoms.
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given rule; if a variable appears in a subgoal which has been already taken in consideration, the corresponding
argument can be seen as bound: that is, its domain can be determined a priori, once the range of previous subgoals
is determined. Determining if an argument adornment should be bound or free can be a sophisticated task as, for
instance, described in the generalized magic set method [4].

For simplicity, we consider in this informal overview the method of [1]: namely, a body argument is adorned
as bound if it is either a) a constant, b) it shares the same variable with a bound head argument, or c) it shares
the same variable with an EBD predicate argument appearing in the rule body. An argument is adorned as free
otherwise. It is worth noting that, on the other hand, according to the method described in [4], bindings may also
be generated by IDB predicates in rule bodies. In particular, an appropriate way of treating sideway information
passing, (called sideways information passing strategy (SIPS)) has to be specified for each rule, fixing the body
ordering and the way in which bindings are generated. In this respect, the basic method of [1] herein adopted
uses a particular, predetermined SIPS for all rules.

Example 4.1. Adorning the query path(X, a) generates the adorned predicate pathfb and the two adorned rules:

pathfb(X,Y ) :- edge(X,Y ). pathfb(X, Y ) :- edge(X,Z), pathbb(Z, Y ).

It is worth noting that adorning a rule may generate new adorned predicates: for instance, in the above
example, the new predicate pathbb(Z, Y ) is generated. Each new adorned predicate can be seen as the counterpart
of a family of subgoals in a top-down computation. As such, each new adorned predicate is in turn matched
against all the rules whose head unifies with; these latter are adorned with respect to the new adorned predicate,
and the process is repeated until no new adorned predicate is generated.

Example 4.2. Processing the adorned predicate pathbb we obtain the two adorned rules:

pathbb(X,Y ) :- edge(X,Y ). pathbb(X, Y ) :- edge(X, Z), pathbb(Z, Y ).

Take also note that EDB predicates are not subject to adornment.

2. Generation Step: Bound arguments appearing in adorned predicates can be seen as placeholders for
arguments which have a domain that can be narrowed. This restricted domain can be computed a priori: a
specification of how to compute the domain of bound arguments is given via the so called magic program. This
latter is constituted of magic rules. First, for each adorned predicate pα, having adornment α, we introduce a
corresponding magic predicate magic pα. The arity of magic pα will correspond to the number of bound labels
appearing in α: that is, free arguments will not appear in magic predicates. Accordingly, from an atom pα(t̄) we
obtain the magic atom magic(pα(t̄)) = magic pα(t̄′) where t̄′ is obtained from t̄ by eliminating all arguments
corresponding to an f label in α.

Consider now how to devise rules defining a predicate magic pα. Intuitively, the extension of such a predicate
should range only over the values that might have impact on the query at hand when evaluated in a top-down
fashion. This means that the extension of magic pα is constrained: a) by the extension of EDB predicates;
consider, e.g., the body of a rule containing a EDB atom e(t̄, s̄) and an atom pα(t̄, ū): in this case one might
add the rule magic pα(t̄) :- e(t̄, s̄); and, recursively, b) from the extension of other magic predicates from which
some bound label has been propagated; consider, e.g., an adorned rule having an atom qβ(t̄, s̄) in its head and
pα(t̄, ū) in its body; one might add the rule magic pα(t̄) :-magic qβ(t̄). 7.

The magic program is thus generated as follows. For each adorned atom A appearing in the body of an
adorned rule ra, a magic rule rm is generated such that (i) the head of rm consists of magic(A), and (ii) the body
7In general, the extension of magic pα is built taking into account the extension of all the predicates which caused a bound adornment
to appear in α. Indeed in generalized magic sets [4], magic pα might depend also on some magic predicate magic sγ for sγ and pα

sharing a variable within the same body.
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of rm consists of the magic version of the head atom of ra, followed by all the atoms of ra which can propagate
their variable bindings on A.

Example 4.3. From the overall adorned program obtained in Example 4.1 and 4.2, we generate the following
magic program:

magic pathbb(Z, Y ) :- magic pathbb(X, Y ), edge(X,Z).
magic pathbb(Z, Y ) :- magic pathfb(Y ), edge(X,Z).

Note how argument labeled as f are removed from magic atoms (e.g., magic pathfb), and only rules having an
adorned predicate in their body are processed and contribute in generating magic rules.

3. Modification Step: The adorned rules are subsequently modified by including magic atoms generated in
Step 2 in the rule bodies. This constrains the range of the head variables to the domain of magic set predicates,
thus avoiding the inference of facts which cannot contribute to derive the query. The resulting rules are called
modified rules. Each adorned rule ra is modified as follows. Let H be the head atom of ra. Then, the atom
magic(H) is inserted in the body of the rule. Adornments, which served the purpose of tracking top-down
information propagation, are then removed from all non-magic atoms appearing in ra.8

Example 4.4. For the above adorned program, we obtain:

path(X, Y ) :- magic pathbb(X,Y ), edge(X,Y ).
path(X, Y ) :- magic pathbb(X,Y ), edge(X,Z), path(Z, Y ).
path(X, Y ) :- magic pathfb(Y ), edge(X, Y ).
path(X, Y ) :- magic pathfb(Y ), edge(X, Z), path(Z, Y ).

Note that in our example, the extension of the first argument of magic pathfb(Y ) is in any case greater than
the extension of magic pathbb(X,Y ) on its second argument (see Example 4.3). Thus the fourth rule above
subsumes the corresponding second rule, and the third rule subsumes the first. For simplicity, we omit the opti-
mization steps that usually are introduced for eliminating such redundant rules.

4. Processing of the Query: It is eventually necessary to assert some domain information regarding the query
at hand. Let the query goal be the adorned IDB atom gα. We generate the so called magic seed atom magic(gα).
This latter is asserted as a fact. For instance, in our example we generate the magic fact magic pathfb(a).

The complete rewritten program consists of the magic, modified, and query rules.

Example 4.5. The complete rewriting of our example program is:

magic pathfb(a).
magic pathbb(Z, Y ) :- magic pathbb(X, Y ), edge(X,Z).
magic pathbb(Z, Y ) :- magic pathfb(Y ), edge(X,Z).
path(X,Y ) :- magic pathbb(X, Y ), edge(X,Y ).
path(X,Y ) :- magic pathbb(X, Y ), edge(X, Z), path(Z, Y ).
path(X,Y ) :- magic pathfb(Y ), edge(X,Y ).
path(X,Y ) :- magic pathfb(Y ), edge(X,Z), path(Z, Y ).

Here, magic pathfb(Y ) represents the set of nodes which can potentially start a path leading to a. Therefore,
when answering the query, only these sub-paths will be actually considered in bottom-up computations.
8Stripping off the adornments serves mainly for facilitating the equivalence proofs; one may also leave the adornments (also in the query)
intact, as it was done in the original definition of magic sets.
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4.2. Disjunctive Magic Sets

We now revert our focus back to the language fragment we are interested in, that is, positive disjunctive logic pro-
grams allowing function symbols. It is worth noting that the traditional magic set technique does not straightfor-
wardly applies to this class, because of a) the presence of disjunction, and b) the possibility of having functional
terms in combination with disjunction.

We consider first the impact of disjunction. Intuitively, magic predicates capture all the ground atoms which
might be relevant for the query Q at hand: if an atom p(X̄) is relevant for evaluating Q, and a disjunctive rule r
contains p(X̄) in the head, also other atoms sharing the same head might have impact on the truth value of p(X̄).
Thus, one has to investigate also how variable bindings from p(X̄) propagate to the head atoms, besides body
atoms; this means that in disjunctive rules also head atoms must be adorned, causing however some technical
problems. We adapt in the following the approach illustrated in detail in [14], which proved to be satisfactory in
this respect. Our adaptation can be summarized as follows:

1. Given a disjunctive rule r to be adorned starting from the head atom pα(t̄), each bound label appearing in α
can be propagated to other head atoms, besides body atoms. This agrees with the notion of disjunctive SIPS
as defined in [14]. For simplicity, our binding propagation tracking strategy does not include propagation
of bound labels from EDB atoms to head atoms.

2. There is a magic rule for each IDB atom appearing within rules bodies or within rule heads. Also, magic
rules are not generated starting from disjunctive adorned rules: when magic rules have to be generated for
a disjunctive rule r and selected head atom a, we take into consideration the rule r′ obtained from r by
moving all the head atoms, other than a, into the body. Then, the standard generation step described in
Section 4.1 is applied to r′.

3. The Modification step (stage 3 of section 4.1) is applied to the original program, not to the adorned one.
Disjunctive rules are modified adding the magic atom magic(pα(t̄)) in the body for each head atom pα(t̄).

Example 4.6. Consider again program P1 of Example 2.3:

color(X, b) ∨ color(X, g).
coupled(X, next(X), C) :- color(X,C), color(next(X), C).

Let us consider the query Q = coupled(1, next(1), g). After the adornment phase, all predicates, in this case,
have a completely bound adornment, thus obtaining the adorned program

colorbb(X, b) ∨ colorbb(X, g).
coupledbbb(X, next(X), C) :- colorbb(X,C), colorbb(next(X), C).

We show now what happens because of the disjunctive rule. It contains two atoms: colorbb(X, b) and colorbb(X,
g), for which a corresponding magic rule has to be generated. First, we consider two intermediate rules:

colorbb(X, b) :- colorbb(X, g). colorbb(X, g) :- colorbb(X, b).

From these latter (and not from the originating adorned disjunctive rules) we obtain the two magic rules:

magic colorbb(X, g) :-magic colorbb(X, b). magic colorbb(X, b) :-magic colorbb(X, g).

Eventually, the original, non-adorned, disjunctive rule is modified including both magic atoms corresponding to
the two head atoms, obtaining:

color(X, b) ∨ color(X, g) :-magic colorbb(X, b), magic colorbb(X, g).
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The complete rewritten program consists of the generated and modified rules above, plus what comes out
from the query and the second rule (with no difference w.r.t. what previously described for the normal case).
Note that in the traditional literature, the modification step is performed on the adorned program. This latter
approach has impact on soundness for disjunctive programs. As suggested in [14], we apply modifications to the
original program, instead.

As for the impact of the presence of functional terms, adaptations of information passing strategies were
already shown in the literature [29]. As shown next, the treatment of functional terms in the context of our main
result (treating finitely-recursive queries on positive disjunctive programs) turns out to be much simpler.

5. Magic Sets for Finitely-Recursive Queries

This Section first gives the definition of finitely-recursive queries; then, a suitable version of the magic-sets
rewriting technique to DFRP programs is designed.

5.1. Finitely-Recursive Queries

We next provide the definition of finitely-recursive queries and programs.

Definition 5.1. Let P be a program. A ground atom a depends on ground atom b with a 1 degree (denoted by
a >1 b) if there is some rule r ∈ grnd(P ) with a ∈ H(r) and b ∈ Atoms(r). The reflexive and transitive
closure of the “depends on” relation defines dependence on a generic degree i: for any ground atom a, a >0 a,
and if a >1 b, and b >i c, then a >i+1 c (a depends on c with a i + 1 degree). The degree of the dependencies is
often omitted, hence simply saying that a depends on b (a > b), if a >k b holds for some k ≥ 0.

Definition 5.2. Given a query Q on P , define

relAtoms(Q,P ) = {a ∈ BP : Q > a}
relRules(Q,P ) = {r ∈ grnd(P ) : a ∈ H(r)for some a ∈ relAtoms(Q,P )}

Then: (i) a query Q is finitely recursive on P if relAtoms(Q,P ) is finite; (ii) a program P is finitely recursive
if every query on P is finitely recursive.

The sets relAtoms(Q,P ) and relRules(Q,P ) are called, respectively, the relevant atoms and the relevant
subprogram of P w.r.t. Q. It is worth noting that, if Q is finitely recursive, then its relevant subprogram is finite.

Example 5.1. Consider the following program:

lessThan(X, s(X)). q(f(f(0))).
lessThan(X, s(Y )) :- lessThan(X,Y ). q(X) :- q(f(X)).
r(X) ∨ t(X) :- lessThan(X,Y ), q(X).

The program is not finitely recursive (because of rule q(X) :- q(f(X)). Nevertheless, one may have many
finitely-recursive queries on it. All atoms like lessThan(c1, c2), for instance, with c1 and c2 constant values, are
examples of finitely-recursive queries.
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5.2. The Rewriting Algorithm

In this section we describe a specialization of the magic-sets algorithm conceived for the case of finitely-recursive
queries, which constitutes an elegant and simple adaptation of what described in Sections 4.1 and 4.2. In order
to help the reader, we report some informal considerations that led us to the design of such specialization, even
if they are not needed in order to prove the soundness of the framework (see Section 6). Note that the below
remarks hold no matter of the presence of functional terms in a program.

For a program P and a finitely-recursive ground query Q on it, it is easy to see that:

• The adornment step, described in Section 4.1, recursively selects for adornment all rules relevant which
the query depends on. When Q is finitely recursive, a selected rule r cannot have local variables (i.e.
variables appearing only in the body of the rules), and each couple of atoms a, b ∈ H(r) must share the
same variables. Indeed, should one of these conditions be violated, relRules(Q, P ) would be infinite.

• Query Q is ground; therefore, given the consideration above, adorned predicates can have only bound
labels, and adorned rules will contain bound variables only.

• As a consequence of the considerations above, in the generation step, it is no longer necessary to include
any other atom in the body of a generated magic rule, apart from the magic version of the considered head
atom. Again, this is due to the absence of local variables: this ensures that all the needed bindings are
provided through the magic version of the head atom.

The algorithm MSFR, implementing the magic-sets method for finitely-recursive queries and designed taking
into account the above consideration, is depicted in Figure 1. MSFR takes in input a positive finitely-recursive
program P and a ground query Q, and outputs a program RW (Q,P ) consisting of a set of modified and magic
rules (denoted by modifiedRules and magicRules , respectively), which are generated on a rule-by-rule basis.

A stack S stores all predicates that have still to be used for propagating the query binding. At first, the set
of magic rules is initialized with the magic version of the query, and the query predicate is pushed on S. At
each step, an element u is removed from S; if u has not been already considered (the auxiliary variable Done
tracks the already processed predicate names), all the rules having u in their head are processed one-at-a-time.
For each such rule r, let u(t) be one of the occurrences of predicate u in H(r); if r is not a fact, first a modified
version of r is created; moreover, all other predicate names appearing in H(r) and other than u, if some, and
all IDB predicates appearing in B(r), are pushed on S. Accordingly, a proper set of magic rules, one per each
such pushed values, is generated. In case r is a fact, i.e., its body is empty and it does not contain variables, it
is added to the modifiedRules set as it is. Finally, once all the predicates involved in the query evaluation have
been processed (thus, S is empty), the algorithm outputs the program RW (Q,P ) as the union of all modified
rules and generated magic rules.9 Some rewriting examples are reported next.

Example 5.2. Let us consider the finitely-recursive query Q = p(f(g(1))) on the following program:

p(1). p(f(X)) ∨ p(g(X)) :- p(X).

We will depict, step by step, the execution performed by the MSFR algorithm. After the initialization of variables,
the first magic fact obtained from the query is generated (lines 1− 2):

magic p(f(g(1))).

9Note that duplicate rules could be generated. Some further care might be taken in order to prevent this, but this is out of the scope of this
work; some examples of optimization methods can be found in [14].
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Input: a program P and a finitely-recursive query Q = g(c̄)? on P ;
Output: the rewritten program RW (Q, P );
Main Variables: S: stack of predicates to rewrite; Done: set of processed predicates;

modifiedRules , magicRules : sets of rules

modifiedRules := ∅; Done := ∅;1
magicRules :={magic g(c̄).};2
S.push(g);3
while S 6= ∅ do4

u := S.pop();5
if u /∈ Done then6

Done := Done ∪ {u};7
foreach r ∈ P and for each atom in the form u(t) ∈ H(r) do8

if r /∈ Facts(P ) then9
// assume r be in the form u(t) ∨ v1(t1) ∨ . . . ∨ vm(tm) :- vm+1(tm+1), ..., vn(tn).;10
modr := u(t) ∨ v1(t1) ∨ . . . ∨ vm(tm) :- magic u(t),11

magic v1(t1), . . . , magic vm(tm),
vm+1(tm+1), ..., vn(tn).;

if modr /∈modifiedRules then12
modifiedRules := modifiedRules ∪ {modr};13

endif14
foreach vi : 1 ≤ i ≤ n and vi ∈ IDB(P ) do15

magicRules := magicRules ∪ {magic vi(ti) :- magic u(t).};16
S.push(vi);17

end foreach18
else19

modifiedRules := modifiedRules ∪ {r};20
endif21

end foreach22
endif23

end while24
RW (Q, P ):=magicRules ∪modifiedRules ;25
return RW (Q, P );26

Figure 1. Magic Sets rewriting algorithm for finitely-recursive queries

The predicate p is then pushed onto the stack S (line 3) and the first iteration of the main loop (line 4) starts.
The predicate p is extracted from S and marked as done (lines 5 − 7). In this case, it is the only predicate to be
considered. All rules having p in their head are then processed (lines 8 − 22). The first rule defining p is a fact
(p(1).), so the rule is added, with no modification, to modifiedRules (line 20). The second rule defining p is a
recursive rule. It is worth noting that this rule will be processed twice, because its head contains two occurrences
of predicate p (namely, p(f(X)) and p(g(X))). Thus, the first iteration of the outer foreach loop (lines 8 − 22)
causes the insertion of the following modified rule, because of p(f(X)) :

p(f(X)) ∨ p(g(X)) :-magic p(f(X)),magic p(g(X)), p(X).

the above is added to the modifiedRules set (lines 12− 14). Then the magic rules below are generated, one for
the atom p(g(X)) appearing in the head, and one for the atom p(X) appearing in the body, and the p predicate is
pushed onto the stack S (lines 15− 18):

magic p(g(X)) :- magic p(f(X)). magic p(X) :- magic p(f(X)).

The following iteration of the outer foreach loop (due to the atom p(g(X))) would cause the same modified rule
as above, which thus is not added twice to ModifiedRules. The following magic rules are generated, one for
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p(f(X)) in the head, and one for p(X) in the body, and the p predicate is pushed onto the stack S (lines 15−18):

magic p(f(X)) :- magic p(g(X)). magic p(X) :- magic p(g(X)).

Then, a second and a third iteration of the main loop start; both immediately ends, as the predicate extracted
from the stack S is the already considered predicate p. Finally, S is found empty; no further iterations are needed,
and the algorithm outputs the following complete rewritten program:

p(f(X)) ∨ p(g(X)) :- magic p(f(X)),magic p(g(X)), p(X). p(1).
magic p(f(g(1))). magic p(g(X)) :- magic p(f(X)).
magic p(X) :- magic p(f(X)). magic p(f(X)) :-magic p(g(X)).
magic p(X) :- magic p(g(X)).

Example 5.3. Considering the query Q = lessThan(s(s(0)), s(0))? on the program P2 of Example 2.4, the
algorithm outputs the following rewritten program P3=RW (Q,P2):

magic lessThan(s(s(0)), s(0)).
magic lessThan(X, Y ) :- magic lessThan(X, s(Y )).
lessThan(X, s(X)) :- magic lessThan(X, s(X)).
lessThan(X, s(Y )) :- magic lessThan(X, s(Y )), lessThan(X, Y ).

(3)

6. Properties of Disjunctive Finitely-Recursive Programs

In this Section, we first discuss the relationship between DFRP programs and finitely-ground (FG) programs [12];
then, we show some theoretical results about query answering on DFRP programs.

Some preliminary results are grouped in the next Lemma. In order to prove it, we introduce first the notion
of partial evaluation of a ground program w.r.t. a set of magic atoms.

Definition 6.1. Given a program P and a set M of ground atoms of the form magic a(t̄) (where a(t̄) ∈ BP ),
we denote by eval(P,M) the set of rules obtained from grnd(P ) as follows: remove from grnd(P ) any rule r
such that some atom magic a(t̄) ∈ B(r) and magic a(t̄) /∈ M ; remove any atom of the form magic a(t̄) from
the body of the remaining rules.

Moreover, given a query Q on a program P , we denote as magicRules(Q,P ) and modifiedRules(Q, P ) the
final value of the sets modifiedRules and magicRules after the application of MSFR to Q and P .

Lemma 6.1. Let Q be a query on a program P . If Q is finitely recursive, then the following holds:

a. magicRules(Q,P ) has a unique answer set MmP ;

b. {a(t) |magic a(t) ∈ MmP } = relAtoms(Q,P );

c. MmP is finite;

d. magicRules(Q,P ) is finitely ground;

e. eval(modifiedRules(Q,P ),MmP ) = relRules(Q,P ).

Proof:
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a. magicRules(Q,P ) is positive and normal (∨-free), thus the statement follows.

b. Q is finitely recursive, thus there exists a value k, for which

relAtoms(Q,P ) =
⋃

0≤i≤k

RAi(Q, P )

with RAi(Q,P ) containing each atom a such that Q depends on a at degree i. Also observe that, since
mP = magicRules(Q,P ) is positive and normal, any iterative bottom-up application of the immediate
consequence operator TmP produces a subset of the unique answer set of mP . The statement can hence be
proved by showing that the i-th application of TmP (∅) on magicRules(Q,P ) (denoted by T i

mP (∅)) derives
all and only the atoms of the form magic a(t̄) s.t. a(t̄) ∈ RAi(Q,P ).

We prove this by induction. Let Q = g(c̄). (Basis.) For i = 0, the only relevant atom is g(c̄) itself, and
T 0

mP (∅) = {magic g(c̄)}. (Induction.) Assume that the statement holds for i − 1. Then, we first prove
that T i

mP (∅) includes all atoms in the form magic a(t̄) s.t. a(t̄) ∈ RAi(Q,P ). Indeed, if there is an atom
a(t̄) ∈ RAi(Q,P ), then there is some rule r ∈ grnd(P ) s.t. a(t̄) ∈ Atoms(r) and there is at least an atom
b(s̄) ∈ H(r) s.t. b(s̄) ∈ RAi−1(Q,P ). Note that MSFR builds mP in a way such that in grnd(mP ) there
exists a rule of the form magic a(t̄) :- magic b(s̄). By induction hypothesis, magic b(s̄) ∈ T i−1

mP (∅),
thus magic a(t̄) ∈ T i

mP (∅). Analogous considerations give evidence that T i
mP (∅) contains only atoms of

the form magic a(t̄) s.t. a(t̄) ∈ RAi(Q,P ).

c. Q is finitely recursive on P ; then relAtoms(Q,P ) is finite, and the statement follows from point (b).

d. As shown in the proof of (b), the i-th application of TmP (∅) derives the atoms of the form magic a(t̄) s.t.
Q depends on a(t̄) at degree i. Since Q is finitely recursive on P , the number of these atoms is finite, and
TmP (∅) converges finitely. By Proposition 3.1, mP is finitely ground.

e. Given Definition 6.1 and point (b) of this Lemma, one can observe that the rules participating in E =
eval(modifiedRules(Q,P ), MmP ) can contain in their heads only atoms belonging to relAtoms(Q,P ).
Indeed, any rule r ∈ modifiedRules(Q,P ) is such that each atom in the form magic a(t̄) has a corre-
sponding atom a(t̄) appearing in the head of r;

Also, any atom of the form magic a(t̄) is removed from each rule r ∈ E. Any of such rules clearly belongs
to grnd(P ) and has an head atom belonging to relAtoms(Q,P ), and thus belongs to relRules(Q,P );

On the other hand if one considers a rule r ∈ relRules(Q,P ), similar arguments lead to conclude
that since r has an atom a ∈ relAtoms(Q,P ) in its head, a corresponding rule r′ must belong to
grnd(modifiedRules(Q,P )) and then r ∈ E.

ut

Theorem 6.1. Given a ground query Q on a program P , if Q is finitely recursive on P , then RW (Q,P ) is
finitely ground.

Proof:
One can show that RW (Q,P ) is finitely ground by the following arguments:

1. Observe that E = eval(modifiedRules(Q,P ), MmP ) is finite, by Lemma 6.1, point (e), and that
magicRules(Q,P ) is finitely ground by point (d) of the same Lemma.
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2. Any component ordering γ = 〈C0, . . . , Cn〉 of RW (Q,P ) can be split into two partitions β = 〈C0, . . . ,
Ck〉 and τ = 〈Ck+1, . . . , Cn〉, where β contains only predicates of type magic a, and identifies the module
magicRules(Q,P ). Since this latter is finitely ground, its intelligent instantiation (magicRules(Q,P ))β

(for short, mP β) is finite.

3. By proposition 3.1, mP β is a set of facts corresponding to the unique model MmP (Lemma 6.1, points (a))
of magicRules(Q,P ).

4. P γ corresponds to the last step of the sequence Si = Si−1 ∪Φ∞Mi,Si−1
(∅) for k < i ≤ n, where Sk = mP β

and Mi is the program module P (Ci) associated to the component Ci.

5. Consider the finite set of ground rules

E′ = { v1(t1) ∨ . . . ∨ vm(tm) :- magic v1(t1), . . . , magic vm(tm), vm+1(tm+1), ..., vn(tn). s.t.
v1(t1) ∨ . . . ∨ vm(tm) :- vm+1(tm+1), ..., vn(tn). ∈ E }

It can be stated that for any i s.t. k < i ≤ n, Si ⊆ E′, and and we prove it in the following.

We know that mP β ⊆ Si−1, and ΦMi,Si−1(X) = Simpl(InstMi(Heads(Si−1∪X)), Si−1); furthermore,
any rule in Mi ⊆ modifiedRules(Q,P ) is either a ground fact, or a nonground rule r of the form

v1(t1) ∨ . . . ∨ vm(tm) :- magic v1(t1), . . . , magic vm(tm), vm+1(tm+1), ..., vn(tn).

If the latter is the case, when InstMi is applied to Heads(Si−1 ∪X), the only way for instantiating atoms
of type magic vi(ti) in r is to consider the atom instances contained in mP β = MmP . Each ground rule
coming from the instantiation of such magic atoms is clearly an element of E′. The subsequent application
of the Simpl operator, aiming at completing the computation of ΦMi,Si−1(X), can possibly delete or
modify some of such rules, but no new elements are added to Si.

Summarizing: for any i s.t. k < i ≤ n, we proved Si ⊆ E′; this obviously means that also Sn = P γ ⊆ E′.
Since E′ is finite, it turns out that P γ is finite, and the statement follows. ut

The next theorem provides query equivalence results for the magic-sets rewritten programs.

Theorem 6.2. Given a ground query Q on a program P , if Q is finitely recursive on P , then P |=b Q (resp.,
P |=c Q) if and only if RW (Q, P ) |=b Q (resp., RW (Q, P ) |=c Q).

Proof:
From Lemma 6.1, point (e), we know that eval(modifiedRules(Q,P ), MmP ) = relRules(Q,P ). Thus, we
have that AS(RW (Q,P )) = AS(relRules(Q,P )). Now, each answer set of M ∈ relRules(Q,P ) can be
extended to an answer set of M ′ of P , while each answer set M ′ of P contains an answer set of relRules(Q,P )
(This can be shown e.g. by known tools such as the splitting theorem [25]). Thus, if we take brave (resp.,
cautious) reasoning in account, Q can appear in some (resp., all) M ∈ AS(P ) iff Q appears in some (resp., all)
answer sets in AS(relRules(Q,P )), which, in turn, coincides with AS(RW (Q,P )). ut

These results are quite relevant; they also imply that all nice properties of FG programs hold for rewritten
finitely-recursive queries too. This includes, in particular, bottom-up computability of answer sets, and hence full
decidability of reasoning, as stated from the next Corollary.

Corollary 6.1. Both cautious and brave reasoning on a DFRP program P are decidable.
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Proof:
Any query on a finitely-recursive program P is finitely recursive. Hence, the result immediately follows from
Theorem 6.1 above and Theorem 3.1. ut

Example 6.1. The intelligent instantiation of the program P3 of Example 5.3 is the following:

magic lessThan(s(s(0)), s(0)).
magic lessThan(s(s(0)), 0) :- magic lessThan(s(s(0)), s(0)).

which is finite; hence, as expected, the originating rewritten program is finitely ground. It has the unique finite
answer set {magic lessThan(s(s(0)), s(0)), magic lessThan(s(s(0)), 0)}, which is easily computable, thus
allowing to answer to the query Q5.3 of Example 5.3 with ‘no’.

Next, we are going to prove a result about the efficiency of the rewriting algorithm. To this aim, we need to
provide the definition of the size of a program.

Definition 6.2. Let P be a (non-ground) logic program. The size ‖t‖ of a term t is 1, if the term is a constant or
a variable; the size of a functional term f(t1, . . . , tn) is defined as 1 + ‖t1‖ + . . . , ‖tn‖. The size of an atom is
given by the sum of the size of its terms; if the atom has arity 0, size is 1. The size of the program P , denoted
by ‖P‖, is the sum of the sizes of all atom occurrences in P . Note that, if the same atom occurs at two different
places in P , it accounts for twice its size.

Example 6.2. The program P2 in Example 2.4 has size ‖P‖ = 8.

Theorem 6.3. Given a finitely-recursive query Q on a program P , the size of RW (Q,P ) is linear in the size of
the input P and Q; that is ‖RW (Q,P )‖ = O(‖P‖+ ‖Q‖).

Proof:
The program RW (Q, P ) consists of the union of two sets of rules: modifiedRules(Q,P ) and magicRules(Q,P ).

In the worst case, the number of atoms in the first set is given by the number of atoms in P plus as many
atoms as the number of head atoms in P (a magic atom per each head atom is added for each rule in P ). In the
worst case, ‖modifiedRules(Q, P )‖ can be as large as 2‖P‖. Thus, ‖modifiedRules(Q,P )‖ = O(‖P‖).

Let us consider now the magicRules(Q,P ) program. For each IDB atom occurring in the body of a rule
in P , at most one magic rule with exactly two atoms is generated. Then, even in the worst case, the number of
atoms in magicRules(Q,P ) is not greater than 2‖P‖, plus the magic version of the query, which is just an atom.

It is worth noting that, as far as the algorithm is defined, arities of all new predicates are equal or less than
the arities of original ones; furthermore, terms are left unchanged. Thus, from the considerations above, the
statement ‖RW (Q, P )‖ = O(‖P‖+ ‖Q‖) immediately follows. ut

7. Related Work

There are many proposals for practically treating functional terms in ASP. These can be shortly classified in

1. Syntactically restricted fragments, such as ω-restricted programs [33], λ-restricted programs [17], finite-
domain programs [12], argument-restricted programs [23], FDNC programs [31], bidirectional programs
[15], and the proposal of [26]; these approaches introduce syntactic constraints (which can be easily
checked at small computational cost) or explicit domain restrictions, thus allowing computability of answer
sets and/or decidability of querying;
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2. Semantically restricted fragments, such as finitely ground programs [12], finitary programs [6, 7], dis-
junctive finitely-recursive programs [3]; with respect to syntactically restricted fragments, these latter ap-
proaches aim at identifying broader classes of programs for which computational tasks, such as querying,
enjoy some desirable property, such as decidability. However, recognizing such kind of programs is in
general a Turing-complete task.

In particular, the works [3, 6, 12, 31] consider disjunctive programs. Works explicitly focussing on querying for
disjunctive programs, and thus more related to ours, are [6] and [3].

The work in [6] studies how to extend finitary programs [7] to preserve decidability for ground querying in
the presence of disjunction. To this end, a condition on disjunctive heads is added to the original definition of
finitary program [7]. Given a dependency relation which considers only connections between head and body
atoms (that is, a > b iff there exists r such that a ∈ H(r) and b ∈ B(r)), a disjunctive program P is finitary
in the sense of [6] if (1) each ground atom in P depends on finitely many other atoms, (2) the set S of atoms
appearing in odd-negated cycles is finite and (3) the set R of atoms a for which there is a rule r ∈ P in which
a ∈ max>(H(r)) and there is an atom b ∈ H(r) which is recursive with a and a positively depends on b, is
finite 10.

Interestingly, the class of DFRP programs herein defined, which enjoys the decidability of reasoning (as
proved in Theorem 6.1), enlarges the positive subclass of disjunctive finitary programs of [6]. Indeed, while all
positive finitary programs trivially belong to the class of DFRP programs, the above mentioned third condition is
not guaranteed to be fulfilled, although negation is forbidden, as witnessed by the following program:

p(X) ∨ q(X) :- s(X). q(X) :- p(X).
p(f(X)) :- q(X). p(1).
p(X) :- q(X).

Baselice et al., in [3], consider instead a redefinition (including disjunction) of finitely-recursive programs,
initially introduced in [7] as a super-class of finitary programs allowing function symbols and negation. The
authors provide a compactness property result for such programs and some interesting semi-decidability results
for cautious ground querying, but no decidability results about positive disjunctive programs. On the contrary,
we focus on decidability results for disjunctive finitely-recursive positive programs, also providing an effective
strategy for the actual computation of all ground reasoning tasks.

It is also worth mentioning that the introduction of functional terms (or similar constructs) have been studied
in several other fields, besides Logic Programming, such as deductive databases (see LDL [28]); furthermore,
studies on computable fragments of logic programs with functions are also related to termination studies of
SLD-resolution for Prolog programs (see e.g. [30, 9, 10]).

Some other papers about the magic-set technique [1, 34, 4] are related to the present work as well, for which
different extensions and refinements have been proposed. Among the more recent works, an adaptation for soft-
stratifiable programs [5], the generalization to the disjunctive case [14] and to Datalog with (possibly unstratified)
negation [16] are worth remembering.

8. Conclusions

In this work we have taken in consideration the problem of query answering over disjunctive finitely recursive
positive (DFRP) programs, which encompasses many common encoding schemes, such as logic programs with
non ground facts, possibly including disjunction. We proved that both brave and cautious reasoning on ground

10Given erratum [8], it turns out that both S and R must be known besides being finite.
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queries are decidable, and illustrated how DFRP programs can be put in relationship with equivalent finitely-
ground programs: this enables accomplishing querying on DFRP programs using standard bottom-up techniques,
making viable the usage of such programs with standard ASP solvers. We thus enriched the family of logic
programs with function symbols, for which ground query answering can be performed in practice.
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