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Fast Query Answering over Existential Rules

NICOLA LEONE, MARCO MANNA, GIORGIO TERRACINA and PIERFRANCESCO
VELTRI, University of Calabria, Italy

Enhancing Datalog with existential quantification gives rise to Datalog∃ , a powerful knowledge represen-
tation language widely used in ontology-based query answering. In this setting, a conjunctive query is eval-
uated over a Datalog∃ program consisting of extensional data paired with so-called “existential” rules. Due
to their high expressiveness, such rules make the evaluation of queries undecidable, even when the latter
are atomic. Decidable generalizations of Datalog existential rules have been proposed in the literature (such
as weakly-acyclic and weakly-guarded); but they pay the price of higher computational complexity, hinder-
ing the implementation of effective systems. Conversely, the results in this paper demonstrate that it is
definitely possible to enable fast yet powerful query answering over existential rules, ensuring decidability
without any complexity overhead.

On the theoretical side, we define the class of parsimonious programs which guarantees decidability of
atomic queries. We then strengthen this class to strongly parsimonious programs ensuring decidability also
for conjunctive queries. Since parsimony is an undecidable property, we single out Shy, an easily recogniz-
able class of strongly parsimonious programs that generalizes Datalog while preserving its complexity even
under conjunctive query evaluation. Shy generalizes also the class of linear existential programs, while it is
uncomparable to the other main classes ensuring decidability.

On the practical side, we exploit our results to implement DLV∃ , an effective system for query answering
over parsimonious existential rules. To asses its efficiency, we carry out an experimental analysis, comparing
DLV∃ against a number of state-of-the-art systems for ontology-based query answering. The results confirm
the effectiveness of DLV∃ , which outperforms all other systems.

1. INTRODUCTION
The computational problem of answering a Boolean query q against a logical theory
consisting of an extensional database D paired with an ontology Σ is attracting the
increasing attention of scientists in various fields of Computer Science, ranging from
artificial intelligence [Baget et al. 2011; Calvanese et al. 2013; Gottlob et al. 2014] to
database theory [Bienvenu et al. 2014; Gottlob et al. 2014; Bourhis et al. 2016] and
logic [Prez-Urbina et al. 2010; Bárány et al. 2014; Gottlob et al. 2013]. This problem,
best known as ontology-based query answering (OBQA) [Calı̀ et al. 2009b], is usually
stated asD ∪ Σ |= q, and it is equivalent to checking whether q is satisfied by all models
of D ∪ Σ according with the standard approach of first-order logics, yielding an open
world semantics [Abiteboul et al. 1995].

1.1. Motivation
A key issue in OBQA is the design of the language that is provided for specifying the
ontology Σ. This language should balance expressiveness and complexity. Ideally, the
language should be: (1) intuitive and easy-to-understand; (2) decidable (i.e., OBQA
should be decidable in this language); (3) efficiently computable; (4) powerful enough
in terms of expressiveness; and (5) suitable for an efficient implementation.

In this regard, Datalog± , the family of Datalog-based languages proposed by [Calı̀
et al. 2009a] for tractable query answering over ontologies, is arousing increasing in-
terest [Mugnier 2011]. This family has been introduced with the aim of “closing the gap
between the Semantic Web and databases” [Calı̀ et al. 2012] to provide the Web of Data
with scalable formalisms that can benefit from exiting database technologies. In fact,
Datalog± encompasses and generalizes well known ontology specification languages,
such as two well-known families of Description Logics called EL [Brandt 2004; Baader
et al. 2005; Rosati 2007] and DL-Lite [Calvanese et al. 2007; Artale et al. 2009], which
collect the basic tractable languages for OBQA in the context of the Semantic Web and
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A:2 N. Leone et al.

databases. From a syntactic point of view, Datalog± is mainly based on Datalog∃ , the
natural extension of Datalog [Abiteboul et al. 1995] that allows existentially quantified
variables in rule heads. For example, the following Datalog∃ (or “existential”) rules

person(john) ←
∃Y hasFather(X,Y ) ← person(X)

person(Y ) ← hasFather(X,Y )

state that John is a person, and that if X is a person, then X must have some father Y ,
who has to be a person as well. In general, Datalog± intends to collect all expressive ex-
tensions of Datalog which are based on existential quantification, equality-generating
dependencies, negative constraint, negation, and disjunction. In particular, the “plus”
symbol refers to any possible combination of these extensions, while the “minus” one
imposes at least decidability, since Datalog∃ alone is already undecidable [Calı̀ et al.
2013a].

The main decidable Datalog± fragments rely on the following four syntactic proper-
ties: weak-acyclicity [Fagin et al. 2005a], guardedness [Calı̀ et al. 2013a], linearity [Calı̀
et al. 2012], and stickiness [Calı̀ et al. 2010]. And these properties have been exploited
to define the basic classes of existential rules called weakly-acyclic, (weakly-)guarded,
linear, and sticky(-join), respectively. Several variants and combinations of these classes
have been defined and studied too [Baget et al. 2010a; Krötzsch and Rudolph 2011; Calı̀
et al. 2012; Civili and Rosati 2012; Gottlob et al. 2013]. But there are also decidable
“abstract” classes of Datalog∃ programs, called fes, bts and fus, depending on semantic
properties [Mugnier 2011].

The proposed languages enjoy the simplicity of Datalog and are endowed with a
number of desirable properties of ontology specification languages. Nevertheless, no
proposed class satisfies conditions (1)–(5) stated above (see Section 8). In particular,
some classes do not generalize Datalog; while those languages fully generalizing Dat-
alog pay the price of higher computational complexity hindering the implementation
of effective systems.

1.2. Summary of Contributions
In this work, we single out a new class of Datalog∃ programs, called shy, which en-
joys a new semantic property called parsimony and results in a powerful and yet
decidable ontology specification language that combines positive aspects of different
Datalog± languages. With respect to properties (1)–(5) above, the class of shy pro-
grams behaves as follows: (1) it inherits the simplicity and naturalness of Datalog;
(2) it is decidable; (3) it is efficiently computable (tractable data complexity and lim-
ited combined-complexity —no complexity overhead w.r.t. Datalog); (4) it offers a good
expressive power being a strict superset of Datalog; and (5) it is suitable for an ef-
ficient implementation. Specifically, shy programs can be evaluated by parsimonious
forward-chaining inference that allows for an efficient on-the-fly OBQA, as witnessed
by our experimental results.1 From a technical viewpoint, the contribution of the paper
is the following:

(1) Parsimonious chase: We define the parsimonious chase procedure, which is sound
and terminating over any Datalog∃ program. An infinite reapplication of this proce-
dure ensures completeness also for conjunctive queries.

(2) Parsimony: We propose a new semantic property called parsimony, and we prove
that on the abstract class of parsimonious Datalog∃ programs, called ps, atomic

1Intuitively, parsimonious inference generates no isomorphic atoms (see Section 3); while on-the-fly OBQA
does not need any preliminary materialization or compilation phase (see Section 9), and is very well suited
for query answering over frequently changing ontologies.
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Fast Query Answering over Existential Rules A:3

query answering is decidable and also efficiently computable via the parsimonious
chase. After showing that conjunctive query answering over ps is undecidable, we
focus on strongly parsimonious programs, or sps, to gain decidability also in the
presence of conjunctive queries. In particular, it suffices to “reapply” the parsimo-
nious chase a number of times that is linear in the size of the query. Moreover, we
demonstrate that both ps and sps preserve the same (data and combined) complex-
ity of Datalog for atomic query answering: the addition of existential quantifiers
does not bring any computational overhead here.

(3) Shyness: Since the recognition of parsimony is undecidable (we prove that it is
CORE-complete), we single out shy, a subclass of sps, which guarantees both easy
recognizability and efficient answering even to conjunctive queries. In particular,
shy generalizes Datalog as well as the class of linear existential programs (i.e., with
at most one body-atom), while it is uncomparable to the other main classes ensur-
ing decidability. Moreover, we demonstrate that shy preserves the same (data and
combined) complexity of Datalog for both atomic and conjunctive query answering.

(4) Implementation: We implement a bottom-up evaluation strategy for shy programs
inside the DLV system, and enhance the computation by a number of optimization
techniques, yielding DLV∃ —a powerful system for query answering over shy pro-
grams, which is profitably applicable for OBQA. To the best of our knowledge, DLV∃
has been the first2 system supporting the standard first-order semantics for un-
restricted CQs with existential variables over ontologies with advanced properties
(some of these beyond AC0), such as, role transitivity, role hierarchy, role inverse,
and concept products.3

(5) Comparison: We analyze related work, providing a precise taxonomy of the QA-
decidable Datalog∃ classes. It turns out that both sps and shy strictly contain both
datalog and linear, while they are uncomparable to fes (finite expansion sets), bts
(bounded treewidth sets), and fus (finite unification sets).

(6) Experiments: We perform an experimental analysis, comparing DLV∃ against a
number of state-of-the-art systems for OBQA. The positive results attained through
this analysis do give clear evidence that DLV∃ is definitely the most effective sys-
tem for query answering in dynamic environments, where the ontology is subject to
frequent changes, making pre-computations and static optimizations inapplicable.
In particular, it turns out that DLV∃ outperforms all other systems in terms of num-
ber of solved queries, and it is faster in terms of running time. The DLV∃ system
is freely available for experimenting with Datalog± and can be downloaded from
https://www.mat.unical.it/dlve/.

1.3. Organization
The remaining of the paper is organized as follows. Section 2 formally fixes syntax
and semantics of Datalog∃ programs, as well as some preliminaries and useful no-
tation. Section 3, after defining the parsimonious chase and parsimonious programs,
studies the decidability of atomic query answering over parsimonious programs. Sec-
tion 4, after refining the concept of parsimony, studies the decidability of conjunctive
query answering over strongly parsimonious programs. Section 5 presents the shy lan-
guage and its main properties. Section 6 deals with computational complexity. Sections
7 describes the DLV∃ system. Section 8 surveys notable related works and compares
the newly defined classes with the main decidable ones from the literature. Section 9
describes the experimental analysis carried out to evaluate the efficiency and the ef-
fectiveness of DLV∃ . Section 10 concludes the paper.

2DLV∃ has been released for the first time by Leone et al. [2012].
3These properties can be even combined under suitable restrictions.
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A:4 N. Leone et al.

2. DATALOG WITH EXISTENTIAL QUANTIFIERS
In this section, after introducing syntax and semantics of Datalog with existential
quantifiers, we fix the notion of ontological inference that we are going to consider in
this paper, which is the problem of answering a conjunctive query over a set of Datalog
rules extended with existential quantification in the head.

2.1. Preliminaries
The following notation will be used throughout the paper. We always denote by ∆C ,
∆N and ∆V , countably infinite domains of terms called constants, nulls and variables,
respectively; by ∆, the union of these three domains; by ϕ, a null; by X, Y and Z vari-
ables; by X, Y and Z, sets (or tuples) of variables; by R a relational schema consisting
of a set of relational predicates each of which has a fixed nonnegative arity; by a, b
and c, atoms being expressions of the form p(t), where p is a relational predicate, and
t = t1, . . . , tk is a tuple of terms.

A position p[i] (in a schemaR) is identified by a predicate p ∈ R and its i-th argument
(or attribute). For an atom a, we denote by pred(a) the relational predicate of a. For a
structure ς containing atoms, atoms(ς) denotes the set of atoms in ς, terms(ς) denotes
the set of terms occurring in atoms(ς), and arity(ς) denotes the maximum arity over all
the relational predicates occurring in ς.

If X is the set of variables in ς (namely, X = terms(ς)∩∆V ), then ς is also denoted by
ς[X]. A structure ς[∅] is called ground. If T ⊆ ∆ and T 6= ∅, then base(T ) denotes the set
of all atoms that can be formed with predicates of R and terms from T . An instance,
usually denoted by I, is any nonempty subset of base(∆C ∪∆N ).

A substitution is a total mapping from terms to terms. Consider a set T ⊆ ∆ and a
substitution σ : ∆→ ∆. The restriction of σ to T , denoted by σ|T , is the substitution σ′
such that t ∈ T implies σ′(t) = σ(t), and t /∈ T implies σ′(t) = t. In this case, we say that
σ is an extension of σ′, namely σ ⊇ σ′. The restriction σ|∅ defines the empty substitution,
conventionally denoted by σ∅. The application of σ to T , denoted by σ(T ), is the set
{σ(t) | t ∈ T}. For an atom a = p(t1, . . . , tk), we have that σ(a) = p(σ(t1), . . . , σ(tk)). For
a structure ς containing atoms, we denote by σ(ς) the structure obtained by replacing
each atom a of ς with σ(a). The composition of a substitution σ1 with a substitution σ2,
denoted by σ2 ◦ σ1, is the substitution associating each t ∈ ∆ to σ2(σ1(t)).

Let ς1 and ς2 be two structures containing atoms. A homomorphism from ς1 to ς2 is a
substitution h which satisfies the following conditions: (i) c ∈ ∆C implies h(c) = c; (ii)
ϕ ∈ ∆N implies h(ϕ) ∈ ∆C ∪∆N ; and (iii) h(ς1) is a substructure of ς2 (for example, if
ς1 and ς2 are sets of atoms, then h(ς1) ⊆ ς2).

2.2. Programs and Queries
An (existential) rule r is a finite expression of the form ∀X (∃Y a[X′∪Y] ← ς[X]), where
(i) X and Y are disjoint sets of variables (next called ∀-variables and ∃-variables, re-
spectively); (ii) X′ ⊆ X; (iii) a[X′∪Y] is an atom on the variables X′ ∪Y; and (iv) ς[X]

is a conjunction of (zero, one, or more) atoms on the variables X. Constants may also
occur in r. In the following, head(r) = a[X′∪Y], and body(r) = atoms(ς[X′∪Y]). Univer-
sal quantifiers are usually omitted to lighten the syntax, while existential quantifiers
are omitted only if Y = ∅. In the second case, r coincides with a standard Datalog
rule. If body(r) = ∅, then r is also called a fact. In particular, r is called existential
or ground fact according to whether r contains some ∃-variable or not, respectively. A
Datalog∃ program P is a finite set of Datalog∃ rules. We denote by pred(P ) the pred-
icates occurring in P , by data(P ) all the atoms in the head of the ground facts of P ,
and by dep(P ) the dependencies of P , which are the rules of P being not ground facts.
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Fast Query Answering over Existential Rules A:5

Finally, without loss of generality, we assume that, for each pair 〈r1, r2〉 of rules of P ,
vars(r1) ∩ vars(r2) = ∅.

Example 2.1. Consider the program P consisting of the following rules.

r1 : person(john) ←
r2 : ∃Y2 hasFather(X2, Y2) ← person(X2)
r3 : person(Y3) ← hasFather(X3, Y3)

We have that r1 is a ground fact, data(P ) = {person(john)}, and dep(P ) = {r2, r3}.

A conjunctive query (CQ) q is a first-order (FO) expression of the form ∃Y ς[X∪Y],
where X are the free variables, Y are the existential variables, and ς[X∪Y] is a con-
junction of atoms on the variables X ∪Y. Constants may also occur in q. To highlight
the free variables, we write q(X) instead of q. Moreover, q is called atomic if ς[X∪Y]

is simply an atom. Finally, a Boolean conjunctive query (BCQ) is a conjunctive query
without free variables.

Example 2.2. Both the following expressions are conjunctive queries.

q1 : ∃Y ∃Z hasFather(X,Y ), hasFather(Y, Z)
q2 : ∃X hasFather(john,X)

In particular, q1 has a single free variable, namely X. Regarding q2, it is Boolean since
it contains no free variable, and it is atomic since it consists of only one atom.

2.3. Semantics
Consider an instance I. We say that I satisfies a rule r if whenever there is a homo-
morphism h from body(r) to I, there is a homomorphism h′ ⊇ h|vars(body(r)) from head(r)
to I. Moreover, I is a model of a program P , denoted by I |= P , if I satisfies each rule
of P . Let mods(P ) denote the set of all the models of P .

Consider a BCQ q. We say that q is true over an instance I, denoted by I |= q, if there
is a homomorphism h = h|vars(q) from atoms(q) to I. Moreover, q is true over a program
P , denoted by P |= q, if q is true with respect to each model of P .

Consider a conjunctive query q(X). The answer to q over an instance I is the set
ans(q, I) = {σ|X : σ is a substitution and I |= σ|X(q)}. Observe that, in case q is a
BCQ, it holds that ans(q, I) = {σ∅} if and only if q is true over I. The answer to q over
a program P is the set ansP (q) = {σ : for each I ∈ mods(P ), σ ∈ ans(q, I)}.

We now fix the computational problem studied in this paper.

Definition 2.3 (Boolean Conjunctive Query Evaluation). The problem BCQEVAL is
defined as follows. Given a program P , and a Boolean conjunctive query q, decide
whether q is true over P .

Before concluding this section, we mention that the problem BCQEVAL can be car-
ried out by using a universal model. Actually, a model U of P is called universal if,
for each M ∈ mods(P ), there is a homomorphism from U to M . And such a property
immediately implies the following proposition [Fagin et al. 2005b].

PROPOSITION 2.4. Consider a program P , a universal model U of P , and a BCQ q.
It holds that P |= q if and only if U |= q.

2.4. The Chase
As already mentioned, the chase [Maier et al. 1979; Johnson and Klug 1984] is defi-
nitely the prime procedure for constructing a universal model of a program. Four main
variants of this procedure have been proposed in the literature, called oblivious (or
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A:6 N. Leone et al.

Input: A Datalog∃ program P .
Output: The universal model chase(P ).
1 I ′ := data(P );
2 I := I ′;
3 for each rule r of dep(P ) do
4 for each unspent (w.r.t. r) firing homomorphism h for the pair 〈r, I〉 do
5 if 〈r, h〉 satisfies the fire condition with respect to I ′ then I ′ := I ′ ∪ {fire(r, h)};
6 if I 6= I ′ then goto step 2;

else return I;

Fig. 1. The chase procedure.

naive) [Calı̀ et al. 2013b], skolem [Marnette 2009], restricted (or standard) [Fagin et al.
2005b], and core [Deutsch et al. 2008]. In what follows, the first and the third variants
are described, which are those that are exploited later in the paper.

Consider a rule r and an instance I. A firing homomorphism for the pair 〈r, I〉 is any
homomorphism h from body(r) to I such that h = h|vars(body(r)). The fire of r via h pro-
duces the atom fire(r, h) that is obtained from h(head(r)) by replacing each ∃-quantified
variable of r with a different null. After that, h is said to be spent with respect to r.

Depending on the variant of the chase under consideration, however, the fire of r via
h may be subject to a specific fire condition. Consider an instance I ′ ⊇ I. In the case of
the restricted chase, we say that the pair 〈r, h〉 satisfies the fire condition with respect
to I ′ if there is no homomorphism h′ ⊇ h from {head(r)} to I ′. Differently, in the case of
the oblivious chase, the pair 〈r, h〉 always satisfies the fire condition with respect to I ′.

Example 2.5. Let P be a program consisting of the following rules:

r1 : employee(john) ←
r2 : hasManager(john, john) ←
r3 : ∃Y3 worksFor(X3, Y3) ← employee(X3)
r4 : ∃Y4 hasManager(X4, Y4) ← employee(X4)
r5 : employee(X5) ← hasManager(Y5, X5)

The restricted chase produces the following output: rchase(P ) = data(P ) ∪
{worksFor(john, ϕ1)}, where worksFor(john, ϕ1) is the atom generated by the fire of r3
via homomorphism h3 : {X3 7→ john}. It is worth noting that the pair 〈r4, h4〉, with
h4 = {X4 7→ john}, does not satisfy the restricted fire condition with respect to data(P )
∪ {worksFor(john, ϕ1)}; therefore r4 will not be fired. In particular, fire(r4, h4) is not
generated because there exists a homomorphism h′4 ⊇ h4 from {hasManager(X4, Y4)}
to {hasManager(john, john)}. Thus, the procedure terminates after a finite number of
steps. Conversely, the oblivious chase produces infinitely many atoms: ochase(P ) =
data(P ) ∪ S1 ∪ S2, where S1 = {worksFor(john, ϕ1), hasManager(john, ϕ2)}, and S2 =
{employee(ϕi), hasManager(ϕi, ϕi+1)}i≥2.

Starting from a program P , Figure 1 illustrates the overall chase procedure over
P . The procedure consists of an exhaustive series of fires in a breadth-first (level-
saturating) fashion, which leads as result to the (possibly infinite) universal model
chase(P ). More precisely, as far as the restricted (resp., oblivious) chase is concerned,
the output of Figure 1 can be also denoted by rchase(P ) (resp., ochase(P )). Importantly,
different fires (of the same or different rules) always introduce different “fresh” nulls.

For simplicity of exposition and without loss of generality, we assume that nulls
introduced at each fire functionally depend on the pair 〈r, h〉 that is involved in the
fire. The last assumption has the immediate consequence that (regardless of the order
in which the rules and the firing homomorphisms are processed) ochase(P ) can be
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Fast Query Answering over Existential Rules A:7

considered unique and that rchase(P ) ⊆ ochase(P ). For example, such a behavior can
be achieved as follows: given a pair 〈r, h〉 such that r (as given in Section 2.2) contains
an existentially quantified variable Y , it suffices to pick ϕ〈Y,h(X)〉 as the fresh null
replacing Y when the oblivious chase produces fire(r, h).4

Finally, the chase relation CR[P ] of P is the maximal subset of ochase(P )×ochase(P )
satisfying the following condition: if 〈a, b〉 belongs to CR[P ], then there exist a rule r
and a homomorphism h such that: (i) a ∈ h(body(r)), and (ii) b = fire(r, h) has been
produced by the fire of r via h.

PROPOSITION 2.6. [Fagin et al. 2005b; Deutsch et al. 2008] Given a program P ,
instance chase(P ) is a universal model of P .

Unfortunately, the chase procedure does not always terminate.

PROPOSITION 2.7. [Fagin et al. 2005b; Deutsch et al. 2008] The problem BCQEVAL
is undecidable, even for atomic queries. In particular, it is RE-complete.

3. DECIDABILITY OVER ATOMIC QUERIES: PARSIMONIOUS PROGRAMS
This section considers a novel semantic property, called parsimony, that guarantees
decidability of atomic query answering in general, and of conjunctive query answering
under some assumptions provided in the next section. To this end, we start by defining
a variant of the chase procedure presented in Section 2.4, called parsimonious chase,
that differs from the original version only for the adoption of a stricter fire condition.

Definition 3.1. Consider a rule r, an instance I, and a firing homomorphism h for
〈r, I〉. The pair 〈r, h〉 satisfies the parsimonious fire condition with respect to an in-
stance I ′ ⊇ I if there is no homomorphism from {h(head(r))} to I ′.

Differently from the standard chase, a null in h(head(r)) can be mapped to ∆C ∪
∆N . The parsimonious chase is the procedure that is obtained from the one shown
in Figure 1 by replacing the original fire condition (step 5) with the parsimonious one
introduced in Definition 3.1. The new output is denoted by pchase(P ). We now compare,
with the aid of the following example, the behavior of the parsimonious chase with that
of the original one.

Example 3.2. Consider again program P given in Example 2.1. The parsimonious
chase terminates after a finite number of steps and produces the following output:
pchase(P ) = {person(john), hasFather(john, ϕ1 )}, by firing rule r2 only. In fact, the pair
〈r3, {X3 7→ john, Y3 7→ ϕ1}〉 does not satisfy the parsimonious fire condition since
there is a homomorphism from {person(ϕ1)} to pchase(P ). Conversely, the original
chase procedure does not stop and generates an infinite number of fathers. In par-
ticular, we have that chase(P ) = pchase(P ) ∪ S1 ∪ S2, where S1 = {person(ϕi)}i∈N+ and
S2 = {hasFather(ϕi , ϕi+1 )}i∈N+ .

Note that, differently from chase(P ), the instance pchase(P ) might not be a model.
However, as stated in the following proposition, the parsimonious chase is sound for
query answering purposes.

PROPOSITION 3.3. Consider a program P . It holds that pchase(P ) ⊆ ochase(P ) and,
therefore, that ochase(dep(P ) ∪ pchase(P )) = ochase(P ).

4Since different rules share no variable, ϕ〈Y,h(X)〉 and ϕ〈Y,r,h(X)〉 are equivalent. Moreover, note that a
standard Skolemization (as in the skolem chase introduced by Marnette [2009]) replacing Y in r by the
functional term fY (X′) would produce a different result since X′ ⊆ X.
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A:8 N. Leone et al.

PROOF. The statement holds since we are assuming that the nulls introduced at
each fire functionally depend on the pair 〈r, h〉 that is involved in the fire, and since the
parsimonious fire condition is a stricter criterion than the oblivious one. In fact, given
a rule r, an instance I, and a firing homomorphism h for 〈r, I〉, it holds that if there
is no homomorphism from {h(head(r))} to another instance I ′ ⊇ I, then there is also
no homomorphism h′ ⊇ h from {head(r)} to I ′. Moreover, ochase(dep(P ) ∪ pchase(P )) =
ochase(P ) holds since the chase is a monotone procedure.

Based on Definition 3.1, we next define a new class of programs depending on a novel
semantic property, called parsimony.

Definition 3.4 (Parsimony). A program P is called parsimonious if, for each atom a
of chase(P ), there exists a homomorphism from {a} to pchase(P ).

Observe that, according to Definition 3.4, the program discussed in Example 3.2 is
parsimonious because for each person(ϕ) ∈ S1, there exists homomorphism h = {ϕ 7→
john} such that h(person(ϕ)) ∈ pchase(P ), and for each hasFather(ϕ,ϕ′) ∈ S2, there
exists a homomorphism h′ = {ϕ 7→ john, ϕ′ 7→ ϕ1} such that h′(hasFather(ϕ,ϕ′)) ∈
pchase(P ).

Before proving that parsimony guarantees decidability of Boolean atomic query an-
swering, we show that, for each program P , pchase(P ) can be computed in finite time,
and therefore it is always of finite size.

PROPOSITION 3.5. The parsimonious chase always terminates.

PROOF. Consider a program P . Let C = terms(data(P )), c = |C| be the number of
constants of P , and ω = arity(P ). We claim that |pchase(P )| ≤ |pred(P )| · (c + ω)ω.
Towards a contradiction, assume that |pchase(P )| > |pred(P )| · (c+ ω)ω. By Proposition
3.3, it holds that pchase(P ) ⊆ ochase(P ), and according to the chase procedure we have
that ochase(P ) ⊆ base(C ∪∆N ). Hence, pchase(P ) ⊆ base(C ∪∆N ). However, any subset
S of base(C ∪∆N ) with |S| > |pred(P )| · (c+ ω)ω necessarily contains two atoms, say a
and a′, which are isomorphic, namely there is a homomorphism h from {a} to {a′} such
that h−1 is a homomorphism from {a′} to {a}. Therefore, pchase(P ) would necessarily
contain at least two such isomorphic atoms a and a′. Since data(P ) contains no pair of
isomorphic atoms, it follows that a or a′ is produced by the parsimonious chase. But this
is not possible because the parsimonious fire condition would be violated. Finally, in
the worst case —when the procedure generates one atom during each macro iteration
beginning at step 2— the parsimonious chase stops after finitely many steps.

We are now ready to show that parsimony guarantees decidability of Boolean atomic
query answering.

THEOREM 3.6. The problem BCQEVAL over parsimonious programs and atomic
queries is decidable.

PROOF. Consider a parsimonious program P and a Boolean atomic query q =
∃Y a[Y]. Since, by Proposition 3.5, the parsimonious chase always terminates after
finitely many steps, to prove the statement it suffices to show that ochase(P ) |= q if,
and only if, pchase(P ) |= q. The “if” direction holds since pchase(P ) ⊆ ochase(P ), by
Proposition 3.3. Regarding the “only if” direction, we know that there is a homomor-
phism h from {a} to ochase(P ). But, by Definition 3.4, we also know that there is a
homomorphism h′ from {h(a)} to pchase(P ). Hence, h′ ◦ h is a homomorphism from {a}
to pchase(P ).
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Fast Query Answering over Existential Rules A:9

4. DECIDABILITY OVER CONJUNCTIVE QUERIES: STRONGLY PARSIMONIOUS PROGRAMS
Unfortunately, parsimony alone is not enough to guarantee also the decidability of
Boolean conjunctive query evaluation, and therefore of conjunctive query answering.

THEOREM 4.1. The problem BCQEVAL over parsimonious programs is undecidable.

PROOF. To prove the statement, we define a family of parsimonious programs each
of which simulates the behavior of a single-tape deterministic Turing machine that
reads the empty string. The first part of the construction —inspired by the one pro-
vided by Calı̀ et al. [2013b]— serves to simulate a given Turing machine on the
empty string; the second one provides extra rules that do not alter the aforemen-
tioned simulation but do make the entire program parsimonious by “saturating” the
output of the parsimonious chase with harmless atoms. More precisely, consider a
single-tape deterministic Turing machine M = 〈K,Σ, s0, δ〉 where: (i) K is a finite
set of states; (ii) Σ is the alphabet of M ; (iii) s0 ∈ K is the initial state; and (iv)
δ : K × (Σ ∪ {t}) → (K ∪ {h}) × (Σ ∪ {t}) ×D is the (total) transition function of M ,
where t is the blank symbol, h is the halting state, and D = {left , stay , right} denotes
the standard motion directions. We build a parsimonious program P and a BCQ q such
that M(ε) terminates if, and only if, P |= q.

For each transition of M of the form δ(s, a) = (s′a′d), we add to P the following fact:

trans(s, a, s′, a′, d) ←

To store the configurations of M on ε, we use the predicates tape, cursor and state. In
particular, an atom tape(t, c, a) says that at time t the content of the tape-cell c is the
symbol a. Similarly, cursor(t, c) represents the fact that at time t the cursor is under
the cell c. Finally, state(t, s) says that at time t the state of the machine is s.

To consider the fact that M on ε can use infinitely many cells and, therefore, perform
infinitely many steps, we add to P the following rules, which define a countably infinite
well-ordered set of elements that will be used for both cells and steps:

index (0) ←
∃Y next(X,Y ) ← index (X)

index (Y ) ← next(X,Y )

We are now ready to simulate the behavior of M over ε. To represent the initial
configuration of the machine, we add to P the following facts:

cursor(0, 0) ←
state(0, s0) ←

tape(0, 0,t) ←

saying that at time 0: the cursor is under cell 0, the state of M is s0, and the content of
tape-cell 0 is symbol t, respectively. For each configuration, the following rule collects
in a single predicate trigger the main information used by M to take a single step
according to δ:

trigger(T,C, S,A) ← cursor(T,C), state(T, S), tape(T,C,A)

In particular, an atom trigger(t, c, s, a) says that at time t: the cursor is under cell c,
the state of M is s, and the content of c is a. To update the cursor position during a
single step, we add to P the following rules, which consider the three possible motion
directions of D:

cursor(T ′, Cr) ← trigger(T,C, S,A), trans(S,A, , , right), next(C,Cr),next(T, T ′)
cursor(T ′, Cl) ← trigger(T,C, S,A), trans(S,A, , , left), next(Cl, C),next(T, T ′)
cursor(T ′, C) ← trigger(T,C, S,A), trans(S,A, , , stay), next(T, T ′)
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A:10 N. Leone et al.

Similarly, we update the state of M and the content of the tape-cell under the cursor:

state(T ′, S′) ← trigger(T,C, S,A), trans(S,A, S′, , ), next(T, T ′)
tape(T ′, C,A′) ← trigger(T,C, S,A), trans(S,A, , A′, ), next(T, T ′)

write(T,C) ← trigger(T,C, S,A), trans(S,A, , , )

Notice that, predicate write is used to mark, during each single step, the tape-cell that
has been modified. Anyway, we need additional “inertia” rules to ensure that all other
tape-cells preserve their previous value. To this end, we use two different markings:
keepr for the tape positions that follow the one marked with write, and keepl for the
preceding tape positions. In this way, we are able to ensure that, at every time instant
t, every tape-cell c, such that keepl(t , c) or keepf (t , c) is true, keeps the same symbol at
instant t′ following t. Thus, the following rules propagate the aforementioned markings
forward and backward, respectively, starting from the marked tape positions:

keepr(T,Cr) ← write(T,C), next(C,Cr)
keepr(T,Cr) ← keepr(T,C), next(C,Cr)
keepl(T,Cl) ← write(T,C), next(Cl, C)
keepl(T,Cl) ← keepl(T,C), next(Cl, C)

To update the tape-content after each step of M , we use the following rules guarantee-
ing that the tape-cells marked by either keepr or keepl keep their previous values:

tape(T ′, C,A) ← tape(T,C,A), keepr(T,C), next(T, T ′)
tape(T ′, C,A) ← tape(T,C,A), keepl(T,C), next(T, T ′)

Finally, the Boolean conjunctive query q is:
∃T index(T ), state(T, h)

This concludes the first part of our construction. To show that M(ε) = h if and only
if P |= q holds, let us first assume that M(ε) = h. Then, there exists a sequence
of machine transitions which starts from the initial configuration and terminates in
the halting one. Notice that, both the initial configuration and the transition function
of M have been encoded in P in such a way that they can simulate the behaviour
of M step by step. Consequently, since the rules of P are deterministically applied
according to the transition function, we have that, by construction, there exists a time
step t such that index (t), state(t, h) ∈ chase(P ). Hence, in this case P |= q. Whereas,
the “if” direction follows from the fact that if P |= q then there exists a time step t
such that state(t , h) is produced by the chase. This implies that, going backward to
the initial state in the chase, there exists a sequence of time steps which led M to the
halting state. Notice that, such a sequence is produced by a deterministic application
of the rules of P which encode the transition function of M . This means that, in this
case, M over ε would terminate in the halting state. Thus, we can now assert that, by
construction, M(ε) = h if and only if P |= q.

Up to this point, however, program P might not be parsimonious in general. To make
the program parsimonious, while preserving its properties of simulating M over ε, we
add to P the following rules:

∃T state(T, S) ← trans(S, , , , )
∃T state(T, h) ←
∃T tape(T, 0, A) ← trans( , A, , , )

∃T∃C trigger(T,C, S,A) ← state( , S), tape( , , A)

Let us now refer to this new program as P and to the first version as P−. We recall
that, a program P is called parsimonious if, for each atom a of chase(P ) there exists a
homomorphism from {a} to pchase(P ). Thus, to prove that P is parsimonious, it suffices
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Fast Query Answering over Existential Rules A:11

to identify a superset X of chase(P ) such that there exists a homomorphism from each
atom of X to pchase(P ). To this end, let ∆′N = ∆N ∪ {0} be a set of terms, and Σ′ =
Σ ∪ {t} be an alphabet; we construct X as the union of the following sets of atoms:

Xtrans = {trans(s, a, s′, a′, d) | (s, a) 7→ (s′, a′, d) ∈ δ}
Xindex = {index (i) | i ∈ ∆′N}
Xnext = {next(i, i′) | (i, i′) ∈ ∆′N ×∆N}
Xtape = {tape(0, 0,t)} ∪ {tape(t, c, a) | (t, c, a) ∈ ∆N ×∆′N × Σ′}
Xcursor = {cursor(0, 0)} ∪ {cursor(t, c) | (t, c) ∈ ∆N ×∆′N}
Xstate = {state(0, s0)} ∪ {state(t, s) | (t, s) ∈ ∆N ×K}
Xwrite = {write(0, 0)} ∪ {write(t, c) | (t, c) ∈ ∆N ×∆′N}
Xkeepr

= {keepr(t, c) | (t, c) ∈ ∆′N ×∆N}
Xkeepl

= {keepl(t, c) | (t, c) ∈ ∆N ×∆′N}
Xtrigger = {trigger(0, 0, s0,t)} ∪ {trigger(t, c, s, a) | (t, c, s, a) ∈ ∆N ×∆′N ×K × Σ′}

First of all, let us analyze chase(P ) to prove that it is a subset of X. Let R =
{p1, p2, ..., pk} be the relational schema consisting of the relational predicates of P ,
chase(P ) can be partitioned into k mutually disjoint subsets S|p1, S|p2, ..., S|pk such
that S|pi = {a | a ∈ chase(P ) ∧ pred(a) = pi} for each predicate pi ∈ R. Thus, to prove
that chase(P ) ∈ X it suffices to show that S|pi ∈ X for each predicate pi ∈ R. Starting
from data(P ) and considering all the possible ways of propagating a single term dur-
ing the chase, we have that S|pi ⊆ Xpi for each predicate pi ∈ R, which immediately
implies that chase(P ) ⊆ X.

Let us now consider the parsimonious chase in order to prove that there is a homo-
morphism from each atom of X to pchase(P ). In particular, pchase(P ) is composed by
the union of the following sets of atoms:

Ytrans = {trans(s, a, s′, a′, d) | (s, a) 7→ (s′, a′, d) ∈ δ}
Yindex = {index (0)}
Ynext = {next(0, ϕ1)}
Ytape = {tape(0, 0,t)} ∪ {tape(ϕ2, 0, a) | a ∈ Σ ∪ {t}}
Ycursor = {cursor(0, 0)}
Ystate = {state(0, s0)} ∪ {state(ϕ3, s) | s ∈ K}
Ywrite = {write(0, 0)}
Ykeepr

= {keepr(0, ϕ4)}
Ykeepl

= {keepl(ϕ5, 0)}
Ytrigger = {trigger(0, 0, s0,t)} ∪ {trigger(ϕ6, ϕ7, s, a) | s ∈ K ∧ a ∈ Σ ∪ {t}}

Given a predicate p ∈ R, it is now straightforward to see that for each atom a ∈ Xp

there exists a homomorphism from a to Yp. This implies that there is a homomorphism
from each atom of X to pchase(P ). Consequently, since we proved that chase(P ) ⊆ X,
we immediately get that P is parsimonious.

Now, to prove that M(ε) = h if and only if P |= q still holds despite the addition of
the above rules, we show that the new rules do not interfer in the evaluation of q. Let
P ′ = P − P− be the set of rules added to P− in order to get parsimony. Let us denote
by A′ and A− the disjoint sets of atoms generated during the chase by the fire of rules
from P ′ and P−, respectively. In particular, we have that chase(P ) = data(P )∪A′ ∪A−
where A′ ∩ data(P ) = ∅ and A− ∩ data(P ) = ∅. The set of predicates occurring in A′ is
referred to as RA′ = {state, tape, trigger ,write}. Notice that, A′ 6|= q holds because there
are no atoms of predicate index in A′. Hence, to prove that the addition of P ′ to P−
does not interfer in the evaluation of q, it suffices to show that there is no rule in P−

which admits a firing homomorphism that maps a body atom to an atom of A′. It is
straightforward to see that the claim holds for the rules of P− where a predicate from
RA′ does not occur in the body. Consider now the rest of the rules of P−, denoted by

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 11 of 43 Transactions on Computational Logic

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



A:12 N. Leone et al.

person(john)

hasFather(john, ϕ1)

person(ϕ1)

hasFather(ϕ1, ϕ2)

person(ϕ2)

hasFather(ϕ2, ϕ3)

r2

r3

r2

r3

r2

h

X

Y ′

Y

Fig. 2. A chase-fragment and a nucleus of the program considered in Example 4.3.

P−[RA′ ]
= {r | r ∈ P− ∧ ∃ a ∈ body(r) s.t. pred(a) = RA′}. Let N ′ and N− be the sets of

nulls appearing in A′ and A−, respectively. More specifically, N ′ = terms(A′)∩∆N and
N− = terms(A−) ∩∆N . Notice that, by construction, a null from N ′ occurs in the first
position of each atom a ∈ A′. Moreover, it is easy to verify that, for each rule r ∈ P−[RA′ ]

the following holds: given an atom a ∈ body(r) such that pred(a) ∈ RA′ , (i) there exists
an atom b ∈ body(r) such that the first position of a is in join with the first position of
b and (ii) just nulls from N− may occur in the first position of b in chase(P ). Since, by
construction, N ′∩N− = ∅, it thus follows that atoms from A′ cannot be used to produce
firing homomorphisms involving the rules of P−. Then, the addition of P ′ to P− does
not affect the evaluation of q. This implies that P |= q if and only if P− |= q. Thus, we
immediately get that M(ε) terminates if and only if P |= q, where P is parsimonious.

Hence, the claim follows because we have reduced the halting problem to the prob-
lem of answering boolean conjunctive queries over parsimonious programs. The latter
problem is thus undecidable.

We next refine the concept of parsimony to guarantee also the decidability of con-
junctive query answering. To this aim, we first introduce the notion of “nucleus”.

Definition 4.2 (Nucleus). Consider a program P . A set X ⊆ ochase(P ) is a nucleus
of ochase(P ) if, for each Y ⊆ ochase(P ) containing nulls, there exists a homomorphism
from Y to ochase(P ) that maps at least one null of Y to a term of X.

This is a key notion which will be illustrated by means of the following example.

Example 4.3. Let us consider again program P of Example 2.1. Starting from
data(P ) = {person(john)}, Figure 2 illustrates the behaviour of the oblivious chase
procedure over P . Every edge (a, b) with label r denotes that b is the atom generated
by the fire of rule r via a homomorphism that maps body(r) to a.

We claim that the set X of atoms depicted in Figure 2 is a nucleus of ochase(P ).
Consider, for instance, the set Y in the figure. Clearly, it can be mapped to Y ′ via a
homomorphism h that associates null ϕ2 to null ϕ1. And we know that ϕ1 is a term
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Fast Query Answering over Existential Rules A:13

of X. However, to prove formally that X is a nucleus of ochase(P ) one has to consider
every possible subset of ochase(P ). To this end, let us decompose ochase(P ) as follows:

ochase(P ) = X ∪ {person(ϕi) | i ∈ N} ∪ {parent(ϕi, ϕi+1) | i ∈ N}.

Consider now an arbitrary subset Y of ochase(P ). Let K = {i | ϕi ∈ terms(Y )}, and k =
min(K). There always exists a homomorphism h : terms(Y ) → terms(ochase(P )) from
Y to ochase(P ) such that, for each ϕi ∈ terms(Y ), h(ϕi) = ϕi−k+1. And, in particular, h
maps null ϕk to ϕ1, which we recall is a term of X.

At this point, we are ready to define the notion of “strong parsimony”.

Definition 4.4 (Strong Parsimony). A program P is strongly parsimonious if the
following conditions —respectively called uniformity and compactness— are satisfied:

(1) P ∪ F is parsimonious, for each set F of facts; and
(2) pchase(P ) is a nucleus of ochase(P ).

This new class of programs is called strongly parsimonious sets (sps, for short).

Clearly, according to uniformity, every strongly parsimonious program is trivially
parsimonious, by choosing F = ∅. Regarding compactness, we refer again to Exam-
ple 4.3. Actually, the nucleus X depicted in Figure 2 coincides with pchase(P ). This
means that every subset of ochase(P ) containing nulls can be embedded into ochase(P )
itself via a homomorphism that maps some null into a term of pchase(P ).

The following proposition states an important property of strongly parsimonious pro-
grams, namely that they are closed under data expansions.

PROPOSITION 4.5. Consider a strongly parsimonious program P . For each set F of
facts, the program P ∪ F is still strongly parsimonious.

PROOF. Let F be a set of facts, and P ′ = P ∪ F . Program P ′ enjoys uniformity
because, for each set F ′ of facts, P ′ ∪ F ′ is parsimonious. In fact, this is true because
P enjoys uniformity and therefore P ∪ F ∪ F ′ is parsimonious. By using a similar
argument, it is possible to show that also P ∪ F enjoys compactness.

To prove that conjunctive query answering over strongly parsimonious programs is
decidable, we introduce a technique called parsimonious-chase resumption. Intuitively,
assume that we have a program P such that pchase(P ) = {p(c, ϕ), r(c, e), s(d, e)}, and
that ochase(P ) = pchase(P )∪{s(ϕ, e)}. Consider the BCQ q = ∃X∃Y ∃Z p(X,Y ), s(Y, Z).
Clearly, pchase(P ) 6|= q even if P |= q. Let us both “promote” ϕ to a constant in ∆C , and
“resume” the parsimonious chase execution at step 2, in the same state in which it had
stopped after returning the set I at step 6 in the else-branch. But, now, since ϕ can be
considered as a constant, then there is no homomorphism from {s(ϕ, e)} to pchase(P ).
Thus, s(ϕ, e) can be inferred by the algorithm and used to prove that q is true over P .

We call freezing the act of promoting a null from ∆N to a novel constant in ∆C . Also,
given an instance I, we denote by dIc the set obtained from I after freezing all of its
nulls. The following definition formalizes the notion of parsimonious-chase resumption
after freezing actions.

Definition 4.6. Consider a program P . The output of the parsimonious chase after
k > 0 resumptions is defined as follows:

(1) pchase(P, 0) = data(P );
(2) pchase(P, k) = pchase(dep(P ) ∪ dpchase(k − 1)c).

Clearly, it holds that pchase(P, 1) = pchase(dep(P ) ∪ data(P )) = pchase(P ).
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A:14 N. Leone et al.

According to the chase procedure, the sequence {pchase(P, k)}k∈N is monotonically
increasing; the limit of this sequence is denoted by pchase(P,∞). The next proposition
states that the proposed resumption technique is sound for query answering purposes.

PROPOSITION 4.7. Given a program P , it holds that pchase(P,∞) ⊆ ochase(P ).

PROOF. This is proved by induction on the number of resumptions. The base case,
for k = 0, is obviously true since data(P ) ⊆ ochase(P ). Let us assume that the claim
holds for some k > 0, namely that pchase(P, k) ⊆ ochase(P ). We now show that
pchase(P, k + 1) ⊆ ochase(P ) still holds. To this end, let P ′ = P ∪ dpchase(P, k)c. By
Proposition 3.3, we know that pchase(P ′) ⊆ ochase(P ′). However, since we are as-
suming that pchase(P, k) ⊆ ochase(P ), by the monotonicity and the uniqueness of
the oblivious chase, we immediately have that ochase(P ′) = ochase(P ) and there-
fore that pchase(P ′) ⊆ ochase(P ). Since, pchase(P, k) ⊇ data(P ), by Definition 4.6,
we have that pchase(P ′) = pchase(dep(P ) ∪ dpchase(P, k)c) = pchase(P, k + 1). Hence,
pchase(P, k + 1) ⊆ ochase(P ).

Actually, an infinite application of the proposed resumption technique ensures also
completeness of query answering. In fact, even if pchase(P,∞) might not coincide with
ochase(P ), it is still a universal model of P . However, since also pchase(P,∞) is gen-
erally infinite, its universality does not imply decidability. Hence, we skip its proof in
favor of a stronger property, which is the main result of this section.

PROPOSITION 4.8. Consider a strongly parsimonious program P and a Boolean
conjunctive query q. If P |= q, then pchase(P, |vars(q)|+ 1) |= q.

PROOF. Let n = |vars(q)| denote the number of variables occurring in q. Let us
consider a homomorphism h from atoms(q) to ochase(P ). We claim that there exists a
homomorphism hn from h(atoms(q)) to ochase(P ) that associates all the nulls occurring
in h(atoms(q)) with terms occurring in pchase(P, n). Observe that the nulls occurring
in h(atoms(q)) are at most n. To this end, we proceed by induction on the number of
resumptions. The base case, for k = 1 resumptions, is clearly true since P is strongly
parsimonious and therefore, by Definition 4.4, P enjoys compactness, namely there ex-
ists a homomorphism h1 from h(atoms(q)) to ochase(P ) that associates at least a null
occurring in h(atoms(q)) with a term occurring in pchase(P ) = pchase(P, 1). Let us as-
sume that the claim holds for some k > 0, namely that there exists a homomorphism hk
from h(atoms(q)) to ochase(P ) that associates at least k nulls occurring in h(atoms(q))
with terms occurring in pchase(P, k). We now show that there exists a homomorphism
hk+1 from h(atoms(q)) to ochase(P ) that associates at least k + 1 nulls occurring in
h(atoms(q)) with terms occurring in pchase(P, k + 1). Let Pk = P ∪ dpchase(P, k)c, and
qk = hk(h(q)), where also the nulls occurring in pchase(P, k) are considered frozen. By
Proposition 4.5, we know that also Pk is strongly parsimonious. Hence, there is a ho-
momorphism h′ from atoms(qk) to ochase(Pk) = ochase(P ) that associates at least a null
occurring in atoms(qk) with a term occurring in pchase(Pk) = pchase(P, k + 1). There-
fore, hk+1 = h′ ◦ hk is a homomorphism from h(atoms(q)) to ochase(P ) that associates
at least k + 1 nulls occurring in h(atoms(q)) with terms occurring in pchase(P, k + 1).

To conclude the proof, it suffices to observe that the uniformity of P implies that also
P ∪dpchase(P, n)c is parsimonious. In fact, since all the nulls occurring in hn(h(q)) also
occur in pchase(P, n) then, after another resumption, we can generate all the atoms
with constants and such nulls. Hence, pchase(P, n+ 1) |= q.

By combining Proposition 4.7 (soundness) with Proposition 4.8 (completeness), the
following result follows.

THEOREM 4.9. BCQEVAL over strongly parsimonious programs is decidable.
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Fast Query Answering over Existential Rules A:15

Input: A Datalog∃ program P , and a Boolean atomic query q.
1 if P is parsimonious then goto step 2;

else goto step 3;
2 if pchase(P ) |= q then accept;

else reject;
3 P := P ∪ efact(completion(P ));
4 goto step 1;

Fig. 3. The AmazingEvaluation procedure.

PROOF. In order to prove the statement, we are going to show that, for each strongly
parsimonious program P and for each Boolean conjunctive query q, it holds that P |= q
if and only if pchase(P, |vars(q)|+ 1) |= q.

Let n = |vars(q)| denote the number of variables occurring in q. Soundness, namely
pchase(P, n+1) |= q implies P |= q, directly follows by Proposition 4.7. For completeness,
namely P |= q implies pchase(P, n+ 1) |= q, follows by Proposition 4.8.

After showing that strong parsimony guarantees the decidability of conjunctive
query answering, we have to close this section with a negative result: (strongly) par-
simony is an undecidable property. This fact, although not too surprising, is formally
stated in the following theorem and it is the main reason for the identification of suffi-
cient syntactic conditions at the basis of a recognizable class of strongly parsimonious
programs, which is the subject of the next section.

THEOREM 4.10. Deciding whether a program is strongly parsimonious is not decid-
able. In particular, checking parsimony alone is already coRE-complete.

PROOF. For the membership, we show that the complementary problem is in RE,
namely we show how to semi-decide whether a program is not parsimonious. To this
end, consider a program P . First, we compute pchase(P ). Second, we run the oblivious
chase over dep(P ) ∪ pchase(P ) but, whenever there is a firing homomorphism h for
a pair 〈r, I〉, we perform an extra-check before adding fire(r, h) to I ′. In particular,
we check whether there is a homomorphism from {fire(r, h)} to I ′. In case P is not
parsimonious, by Definition 3.4 and Proposition 3.5, the chase necessarily generates
in a finite number of steps an atom fire(r, h) that cannot be mapped homomorphically
to I ′. Hence, our procedure accepts.

For the hardness, we proceed by contradiction. More precisely, we assume that
the problem of deciding whether a program is parsimonious is decidable, and we
provide a decision procedure, called AmazingEvaluation, for the problem BCQEVAL
over atomic queries, which is known to be RE-complete by Proposition 2.7. To this
end, given an atom a with terms from ∆C ∪ ∆N , we call efact(a) the existential fact
∃X a′ ←, where a′ is obtained from a via a substitution that maps each null occur-
ring in a into a different variable of X. For example, if a = p(c1, ϕ1, c2, ϕ2, ϕ1), then
efact(a) = ∃X∃Y p(c1, X, c2, Y,X) ←. Moreover, given a program P which is not par-
simonious, we denote by completion(P ) the earliest atom a that is generated by the
oblivious chase during the construction of ochase(P ) such that there is no homomor-
phism from {a} to pchase(P ). The AmazingEvaluation procedure is shown in Figure 3.
Clearly, the procedure terminates because steps 1 and 2 never fall in a loop since we
are assuming that deciding whether a program is parsimonious is decidable, and since
we know, by Theorem 3.6, that atomic query answering over parsimonious programs
is decidable. Moreover, step 3 is performed finitely many times since P evolves to a
parsimonious program and the output of the parsimonious chase is always finite, as
guaranteed by Proposition 3.5. The algorithm is sound since every atom completion(P )
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is an atom of ochase(P ), and because the addition of efact(completion(P )) to P leads
to the generation of an atom which is less “vital” than completion(P ). Finally, the al-
gorithm is complete since we add to P enough rules to satisfy all possible Boolean
atomic queries that are true over P . Hence, AmazingEvaluation would be always a
terminating procedure computing BCQEVAL over atomic queries, which is a clear con-
tradiction.

5. RECOGNIZABLE PARSIMONIOUS PROGRAMS
In this section, we work on the identification of sufficient syntactic conditions that
guarantee strongly parsimony in order to result in a new class of programs, called shy.

5.1. Shy Programs
The first step towards the design of shy is to generalize the existing notion of affected
position of a relational predicate with respect to a program. Such a notion has been
proposed by Calı̀ et al. [2008] to separate positions where the chase can introduce only
constants from those where nulls might appear. However, this notion suffers from two
major drawbacks: (i) it is not so informative to reveal whether two atoms of the chase
cannot host the same null (in the same or different positions); and (ii) it may mark as
affected positions that actually can never contain nulls.

Definition 5.1 (Invaded Positions). Consider a program P , an ∃-variable Y of P , a
predicate p of arity k, and an index i ∈ {1, . . . , k}. We say that position p[i] is invaded
by Y if there is a rule r of P such that head(r) = p(t1, . . . , tk) and either ti = Y , or ti is
a ∀-variable which occurs in the body of r only in positions that are invaded by Y .

According to the above definition, we have that if a position is invaded by some
variable, then it is affected; however, the converse is not true. The following example
compares the notion of invaded positions with that of affected positions.

Example 5.2. Consider the program P consisting of the following rules.

r1 : person(john) ←
r2 : ∃Y2 hasFather(X2, Y2) ← person(X2)
r3 : man(Y3) ← hasFather(X3, Y3)
r4 : ∃Y4 hasMother(X4, Y4) ← person(X4)
r5 : woman(Y5) ← hasMother(X5, Y5)
r6 : special(X6) ← man(X6),woman(X6)

The affected positions are: hasFather [2], man[1], hasMother [2], woman[1], and special [1].
However, hasFather [2] and man[1] are invaded by Y2, while hasMother [2] and woman[1]
are invaded by Y4. Hence, according to Definition 5.1, we have that special [1] is not
invaded by any variable, and therefore it is not “really” affected.

Our second step is to partition the variables occurring in a conjunction of atoms as
attacked (by a certain variable) or protected. To this end, consider a conjunction ς[X] of
atoms, and a variable X ∈ X. We say that X is attacked in ς by a variable Y if X occurs
in ς only in positions that are invaded by Y . Conversely, we say that X is protected in
ς if it is attacked by no variable. By considering again Example 5.2, variable Y3 is
attacked in body(r3) by Y2, while variable Y5 is attacked in body(r5) by Y4. Moreover,
since man[1] is invaded only by Y2 and woman[1] is invaded only by Y4, we have that X6

is protected in body(r6). We are now ready to define the new class of programs.

Definition 5.3 (Shy Programs). Consider a program P . A rule r of P is called shy
with respect to P if the following conditions are both satisfied:

(1) If a variable X occurs in more than one body atom, then X is protected in body(r);
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Fast Query Answering over Existential Rules A:17

(2) If two distinct ∀-variables are not protected in body(r) but occur both in head(r) and
in two different body atoms, then they are not attacked by the same variable.

Moreover, program P is called shy if every rule of P is shy with respect to P . Finally,
the class of shy programs is hereafter denoted by shy.

After noticing that a program is shy regardless its ground facts, we point out that
program P of Example 5.1 is shy because rules r1–r5 have at most one body atom,
and because variable X6 is protected in body(r6). Intuitively, the key idea behind this
class is as follows: During the execution of the chase over a shy program, nulls propa-
gated body-to-head do not meet each other to join. Before proving that shy enjoys strong
parsimony, we provide another example to better appreciate its syntactic properties.

Example 5.4. Consider the following rules

r1 : ∃Y1 p(X1, Y1) ← s(X1)
r2 : r(X2, Y2) ← p(X2, Y2), u(Y2)
r3 : ∃Y3 u(Y3) ← t(X3)

Let P = {r1, r2, r3}. Clearly, r1 and r3 are shy rules w.r.t. P , since they are rules with
one single body atom, which cannot violate any of the two shy conditions. Moreover,
rule r2 is also shy w.r.t. P as the positions p[2] and u[1] are invaded by disjoint sets of
existential variables. Indeed, p[2] is invaded by the existential variable Y1 of the first
rule, and u[1] is invaded by the existential variable Y3 of the third rule. Therefore, P is
a shy program. Consider now the further three rules

r4 : ∃Y4 p(Y4, X4) ← u(X4)
r5 : ∃Y5 p(X5, Y5) ← u(X5)
r6 : v(X6) ← r(X6, X6)

Let P ′ = P ∪{r4}. It is easy to see that r1, r3 and r4 are shy w.r.t. P ′. However, r2 is not
shy w.r.t. P ′, as property (1) is not satisfied. Indeed, variable Y2 occurring in two body
atoms in body(r2) is not protected, as the position p[2] and u[1] (the only positions in
which Y2 occurs) are invaded by the same existential variable, namely Y3. Therefore,
P ′ is not shy. Let P ′′ be the program P ∪ {r5, r6}. Again, r1, r3, r5 and r6 are trivially
shy w.r.t. P ′′; and again r2 is not shy w.r.t. P ′′. However, this time, r2 is not shy because
property (2) is not satisfied. Indeed, the universal variables X2 and Y2, occurring in
two different body atoms and in head(r2), are not protected in body(r2), as the position
p[1] and u[1] (in which X2 and Y2 occur, respectively) are attacked by the same variable
Y3. Therefore, P ′′ is not shy.

Essentially, during every possible chase step, condition (1) guarantees that each
variable occurring in more than one body atom is always mapped into a constant.
Although this is the key property behind shy, we now explain the role played by
condition (2) and its importance. To this aim, we exploit again P ′′, as introduced in
the previous example, and we reveal why this second condition, in a sense, turns
into the first one. Indeed, rule r6 bypasses the propagation of the same null in r2
via different variables. However, one can observe that rules r2 and r6 imply the rule
r′6 : v(X6) ← p(X6, Y6), u(X6), which of course does not satisfy condition (1). Actually,
it is not difficult to see that the rules dep(P ) of every program P can be rewritten (in-
dependently from data(P )) into an en equivalent (w.r.t. query answering) set of rules
that satisfy condition (1). As an example, consider the following rule r

∃W1 t(X1, Z1,W1) ← p(X1, Y1), r(Y1, Z1), u(Z1, Y1),
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A:18 N. Leone et al.

and assume that it belongs to a program P and that it is not shy w.r.t. P since it violates
condition (1) only. Let us now construct P ′ as P \ {r} plus the following two rules:

auxρ(X1, Y1, Y
′
1 , Z1, Z

′
1, Y

′′
1 ) ← p(X1, Y1), r(Y ′1 , Z1), u(Z ′1, Y

′′
1 )

∃W2 t(X2, Z2,W2) ← auxρ(X2, Y2, Y2, Z2, Z2, Y2).

Both the new rules satisfy now condition (1) w.r.t. P ′. Moreover, it is not difficult to see
that, for every set of facts F and for every BCQ q, it holds that F ∪ P |= q if and only
if F ∪ P ′ |= q. However, since r does not satisfy condition (1), this immediately implies
that the first new rule does not satisfy condition (2). Before concluding the section, we
show that shy is a recognizable class.

THEOREM 5.5. Checking whether a program P is shy is decidable. In particular,
this check is doable in polynomial-time.

PROOF. In order to check whether P belongs to shy, we need to construct the set of
invading variables for each position. The procedure used to build these sets is mono-
tone and stops as soon as a fixpoint is reached. Since the number n of variables that
may invade a position is fixed by the occurrences of ∃-variables in P , such a fixpoint
is always reached in finite time. Let k be the number of atoms occurring in P . To con-
clude the proof, it is enough to observe that there are at most k ·arity(P ) positions to be
checked in P , and, each of which may be invaded by at most n different variables.

5.2. Decidability
To show that BCQEVAL over shy is decidable we show that every shy program is indeed
strongly parsimonious.

THEOREM 5.6. shy ⊆ sps.

PROOF. To prove the statement, we show separately that a shy program P enjoys
both uniformity and compactness.

(Uniformity.) Consider an arbitrary set F of facts. We have to show that there is a ho-
momorphism from each singleton {b} ⊆ ochase(P ∪F ) to pchase(P ∪F ). By Proposition
3.3, we know that ochase(P∪F ) coincides with ochase(dep(P∪F )∪pchase(P∪F )), which
is also equivalent to ochase(dep(P ) ∪ pchase(P ∪ F )). Let P ′ = dep(P ) ∪ pchase(P ∪ F ).
We prove uniformity by induction on the number of fires performed by the oblivious
chase over P ′. To this end, let Oi denote the subset of ochase(P ′) containing only and
all the atoms generated during the first i fires. We are going to show that, for each
i > 0, there is a homomorphism from each singleton of Oi to pchase(P ∪ F ).

The base case, for i = 0, is obviously true since O0 = data(P ′) = pchase(P ∪ F ).
Assume the claim holds for some i > 0. We prove it at fire i + 1. Let 〈r, h〉 be the
pair involved in the (i + 1)th fire. We now show that there is a homomorphism from
{fire(r, h)} = Oi+1\Oi to pchase(P∪F ). Let body(r) = {a1, . . . , ak}. Since h(body(r)) ⊆ Oi,
by hypothesis we have that, for each j ∈ [1..k], there exists a homomorphism hj from
{h(aj)} to pchase(P ∪ F ). However, since P is shy, by Definition 5.3, h may map a
variable into a null only if such a variable does not appear in two different atoms.
Therefore, f = (h1 ◦ h) ◦ . . . ◦ (hk ◦ h) is a homomorphism from body(r) to pchase(P ∪
F ). This means that the pair 〈r, f〉 is considered during the parsimonious chase. If
〈r, f〉 satisfies (resp., does not satisfy) the parsimonious fire condition, then fire(r, f)
is (resp., is not) added to pchase(P ∪ F ). In both cases, we can say that there exists
a homomorphism from fire(r, f) to pchase(P ∪ F ). It remains to show why necessarily
there is a homomorphism g from fire(r, h) to fire(r, f). Let h′ ⊇ h such that h′(head(r)) =
fire(r, h) and f ′ ⊇ f such that f ′(head(r)) = fire(r, f). We define g as follows: for each
variable X of head(r), g(h′(X)) = f ′(X). To prove that g is indeed a homomorphism we
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Fast Query Answering over Existential Rules A:19

have to guarantee that, for each pair of ∀-variables X and Y such that h′(X) = h′(Y ),
we also have f ′(X) = f ′(Y ). If X and Y belong to the same atom in body(r), say aj ,
this is guaranteed by the fact that f maps {aj} to pchase(P ∪ F ). If X and Y belong
to different atoms in body(r), say aj , we rely on the second condition of Definition 5.3
which guarantees h cannot map X and Y to the same null.

(Compactness.) Consider a shy program P . We are going to restrict the chase relation
CR[P ]. For any set S ⊆ ochase(P ), we define G[P, S] = (nodes(G[P, S]), arcs(G[P, S]))
as the direct graph inductively defined as follows: a ∈ S implies a ∈ nodes(G[P, S]);
a ∈ nodes(G[P, S]) and (a, b) ∈ CR[P ] imply b ∈ nodes(G[P, S]) and (a, b) ∈ arcs(G[P, S]).
Intuitively, by interpreting CR[P ] also as a graph, G[P, S] is its maximal subgraph
induced by the nodes of S plus those reachable from nodes of S.

Consider a set YB ⊆ ochase(P ) of atoms containing nulls. We show that there is a
homomorphism from YB to ochase(P ) associating at least one of the nulls of YB with a
term of pchase(P ). Let N = ∆N ∩ terms(YB), and B = {b1, . . . , bn} be the set of atoms
of ochase(P ) where the nulls of N have been introduced for the first time; j > i means
that bj is generated after bi. Also, let {N1, . . . , Nn} be the partition of N where each Ni
contains exactly the nulls introduced for the first time in bi.

From G[P,B], we construct a set A = {a1, . . . , an} ⊆ ochase(P ), its associated graph
G[P,A], and a homomorphism h = h|N with the following properties:

– there is h′ ⊇ h such that h′(b1) = a1 ∈ pchase(P );
– for each b ∈ nodes(G[P,B]), there is h′ ⊇ h such that h′(b) ∈ nodes(G[P,A]);

Therefore, since YB ⊆ nodes(G[P,B]), we have that h(YB) ⊆ nodes(G[P,A]). We proceed
by induction on the sequence of fires generating (in parallel) the atoms of G[P,B] and
G[P,A]. For x ∈ {A,B}, at fire i > 0, Gi[P, x] contains the atoms of G[P, x] generated
after the first i fires, and hi is the partial homomorphism defined after the first i fires.

Base case: For i = 1, G1[P,B] contains only atom b1 and no arc. Since P is shy, then
there is a homomorphism g from {b1} to pchase(P ). Hence, let h1 = g|N1 , let a1 = g(b1),
and let G1[P,A] contain only atom a1.

Inductive hypothesis: After considering the first i fires we assume that for each b ∈
nodes(Gi[P,B]), there is h′i ⊇ hi such that h′i(b) ∈ nodes(Gi[P,A]);

Inductive step: Let b = fire(r, h̃) be the atom of G[P,B] produced at fire i + 1. We
will define a homomorphism g which determines the atom g(b) that will be added to
Gi[P,A] to obtain Gi+1[P,A]. We distinguish two cases: (1) b has no ingoing arc in
G[P,B]. Hence, b ∈ B. Since P is shy, let g be any possible homomorphism from {b} to
pchase(P ). (2) b has some ingoing arc in G[P,B]. Let body(r) = {β1, . . . , βk, βk+1, . . . , β`}
such that h̃maps all and only the first k > 0 atoms to nodes(Gi[P,B]). For each j ∈ [1..`],
let h̃j = h̃|terms(βj). Also, for each j ∈ [1..k], let fj be the homomorphism that maps
{h̃j(βj)} to nodes(Gi[P,A]) such that fj = fj |terms(βj). Since P is a shy program, then
e = (f1◦ h̃1)◦ . . .◦(fk ◦ h̃k)◦ h̃k+1◦ . . .◦ h̃` is indeed a homomorphism that maps body(r) to
ochase(P ) and in particular {β1, . . . , βk} to Gi[P,A]. Hence, there is necessarily e′ ⊇ e
such that fire(r, e′) ∈ ochase(P ), and g ⊇ f1 ◦ . . . ◦ fk such that g(b) = fire(r, e′). In
both cases, after defining g we need to update our structures. Atom g(b) is added to
Gi+1[P,A], possibly together with some arcs connecting it to atoms of Gi[P,A]. If b = bj
for some j ∈ [2..n], then hi+1 = g|Nj

◦ hi and and aj = g(bj); hi+1 = hi, otherwise.

By combining the above result with Proposition 4.7 and Proposition 4.8 we obtain:

COROLLARY 5.7. Problem BCQEVAL over shy is decidable. In particular, given a shy
program P and a BCQ q, it holds that P |= q if, and only if, pchase(P, |vars(q)|+ 1) |= q.
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A:20 N. Leone et al.

The following example, after defining a shy program P , shows that P requires the
computation of pchase(P, 3) to prove (after two resumptions) that a BCQ q containing
two atoms and two variables is true over P .

Example 5.8. Let P denote the following shy program:

r1 : admires(mary , john) ←
r2 : hasFather(luke, tim) ←
r3 : ∃Z3 mother(Z3) ← hasFather(X3, Y3)
r4 : ∃Y4 hasFather(X4, Y4) ← mother(X4)
r5 : admires(X5, Z5) ← mother(X5), admires(Y5, Z5)
r6 : admires(X6,W6) ← admires(X6, Y6), hasFather(Z6,W6).

By applying three times the parsimonious chase over P we have:

pchase(P, 0) = data(P ) = {admires(mary , john), hasFather(luke, tim)},
pchase(P, 1) = pchase(P, 0) ∪ {mother(ϕ1), admires(mary , tim)},
pchase(P, 2) = pchase(P, 1) ∪ {hasFather(ϕ1, ϕ2), admires(ϕ1, john), admires(ϕ1, tim)},
pchase(P, 3) = pchase(P, 2) ∪ {admires(mary , ϕ2), admires(ϕ1, ϕ2)},

Consider now the BCQ q = ∃X∃Y admires(X,Y ), hasFather(X,Y ). Clearly, q is true in
pchase(P, 3) but that it is false in pchase(P, 2) .

5.3. Shy Programs vs. Strongly Parsimonious Programs
As stated by Theorem 5.6, shy is contained in sps. However, there are strongly parsi-
monious programs that are not shy. The following result holds.

THEOREM 5.9. shy 6= sps.

PROOF. Let us consider the following set R of rules:

r1 : ∃Y1 aux1 (X1, Y1) ← child(X1)
r2 : hasFather(X2, Y2) ← aux1 (X2, Y2)
r3 : man(Y3) ← aux1 (X3, Y3)
r4 : child(X4) ← hasFather(X4, Y4),man(Y4)

Positions aux1 [2], hasFather [2] and man[1] are invaded by variable Y1. Thus, differently
from the other rules, r4 is not shy since variable Y4, occurring in two body atoms, is
attacked by Y1. Anyway, given a set of facts I, let us analyze the behaviour of the chase
over the program P = R ∪ I. In particular, let I ′ ⊇ I be a subset of ochase(P ), we
observe that each atom child(c) ∈ I ′ would trigger the generation of atoms aux (c, ϕ),
hasFather(c, ϕ) and man(ϕ) via rules r1, r2 and r3, respectively. Thus, any firing homo-
morphism h for the pair 〈r4, I ′〉 mapping Y4 to a null value is such that the fire of r4
via h would always produce an atom fire(r4, h) = child(c) that is already in I ′. Hence,
we can state that P is in sps because the contribution of these homomorphisms is
redundant.

By combining the above result with Theorem 5.6 we obtain that:

COROLLARY 5.10. shy ⊂ sps.

6. COMPUTATIONAL COMPLEXITY
In this section, we study the complexity of BCQEVAL for atomic and conjunctive queries
over three classes of programs: parsimonious, strongly parsimonious, and shy. In par-
ticular, we distinguish between data and combined complexity. Consider a program
P . The data complexity of our problem is calculated by taking only data(P ) as input,
while the query and the set rules(P ) are considered fixed. The combined complexity is
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Table I. Complexity of problem BCQEVAL.

Data complexity for Combined complexity for
atomic queries conjunctive queries atomic queries conjunctive queries

shy PTIME-complete PTIME-complete EXPTIME-complete EXPTIME-complete
LB: Thm. 6.4 LB: Thm. 6.4 UB: Thm. 6.3

sps PTIME-complete PTIME-complete EXPTIME-complete in 2EXPTIME

UB: Thm. 6.2 UB: Thm. 6.2

ps PTIME-complete Undecidable EXPTIME-complete Undecidable
UB: Thm. 6.1 Thm. 4.1 UB: Thm. 6.1 Thm. 4.1

the complexity calculated considering as input, together with data(P ), also the query
and the set rules(P ). A summary of our results is reported in Table I.

Each row corresponds to a class of programs, while each column corresponds to a
different setting of the problem. In each cell of the table, we have indicated where to
find the corresponding results; UB and LB stand for upper bound and lower bound,
respectively. Note that missing references for the upper bounds are inherited from one
of the closest lower-right cell in which an UB-reference is given. Conversely, missing
references for the lower bounds are inherited from one of the closest upper-left cell in
which an LB-reference is given.

To simplify the analysis, we first normalize our rules. Consider a program P . A rule
of P is in normal form if it contains at most one existentially quantified variable which
occurs at the last position of the head-atom. Then, we say that P is in normal form if
each of its rules is in normal form. Let us now define a function N that transforms any
rule r of P in a set of rules in normal form. More precisely, if r is already in normal form,
then N (r) = {r}; otherwise, assuming that head(r) = a, X = ∆V ∩ (terms(body(r)) ∩
terms(head(r))), and Z1, . . . , Zm are the existentially quantified variables of r, let N (r)
be the set of rules

r1 : ∃Zr1 pr1(X, Zr1) ← body(r)
r2 : ∃Zr2 pr2(X, Zr1 , Z

r
2) ← p1

σ(X, Zr1)
. . .

rm : ∃Zrm prm(X, Zr1 , . . . , Z
r
m) ← prm−1(X, Zr1 , . . . , Z

r
m−1)

r : a ← prm(X, Zr1 , . . . , Z
r
m)

where, for each i ∈ {1, . . . ,m}, we enforce that pri is an (|X|+ i)-ary auxiliary predicate
not occurring in pred(P ). Let N (P ) =

⋃
r∈P N (r). It is straightforward, and also well-

known, that N (P ) can be computed in polynomial time, and that P and N (P ) are
semantically equivalent. Namely, for each BCQ q, it holds that P |= q if, and only if,
N (P ) |= q. In particular, if we restrict ochase(N (P )) to the predicates of P we precisely
obtain ochase(P ).

6.1. Upper Bounds
We start this section by showing the following result:

THEOREM 6.1. Problem BCQEVAL for atomic queries over parsimonious programs
is in EXPTIME in combined complexity, and in PTIME in data complexity.

PROOF. Consider a parsimonious program P . Let c be the number of distinct con-
stants occurring in P , let ω denote arity(P ), and β be the maximum number of body
atoms over all the rules of P . Clearly, each rule of P admits no more than |pchase(P )|β

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 21 of 43 Transactions on Computational Logic

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



A:22 N. Leone et al.

distinct firing homomorphisms. Hence, since in the proof of Proposition 3.5 we have
shown that |pchase(P )| ≤ |pred(P )| · (c + ω)ω, we obtain that all the distinct firing ho-
momorphisms are no more than |dep(P )| · |pred(P )|β · (c + ω)ω·β . And this is also the
number of times the parsimonious fire condition has to be checked. Since such a check
asks for a homomorphism from the head of a rule to pchase(P ), the overall number
of checks is bounded by |pchase(P )| · |dep(P )| · |pred(P )|β · (c + ω)ω·β which, in turn, is
bounded by |dep(P )| · |pred(P )|β+1 · (c+ ω)ω(β+1).

We now generalize the above result by focusing on conjunctive queries.

THEOREM 6.2. Problem BCQEVAL for CQs over strongly parsimonious programs is
in 2EXPTIME in combined complexity, and in PTIME in data complexity.

PROOF. Consider a parsimonious program P already in normal form, and a Boolean
conjunctive query q. Let c be the number of distinct constants occurring in program P ,
β be the maximum number of body atoms over all the rules of P , ω = arity(P ), α =
max{|dep(P )|, |pred(P )|, ω + 1, β + 2}, and n = |vars(q)| denote the number of variables
occurring in q. We claim that to compute pchase(P, n+1) the number of steps performed
by the parsimonious chase after n resumptions, call it C(n), is at most

(n+ 1)(c+ α)α
2(n+1)

,

which is also an upper bound for the cardinality of pchase(P, n + 1). We proceed by
induction on the number n of resumptions.

Base case: If n = 0, then we have to show that C(0) 6 (c + α)α
2

. In the proof of
Theorem 6.1 we have shown that the C(0) 6 |dep(P )| · |pred(P )|β+1 · (c + ω)ω(β+1).
Hence, C(0) 6 αβ+2 · (c+ α)ω(β+1) 6 (c+ α)α · (c+ α)ω(α) 6 (c+ α)(ω+1)(α) 6 (c+ α)α

2

.
Inductive hypothesis: Assume that C(n− 1) 6 n(c+ α)α

2n

.
Inductive step: Since P is in normal form, C(n − 1) is also an upper bound for the

number of distinct nulls introduced by the parsimonious chase during the first n − 1
resumptions. Hence, C(n) 6 |dep(P )| · |pred(P )|β+1 · (c + ω + C(n − 1))ω(β+1). Hence,
C(n) 6 αβ+2 ·(c+α+n(c+α)α

2n

)ω(β+1) 6 (c+α)α ·((c+α)α
2n

+n(c+α)α
2n

)ωα. Therefore,
C(n) 6 (c+α)α · ((n+ 1)(c+α)α

2n

)ωα 6 ((n+ 1)(c+α)α
2n

)α · ((n+ 1)(c+α)α
2n

)ωα. Thus,
C(n) 6 ((n+ 1)(c+ α)α

2n

)(ω+1)α 6 ((n+ 1)(c+ α)α
2n

)α
2

6 (n+ 1)(c+ α)α
2(n+1)

.
Clearly, in data complexity, both n and α are considered fixed. Then, C(n) is polyno-

mial in c and therefore in data(P ).

Finally, we show a better upper bound for the combined complexity over shy.

THEOREM 6.3. Problem BCQEVAL for conjunctive queries over shy programs is in
EXPTIME in combined complexity.

PROOF. Consider a parsimonious program P , and a Boolean conjunctive query q.
Figure 4 shows a resolution-based alternating algorithm, called Shy-BCQans, for solv-
ing BCQEVAL over the pair (P, q). Intuitively, the algorithm guesses a homomorphism
from the query to ochase(P ) and applies resolution-based inference to reach data(P ),
which involves both nondeterministic and universal moves. To guarantee correct-
nesses, universal branches have to remember some common knowledge. Let us now de-
scribe one by one the steps of Shy-BCQans. Step 1. Rewrites P in normal form. Step 2.
Collects, in C, all the constants occurring in (P, q). Step 3. Guesses a homomorphism
h from atoms(q) to ochase(P ); w.l.o.g., we assume that the nulls in h(atoms(q)) belong
to the set {ϕ1, . . . , ϕ|vars(q)|}. Step 4. Denotes h(atoms(q)) by Q and the nulls of Q by
N ⊆ {ϕ1, . . . , ϕ|vars(q)|}; moreover, this step predisposes a number k = arity(P )·(|N |+2)
of extra nulls {?1, . . . , ?k}, denoted by S, disjoint from N , which are used during the
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Input: A shy program P , and a BCQ q.
1 P := N (P );
2 C := (terms(P ) ∪ terms(q)) ∩∆C ;
3 guess a homomorphism h : vars(q)→ C ∪ {ϕ1, . . . , ϕ|vars(q)|};
4 Q := h(atoms(q)); N := terms(Q) \ C; k := arity(P ) · (|N |+ 2); S := {?1, . . . , ?k};
5 for each null ϕ in N do
6 guess an atom aϕ ∈ base(C ∪N ∪ S) such that ϕ is the rightmost term of aϕ;
7 universally select every b ∈ Q and do
8 if b ∈ data(P ) then accept;
9 else

10 guess a rule r ∈ dep(P ), and let t denote the rightmost term of head(r);
11 guess a homomorphism h : vars(r)→ C ∪N ∪ S;
12 if (h(head(r)) 6= b) ∨

(t is an ∃-variable of r ∧ h(t) ∈ N ∧ b 6= ah(t)) ∨
(h violates at least one of the two shyness conditions) then reject;

13 else
14 Q := h(body(r));
15 goto step 7;

Fig. 4. The alternating algorithm Shy-BCQans.

algorithm (the reasons why such a number k is sufficient to guarantee correctness
will be explained subsequently). Steps 5-6. For each null ϕ of N , guess the atom aϕ of
ochase(P ) where such a null has been introduced for the first time (since P is in nor-
mal form, the null can be introduced in the rightmost position only). The maximum
number of terms in these atoms are |N | · arity(P ), which is also an upper bound for
the number of distinct extra nulls from S they contain. Note that each aϕ is actually
guessed from the set base(C ∪ N ∪ S). Hence, |S| > |N | · arity(P ). Step 7. It univer-
sally branches to prove “in parallel” that each atom b of Q really belongs to ochase(P ).
Step 8. It checks whether b belongs to data(P ); if so, this branch accepts. Step 9. It
states that a resolution-based action has to be performed since b does not belong to
data(P ); this will be specified in the following steps. Step 10. It guesses a rule r of P ,
and denotes by t the rightmost term of head(r). Step 11. It guesses a homomorphism
h from atoms(r) to ochase(P ). Step 12. It rejects whether one of the following occurs:
(i) the guessed homomorphism does not map the head of r to b; (ii) h(head(r)) = b, t is
an existentially quantified variable of r, h(t) ∈ N , but b is not the atom where h(t) has
been invented; (iii) h violates shyness; more precisely hmaps a body variable occurring
in two different atoms into a null of N ∪S, or h maps two different variables occurring
in different atoms and also in the head to the same null. Step 13. It states that the
resolution-based is correct, namely that h represent a firing homomorphism for r in
ochase(P ), and therefore, a new universal move can be performed to prove separately
the atoms of h(body(r)). If so, h(head(r)) may contain at most arity(P ) nulls from S,
which in the worst case are completely different from the extra nulls already used in
the set of atoms {aϕ | ϕ ∈ N}. Hence, |S| > |N | ·arity(P )+arity(P ) = arity(P ) · (|N |+1).
Consider now the set M = ∆N ∩ (terms(body(t)) \ terms(head(r))) containing the vari-
ables of r occurring in the body of r but not in the head. Because of shyness, if h maps
a variable X ∈ M to a null, this means that X occurs in exactly one body atom. More-
over, if two variables X,Y ∈M occurring in different atoms are mapped to a null, then
h(X) and h(Y ) might even be the same, but this fact can be ignored in the univer-
sal move that will prove the atoms of h(body(r)). Therefore, the number of extra nulls
that are strictly needed in h(M) are again arity(P ). Finally, to guarantee correctness,
|S| > arity(P ) · (|N |+ 1) + arity(P ) = arity(P ) · (|N |+ 2), which corresponds to the value
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k computed in step 4. Step 14. Denotes h(body(r)) by Q. Step 15. Jumps to step 7 to
branch universally.

Shy-BCQans runs in alternating polynomial space, since the space it uses at each
step has to keep only the following knoledge: N (P ), C, N , S, {aϕ | ϕ ∈ N}, the current
r, the current h, and the current Q. And each of these objects is of polynomial size with
respect to the input pair (P, q).

6.2. Lower Bounds
We now consider lower bounds:

THEOREM 6.4. Problem BCQEVAL for atomic queries over parsimonious programs
is EXPTIME-hard in combined complexity, and PTIME-hard in data complexity.

PROOF. By Theorem 8.1, every Datalog program is also parsimonious. Hence, the
considered problem inherits both lower-bounds from instance checking in Datalog
[Dantsin et al. 2001].

7. IMPLEMENTATION AND OPTIMIZATIONS
We implemented the parsimonious-chase resumption tecnique introduced in Section
4 inside the well-known Answer Set Programming (ASP) system DLV [Leone et al.
2006]. This implementation is referred to as DLV∃ and it constitutes a powerful system
for answering (unrestricted) conjunctive queries over strongly parsimonious programs.
Following the DLV philosophy, it has been designed as an in-memory system. Basically,
we extended the DLV parser and the rule safety check because of the presence of exis-
tentially quantified variables. Moreover, we evolved the DLV fixpoint computation so
that it can be now resumed an arbitrary number of times. Finally, we developed an
optimized homomorphism checker which exploits some of the standard routines im-
plemented in DLV. To speed-up the computation, a number of optimization techniques
has been introduced. In particular, we implemented a rewriting strategy to avoid the
evaluation of the rules that are not relevant for answering the input query. Before
parsing the input facts we find out the list of predicates that are significant for the
query at hand and, consequently, we load only facts belonging to such predicates. To
compute the number of times the parsimonious chase needs to be resumed, we execute
an optimized version of the algorithm induced by Theorem 4.9. In the following subsec-
tions, after showing the overall architecture of the main components of the system, we
give a detailed description of the implemented tecniques and optimizations. All data
and encodings used in our evaluation, along with the Unix executable of the system,
are publicly available.5

7.1. System Architecture
The overall architecture of the main components of DLV∃ and their interconnections
is depicted in Figure 5. DLV∃ has been implemented as an in-memory system. Thus,
it needs to load input data in memory before the computation can start. The input of
the system consists of a pair 〈P, q〉 where q is an unrestricted conjunctive query (with
possibly ∃-variables) to be executed over a program P . In particular, the computation
starts from the Loader which firstly parses only dep(P ) and q. After that, dep(P ) and q
are passed to the Rewriter which produces a set of rules R that is equivalent to dep(P )
with respect to the task of answering q — more details are given in the following sub-
sections. At this point, the control goes back to the Loader which receives R from the
Rewriter and parses data(P ). Actually, before parsing data(P ), the Loader singles out the

5See https://www.mat.unical.it/dlve/.
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Fig. 5. DLV∃ architecture components

list of predicates which are relevant for answering q by recursively traversing rules in
R (head-to-body) starting from the query predicates. This information is crucial be-
cause it is exploited to filter out, at loading time, all the facts belonging to predicates
certainly irrelevant. Let us denote by D the loaded subset of data(P ). After the load-
ing phase is completed, the QueryAnalyzer is invoked. This component takes as input
the pair 〈P ∗, q〉 where P ∗ = R ∪ D and returns the number k of parsimonious chase
resumptions that are needed for answering q. Finally, the triple 〈P ∗, q, k〉 is passed
to the QueryEvaluator which computes pchase(P ∗, k) and returns ansP (q). In the follow-
ing subsections, a low-level description of the main components of the architecture is
given.

Loading. The input of the system has to be organized as follows: files with the .rul
extension for queries and rules and, for each predicate p, a file named p.data consisting
of all the facts which belong to p. Note that, the system uses a special syntax for non-
ASCII symbols. For example, the rule “∃X∃Y p(Z,X,W, Y ) ← s(Z,W ), r(W,T )” has
to be given as “#exists{X,Y} p(Z,X,W,Y) :- s(Z,W), r(W,T).”, the fact “r(1, 2) ←”
as “r(1,2).” and the query “∃X∃Y p(Z,X,W, Y )” as “#exists{X,Y} p(Z,X,W,Y)?”. The
Loader firstly parses files with the .rul extension. Then, it calls the rewriting module
and it gets an equivalent set of rules, R. Notice that, R is such that ansdep(P )∪D(q) =
ansR∪D(q) for any set of facts D. After the rewriting step is concluded, the loading mod-
ule singles out the list of predicates which are relevant for answering q by recursively
traversing the rules of R (head-to-body) starting from the query predicates. After that,
only a subset of data(P ) containing facts which are relevant for q is loaded in memory;
we call such a set D. Program P ∗ = R∪D is stored in two distinct data structures: the
set of rules and the set of facts. Finally, the set of facts is indexed by predicate name.
Notice that, the built-in predicate #const introduced in Section 5.3 belongs to the syn-
tax accepted by the system. This predicate can be exploited by the user to enforce the
protection of a specific variable in a rule body. In particular, given an instance I, if an
atom #const(X) occurs in the body of a rule r, any homomorphism h from body(r) to
I such that h = h|vars(body(r)) is considered by DLV∃ as a firing homomorphism for the
pair 〈r, I〉 only if it maps all the variables in X to constant values.

Rewriting. The input program is subject to different rewriting steps. The first one
performs the skolemization of ∃-variables in rule heads. The skolemization sk(r) of a
Datalog∃ rule r (as given in Section 2.2) is obtained by replacing each variable Y ∈ Y

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 25 of 43 Transactions on Computational Logic

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



A:26 N. Leone et al.

in head(r) by a skolem term fY (X′) where fY is a fresh skolem function symbol of ar-
ity |X′|. Every rule in P with ∃-variables is skolemized in this way, and skolemized
terms are interpreted as functional symbols [Calimeri et al. 2010] within DLV∃ . After
that, the rewriting techniques for positive logic programs with function symbols im-
plemented in DLV are performed. For a detailed description of these algorithms see
[Leone et al. 2006] and [Calimeri et al. 2010].

Query analysis. This task is performed to find out the number of parsimonious chase
resumptions that are sufficient for answering q. Notice that, the upper bound given by
Theorem 4.9 can be further reduced. The implemented procedure relies on the fol-
lowing idea. Let S be the set of substitutions mapping the free variables of q to con-
stants of ∆C . According to the given semantics (see Section 2.3), S is an upper bound
of ansP (q). Moreover, it is well-known that ansP (q) can be even defined as follows:
ansP (q) = {σ ∈ S | P |= σ(q)}. Since, by definition, the number k of ∃-variables of q is
such that k = |vars(σ(q))| for each σ ∈ S, by Theorem 4.9, we can infer that k parsimo-
nious chase resumptions are sufficient to answer σ(q) for each σ ∈ S and, consequently,
to compute ansP (q).

Query evaluation. After the initialization process is terminated, the system com-
putes pchase(P ∗, k). Since ∃-variables are skolemized, the rules are safe and can be
evaluated in the usual bottom-up way. The semi-naive implementation of the DLV
instantiator has been extended in order to simulate an execution of the parsimonious
chase procedure. To this aim, a homomorphism verification is performed for each deriv-
able atom. The implemented homomorphism check relies on the DLV indexing tech-
nique. In particular, the strategy adopted by DLV to materialize input data allows us
to retrieve every facts of a given predicate with a certain term (or a tuple of terms) in
a specific position. In this way, given a new head atom a the homomorphism check is
performed by considering a limited set of atoms B such that for each atom b ∈ B (i)
pred(b) = pred(a) and (ii) every constant in terms(a) ∩∆C occurs both in a and b at the
same positions. Moreover, in order to reproduce the resumption tecnique introduced in
Section 4 the fixpoint computation has been extended so that it can be now resumed
an arbitrary number of times. More precisely, it is reiterated until something has been
derived in the last iteration and pchase(P ∗, k) has not been computed yet. To restart
the fixpoint computation, every null (skolem term) derived previously is frozen (see
Section 4) and considered as a standard constant, i.e. it is virtually moved to the set
of constants of P . In our implementation, this is done by attaching a “level” to each
skolem term, representing the fixpoint reiteration where it has been derived. This
is important because homomorphism verification must consider as nulls only skolem
terms produced in the current resumption-phase; while previously introduced skolem
terms must be interpreted as constants.

7.2. Optimizations
The aim of the most relevant optimization techniques implemented in DLV∃ is to limit
the loading of data that are redundant for the given query. This should automatically
bring another advantage, i.e., reducing the space needed to materialize the output of
the parsimonious chase. Thus, on the one hand, we refined the basic implementation of
the rewriting algorithm described in Section 7.1. On the other hand, we improved the
query analyzer in order to find out a better upper bound of the number of resumptions
needed for the given query.

Rewriting. The DLV∃ computation is further optimized by “pushing-down” the bind-
ings coming from possible query constants. To this end, the program is rewritten by
a variant of the well-known magic-set optimization technique [Cumbo et al. 2004],
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Fast Query Answering over Existential Rules A:27

that we adapted to Datalog∃ by avoiding to propagate bindings through “attacked”
argument-positions (since ∃-quantifiers generate “unknown” constants). The result is
a smaller program, being equivalent to P for the given query, that can be evaluated
more efficiently. This optimization provides a substantial advantage even in terms of
input loading since the list of relevant predicates induced by the rewritten program is
generally more restricted.

Query decomposition. As already stated, the number of parsimonious chase resump-
tions that is necessary and sufficient for answering q is not known. An upper bound
is given by Theorem 4.9. In Section 7.1, we showed that such bound can be improved
by ignoring the free variables of q. Anyway, this bound can be further optimized by
also neglecting the protected variables of q. Indeed, since no substitution mapping a
protected variable into a null can be part of ansP (q), the intuition given in Section 7.1
can be easily extended to the set of protected variables. Furthermore, if we consider
the query hypergraph with no free or protected variables we may get a number of inde-
pendent components which could be evaluated separately. We show the above intuition
with the aid of an example.

Example 7.1. Let us consider the following BCQ q over a program P :

q : ∃X ∃Y ∃Z r(X,Y ), s(Y, Z)

where Y is protected. According to Theorem 4.9, we need pchase(P, 4) for answering
q. Following the intuition discussed before, we can stop at pchase(P, 3) because Y is
protected. Anyway, P |= q if, and only if, there exists a constant c of P such that
both P |= ∃X r(X, c) and P |= ∃Z s(c, Z) hold. Clearly, ∃X r(X, c) and ∃Z s(c, Z) can
be evaluated separately against pchase(P, 2) since each of them contains exactly one
variable. Finally, one could even observe that ∃X r(X, c) and ∃Z s(c, Z) are atomic, and
therefore they can be evaluated correctly over pchase(P ).

To generalize the above intuition, we recall the definition of query hypergraph.

Definition 7.2. Consider a CQ q. Let q̂ denote the query obtained from q by replacing
both free and protected variables with some constant of ∆C . The query hypergraph of
q is defined as Hq = 〈V,E〉 where V = vars(q̂) and E = {vars(a) | a ∈ atoms(q̂)}.

Example 7.3. Consider again query q as in Example 7.1. According the previous
definition, q̂ = ∃X ∃Z r(X, ĉ), s(ĉ, Z) and Hq = 〈{X,Z}, {{X}, {Z}}〉.

We are now ready to give the general statement underlying the optimization tec-
nique implemented in DLV∃ to find out the number of needed resumptions. Consider
a query q over a program P . In case, each variable of q̂ appears in a single atom only,
then ansP (q) can be computed by constructing pchase(P ). Conversely, ansP (q) can be
computed by constructing pchase(P, k + 1), where k is the cardinality of the largest
connected component of Hq.

8. RELATED WORK
In this section we compare our newly defined classes with the main decidable ones
from the literature. Moreover, we survey a number of tools designed and developed in
the context of ontology-based data access.

8.1. Datalog± Languages
We overview the main QA-decidable subclasses of Datalog∃ defined in the literature.
Then, we provide their precise taxonomy and the complexity of BCQEVAL over them.
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weakly-acyclic weakly-guarded sticky-join

fus

guardeddatalog

shy

sticky

linear

inclusion-dependencies

joinless

btsfessps

Fig. 6. Taxonomy of the basic Datalog± classes.

The best-known QA-decidable class is clearly datalog [Abiteboul et al. 1995], which
collects all and only the programs with no existential quantifier. Notably, it admits a
unique and yet finite (universal) model enabling efficient QA.

Three abstract QA-decidable classes have been singled out, namely, fes (finite expan-
sion sets), bts (bounded/finite treewidth sets), and fus (finite unification sets) [Baget
et al. 2009; Baget et al. 2010b]. Intuitively, the semantic properties behind these
classes rely on a “forward-chaining inference that halts in finite time”, a “forward-
chaining inference that generates a tree-shaped structure”, and a “backward-chaining
inference that halts in finite time”, respectively.

Syntactic subclasses of bts, of increasing complexity and expressivity, have been de-
fined by Calı̀ et al. [2008]. They are: (i) linear where at most one body atom is allowed
in each rule; (ii) guarded where each rule needs at least one body atom that covers all
∀-variables; and (iii) weakly-guarded extending both guarded by allowing unaffected
“unguarded” variables (see Section 5 for the meaning of unaffected). The first one gen-
eralizes the well known inclusion-dependencies class [Johnson and Klug 1984; Abite-
boul et al. 1995], with no computational overhead; while only the last one is a superset
of datalog, but at the price of a drastic increase in complexity. In general, to be com-
plete with respect to QA, the chase ran on a program belonging to one of the latter two
classes requires the generation of a very high number of isomorphic atoms, so that no
(efficient) implementation has been realized yet.

More recently, the class called sticky has been defined by Calı̀ et al. [2010a]. It en-
joys very good complexity, encompasses inclusion-dependencies, but it does not capture
datalog. Intuitively, if a program is sticky, then all the atoms that are inferred (by the
chase) starting from a given join contain the term of this join. Several generalizations
of stickiness have been defined by Calı̀ et al. [2010b]. For example, sticky-join preserv-
ing the same complexity of sticky by also generalizing linear. Conversely, Gogacz and
Marcinkowski [2013] introduced joinless, the subclass of sticky collecting all and only
the programs where each body contains no repeated variable. Clearly, joinless captures
inclusion-dependencies. Finally, joinless, sticky, and sticky-join are subclasses of fus.

Finally, in the context of data exchange, where a finite universal model is required,
weakly-acyclic, a subclass of fes, has been introduced [Fagin et al. 2005b]. Intuitively,
a program is weakly-acyclic if the presence of a null occurring in an inferred atom at
a given position does not trigger the inference of an infinite number of atoms (with
the same relational predicate) containing several nulls in the same position. This class
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Fast Query Answering over Existential Rules A:29

Table II. Complexity of problem BCQEVAL under the main sytactic classes.

Data complexity for Combined complexity for
atomic queries conjunctive queries atomic queries conjunctive queries

weakly-guarded EXPTIME-c EXPTIME-c 2EXPTIME-c 2EXPTIME-c

guarded, weakly-acyclic PTIME-c PTIME-c 2EXPTIME-c 2EXPTIME-c

shy, datalog PTIME-c PTIME-c EXPTIME-c EXPTIME-c

sticky, sticky-join in AC0 in AC0 EXPTIME-c EXPTIME-c

linear in AC0 in AC0 PSPACE-c PSPACE-c

Note: For any complexity class C, to improve readability, C-c is used as a shorthand for C-complete.

both includes and has much higher complexity than datalog, but misses to capture even
inclusion-dependencies. A number of extensions, techniques and criteria for checking
chase termination have been recently proposed in this context [Deutsch et al. 2008;
Marnette 2009; Meier et al. 2009; Greco et al. 2011].

Figure 6 provides a precise taxonomy of the considered classes; while Table II sum-
marizes the complexity of BCQEVAL, by varying C among the main syntactic classes.
In both diagrams, only datalog is intended to be ∃-free.

In the following, given two classes C1 and C2, we write C1 ⊆ C2 to indicate that C1 is
a subclass of C2, C1 ⊂ C2 to indicate that C1 is a proper subclass of C2, and C1‖ C2 to
indicate that C1 and C2 are uncomparable.

THEOREM 8.1. For each pair C1 and C2 of classes represented in Figure 6, the fol-
lowing hold: (i) there is a direct path from C1 to C2 if, and only if, C1 ⊂ C2; (ii) C1 and C2
are not linked by any directed path if, and only if, C1‖C2.

PROOF. Relationships among known classes are pointed out by [Mugnier 2011;
Gogacz and Marcinkowski 2013].

Regarding new containments, by Corollary 5.10, it immediately holds that shy ⊂ sps.
Moreover, it also holds that datalog ⊂ shy since datalog ⊆ shy because all the variables
of every datalog program are protected, and since datalog 6= shy because datalog does
not admit existential quantifiers in rules heads. Finally, it holds that linear ⊂ shy since
linear ⊆ shy because every linear program satisfies condition (i) in Definition 5.3, and
because linear 6= shy as shy admits rule-bodies with multiple atoms.

We now consider new uncomparability results. For each C1 ∈ {shy, sps} and for each
C2 ∈ {weakly-acyclic, fes}, to show that C1‖C2 we prove that there is a program P1 ∈ shy
such that P1 6∈ C2 and there is a program P2 ∈ weakly-acyclic such that P2 6∈ C1. As
far as P1 is concerned, it suffices to choose P1 ∈ linear since it is well-known that
linear ‖ fes and therefore P1 6∈ C2. Regarding P2, we choose the program provided by
Calı̀ et al. [2010b] (Theorem 1) which proves that BCQEVAL for atomic queries over
weakly-acyclic programs is 2EXPTIME-hard in combined complexity. Since BCQEVAL
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A:30 N. Leone et al.

for atomic queries over sps programs is in EXPTIME by Theorem 6.1, this immediately
implies that P2 6∈ C1.

For each C1 ∈ {shy, sps} and for each C2 ∈ {guarded,weakly-guarded,bts}, to show
that C1‖ C2 we prove that there is a program P1 ∈ shy such that P1 6∈ C2 and there is
a program P2 ∈ guarded such that P2 6∈ C1. As far as P1 is concerned, we choose the
following program:

r1 : set1(a, a) ←
r2 : set2(b, b) ←
r3 : ∃Z3 set1(Y3, Z3) ← set1(X3, Y3)
r4 : ∃Z4 set2(Y4, Z4) ← set2(X4, Y4)
r5 : graphK (U5, V5) ← set1(U5, X5), set2(V5, Y5)

whose chase relation CR[P ] has no finite treewidth since it contains a complete bi-
partite graph Kn,n of 2n vertices —the treewidth of which is n [Kloks 1994]— where
n is not finite. Regarding P2, we choose the program provided by Calı̀ et al. [2013b]
(Theorem 6.2) which proves that BCQEVAL for atomic queries over guarded programs
is 2EXPTIME-hard in combined complexity. Since BCQEVAL for atomic queries over sps
programs is in EXPTIME by Theorem 6.1, this immediately implies that P2 6∈ C1.

For each C1 ∈ {shy, sps} and for each C2 ∈ {joinless, sticky, sticky-join, fus}, to show
that C1‖C2 we prove that there is a program P1 ∈ shy such that P1 6∈ C2 and there is a
program P2 ∈ joinless such that P2 6∈ C1. As far as P1 is concerned, it suffices to choose
P1 ∈ datalog since it is well-known that datalog ‖ fus and therefore P1 6∈ C2. Regarding
P2, we choose the following program:

r1 : p(0) ←
r2 : s(1) ←
r3 : t(X3, Y3) ← p(X3), s(Y3)
r4 : ∃Y4 r(Y4) ← p(X4)
r5 : p(X5) ← r(X5)
r6 : s(X6) ← r(X6)

together with the atomic Boolean query q = ∃X t(X ,X ). By inspection, it is easy
to see that P2 is joinless. However, P |= q since ochase(P ) = {p(0), s(1), t(0, 1)} ∪
{r(ϕi), p(ϕi), s(ϕi), t(ϕi, ϕi)}i∈N but we have that pchase(P ) 6|= q since pchase(P ) =
{p(0), s(1), t(0, 1), r(ϕ1)}.

We care to notice that the program explicitly provided in the proof of Theorem 8.1
use the so called concept product. A natural and common example is given by the rule

biggerThan(X,Y ) ← elephant(X),mouse(Y )

that is expressible in shy providing that elephant and mouse are disjoint concepts. How-
ever, such a relationship between concepts cannot be expressed in guarded, for exam-
ple, and can be only simulated by a very expressive ontology language for which no
tight worst-case complexity is known [Rudolph et al. 2008].

8.2. State-of-the-art Tools
Systems suitable for ontology-based data access can be classified in four groups: query-
rewriting, tableau, forward-chaining, and hybrid approaches. However, as discussed in
Section 9, some of them might not be complete when dealing with conjunctive queries.

Query rewriting. Systems belonging to this category are: QuOnto [Acciarri et al.
2005], Presto [Rosati and Almatelli 2010], Quest [Rodriguez-Muro and Calvanese
2011a], Mastro [Calvanese et al. 2011], OBDA [Rodriguez-Muro and Calvanese 2011b],
Requiem [Pérez-Urbina et al. 2009], Rapid [Chortaras et al. 2011], Ontop [Calvanese
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Fast Query Answering over Existential Rules A:31

Table III. Systems vs. Benchmarks.

DLV∃ PAGOdA Clipper GraalB GraalF
LUBM sps OWL2/DL ELHI-Tr − weakly-acyclic
Deep shy − − linear weakly-acyclic

Adolena shy − DL-LiteR linear −
Stock Exchange shy OWL2/DL DL-LiteR linear −

Vicodı̀ shy ELHOr
⊥ DL-LiteR linear weakly-acyclic

Path5 shy ELHOr
⊥ DL-LiteR linear weakly-acyclic

Note: Symbol “−” under a certain system indicates that it cannot (or, at least, there is no evidence that it
can) be tested on the corresponding benchmark. Conversely, a class of ontologies under a certain system
indicates that the corresponding benchmark falls in this class and that the system is sound and complete
over this class. In particular, PAGOdA can be tested on LUBM and Stock Exchange since all the variables
in the provided queries are “free”, namely not existentially quantified.

et al. 2017], Graal [Baget et al. 2015] (see also Section 9), and Clipper [Eiter et al.
2012] (see also Section 9). They rewrite a given ontological query into an equivalent
first-order (resp., Datalog) query against the underlying extensional database. After
that, most of them delegate the answer computation to an RDBMS (resp., a Datalog
reasoner). Every system in this category supports the standard first-order semantics
for unrestricted CQs. The expressiveness of their languages is limited to AC0 (and ex-
cludes, for instance, transitivity property or concept products) except for Clipper whose
expressive power goes up to PTIME.

Tableau. Systems based on tableau calculi are: FaCT++ [Tsarkov and Horrocks
2006], RacerPro [Haarslev and Möller 2001], Pellet [Sirin et al. 2007], and HermiT
[Motik et al. 2009]. They materialize all inferences at loading-time, implement very
expressive description logics, but they do not support the standard first-order seman-
tics for CQs [Glimm et al. 2008]. Actually, the Pellet system enables first-order CQs
but only in the acyclic case.

Forward chaining. GraphDB [Bishop et al. 2011] (also known as OWLIM in erlier
versions), and KAON2 [Hustadt et al. 2004] are based on forward-chaining.6 Similar
to tableau-based systems, they perform full-materialization and implement expressive
DLs, but they still miss to support the standard first-order semantics for CQs [Glimm
et al. 2008]. Graal [Baget et al. 2015] (see also Section 9) implements also a variant of
the standard chase and it supports the standard first-order semantics for CQs. How-
ever, this algorithm might not stop if the restricted chase over the input program does
not terminate.

Hybrid approaches. PAGOdA [Zhou et al. 2015] (see also Section 9) implements an
hybrid approach to answer conjunctive queries over arbitrary OWL 2 DL ontologies.7
This system exploits a forward-chaining reasoner to compute lower bound and upper
bound answers to the input query. If lower and upper bounds match a sound and com-
plete answer is returned. Otherwise, correctness of the tuples in the gap is checked
by means of a fully-fledged OWL 2 reasoner. Such an approach showed good perfor-
mances. However, if the aforementioned bounds do not match, then the standard first-
order semantics for CQs is not supported.
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9. EXPERIMENTS
In this section we report on some experiments we carried out to evaluate the efficiency
and the effectiveness of DLV∃ . In particular, we compared our system against a number
of state-of-the-art systems for OBQA over a bunch of significant benchmark domains
(see Table III). In the following, we first illustrate the criteria which led us to select the
concurrent systems and the benchmark domains. Afterwards, we talk about the overall
architecture of the machine where the experiments were run. Finally, we introduce
domain by domain the attained results along with final considerations.

9.1. Systems
In the last years, a number of systems for OBQA have been introduced in literature.
They mostly come from both the Database community and the Knowledge Represen-
tation world. However, many of them are still research prototypes and, in some cases,
they are not suitable for a fair comparison with self-consistent OBQA systems as DLV∃ .
In order to set up a fair competition, we selected reasoners whose nature is compliant
with the following prerequisites:

(1) self-consistent execution, the system should be able to run the input query over the
input knowledge base without the aid of any external tool;

(2) specific ability for OBQA, the system should be designed expressly for answering
conjunctive queries over ontologies and, in particular, the implemented algorithm
should be proved to be sound and complete over a well defined class of ontologies.

The prototypes that enjoy the above criteria can be further subdivided in two distinct
categories relying on the way of managing input data: systems running on top of a per-
sistent storage layer, and systems that need to load input data in memory before the
process can start. We decided to exclude reasoners based on persistent storage mech-
anisms because they usually rely on execution paradigms completely different from
the one of DLV∃ . For example, they expect the source instance to be preloaded into a
persistent storage layer and, moreover, they execute a number of updating techniques
employed in classical database management systems when data or rules change. On
the contrary, in-memory systems like DLV∃ typically read their (possibly evolving) in-
put from files at the beginning of the process. Such a practice may hardly affect overall
performances of these systems, especially for huge volumes of input data. Even though,
this paradigm does not need to be supported by any updating strategy because (possi-
bly changed) input data are reloaded every time the process is executed. Consequently,
the first category of systems is more suitable for querying massive volumes of data,
whereas the second one can be profitably used when the context is subject to frequent
changes. Anyway, comparing such different behaviors would have been unfair. Hence,
having the above criteria in mind, we decided to compare DLV∃ against the follow-
ing systems: Clipper [Eiter et al. 2012], Graal [Baget et al. 2015] and PAGOdA [Zhou
et al. 2015]. In the following lines, a brief description of each system is provided. The
other reasoners that are listed in Section 8.2 have been excluded from our comparison
because they violate at least one of the above preconditions.

Clipper. This system has been designed for answering conjunctive queries over
Horn-SHIQ [Hustadt et al. 2005] ontologies. Such approach relies on a query rewrit-
ing tecnique that transforms a given Horn-SHIQ ontology and a CQ into an equivalent
Datalog program that can be evaluated over any input set of data. Clipper is written

6Actually, KAON2 first translates the ontology to a disjunctive Datalog program, on which forward inference
is then performed.
7See https://www.w3.org/TR/owl2-overview/.
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Fast Query Answering over Existential Rules A:33

in Java and it accepts as input arbitrary Horn-SHIQ ontologies and datasets in the
RDF/XML format and CQs in SPARQL8. The initial step of the implemented algorithm
is devoted to check whether the input ontology is Horn-SHIQ. In affirmative case, the
aforementioned rewriting step is performed and an equivalent Datalog program P is
produced. Afterwards, the input dataset D is loaded in memory and the evaluation of
P over D is demanded to a Datalog reasoner between DLV and Clingo [Leuschel and
Schrijvers 2014].

Graal. Graal is an open-source toolkit mainly developed for computing certain an-
swers to queries under dependencies, that is composed by the following tools. Basi-
cally, there is a common input manager that allows to choose between an in-memory
execution and a persistent storage mapping. Moreover, on top of the above layer, two
different reasoning algorithms have been implemented. The former relies on a query
rewriting technique using piece-unifiers [Mugnier 2011] as resolution operator. The
latter is given by a saturation procedure that can be seen as a variant of the standard
chase: it applies rules to the data in breadth-first, forward-chaining manner. In our ex-
perimental evaluation, the in-memory versions of the above approaches are both con-
sidered and are referred to as GraalB and GraalF , respectively. Regarding the task of
conjunctive query answering, GraalB is sound and complete over first-order rewritable
ontologies; GraalF is always sound and complete but it terminates (for a given onto-
logical query in input) only if the restricted chase would stop after finitely many steps.
Notice that, the system accepts as input ontologies, data sets and queries in a propri-
etary format, called dlgp, that has been defined to model Datalog± rules with pred-
icate namespaces. Anyway, Graal comes with a tool converting OWL ontologies and
SPARQL queries in the dlgp format.

PAGOdA. PAGOdA is a highly optimized system for answering conjunctive queries
over arbitrary OWL 2 DL ontologies. This implementation relies on a hybrid approach
that combines a Datalog reasoner (currently RDFox [Nenov et al. 2015]) with a fully-
fledged OWL 2 reasoner (currently HermiT [Glimm et al. 2014]) to provide scalable
performance. In particular, PAGOdA uses the Datalog reasoner to compute lower
bound (sound but possibly incomplete) and upper bound (complete but possibly un-
sound) answers to the input query. If lower bound and upper bound coincide, it returns
a sound and complete answer. Otherwise, it resorts to the OWL 2 reasoner to check cor-
rectness of the tuples in the gap between lower and upper bounds. In order to lighten
the computational cost of this check, a number of optimization techniques has been
implemented aiming at reducing the workload on the OWL 2 reasoner. This system
supports the standard first-order semantics for CQs only if the input ontology is in
ELHOr⊥ (or in OWL 2 RL). Otherwise, sound and complete answers are returned only
if lower and upper bounds coincide. If such bounds do not match, queries are evaluated
under the ground semantics. However, it is worth pointing out that if the input ontol-
ogy is not in ELHOr⊥, correctness of the expected answers cannot be verified a priori
but it can be checked only at running time because it may depend on the input data (in
addition to the input ontology and query). To conclude, notice that PAGOdA accepts as
input arbitrary OWL 2 DL ontologies, datasets in Turtle9 format and CQs in SPARQL.

9.2. Benchmarks
Since the ontological query answering in the context of Datalog programs with existen-
tial rules is a relatively recent area of research, there are no well-established bench-
marks for this task. We therefore imported a number of scenarios from some related

8See https://www.w3.org/TR/rdf-sparql-query/.
9See https://www.w3.org/TR/turtle/.
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A:34 N. Leone et al.

Table IV. Query analysis in terms of number of atoms (#a), number of join variables (#j), number of free
variables (#f ) and number of bounded variables (#b). Notice that, query identifiers are acronyms whose left-
hand sides indicate the benchmark IDs.

query #a #j #f #b query #a #j #f #b query #a #j #f #b

deep-100 deep-200 lubm-10 and lubm-20
D1:01 2 1 1 6 D2:01 2 1 1 6 LB:01 2 1 1 0
D1:02 2 1 1 6 D2:02 2 1 1 6 LB:02 6 3 3 0
D1:03 2 1 1 6 D2:03 2 1 1 6 LB:03 2 1 1 0
D1:04 2 1 1 6 D2:04 2 1 1 6 LB:04 5 1 4 0
D1:05 2 1 1 6 D2:05 2 1 1 6 LB:05 2 1 1 0
D1:06 3 1 1 9 D2:06 3 1 1 9 LB:06 1 0 1 0
D1:07 3 1 1 6 D2:07 3 1 1 9 LB:07 4 2 2 0
D1:08 3 1 1 6 D2:08 3 1 1 9 LB:08 5 2 3 0
D1:09 3 1 1 6 D2:09 3 1 1 9 LB:09 6 3 3 0
D1:10 3 1 1 6 D2:10 3 1 1 9 LB:10 2 1 1 0
D1:11 5 1 1 15 D2:11 5 1 1 15 LB:11 2 1 1 0
D1:12 5 1 1 15 D2:12 5 1 3 13 LB:12 4 2 2 0
D1:13 5 2 3 13 D2:13 5 1 2 14 LB:13 2 1 1 0
D1:14 5 1 1 15 D2:14 5 1 1 15 LB:14 1 0 1 0
D1:15 5 1 1 15 D2:15 5 1 3 13 path5
D1:16 8 1 1 24 D2:16 8 1 1 24 P5:01 1 0 1 1
D1:17 8 1 1 24 D2:17 8 1 2 23 P5:02 2 1 1 2
D1:18 8 1 2 23 D2:18 8 1 4 21 P5:03 3 2 1 3
D1:19 8 1 1 24 D2:19 8 1 3 2 P5:04 4 3 1 4
D1:20 8 2 5 20 D2:20 8 2 3 22 P5:05 5 4 1 5

adolena stock-exchange vicodı̀
AD:01 2 1 1 1 SE:01 1 0 1 0 VD:01 1 0 1 0
AD:02 3 2 1 1 SE:02 3 2 2 0 VD:02 3 1 2 1
AD:03 5 3 1 2 SE:03 5 3 3 0 VD:03 3 2 2 0
AD:04 3 2 1 1 SE:04 5 3 3 0 VD:04 3 2 2 0
AD:05 5 3 1 2 SE:05 7 4 4 0 VD:05 7 4 1 3

areas. The benchmark suite proposed in this paper consists of six domains (LUBM,
Deep, Adolena, Stock Exchange, Vicodı̀, and Path5), each comprising at least an ontol-
ogy and a set of conjunctive queries. Some of these domains are also endowed with
input data sets (or generators). However, for those scenarios that are missing input
instances, we used SyGENiA (Synthetic GENerator of instance Axioms) [Cuenca Grau
et al. 2012] to generate meaningful sets of data.10

As discussed in Section 9.1, the tested systems take a wide range of input formats.
Whenever possible, the translation between various formats has been carried out with
the aid of automated tools. Rdf2Rdf11 has been used to produce the Turtle format,
OWL2Dlgp12 for the dlgp format and, finally, Aspide [Febbraro et al. 2013] for the DLV∃
format. Notice that, not all reasoners are able to perform all tests: for each benchmark
B and for each systems S, we decided to run S over B only if it is known a priori that S
provides sound and complete answers to the benchmark queries over any sets of data.
However, in the following lines we give some details about the benchmarks and, for
each of them we indicate the list of the involved systems. Details on input queries for

10SyGENiA is prototypical tool for the automatic generation of ontology parts for the purpose of testing and
evaluating Semantic Web reasoners. Given an ontology and a query, SyGENiA is able to produce a set of
test data that can be profitably used for testing OBQA systems (the data generated are not random).
11See http://www.l3s.de/∼minack/rdf2rdf/.
12See https://graphik-team.github.io/graal/owl2dlgp.
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Table V. Running times (sec) for LUBM queries.

lubm-10 lubm-20
DLV∃ PAGOdA Clipper DLV∃ PAGOdA Clipper

LB:01 1.12 10.97 46.64 2.41 21.43 193.26
LB:02 1.40 10.97 45.97 3.01 21.66 187.79
LB:03 0.99 11.48 44.47 2.11 21.65 194.87
LB:04 5.16 11.09 47.22 10.94 21.51 201.29
LB:05 4.76 10.97 49.32 10.03 21.64 196.50
LB:06 8.55 11.62 50.04 18.59 22.06 212.50
LB:07 4.41 11.54 48.98 9.41 21.90 194.75
LB:08 5.77 12.26 46.86 10.97 21.87 196.48
LB:09 9.18 11.09 49.02 19.54 22.48 189.94
LB:10 6.22 11.11 44.93 12.23 23.73 193.44
LB:11 0.04 10.80 46.01 0.07 21.71 194.01
LB:12 4.23 11.90 45.12 8.86 21.65 203.39
LB:13 4.36 12.51 44.39 9.24 21.62 197.52
LB:14 0.40 11.28 48.23 0.75 21.95 204.37
# 14 14 14 14 14 14
avg 2.35 11.39 46.91 4.78 21.91 197.06

Note: The times of GraalF are not shown since the system timed out on every
benchmark query. On the contrary, GraalB has not been involved because the
LUBM ontology is not first-order rewritable.

each benchmark are given in Table IV in terms of number of atoms, number of join
variables, number of free variables and number of bounded variables. The table shows
that, overall, queries involved by the various benchmarks span over heterogeneous
sets of proposed parameters; as a consequence, testing scenarios should be sufficiently
variegate to assess different facets of tested systems.

LUBM. The Lehigh University Benchmark (LUBM) has been specifically developed
to facilitate the evaluation of Semantic Web reasoners in a standard and system-
atic way. In fact, the benchmark is intended to evaluate the performance of those
reasoners with respect to extensional queries over large data sets that commit to a
single realistic ontology. It consists of a university domain OWL ontology (express-
ible in Datalog∃ ) with customizable and repeatable synthetic data and a set of 14
input SPARQL queries. The LUBM ontology provides a wide range of axioms that
are aimed at testing different capabilities of the reasoning systems. The ontology de-
scribes (among others) universities, departments, students, professors and relation-
ships among them. Data generation has been carried out by the LUBM data generator
tool whose main generation parameter is the number of universities to consider. In
order to perform scalability tests, we produced two data sets of increasing sizes: lubm-
10 and lubm-20, where the ‘10’ and the ‘20’ in these acronyms indicate the number of
universities used as parameter to generate the data. The number of statements (both
individuals and assertions) stored in the data sets vary from about 1M for lubm-10
to about 3M for lubm-20. In this comparison, we decided to involve the following sys-
tems: DLV∃ , PAGOdA, Clipper and GraalF . GraalB has been excluded because LUBM
is equipped with an axiom (transitivity) that is not first-order rewritable. Whereas,
PAGOdA has not been excluded, despite LUBM is not a ELHOr⊥ ontology, because ev-
ery query of the benchmark has only free variables (and sometimes constant terms);
hence, in this case the ground semantics coincides with the standard first-order one.

Deep. The Deep benchmark has been recently developed by Benedikt et al. [2017]
as a pure stress test for chase-based systems. Actually, Deep is part of a benchmark
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Table VI. Running times (sec) for DEEP queries.

deep-100 deep-200
DLV∃ GraalB GraalF DLV∃ GraalB GraalF

D1:01 0.36 2.17 13.61 D2:01 0.37 3.01 ↗
D1:02 0.54 4.55 12.08 D2:02 0.36 2.28 ↗
D1:03 0.79 94.95 11.08 D2:03 0.36 1.95 ↗
D1:04 0.36 3.01 13.40 D2:04 0.36 2.56 ↗
D1:05 0.36 1.63 13.29 D2:05 1.01 18.10 ↗
D1:06 0.38 10.92 12.72 D2:06 0.36 2.36 ↗
D1:07 0.36 8.67 13.64 D2:07 0.96 124.74 ↗
D1:08 0.35 3.87 12.55 D2:08 0.44 103.04 ↗
D1:09 0.55 57.94 13.13 D2:09 0.36 3.82 ↗
D1:10 0.35 6.51 13.80 D2:10 0.38 4.81 ↗
D1:11 0.37 ↗ 13.05 D2:11 1.04 ↗ ↗
D1:12 0.39 ↗ 12.33 D2:12 0.40 ↗ ↗
D1:13 0.36 ↗ 12.75 D2:13 3.03 ↗ ↗
D1:14 0.50 ↗ 13.89 D2:14 0.40 ↗ ↗
D1:15 0.41 ↗ 13.49 D2:15 1.05 ↗ ↗
D1:16 0.43 ↗ 13.19 D2:16 1.27 ↗ ↗
D1:17 0.40 ↗ 12.37 D2:17 0.42 ↗ ↗
D1:18 0.43 ↗ 13.14 D2:18 1.03 ↗ ↗
D1:19 0.43 ↗ 12.36 D2:19 0.40 ↗ ↗
D1:20 0.52 ↗ 13.27 D2:20 3.32 ↗ ↗
# 20 10 20 # 20 10 0
avg 0.42 47.73 12.94 avg 0.64 46.29 ↗

Note: If used in place of a running time, symbol “↗” indicates that the running
time exceeds the time limit (300 seconds). Otherwise, it means that the average
running time has not been computed since the corresponding system timed out on
every benchmark query. To compute geometric means, we used the time limit (300
secs) in case of timeout. Systems Clipper and PAGOdA have not been considered
since Deep has been designed as a Datalog∃ ontology and, as such, it is composed by
a number of predicates and rules that cannot be translated in OWL.

consisting of five different scenarios, also including LUBM. (The remaining three sce-
narios of the original benchmark turned out to be unsuitable in our setting since either
they do not provide any input query or their ontologies are not shy.) Deep comes with
three different domains, referred to as deep-100, deep-200 and deep-300, each pro-
vided with a rule set of increasing size (1100, 1200 and 1300 rules, respectively), a
set of facts (composed by just one fact per predicate) and a set of twenty conjunctive
queries. Notice that, every ontology of the benchmark is linear and weakly-acyclic. Thus,
we decided to involve in this run the following systems: DLV∃ , GraalF and GraalB . In
this case, we did not consider Clipper and PAGOdA because Deep has been designed
as a Datalog∃ ontology and, as such, it is composed by a number of predicates and
rules that cannot be translated in OWL. Although the limited size of the input sets of
facts, the complexity of the rules is such that the restricted chase produces for example
over 500M atoms on the largest deep-300 scenario. Notice that, we considered in our
evaluation only deep-100 and deep-200 because deep-300 is still unavailable.

Adolena, Stock Exchange, Vicodı̀ and Path5. These domains have been derived from
a well-established benchmark for DL-based query rewriting systems used, e.g., in
[Pérez-Urbina et al. 2010]. These ontologies are expressed in the description logic
DL-LiteR [Calvanese et al. 2007], each provided with a different set of five SPARQL
queries. Notice that, each ontology of the benchmark is linear, whereas only Vicodı̀ and
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Table VII. Running times (sec) over Adolena, Stock Exchange, Vicodı̀ and Path5 ontologies.

stock-exchange
DLV∃ PAGOdA Clipper GraalB

SE:01 0.31 6.21 3.29 5.21
SE:02 1.96 7.66 8.02 ↗
SE:03 12.16 18.61 ↗ ↗
SE:04 4.05 10.86 29.67 ↗
SE:05 61.93 ↗ ↗ ↗
# 5 4 3 1
avg 4.50 19.59 37.11 133.38

adolena
DLV∃ Clipper GraalB

AD:01 0.95 5.71 5.75
AD:02 1.27 4.71 49.60
AD:03 1.26 5.03 ↗
AD:04 1.12 4.25 ↗
AD:05 3.03 5.01 ↗
# 5 5 2
avg 1.39 4.92 94.92

vicodı̀
DLV∃ PAGOdA Clipper GraalB GraalF

VD:01 0.25 4.53 4.67 5.98 27.07
VD:02 0.59 4.91 5.91 ↗ ↗
VD:03 0.44 5.92 6.23 ↗ 28.43
VD:04 0.41 4.29 5.10 ↗ 26.56
VD:05 0.37 5.53 4.42 ↗ 109.62
# 5 5 5 1 4
avg 0.40 5.00 5.22 137.10 58.28

path5
DLV∃ PAGOdA Clipper GraalB GraalF

P5:01 0.36 5.93 2.94 5.53 14.91
P5:02 0.89 6.92 4.40 262.43 10.29
P5:03 2.50 10.67 7.12 ↗ 35.13
P5:04 20.75 142.23 50.49 ↗ ↗
P5:05 ↗ ↗ ↗ ↗ ↗
# 4 4 4 2 3
avg 5.48 28.47 16.94 131.39 54.60

Note: Symbol “↗” indicates that the running time exceeds the time limit (300 seconds). To compute geometric
means, we used the time limit (300 secs) in case of timeout. PAGOdA has not been involved over Adolena because
its ontology is not ELHOr

⊥ and its queries are not bound. GraalF has not been considered over Adolena and Stock
Exchange because their ontologies are not weakly-acyclic and there is no evidence that the system can stop after
finitely many steps.

Path5 are weakly-acyclic and ELHOr⊥. Hence, we run DLV∃ , Clipper and GraalB on
every domain; PAGOdA on Stock Exchange (its queries have no bound variables), Vi-
codı̀ and Path5; GraalF on Vicodı̀ and Path5. This benchmark is not provided with an
input data generator. We therefore used Sygenia in order to produce a meaningful set
of data for each domain. In particular, the generated instances are composed by 30k
assertions and 5k different individuals. In order to get the proper formats, we used the
aforementioned conversion tools. In the following lines, we give a brief description of
each ontology:

— Adolena (Abilities and Disabilities OntoLogy for ENhancing Accessibility) has been
developed for the South African National Accessibility Portal. It describes abilities,
disabilities and devices.

— Stock Exchange is an ontology of the domain of financial institution within the EU.
— Vicodı̀ is an ontology of European history, developed within the Vicodı̀ project.13

— Path5 is a synthetic ontology encoding graph structures, and used to generate an
exponential blow-up of the size of the rewritten queries.

9.3. Results
The machine used for testing is a MSI GE60-2PE with 4 dual-core Intel i7-4710HQ
processors at 2.50GHz (8 cores in total), running Linux Ubuntu v14.04 x86-64. The
machine is equipped with 16GB of RAM. Resource usage was limited to 300 seconds
and 8GB of RAM in each execution.

13See http://www.vicodi.org.
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Table VIII. Overall results on percentage of solved queries and average running time.

DLV∃ PAGOdA Clipper GraalB GraalF

lubm-10
# solved queries (%) 100% 100% 100% − 0%

average time 2.35 11.39 46.91 − ↗

lubm-20
# solved queries (%) 100% 100% 100% − 0%

average time 4.78 21.91 197.06 − ↗

deep-100
# solved queries (%) 100% − − 50% 100%

average time 0.42 − − 47.73 12.94

deep-200
# solved queries (%) 100% − − 50% 0%

average time 0.64 − − 46.29 ↗

adolena
# solved queries (%) 100% − 100% 40% −

average time 1.39 − 4.92 94.92 −

stock-exchange
# solved queries (%) 100% 80% 60% 20% −

average time 4.50 19.59 37.11 133.38 −

vicodı̀
# solved queries (%) 100% 100% 100% 20% 80%

average time 0.40 5.00 5.22 137.10 58.28

path5
# solved queries (%) 80% 80% 80% 40% 60%

average time 5.48 28.47 16.94 131.39 54.60

Note: Symbol “−” under a certain system indicates that it cannot (or there is no evidence that
it can) be tested on the corresponding benchmark. Moreover, symbol “↗” under a certain system
indicates that its average running time has not been computed since it timed out on every query of
the benchmark.

Detailed results on running times for each query benchmark and system are shown
in Tables V–VII14, whereas in Table VIII we provide an overall picture of percentage
of solved queries, and geometric mean of running times for each benchmark and each
system. It is worth pointing out that, to compute geometric means we used the maxi-
mum available time (300 seconds) in case of timeout. By considering actual times, gaps
might be greater.

From the analysis of these tables, it is possible to observe that DLV∃ outperforms
all the other tested systems on both running times and number of solved queries. In
particular, while each system has missing results for some benchmark/query either
because of expressiveness or timeouts, DLV∃ is always capable to answer the queries
within the timeout, with one only exception for query P5:05 which is analyzed next.
As previously pointed out, Path5 benchmark is designed to stress the system by expo-
nentially increasing the complexity of queries, from P5:01 to P5:05. Moreover, from a
theoretical analysis of the queries, we may expect that an increasing number of join
variables (see Table IV) increases the complexity of query answering if these variables
are attacked. In our experiments, none of the tested systems have been able to answer
P5:05 but if we look at the trend in time increase from P5:01 to P5:04 we may observe
that DLV∃ increase is smoother than the other systems. In order to better analyze this
case, we carried out a more thorough analysis on P5:05, trying to identify how far each
system is from the limit. As a consequence, we let the system run over the time limit.
It turned out that GraalB stops for out-of-memory issues after about 1200 seconds,

14It is worth pointing out that GraalF is not listed in Table V even if it could run the corresponding queries,
since it timed out on every query of both data sets. We also tested it with only 5 universities (lubm-5)
obtaining the same time outs.
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PAGOdA requires about 2404 seconds to answer the query, whereas Clipper needs
about 890 seconds and GraalF has been stopped after two hours. Finally, DLV∃ pro-
vides query result in about 551 seconds, confirming the smoother trend with respect to
the other systems on this benchmark.

As far as running times are concerned, DLV∃ is always faster than the other systems
and, in some cases, improvements are up to orders of magnitude. There is no leading
systems among the competitors, where each system shows better results on different
benchmarks.

We then considered the best performing system among competitors for each bench-
mark, based on the average running times. It turned out that (see Table VIII):
PAGOdA is the best on LUBM, Stock Exchange and Vicodı̀; GraalF is the best on
deep-100; GraalB is the best on deep-200; finally, Clipper turned out to perform best
on Adolena and Path5.

If we consider now the ratio between the average running time of DLV∃ for each
benchmark and the average running time of the best performing system on the same
benchmark, we may observe that in the worst case DLV∃ takes on average only 32%
of the time needed by Clipper on Path5, whereas in the best case, which occurs on
deep-200, DLV∃ takes on average only 1.38% of the time needed by GraalB .

10. CONCLUSION
We have provided a new variant of the chase procedure, called parsimonious, which is
sound and terminating over any Datalog∃ program. Based on the parsimonious chase,
we have isolated a new semantic property, called parsimony, which ensures decidabil-
ity of atomic query answering in general, and of conjunctive query answering when-
ever two further conditions —respectively called uniformity and compactness— are
satisfied. Since the recognition of parsimony is undecidable, we have singled out shy,
an easily recognizable class of parsimonious programs enjoying both uniformity and
compactness. In particular, shy generalizes plain Datalog as well as the class of lin-
ear existential programs, while it is uncomparable to the other main classes ensuring
decidability.

From a computational point of view, we have demonstrated that shy preserves the
same (data and combined) complexity of Datalog for both atomic and conjunctive query
answering. By exploiting our results, we have implemented a bottom-up evaluation
strategy for shy programs inside the DLV system, and enhanced the computation by
a number of optimization techniques, yielding DLV∃ —a powerful system for a fully-
declarative ontology-based query answering. The experiments confirm the efficiency of
DLV∃ . Summing up, it turns out that DLV∃ is the first system supporting the standard
first-order semantics for unrestricted CQs with existential variables over ontologies
with advanced properties (such as, role transitivity, role hierarchy, role inverse and
concept products), which can be even combined under suitable restrictions.

In the future, it would be relevant and interesting to refine and adapt our techniques
to deal, also in an efficient way, with equality-generating dependencies, negation, and
disjunction.
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