Linguaggi Logiche e
Tecnologie per la
Gestione Semantica dei
testi
RDFS

Introduction by example
RDFS

- W3C standard for an ontology language

- RDFS introduces resources (URIs) with a predefined meaning

- Inference engines that support RDFS allow to take that meaning into account

- RDFS inferences extend the RDF graph by means of inference and hence, affect query answering

- RDFS is very simple compared to SWRL or OWL, however, it is very useful in many context, allowing for increased productivity, easy data integration and interesting AI applications
Building blocks

- New namespace rdfs:
 <http://www.w3.org/2000/01/rdf-schema#>

- New categories:
 - **Classes**, resources that share something in common, allow us to group things together. For example, Employee, Company. Resources that identify classes have rdf:type rdfs:Class
 - **Instances**, resources that are “members” of a class

Commonly, Class names are nouns
Building blocks

Resources can belong to multiple classes
Properties: Resources used as a predicate in statements

Commonly, Property names are multiple words, expressing direction and in camel-casing.
RDFS Ontologies

- RDFS Axioms
 - Are RDF triples!

- RDFS ontology is an RDF graph!

- An RDF graph may have a subgraph expressed in RDFS
 - We call the RDFS axioms/triples the Tbox of the ontology (terminological information, predefined meaning)
 - The rest is the Abox of the ontology (plain data, no predefined meaning)
Type propagation

- RDFS vocabulary: rdfs:subClassOf

- Key notions
 - sub class (on the left)
 - super class (on the right)

- Intuitive meaning, if \(\text{emp}=1 \) is an instance of sub class it is also an instance of super class

- Formal meaning: subsets

- Inference: type propagation

Similar to inheritance in Object Oriented formalisms
Type propagation

- **RDFS vocabulary:**
 - `rdfs:subClassOf`

- **Key notions**
 - `sub class` (on the left)
 - `super class` (on the right)

- **Intuitive meaning,** if `emp=1` is an instance of `subclass` it is also an instance of `superclass`

- **Formal meaning:** `subsets`

- **Inference:** `type propagation`

Similar to inheritance in Object Oriented formalisms.
Relation propagation

- **RDFS vocabulary:**
 rdfs:subPropertyOf

- **Key notions**
 - **sub property** (on the left)
 - **super property** (on the right)

- Intuitive meaning, if \((x,y)\) are connected with superproperty, they are also connected with subproperty.

- Formal meaning: **subsets** (of binary tuples)

- Inference: **relationship propagation**
Relation propagation

- RDFS vocabulary: rdfs:subPropertyOf

- Key notions
 - sub property (on the left)
 - super property (on the right)

- Intuitive meaning, if \((x, y)\) are connected with subproperty they are also connected with superproperty

- Formal meaning: subsets (of binary tuples)

- Inference: relationship propagation
Types by usage

- **RDFS vocabulary:**
 - rdfs:domain, rdfs:range

- **Key notions**
 - **domain of a triple:**
 - the subject
 - **range of a triple:**
 - the object

- **:p rdfs:domain :C -->** the domain of any triple where :p is the predicate is an instance of :C (similar for rdfs:range)

- **Formal meaning:**
 - if (x, y) in P, then x in :C

- **Inference:** type assignment by property usage
Types by usage

- RDFS vocabulary: rdfs:domain, rdfs:range

- Key notions
 - domain of a triple: the subject
 - range of a triple: the object

- :p rdfs:domain :C -> the domain of any triple where :p is the predicate is an instance of :C (similar for rdfs:range)

- Formal meaning: Inference: type assignment by property usage
Interactions

- All inferences interact to allow complex behavior
Interactions

- All inferences interact to allow complex behavior
Set intersection

- Proper set intersection is not possible in RDFS
- However, expressing necessary membership to multiple classes is possible, i.e., A subset B AND C

A rdfs:subClassOf B
A rdfs:subClassOf C

consider
x rdf:type A
Set intersection

- Proper set intersection is not possible in RDFS

- However, expressing necessary membership to multiple classes is possible, i.e., A subset B AND C

\[\text{A rdfs:subClassOf B} \]
\[\text{A rdfs:subClassOf C} \]

consider
\[x \text{ rdf:type A} \]
Set intersection

- Proper set intersection is not possible in RDFS

- However, expressing necessary membership to multiple classes is possible, i.e., A subset B AND C

A rdfs:subClassOf B
A rdfs:subClassOf C

consider
x rdf:type A

One direction only!
Set intersection

- Similar for roles
Set intersection

- Similar for roles
Set union

- Proper set union is not possible in RDFS
- However, A OR B subsetOf C

 B rdfs:subClassOf A
 C rdfs:subClassOf A

 consider
 x rdf:type B

 or
 x rdf:type C
Set union

- Proper set union is not possible in RDFS
- However, A OR B subsetOf C

B rdfs:subClassOf A
C rdfs:subClassOf A

consider
x rdf:type B

or
x rdf:type C
Set union

- For roles. Aligning to a global vocabulary
Set union

- For roles. Aligning to a global vocabulary
Equivalence

- Merging vocabularies
- To account for same use of different terms (classes or properties)
- For classes or properties
Equivalence

- Merging vocabularies
- To account for same use of different terms (classes or properties)
- For classes or properties