
INSTALL APACHE2:  
 
$ sudo apt-get install apache2   
 
  
HTTPS Configuration:  
The mod_ssl module is available in apache2-common package. To enable the mod_ssl module:  
  
$ sudo a2enmod ssl  
Module ssl installed; run /etc/init.d/apache2 force-reload to enable.  
 
$ sudo /etc/init.d/apache2 force-reload  
 * Reloading web server config apache2          
 
 
Certificates: 
To set up your secure server, use public key cryptography to create a public and private key pair. You need a 
key and a certificate to operate your secure server, which means that you can either generate a self-signed 
certificate or purchase a CA-signed certificate. 

1. You can create your own self-signed certificate. Note, however, that self-signed certificates should not be 
used in most production environments. Self-signed certificates are not automatically accepted by a user's 
browser. Users are prompted by the browser to accept the certificate and create the secure connection.  

2. You can send your certificate request (including your public key), proof of your company's identity, and 
payment to a Certificate Authority (CA). The CA verifies the certificate request and your identity, and then 
sends back a certificate for your secure server.  

 

Once you have a self-signed certificate or a signed certificate from the CA of your choice, you need to install 
it on your secure server.  

 
(1A) Create a self-signed certificate 
 
1A.1 Generate a Private Key  
 
To generate the Certificate Signing Request (CSR), you should create your own key. In order to create the 
server key run the following command: 
 
$ sudo openssl genrsa -des3 -out server.key 1024  
Generating RSA private key, 1024 bit long modulus  
......................++++++  
........++++++  
e is 65537 (0x10001)  
Enter pass phrase for server.key:  
Verifying - Enter pass phrase for server.key:  
 
Then create a certificate signing request with it. 
 
1A.2 Generate a CSR (Certificate Signing Request)  
 
The following command will prompt for a series of things (country, state or province, etc.). Make sure that 
"Common Name (eg, YOUR name)" matches the registered fully qualified domain name of your box (or 
your IP address if you don't have one). If the website to be protected will be https://www.server.com, then 
enter www.server.com at this prompt. The default values for the questions ([AU], Internet Widgits Pty Ltd, 



etc.) are stored in /etc/ssl/openssl.cnf.   
 
$ sudo openssl req -new -key server.key -out server.csr  
Enter pass phrase for server.key:  
You are about to be asked to enter information that will be incorporated into your certificate request.  
What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but 
you can leave some blank .For some fields there will be a default value. If you enter '.', the field will be left 
blank.  
-----  
Country Name (2 letter code) [AU]:it  
State or Province Name (full name) [Some-State]:italy  
Locality Name (eg, city) []:rende  
Organization Name (eg, company) [Internet Widgits Pty Ltd]:mycompany  
Organizational Unit Name (eg, section) []:myunit  
Common Name (eg, YOUR name) []:localhost  
Email Address []:myemail  
 
Please enter the following 'extra' attributes  
to be sent with your certificate request  
A challenge password []:prova  
An optional company name []:my  
 
Now you are ready to sign the certificate signing request (see next step). 
 
1A.3 Generating a Self-Signed Certificate  
 
$ sudo openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt  
Signature ok  
subject=/C=it/ST=italy/L=rende/O=mycompany/OU=myunit/CN=localhost/emailAddress=myemail  
Getting Private key  
Enter pass phrase for server.key:  
 
1A.4 Skipt to step (2) but before... 
 
Please check...you should have: 
server.crt: The self-signed server certificate. 
server.csr: Server certificate signing request. 
server.key: The private server key 
 
 
 
(1B) Generate your own CA (Certificate Authority) 
 
Complete this section if you want to make a CA (Certificate Authority) and sign a server certificate with it.  
The Common Name (CN) of the CA and the Server certificates must NOT match or else a naming 
collision will occur and you'll get errors later on. In this step, you'll provide the CA entries.  In this example, 
I just added "ca" to the CA's CN field, to distinguish it from the Server's CN field.  
 
CA: 
Common Name (CN): www.somesite.edu CA 
Organization (O): Somesite 
Organizational Unit (OU): Development  
Server: 
Common Name (CN): www.somesite.edu 
Organization (O): Somesite 
Organizational Unit (OU): Development  
 



 
If you don't have a fully qualified domain name, you should use the IP that you'll be using to access your 
SSL site for Common Name (CN).  
 
 
1B.1  Generate a CA private key 
 
$ sudo openssl genrsa -des3 -out ca.key 4096 
Generating RSA private key, 4096 bit long modulus  
.....................................................................................++  
................................................................................................................++  
e is 65537 (0x10001)  
Enter pass phrase for ca.key:  
Verifying - Enter pass phrase for ca.key:  
 
1B.2 Generate a request for signing (csr) 
 
$ sudo openssl req -new -x509 -days 365 -key ca.key -out ca.crt 
Enter pass phrase for ca.key:  
You are about to be asked to enter information that will be incorporated  into your certificate request. What 
you are about to enter is what is called a Distinguished Name or a DN.  There are quite a few fields but you 
can leave some blank For some fields there will be a default value,  
If you enter '.', the field will be left blank.  
-----  
Country Name (2 letter code) [AU]:it  
State or Province Name (full name) [Some-State]:italy  
Locality Name (eg, city) []:cs  
Organization Name (eg, company) [Internet Widgits Pty Ltd]:companyca  
Organizational Unit Name (eg, section) []:unitca  
Common Name (eg, YOUR name) []:localhostca  
Email Address []:camail  
 
 
1B.3 Generate a server key 
 
$ sudo openssl genrsa -des3 -out server.key 4096 
 
Generating RSA private key, 4096 bit long modulus  
..........................................................................................................................................................++  
............................................++  
e is 65537 (0x10001)  
Enter pass phrase for server.key:  
Verifying - Enter pass phrase for server.key:  
 
1B.4 Generate a request for signing (csr) 
 
After generating a server key, generate a request that you want it signed (the .csr file) by a Certificate 
Authority (the one you just created in Step above.) Think carefully when inputting a Common Name (CN) as 
you generate the .csr file below. This should match the DNS name, or the IP address you specify in your 
Apache configuration. If they don't match, client browsers will get a "domain mismatch" message when 
going to your https web server. If you're doing this for home use, and you don't have a static IP or DNS 
name, you might not even want worry about the message (but you sure will need to worry if this is a 
production/public server). For example, you could match it to an internal and static IP you use behind your 
router, so that you'll never get the "domain mismatch" message if you're accessing the computer on your 
home LAN, but will always get that message when accessing it elsewhere.  
 



$ sudo openssl req -new -key server.key -out server.csr 
 
Enter pass phrase for server.key:  
You are about to be asked to enter information that will be incorporated  
into your certificate request.  
What you are about to enter is what is called a Distinguished Name or a DN.  
There are quite a few fields but you can leave some blank  
For some fields there will be a default value,  
If you enter '.', the field will be left blank.  
-----  
Country Name (2 letter code) [AU]:it  
State or Province Name (full name) [Some-State]:italy  
Locality Name (eg, city) []:rende  
Organization Name (eg, company) [Internet Widgits Pty Ltd]:mycomp  
Organizational Unit Name (eg, section) []:myunit  
Common Name (eg, YOUR name) []:localhost  
Email Address []:mymail  
 
Please enter the following 'extra' attributes  
to be sent with your certificate request  
A challenge password []:prova  
An optional company name []:my  
 
 
1B.5 Sign the certificate signing request (csr) with the self-created  (CA) 
 
Note that 365 days is used here. After a year you'll need to do this again.  Note also that I set the serial 
number of the signed server certificate to "01". Each time you do this, especially if you do this before a 
previously-signed certificate expires, you'll need to change the serial key to something else -- otherwise 
everyone who's visited your site with a cached version of your certificate will get a browser warning 
message to the effect that your certificate signing authority has screwed up -- they've signed a new 
key/request, but kept the old serial number. There are a couple ways to rectify that. crl's (certificate 
revocation list) is one method, but beyond the scope of the document. Another method is for all clients which 
have stored the CA certificate to go into their settings and delete the old one manually. But for the purposes 
of this document, we'll just avoid the problem. (If you're a sysadmin of a production system and your 
server.key is compromised, you'll certainly need to worry.)  
 
The command below does a number of things. It takes your signing request (csr) and makes a one-year valid 
signed server certificate (crt) out of it. In doing so, we need to tell it which Certificate Authority (CA) to use, 
which CA key to use, and which Server key to sign. We set the serial number to 01, and output the signed 
key in the file named server.crt. If you do this again after people have visited your site and trusted your CA 
(storing it in their browser), you might want to use 02 for the next serial number, and so on. You might create 
some scheme to make the serial number more "official" in appearance or makeup but keep in mind that it is 
fully exposed to the public in their web browsers, so it offers no additional security in itself.  
 
 
$ sudo openssl x509 -req -days 365 -in server.csr -CA ca.crt -CAkey ca.key -set_serial 

01 -out server.crt 
 
Signature ok  
subject=/C=it/ST=italy/L=rende/O=mycomp/OU=myunit/CN=localhost/emailAddress=mymail  
Getting CA Private Key  
Enter pass phrase for ca.key:  
 
 
 



 
1B.6 Skipt to step (2) but before... 
 
Please check...you should have: 
server.crt: The self-signed server certificate. 
server.csr: Server certificate signing request. 
server.key: The private server key 
ca.crt: The Certificate Authority's own certificate. 
ca.key: The key which the CA uses to sign server signing requests.  
 
The CA files are important to keep if you want to sign additional server certificates and preserve the same 
CA. You can reuse these so long as they remain secure, and haven't expired.  
  
 
(2) Setting up SSL 
   
Preliminaries 
 
If you have a registered DNS name, be sure that you properly set it up. On the Gnome console: System-
>Administration->Networking:General. Your host/domain name here should match the one you'll be using in 
later steps. You can also edit /etc/hosts directly if you're comfortable with that route.  
 
Installing the Private Key and Certificate  
 
When Apache with mod_ssl is installed, it creates several directories in the Apache config directory. The 
location of this directory will differ depending on how Apache was compiled.  
This step suggests putting certificate-related files in this location: /etc/apache2/ssl.  
If the "ssl" directory doesn't already exist there, go ahead and mkdir it now. 
 
$ sudo mkdir /etc/apache2/ssl  
 
Then copy the server.key and server.crt files into position:  
 
$ sudo cp server.key /etc/apache2/ssl   

$ sudo cp server.crt /etc/apache2/ssl  
 
Enable ssl 
 
You'll want to run the /usr/sbin/a2enmod script. If you look at this script, it's simply a general purpose utility 
to establish a symlink between a module in /etc/apache2/mods-available to /etc/apache2/mods-enabled (or 
give a message to the effect that a given module doesn't exist or that it's already symlinked for loading).  
 
$ sudo a2enmod ssl  
 
Create a stub SSL conf. file and establish a necessary symlink 
 
The first command copies the default configuration file for port 80, to use it as a stub configuration file for 
443. The second command establishes a symlink from the 'available' ssl file to the 'enabled' file. The 
symlinking methodology between those two directories is similar in philosophy to mods-available and mods-
enabled (previous step). The general idea is that enabled files exist as symlinks created to their available 
counterparts.  
 
$ sudo cp /etc/apache2/sites-available/default /etc/apache2/sites-available/ssl 
 
$ sudo ln -s /etc/apache2/sites-available/ssl /etc/apache2/sites-enabled/ssl  
 



Set up the document roots 
 
The default location for HTML pages with an initial install of Ubuntu is /var/www and there exists no 
separate place for ssl files. I prefer to serve up basic HTML pages in /var/www/html and SSL pages in 
/var/www-ssl/html.  
 
cd /var/www 

mkdir html 

cd /var 

mkdir www-ssl 

cd www-ssl 

mkdir html  

 
Configure virtual hosts 
 
su to the superuser and make a backup of the original Apache configuration file. Call it whatever you want. 
My practice is to add "_original" to any default configuration file before I make changes -- in case I need to 
revert. You should not make a backup of the following file in the sites-enabled directory, since both the 
original and backup will be loaded when you restart Apache. Also note that a symlink exists from 
/etc/apache2/sites-enabled/000-default to /etc/apache2/sites-available/default. 
 
$ sudo su 

$ cd /etc/apache2/sites-available 

$ cp /etc/apache2/sites-available/default default_original  
 
Now you need to declare the IP of your box (or FQDN/DNS name) and document roots you created in a 
previous step.  
 
Configure default and ssl file 
 
To configure HTTP over port 80 (edit /etc/apache2/sites-available/default): 
 
NameVirtualHost *:80 
 
<VirtualHost *:80> 
ServerName localhost 
DocumentRoot /var/www/html/ 
 
(Note: Use your assigned IP or DNS name followed with ":80" if you have one for ServerName).  
 
Similar procedure for HTTPS over port 443 (edit /etc/apache2/sites-available/ssl):  
 
NameVirtualHost *:443 
 
<VirtualHost *:443> 
ServerName localhost 
DocumentRoot /var/www-ssl/html/ 
 
(Note: Again, use your assigned IP or a DNS name followed with ":443" if you have one for ServerName.)  
 
Instruct Apache to listen to 443 
 
Go to /etc/apache2/ports.conf and check whether it looks like (starting with Ubuntu 7.10) the ports.conf may 
already have an IfModule clause in it for the SSL portion. If you see this, you can just leave it as-is:  
 
 



<IfModule mod_ssl.c> 
    Listen 443 
</IfModule> 
 
Turn on the SSL engine 
 
For example, in the middle of /etc/apache2/sites-available/ssl file, after the commented area which says "# 
Possible values include: debug, info, notice, warn, error, crit..." add the following.  
 
SSLEngine On 
SSLCertificateFile /etc/apache2/ssl/server.crt 
SSLCertificateKeyFile /etc/apache2/ssl/server.key  
  
 
When starting and stopping Apache there may be a complaint such as "Could not determine the server's fully 
qualified domain name, using 127.0.1.1 for ServerName". You may encounter this if you don't have a DNS 
name for your server, and are just using an IP. If this applies to you, go into your /etc/hosts file and make the 
following changes.  
 
127.0.0.1 localhost localhost.localdomain {your system name} 
127.0.1.1 {your system name} 
{static IP if you you have one} {fully qualified DNS host name if you have one}  
 
If you don't have a fully qualified domain name (FQDN) for your box, you may need to make an additional 
tweak. In your /etc/apache2/apache2.conf file, you may want to add the following line at the very end of the 
file if Apache is still complaining about lacking a fully qualified domain name at startup: ServerName 
localhost. 
 
 
(3) Test it: 
 
$ sudo /etc/init.d/apache2 start  
Apache/2.2.8 mod_ssl/2.2.8 (Pass Phrase Dialog)  
Some of your private key files are encrypted for security reasons.  
In order to read them you have to provide the pass phrases.  
 
Server localhost:443 (RSA)  
Enter pass phrase:  
  
OK: Pass Phrase Dialog successful.  
 
 
http://localhost/ 
https://localhost/ 
 
 
 
 
 
 
 
 
 
 
 
 
 



(1A) → (2) → http://localhost/ 
 
                                                   

 
 
 
(1A) → (2) → https://localhost/ 
 

 

 

http://localhost/
https://localhost/


 
 
 
 
If you add the Exception you can get the certificate: 
 

 
 

 
 
 
 
 
 
 



Then you can see properties and details of the certificate: 
 

 



 
 
 
You can also export the certificate (via the Export button).  
 
When accepting the certificate you are allowed to connect to https://localhost (you see the lock icon on the 
status bar of your browser). 
 
 

https://localhost/


 
 

 
 
 

 
 



(1B) → (2) → https://localhost/ 
 

 
 

 

https://localhost/


 
 



 
 



 
 
 

 



 


