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Abstract. Frame logic is well known as a useful ontology modeling for-
malism, mainly appreciated for its object-oriented features and its non-
monotonic variant, capable to deal with typical nonmonotonic features
such as object oriented inheritance.
This paper presents a preliminary work defining a framework for coping
with frame-like syntax and higher order reasoning within an answer set
programming environment. Semantics is defined by means of a transla-
tion to an ordinary answer set program. A working prototype, together
with usage examples, is presented.
The works paves the way to further deeper studies about the usage of
frame logic-like constructs under Answer Set Semantics.

1 Introduction

Frame Logic (F-logic) [1, 2] is a knowledge representation and ontology lan-
guage which combines the declarative semantics and expressiveness of deductive
database languages with the rich data modelling capabilities supported by the
object oriented data model.
The basic idea behind F-logic is to consider complex data types as in object-
oriented databases, combine them with logic and use the result as a programming
language. Some of the desirable features of F-logic are:

– it eases the burden of declaring properties of instance data. With respect
to the flat relational model (and to its logic counterpart, where tables are
modelled as predicates), it is possible to “talk” about all the facts related to
a single individual within a single structure, i.e. the molecule.

– it eases the burden of reasoning about classes. Higher order reasoning is na-
tive in F-logic, so that the border between the notion of class and individual
is smooth. With respect to the usual logic programming paradigm, it is then
possible to reason about classes with the same ease of use as classic logic
programming offers when it is necessary to reason on individuals.

On the other hand, Answer Set Programming (ASP) languages and systems
(among the variety of such systems we recall here DLV [3] and GNT/smodels [4]),
offer several other desirable features such as declarativity (they are fully compli-
ant with a strongly assessed model-theoretic semantics [5]) and nondeterminism



(possibility to specify, in a declarative way, search spaces, strong and soft con-
straints [6], and more). Also, ASP shares with F-logic the possibility to reason
about ontologies using nonmonotonic constructs, included nonmonotonic inher-
itance, as it is done in some ASP extensions conceived for modelling ontologies
[7].
Nonetheless, ASP misses the useful F-logic syntax and higher order reasoning
capabilities. This paper aims at extending answer set programming with some
of the F-logic features. In particular, our contributions are:

1. We present the family of Frame Answer Set Programs (FAS programs), allow-
ing usage of frame-like constructs, and of higher order atoms. Interestingly,
frames may appear both in the head and in the body of rules and can be
nested. Nested frames might be negated, allowing, to some extent, the same
liberality in writing programs typical of nested logic programs [8].

2. We provide the semantics of FAS programs in terms of a translation to a
higher order answer set program.

3. We show some example describing the ease of use of the language.
4. We present a system (DLT), able to deal with programs in F-logic like syntax,

and featuring higher order reasoning. DLT is a front-end, i.e., such programs
are translated in the syntax accepted by several solvers, thus enabling F-logic
features under Answer Set Semantics.

The remainder of the paper is structured as follows: Section 2 introduces a “run-
ning example” that will help the reader understanding our approach. Section 3
introduces the syntax of the language FAS (Frame Answer Set). Section 4 con-
tains a formalization of the semantics of FAS programs, while Section 5 describes
how to use frame-like syntax for modeling the running example. Eventually, the
system supporting FAS programs is described in Section 6, and conclusions are
drawn in Section 7.

2 Running example

In order to make the capabilities of the system and the range of applications
clearer, in the rest of this paper we will refer to an example herein introduced.
The example refers to a typical team building problem. A leader of a given project
needs to build a team from a set of employees, everyone having some skills. The
team must be selected according to the following specifications:

s1. The team consists of a given fixed number of employees.
s2. At least a given set of different skills must be present in the team.
s3. The sum of the salaries of the employees working in the team must not

exceed a given budget.
s4. The salary of each individual employee is within a specified limit.
s5. The number of women working in the team has to reach at least a given

number.



s6. Possibly, overlappings on desired skills should be avoided, therefore at most
one of employee with some required skills is preferable.

s7. Possibly, employees with undesired skills should be not selected.

We decided to model employees by instances of the class named employee. This
class has properties corresponding to the actual employee description and skill.
Properties are mapped to several binary predicates (gender, surname, married,
skill, salary). A project is encoded by instances of the project class, while spec-
ified properties of the project are stored in apposite predicates (name, budget,
numEmployee, maxSalary, numFemale, wantedSkills, nonWantedSkills).

3 Syntax

We present here the syntax of FAS (Frame Answer Set) programs. We will as-
sume the reader to be familiar with basic notions concerning with Answer Set
Programming (ASP) [5].
Let C be a set of constant and predicate symbols. Let X be a set of variables.
We conventionally denote variables with uppercase first letter (e.g. X, Project),
while constant with lowercase first letter (e.g. x, brown, nonWantedSkill). A
Frame Answer Set program (FAS program) is a set of rules, of the form

a1∨, . . . ,∨al ← b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , al and b1, . . . , bk are literals, not bk+1, . . . , not bm are naf-literals,
and l ≥ 0, k ≥ 0, m ≥ k. An atom can be a standard or a frame atom. A standard
atom is of the form t0(t1, . . . , tn), where t0, . . . , tn are terms, and t0 represents
the predicate name of the atom. A term is either a variable from X , or a constant
symbol from C. A literal is either an atom p, or an expression of the form ¬p
(called “strongly negated” atom), where p is an atom. A naf-literal is either of
the form b, or of the form not b, where b is a literal.
A frame atom, or molecule, can be of one of the following three forms:

i. obj[a1, . . . , an]

ii. obj : class

iii. obj : class[a1, . . . , an]

where obj is a term, called the subject of the frame and used to define an object,
class is a term that defines the class which obj belongs to, and a1, . . . , an is a
list of attribute expressions used to define properties of objects.
Informally, a frame molecule asserts that the object has some properties as spec-
ified by the attribute expressions listed inside the brackets.
An attribute expression defines an association between an attribute name and one
or multiple values than it can take. We use the auxiliary symbols “→” and “³”
respectively to define the single value and the set-valued mapping. A positive
attribute expression a can be of one of the following three forms:



i. name
ii. name op value [op ∈ {→,³}]
iii. name ³ values

where name is a term (or a strongly-negated term) representing the name of
the property, value is either a molecule or a term, and values is a non-empty
set of value. If more values are given for multi-valued attributes (e.g, case (iii)),
the values must be enclosed in curly brackets. Note that, when only one element
appears inside curly brackets, we may omit these.
A negative attribute expression is a negated positive attribute expression. An at-
tribute expression is either a positive attribute expression or a negative attribute
expression.
A plain higher order ASP program contains only standard atoms, while a plain
ASP program contains only standard atoms t0(t1, . . . , tn) where t0 is a constant
symbol.
Every object name refers to exactly one object, although molecules starting with
the same subject may be combined. Since the value referred to an object attribute
can be frames, molecules can be nested.
As an example, the following is a frame molecule:

brown : employee[ surname → “Mr. Brown”,

skill ³ {java, asp},
salary → 800,

gender → male,

married → pink ]

This defines membership of the subject brown to the employee class and asserts
some values corresponding to the properties bind to this object. This frame
molecule says brown is male (as expressed by the value of the attribute gender),
is married to another employee identified by the subject pink. brown knows java
and asp languages, as suggests the values of the skill property, while he has a
salary equal to 800. We may define a new frame molecule, like this, collecting
information about the employee encoded by the subject pink, but we can also
combine this information nesting frame molecules, as follows:

brown : employee[ surname → “Mr. Brown”,
skill ³ {java, asp},
salary → 800,
gender → male,
married → pink : employee[ surname → “Mrs. Pink”,

skill ³ {html, asp, javascript},
salary → 900,
gender → female,
married → brown ]

].



The following is an example of logic rule defining the profile a particular em-
ployee must have in order to be selected for project p3. We encoded this rule
using strong and naf nested negation:

E[inProject ³ p3] ∨ E[¬inProject ³ p3] ← X : employee,
E : employee[skill ³ {c + +, perl},
not married → X : employee[
not skill ³ {c + +, perl} ]].

This means that candidates to the project team p3 are employees knowing c++
and perl programming languages, but not married to another employee not know-
ing the same programming languages.

4 Semantics

We provide here the semantics of FAS programs in terms of a translation to a
higher order ASP program. Thus we first provide the semantics of plain higher
order ASP programs.

4.1 Semantics of plain higher order programs

Semantics of higher order programs is defined in terms of the traditional Gelfond-
Lifshitz reduct for a ground disjunctive logic program with classical negation [5].
Given a plain higher order program P , its ground version grnd(P ) is given by
grounding rules of P by all the possible substitutions that can be obtained us-
ing consistently elements of C. A ground rule thus contains only ground atoms;
the set of all possible ground atoms that can be constructed combining pred-
icates and terms occurring in the program is usually referred to as Herbrand
base (BP ). We remark that the grounding process substitutes also nonground
predicates names with symbols from C (e.g., a valid ground instance of the atom
H(brown, X) is married(brown, pink)): however, grnd(P ) is a standard ASP
ground program.
An interpretation for P is a set of ground atoms, that is, an interpretation is a
subset I ⊆ BP . I is said to be consistent if ∀a ∈ I we have that ¬a 6∈ i. A ground
positive literal A is true (resp., false) w.r.t. I if A ∈ I (resp., A 6∈ I). A ground
negative literal notA is true w.r.t. I if A is false w.r.t. I; otherwise notA is false
w.r.t. I.
Given a ground rule r ∈ grnd(P ), the head of r is true w.r.t. I if H(r) ∩ I 6= ∅.
The body of r is true w.r.t. I if all body literals of r are true w.r.t. I (i.e.,
B+(r) ⊆ I and B−(r) ∩ I = ∅) and is false w.r.t. I otherwise. The rule r is
satisfied (or true) w.r.t. I if its head is true w.r.t. I or its body is false w.r.t. I.
A model for P is an interpretation M for P such that every rule r ∈ grnd(P )
is true w.r.t. M . A model M for P is minimal if no model N for P exists such
that N is a proper subset of M . The set of all minimal models for P is denoted
by MM(P ).



Given a program P and an interpretation I, the Gelfond-Lifschitz (GL) transfor-
mation of P w.r.t. I, denoted P I , is the set of positive rules of the form {a1∨· · ·∨
an ← b1, · · · , bk } such that {a1 ∨ · · · ∨ an ← b1, · · · , bk, not bk+1, · · · , not bm} is
in grnd(P ) and bi /∈ I, for all k < i ≤ m. An interpretation I for a program P is
an answer set for P if I ∈ MM(P I) (i.e., I is a minimal model for the positive
program P I) [9, 5]. The set of all answer sets for P is denoted by ans(P ).

4.2 From FAS programs to higher order programs

We show how to reduce the frame logic-like formalism embedded in our hybrid
framework to ASP, thus allowing to manipulate frames with logic programming
techniques. This operational semantics is defined through a suitable algorithm
which is able, given a FAS programs containing frame structures, to produce an
equivalent plain higher order ASP program.

Roughly, the idea is to introduce new predicate names wrapping properties and
classes. Classes are mapped to unary predicates, while properties are mapped to
unary or binary predicates. Then, a FAS program is unfolded in order to replace
frame atoms with their equivalent predicates.

The algorithm providing the semantics is called Standardize Algorithm (S): it
takes as input a FAS program P containing frame atoms; the output is a plain
higher order program R. The Answer Sets of P are defined as to be the answer
sets of R. The algorithm is sketched in Figure 1.

In order to better explain how S works, we show how a frame structure is exam-
ined and processed. For instance, if we consider the following frame:

E[inProject ³ p3] ∨ E[−inProject ³ p3] ← X : employee,
E : employee[
skill ³ {c + +, perl},
not married → X ].

The application of S generates this output:

inProject(E, p3) ∨ −inProject(E, p3) ← employee(X), skill(E, c + +),

skill(E, perl), employee(E),

not aux e(E, X).

aux e(E, X) ← married(E, X).



Standardize (INPUT: P containing frames OUTPUT: R without frames)
Let R = P ;
while R contains frame literals do

let r ∈ R be a rule containing frame atoms;
while r contains frame literals do

remove frame f from r;
let o be the subject, L the set of attributes, and X the set of variables of f ;
case f appeared in the body of r:

if f is positive then
if f has class c then

add c(o) to the body of r;
for each attribute expression e ∈ L do

let a be the name, and V the set of values of e;
if e is positive then

if V is empty then
add a(o) to the body of r;

else
for each term t ∈ V do

add a(o, t) to the body of r;
for each molecule m ∈ V with subject s do

add a(o, s) and m to the body of r;
else

let e be in the form not e′;
add the frame not o[e′] to the body of r;

else (Let f in form not f ′)
add to r a new fresh literal not auxf (X);
add to R a new rule auxf (X) ← f ′;

case f appeared in the head of r:
if f is in the form o : c (resp. in the form o[a → v]) then

add to the head of r the literal c(o) (resp. a(o, v));
else

add to the head of r a new atom auxf (X);
if f has class c then

add c(o) ← auxf (X) to R;
for each attribute expression e ∈ L do

let a be the name, and V the set of values of e;
if V is empty then

add a(o) ← auxf (X) to R;
else

for each term t ∈ V do
add a(o, v) ← auxf (X) to R;

for each molecule m ∈ V with subject s) do
add a(o, s) ← auxf (X) and m ← auxf (X) to R;

Fig. 1. The Standardize Algorithm.

5 Examples

In this section we will provide several examples aiming at showing how to use
the frame-like language.

Higher order reasoning enables the possibility to quantify over predicate names.
The rule

related(X, Y ) ← X[Z → Y ].

relates all the X and Y for which some property Z holds. Also higher order
reasoning enables the possibility to enforce axioms that must hold on predicates,



such as
X : C : −subClassOf(C, D), X : D.

this enforces membership of an individual X to the class C when it is known
that D is a subclass of C and that X is member of C.
Ease of use of frames can be seen by looking at our running example. Employees
might be encoded as:

brown : employee[ surname → “Mr. Brown”,

skill ³ {java, asp},
salary → 800,

gender → male,

married → pink ].

red : employee[ surname → “Mrs. Red”,

skill ³ {java, php, perl, python},
salary → 1200,

gender → female,

married → black ].

pink : employee[ surname → “Mrs. Pink”,

skill ³ {html, asp, javascript},
salary → 900,

gender → female,

married → brown ].

black : employee[ surname → “Mr. Black”,

skill ³ {c + +, asp, asp, perl, php, python},
salary → 1900,

gender → male,

married → red ].

While projects might be described as:

p1 : project[ name → “A System for a Really Nice Web Site”,

budget → 1800,

numEmployee → 2,

maxSalary → 1000,

numFemale → 1,

wantedSkills ³ {html, java},
nonWantedSkills ³ {c + +} ].



p2 : project[ name → “A Semantic-Web-Oriented Extension of DLV”,

budget → 3000,

numEmployee → 2,

maxSalary → 1800,

numFemale → 1,

wantedSkills ³ {c + +, html},
nonWantedSkills ³ {java} ].

Membership of a given employee E, in a given project P , can be guessed with
the following disjunctive rule:

E[inProject ³ P ] ∨ E[−inProject ³ P ] ← E : employee, P : project.

Conditions (s1), . . . , (s7) can be addressed by the following FAS constraints.

(s1) ← P : project[numEmployee → Nempl],
not #count{E : inProject(E, P )} = Nempl.

(s2) ← P : project[wantedSkills ³ Wsk],
not #count{E : skill(E, Wsk), inProject(E, P )} ≥ 1.

(s3) ← P : project[budget → B],
not #sum{S, E : salary(E, S), inProject(E, P )} ≤ B.

(s4) ← P : project[maxSalary → Msal],
E : employee[inProject ³ P, salary → S], not S ≤ Msal.

(s5) ← P : project[numFemale → Nfem],
not #count{E : gender(E, female), inProject(E, P )} ≤ Nfem.

(s6) :∼ E1 : employee[skill ³ S, inProject ³ P [wantedSkill ³ S]],
E2 : employee[skill ³ S, inProject ³ P ], E1 6= E2. [1 :]

(s7) :∼ E : employee[skill ³ S,
inProject ³ P [nonWantedSkill ³ S]]. [1 :]

It is worth noting that in the above set of constraints we take advantage of
some peculiar features of the DLV system, namely weak constraints [6] and
aggregates [10].
Intuitively, a weak constraint W induces an ordering among the answer sets of a
given program, depending on the number of ground instances that violate W (the
lesser W is violated in an answer set A, the more A is preferred). The aggregates
atoms #count and #sum, on the other hand, are exploited in order to count the
number of values a given conjunction of atoms may have, and for summing up
numeric terms appearing in a given conjunction of atoms, respectively. For the
sake of simplicity, such constructs were not included in the formal syntax and
semantics definition given in Section 3 and 4. We refer the reader to the cited
literature for further details.



Fig. 2. Architecture of DLT System.

6 System Overview

FAS programs have been implemented within the DLT environment [11]. DLT
extends the DLV system (and, to some extent, any other ASP solver) with
Template predicates, Frame Logic and Higher Order predicates. The current
version of the system is freely available on the DLT Web page1.
The overall architecture of the system is shown in Figure 2. Roughly, the DLT
system works as follows. A FAS program P is sent to a DLT pre-parser, which
performs syntactic checks, converts frame syntax to plain syntax (by applying
the algorithm S defined in Section 4), and builds an internal representation
of P . The DLT Inflater produces an equivalent program P ′ by processing and
eliminating other special constructs of the language, such as templates; P ′ is
piped towards an answer set solver. The answer sets ans(P ′) of P ′, computed
by the solver are then converted in a readable format through the Post-parser
module, which filters out from ans(P ′) information about predicates and rules
that were internally generated.

Additional features of the system

As a front-end system, DLT features several other constructs that can be used
for enriching an answer set solver. Furthermore, although the syntax of produced
programs is compliant with DLV, if special constructs of DLV (like disjunction,
aggregate atoms, weak constraints) are avoided, DLT is compliant with any
other solver supporting the traditional, prolog-like, syntax. Among others, DLT
features are:

Template definitions. A DLT program may contain template atoms, that allow to
define intensional predicates by means of a subprogram, where the subprogram is
generic and reusable. This feature provides a succinct and elegant way for quickly
introducing new constructs using the DLT language. Syntax and semantics of
template atoms are described in [11].

Frame Spaces. A Frame Space directive tells how frames are mapped to regular
atoms, and can be used for defining modules where each predicate has local
scope within a given frame space. The directive has syntax @name. From the
point after the directive each frame is interpreted as belonging to the frame
space name, and local to this. For referring to a predicate or frame belonging to

1 http://dlt.gibbi.com.



a given frame space it is possible to use the syntax atom@framespace, like in
e.g. person(gibbi)@local.
Internally, a frame like
X[f → Y ] is rewritten as f(X,Y,name).
When the directive “@.” is used, the systems switchs to the default frame space,
thus triggering the traditional behavior of the system.

Solvers support. DLT can virtually support any solver that accepts inputs in
the format generated by DLT. Models produced by the external solver are then
parsed back to the DLT syntax. The -solver=[pathname] option allows to
specify the path of the solver. Compatibility with the systems DLV [3], DLV-
EX [12], DLV-HEX [13] is provided; compatibility with S-models is guaranteed
within a subset of the language. A detailed compatibility table is available on
the DLT web site.

Function Symbols. Besides constant and variable terms, the DLT parser allows
also functional terms. Solvers allowing function symbols are thus ready to be
coupled with DLT.

7 Conclusions

We have presented a framework that allows to enrich an Answer Set Program-
ming language with frame-like syntax and higher order reasoning. While prelimi-
nary, our work paves the way to a more formal investigation of possible semantics
for F-logic under stable models semantics.
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