
Versatile Semantic Modeling of Frame Logic
Programs under Answer Set Semantics

Mario Alviano, Giovambattista Ianni, Marco Marano, and Alessandra Martello

Dipartimento di Matematica, Università della Calabria, I-87036 Rende (CS), Italy.
lastname@mat.unical.it

Abstract. This work introduces the framework of Frame Answer Set
programs (fas). fas programs are a frame logic-like language working
under answer set semantics augmented with higher order constructs.
The syntax of the language includes the possibility to manipulate nested
molecules, class hierarchies, basic method signatures and contexts (called
framespaces). Semantics is defined in terms of a corresponding stable
model semantics, paving the way to model object ontologies and their
semantics under this well known paradigm.
The language is purposely designed so that inheritance behavior and
other features of the language can be easily customized by the introduc-
tion of specialized axiomatic modules, which can be modeled on purpose
by advanced developers of ontology languages. Also, contexts allow to
model hybrid systems integrating multiple data sources working under
different entailment regimes. Properties and relationship with original
F-logic semantics of some of the presented axiomatizations are given. A
system prototype has been implemented and is available for evaluation.

1 Introduction

Frame Logic (F-logic) [17, 33] is a knowledge representation and ontology mod-
eling language which combines the declarative semantics and expressiveness of
deductive database languages with the rich data modeling capabilities supported
by the object oriented data model.
As such, F-logic constitutes both an important methodology and a tool for mod-
eling ontologies in the context of Semantic Web. This is witnessed by projects
which focussed in F-logic as representation language, such as WSMO [9, 27].
Also, F-logic features play a crucial role in the ongoing activity of the RIF
Working group [3, 2]1. F-logic was originally defined under first-order semantics
[17], while a well-founded semantics, satisfactorily dealing with nonmonotonic
inheritance can be found in [33].
The stable model semantics (nowadays better known as Answer Set Program-
ming – ASP), has some attractive feature which make interesting to consider
the possibility of defining a frame-based language under this setting. ASP is
nowadays a mature field, offering languages and systems2, based on a strongly
assessed model-theoretic semantics [15]. ASP allows to model declaratively non-
determinism and gives the possibility to specify, in a declarative way, search
spaces, preferences, strong and soft constraints [6], and more). ASP shares with
1 http://www.w3.org/2005/rules/wiki/RIF Working Group.
2 among the variety of such systems we recall here DLV [19] and smodels [29].

F-logic under well-founded semantics the possibility to reason about ontologies
using nonmonotonic constructs, included nonmonotonic inheritance, as it is done
in some ASP extensions conceived for modeling ontologies [26].
This paper aims at closing the gap between F-logic based languages and Answer
Set Programming, in both directions: on one hand, Answer Set Programming
misses the useful F-logic syntax, its higher order reasoning capabilities, and the
possibility to focus knowledge representation on objects, more than on predi-
cates. On the other hand, manipulating F-logic ontologies under stable model
semantics opens a variety of modeling possibilities, given the higher expressive-
ness of the latter with respect to well-founded semantics.
Our approach is set in between a pure model theoretic semantics (proper of
F-logic and many of its extensions [17, 33]), and a pure “rewriting” semantics,
in which inheritance is specified by means of an ad-hoc translation to logic
programming [16].
In the former case, semantics is given in a clean and sound manner: however,
the way inheritance (and in general, the semantics of the language) is modeled
is hardwired within the logic language at hand, and cannot be easy subject of
modifications. In the latter case, semantics is enforced by describing a rewriting
algorithm from theories to appropriate logic programs. In such a setting the
semantics of the overall language can be better tuned by changing the rewriting
strategy. It is however necessary to have knowledge of internal details about how
the language is mapped to logic programming, making the process of designing
semantics cumbersome and virtually reserved to the authors of the language
only.
In this work, we define a basic stable model semantics for fas programs which
does not purposely fix a special meaning for the traditional operators of F-
logic, such as class membership “: ” and subclass containment “: :”. Indeed, fas
programs are conceived as a test-bed on which an advanced ontology designer is
allowed to choose the behavior of available operators from a predefined library, or
to design her own semantics from scratch. The ability to customize the semantics
of the language is crucial especially in presence of inheritance constructs. In fact,
when one has to model a particular problem, a specific semantics for inheritance
may be more suitable than another, and it is often necessary to manipulate
and/or combine the predefined behaviors of the language.
The contributions of our paper are highlighted next:

1. We present the family of Frame Answer Set Programs (fas programs), al-
lowing usage of frame-like constructs, and of higher order atoms. Interestingly,
positively nested frames may appear both in the head and in the body of rules.
The language allows to reason in multiple contexts which are called framespaces.
2. We provide the model-theoretic semantics of fas programs in terms of their
answer sets.
3. We show how semantics features can be introduced on top of the basic se-
mantics of the language by adding an appropriate axiomatization. Structural,
behavioral, and arbitrary semantic for inheritance can be easily designed and
coupled with user ontologies. In some cases, we show how these axiomatizations
relate with F-logic under first order semantics.

4. We illustrate in which terms contexts can be exploited for manipulating hy-
brid knowledge bases having many data sources working under different entail-
ment regime;
5. The language has been implemented within the dlt system, a front-end for
answer set solvers. Besides the fragment of language herein presented, dlt allows
negated nested molecules, in the spirit of [20], and re-usable template programs.
If coupled with a proper answer set solver, the same front-end allows usage of
complex terms (e.g. functions, lists, sets), and external predicates [12]).

The remainder of the paper is structured as follows: Section 2 introduces the
syntax of the language fas (Frame Answer Set). Section 3 contains a formaliza-
tion of the semantics of fas programs, while Section 4 describes how to use the
language for modeling and axiomatizing knowledge, and proves some properties
of the axiomatic modules presented. The system supporting fas programs is
described in Section 6; related works are discussed in Section 7 and conclusions
are then drawn.

2 Syntax

We present here the syntax of fas programs. Informally, the language allows
disjunctive rules with negation as failure in the body; with respect to ordinary
Ans-Prolog (the basic language of Answer Set Programming), there are three
crucial differences. First, besides traditional atoms and predicates, the language
supports frame molecules in both the body and the head of rules, following the
style of F-logic [17]. When representing knowledge, frame molecules allow to
focus on objects, more than on predicates. An object can belong to classes, and
have a number of property (attribute) values. As an example, the following is a
frame molecule:

brown : employee [surname → “Mr. Brown”,

skill →→ {java, asp},
salary → 800,

gender → male,

married → pink]

The above molecule defines membership of the subject of the molecule (brown)
to the employee class and asserts some values corresponding to the properties
(which we will call also attributes) bound to this object. This frame molecule
states that brown is male (as expressed by the value of the attribute gender),
and is married to another employee identified by the subject pink. brown knows
java and asp languages, as the values of the skill property suggest, while he has
a salary equal to 800. Intuitively, one can see a class membership statement in
form x : c as similar to a unary predicate c(x). Accordingly, x[m → v] can be
seen has a binary predicate m(x, v).
As a second important difference, higher order reasoning is a first class citizen
in the language: in other words, it is allowed quantification over predicate, class
and property names. For instance, C(brown) is meant to have the variable C
ranging over the Herbrand universe, thus having employee(brown) as possible
ground instance.

Finally, our language allows the use of framespaces to place atoms and molecules
in different contexts. For example, suppose there are two Mr. Brown, one working
for Sun and the other for Ibm. We can use two different assertions, related to
two different framespaces to distinguish them, e.g. brown : employee@sun and
brown : employee@ibm.
We formally define the syntax of the language next.
Let C be an infinite and countable set of distinguished constant and predicate
symbols. Let X be a set of variables. We conventionally denote variables with
uppercase first letter (e.g. X, Project), while constants will be denoted with low-
ercase first letter (e.g. x, brown, nonWantedSkill). A term is either a constant
or a variable.
Atoms can be either standard atoms or frame atoms. A standard atom is in the
form t0(t1, . . . , tn)@f , where t0, . . . , tn, f are terms, t0 represents the predicate
name of the atom and f the context (or framespace) in which the atom is defined.
A frame atom, or molecule, can be in one of the following three forms:

– s[v1, . . . , vn]@f
– s ¦ c@f
– s ¦ c[v1, . . . , vn]@f

where s, c and f are terms, and v1, . . . , vn is a list of attribute expressions. Here
and in the following, the allowed values for the meta-symbol ¦ are “:” (instance
operator), or “ : :” (subclass operator). Moreover, s is called the subject of the
frame, while f represents the context (or framespace).
To simplify the notation, whenever the context term f is omitted, we will assume
f = d, for d ∈ C a special symbol denoting the default context.
An attribute expression is in the form p, p ⇀ v1 or p ⇀⇀ {v1, . . . , vn}, where p
(the property/attribute name) is a term, and v1, . . . , vn (the attribute values) are
either terms or frame molecules. Here and in the following, the meta-symbols ⇀
and ⇀⇀ are intended to range respectively over {→, •→} and {⇒,→→,⇒⇒, •→→}.
Note that, according to this definition, when used within attribute expressions,
the symbols in the set {⇒,→→,⇒⇒, •→→} allow sets of attribute values on their
right hand side, while → and •→ allow single values.
A literal is either an atom p (positive literal), or an expression of the form ¬p
(strongly negated literal or, simply, negated literal), where p is an atom. A naf-
literal (negation as failure literal) is either of the form b (positive naf-literal), or
of the form not b (negative naf-literal), where b is a literal.
A formula is either a naf-literal, a conjunction of formulas or a disjunction of
formulas.
A simple atom is either a standard atom, or a frame atom in the forms s ¦ c@f ,
s[p ⇀ v]@f or s[p ⇀⇀ {v}]@f , for s, c, p, v and f terms of the language. The
notion of simple literal and of simple naf-literal are defined accordingly on top
of the notion of simple atom.
A Frame Answer Set program (fas program) is a set of rules, of the form

a1∨, . . . ,∨an ← b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an and b1, . . . , bk are literals, not bk+1, . . . , not bm are naf-literals,
and n ≥ 0, m ≥ k ≥ 0. The disjunction a1 ∨ · · · ∨ an is the head of r, denoted by

H(r), while the conjunction b1 ∧ · · · ∧ bk ∧ not bk+1 ∧ . . . ,∧not bm is the body
of r, denoted by B(r). A rule with empty body will be called fact, while a rule
with empty head is a constraint.
A plain higher order fas program contains only standard atoms, while a plain
fas program contains only standard atoms with a constant predicate name. A
positive fas program do not contain negation as failure and strongly negated
atoms. In the following, we will assume to deal with safe fas programs, that is,
programs in which each variable appearing in a rule r appears in at least one
positive naf-literal in B(r).

Example 1. The following one rule program is a valid fas program. Intuitively,
it represents the fact that each person is male or female.

P [gender → “male”] ∨ P [gender → “female”] ← P : person.

3 Semantics

Semantics of fas programs is defined by adapting the traditional Gelfond-Lifschitz
reduct, originally given for a ground disjunctive logic program with strong and
default negation [15], to the case of fas programs.
Given a fas program P , its ground version grnd(P) is given by grounding rules
of P by all the possible substitutions of variables that can be obtained using
consistently elements of C3. A ground rule thus contains only ground atoms;
the set of all possible simple ground literals that can be constructed combining
predicates and terms occurring in the program is usually referred to as Herbrand
base (BP). We remark that the grounding process substitutes also nonground
predicates names with symbols from C (e.g., a valid ground instance of the
atom H(brown, X) is married(brown, pink), while a valid ground instance of
brown[H → yellow] is brown[color → yellow]).
An interpretation for P is a set of simple ground literals, that is, an interpretation
is a subset I ⊆ BP . I is said to be consistent if ∀a ∈ I we have that ¬a 6∈ I.
We define the following entailment notion with respect to an interpretation I.
For a a ground atom:

(E1) If a is simple, then I |= a iff a ∈ I;
(E2) I |= not a iff I 6|= a.

For l1, . . . , ln ground literals:

(E3) I |= l1 ∧ · · · ∧ ln iff I |= li, for each 1 ≤ i ≤ n;
(E4) I |= l1 ∨ · · · ∨ ln iff I |= li for some 1 ≤ i ≤ n.

For s, p, f ground terms, and m1, . . . , mn ground frame molecules:

(E5) I |= s[p ⇀⇀ {m1, . . . mn}]@f iff I |= s[p ⇀⇀ {mi}]@f , for each 1≤i≤ n.

For s, s′, c, p, f, f ′ ground terms, and v = {v1, . . . , vn} a set of ground attribute
value expressions:
3 As shown next, our semantics implicitly assumes that elements of C are mapped to

themselves in any interpretation, thus embracing the unique name assumption.

(E6) I |= s[v1, . . . , vn]@f iff I |= s[v1]@f ∧ · · · ∧ s[vn]@f ;
(E7) I |= s ¦ c[v]@f iff I |= s ¦ c @f ∧ s[v]@f ;

(E8) I |= s[p ⇀ s′[v]]@f iff I |= s[p ⇀ s′]@f ∧ s′[v]@f ;
(E9) I |= s[p ⇀⇀ {s′[v]}]@f iff I |= s[p ⇀⇀ {s′}]@f ∧ s′[v]@f ;

(E10) I |= s[p ⇀ s′[v]@f ′]@f iff I |= s[p ⇀ s′]@f ∧ s′[v]@f ′;
(E11) I |= s[p ⇀⇀ {s′[v]@f ′}]@f iff I |= s[p ⇀⇀ {s′}]@f ∧ s′[v]@f ′.

Note that rules (E8) and (E9) force s′[v], which does not have an explicit
framespace, to belong to the context f of the molecule containing it. On the
contrary, s′[v]@f ′ in (E10) and (E11) has a proper framespace f ′, and the
entailment rules take care of this fact. Then, rules (E6) to (E11) define the
context of a frame molecule as the nearest framespace explicitly specified.
For a rule r :

(E12) I |= r iff I |= H(r) or I 6|= B(r);

A model for P is an interpretation M for P such that M |= r for every rule
r ∈ grnd(P). A model M for P is minimal if no model N for P exists such that
N is a proper subset of M . The set of all minimal models for P is denoted by
MM(P).

Given a program P and an interpretation I, the Gelfond-Lifschitz (GL) transfor-
mation of P w.r.t. I, denoted P I , is the set of positive rules of the form {a1∨· · ·∨
an ← b1, · · · , bk } such that {a1∨· · ·∨an ← b1, · · · , bk, not bk+1, · · · , not bm} is
in grnd(P) and I |= not bk+1 ∧· · ·∧ not bm. An interpretation I for a program P
is an answer set for P if I ∈ MM(P I) (i.e., I is a minimal model for the positive
program P I) [24, 15]. The set of all answer sets for P is denoted by ans(P). We
say that P |= a for an atom a, if M |= a for all M ∈ ans(P). P is consistent if
ans(P) is non-empty.
For a positive program P allowing only the term d in context position, we define
the F-logic first-order semantics in terms of its F-models. A F-model Mf is a
model of P subject to the conditions

(F1) “: :” encodes a partial order in Mf ;
(F2) if a : b ∈ Mf and b : :c ∈ Mf then a : c ∈ Mf ;
(F3) if a[m ⇀ v] ∈ Mf and a[m ⇀ w] ∈ Mf then v = w, for ⇀∈ {→, •→};
(F4) if a[m ≈> v] ∈ Mf and b : :a then b[m ≈> v] ∈ Mf , for ≈>∈ {⇒,⇒⇒};
(F5) if c[m ⇒ v], a : c and a[m → w] ∈ Mf then w : v ∈ Mf ;
(F6) if c[m ⇒⇒ v], a : c and a[m →→ w] ∈ Mf then w : v ∈ Mf ;

We say that P |=f a for an atom a if Mf |= a for all F-models of P .

Example 2. The program in Example 1 together with the fact brown : person.
has two answer sets, M1 = { brown : person, brown[gender → “male”] }
and M2 = { brown : person, brown[gender → “female”] }. Both M1 and M2 are
F-models. Note that M3 = { brown : person, brown[gender → “female”],
brown[gender → “male”] } is neither an F-model nor an answer set for dif-

ferent reasons: it is not an F-model because of condition (F3) given above,
while it is not an answer set because it is not minimal. Note also that dis-
junctive rules trigger in general the existence of multiple answer sets, while the

presence of constraints may eliminate some or all constraints: for instance, the
same program enriched with the constraints ← brown[gender → “male”] and
← brown[gender → “female”] has no answer set4.

4 Modeling semantics and inheritance

Given the basic semantics for a fas program P , it is then possible to en-
force a specific behavior for operators of the language by adding to P specific
“axiomatic modules”. An axiomatic module A is in general a fas program. Given
a union of axiomatic modules S = A1 ∪ · · · ∪ An, we will say that P entails a
formula φ under the axiomatization S (P |=S φ) if P ∪S |= φ. The answer sets
of P under axiomatization S are defined as ansS(P) = ans(P ∪ S).
We illustrate next some basic axiomatic modules.

Basic class taxonomies. The axiomatic module C, shown next, associates to
“: ” and “: :” the usual meaning of monotonic class membership and subclass
operator.

c1 : A : :B ← A : :C, C : :B.
c2 : A : :A ← X : A.
c3 : ← A : :C, C : :A, A 6= C.
c4 : X : C ← X : D, D : :C.

Rules c1 and c2 enforce transitivity and reflexivity of the subclass operator,
respectively. Rule c3 prohibits cycles in the class taxonomy, while c4 implements
the class inheritance for individuals by connecting the “: :” operator to the “ : ”
operator. The acyclicity constraint can be relaxed if desired: we define in this
case C′ as C \ c3

5.

Single valued attributes. Under standard F-logic, the operators → and •→ are
associated to families of single valued functions: indeed, in a F-model M it can
not hold both a[m ⇀ v] and a[m ⇀ w], unless v = w. Under unique names
assumption, we can state the above condition by the set F of constraints:

f5 : ← A[M → V], A[M → W], V 6= W
f6 : ← A[M •→ V], A[M •→ W], V 6= W

Structural and behavioral inheritance. We show here how to model some peculiar
types of inheritance, such as structural and behavioral inheritance.
Structural inheritance is usually associated to the operator ⇒. Let P1 be the
following example program:

webDesigner : :javaProgrammer. javaProgrammer : :programmer.
webDesigner : :htmlProgrammer. javaProgrammer[salary ⇒ medium].
htmlProgrammer[salary ⇒ low].

For short, we denote in the following webDesigner as wd, javaProgrammer as jp

and htmlProgrammer as hp.
Under structural inheritance, as defined in [17], property values of superclasses
are “monotonically” added to subclasses. Thus, since c1 is subclass of c2 and
4 A constraint ← c can be seen as a rule f ← c, not f , for which there is no model

containing c.
5 Note that the atom A 6= C amounts to syntactic inequality between A and C.

c4, one expects that P1 |=C∪S webDesigner[salary ⇒ {low, medium}] for some
axiomatic module S.
The axiomatic module S shown next, associates this behavior to the operators
⇒ and ⇒⇒.

s7 : D[A ⇒ T] ← D : :C, C[A ⇒ T].
s8 : D[A ⇒⇒ T] ← D : :C, C[A ⇒⇒ T].

Note that s5 (resp. s6) do not enforce any relationship between “⇒” and “→”
(resp. “⇒⇒” and “→→”) as in [17]. We will discuss this issue later in the section.
Behavioral inheritance [33], allows instead nonmonotonic overriding of property
values. Overriding is a common feature in object-oriented programming lan-
guages like Java and C++: when a more specific definition (value, in our case) is
introduced for a method (a property, in our case), the more general one is over-
ridden. In case different information about an attribute value can be derived
from several inheritance paths, inheritance is blocked. Let us assume to add to
P1 the assertions jp[income •→ 1000] and hp[income •→ 1200] .
Under behavioral inheritance regime [33]6, the assertions jp[income •→ 1000] and
hp[income •→ 1200] would be considered in conflict when inherited from wd. In-
deed, both wd[income •→ 1000] and wd[income •→ 1200] under the three-valued
semantics of [33] are left undefined. Under fas semantics it is then expected to
have some axiomatic module B where neither P1 |=B∪F∪C wd[income •→ 1000]

nor P1 |=∩B∪F∪C wd[income •→ 1200] hold.
The above behavior can be enforced by defining B as follows

b9 : overridden(D, M, C) ← E[M •→ V], C : :E, E : :D, C 6= E, E 6= D.
b10 : inheritable(C, M, D) ← C : :D, D[M •→ V], not overridden(D, M, C).
b11 : C[M •→ V] ∨ C[M •→ V]@false ← inheritable(C, M, D), D[M •→ V].
b12 : exists(C, M) ← C[M •→ V].
b13 : ← inheritable(C, M, D), not exists(C, M).
b14 : existsSubclass(A, C) ← A : C, A : D, D : :C, C 6= D.
b15 : A[M → V]@candidate ← A : C, C[M •→ V], not existsSubclass(A, C).
b16 : A[M → V] ∨A[M → V]@false ← A[M → V]@candidate.
b17 : exists′(A, M) ← A[M → V].
b18 : ← inheritable(C, M, C), A : C, not exists′(A, M).

The above module makes usage of stable model semantics for modeling multiple
inheritance conflicts. By means of rule b11 and b16 it is triggered the existence of
multiple answer set in the presence of inheritance conflicts, one for each possible
way to solve the conflict itself.
Note that ansB∪F∪C(P1) contains two different answer sets M1 and M2 which
respectively are such that M1 |= wd[income •→ 1200] and M2 |= wd[income •→
1000]. However, both assertions do not hold in all the possible answer sets.
Thus, similarly to “well-founded optimism” semantics, we obtain that P1 6|=C∪B
wp[income •→ X] for any X.

Constructive vs well-typed semantics. The operator ⇒ is traditionally asso-
ciated to →. For instance if both jp[keyboard ⇒ americanLayout] and jim :

jp[keyboard → ibm1050] hold, one might expect that ibm1050 : americanLayout.

6 Note that in [33] the above semantics is conventionally associated to the → operator,
while we will use •→

However, one might wonder whether to implement the above required behavior
under a constructive or a well-typed semantics.
The two type of semantics differ in the way incomplete information is dealt with.
In a “well-typed” flavored semantics, most axioms are seen as hard constraints,
which, if not fulfilled, make the theory at hand inconsistent.
In the first case, it may be desirable to use the “⇒” operator for defining strong
desiderata about range and domain of properties, while the “→” could be used
to denote actual instance values such as in the following program P2:

programmer[salary ⇒ integer].
g : programmer[salary → aSalary].
← X : programmer[salary → Y], not Y : integer7

Note that ans(P2) is empty, unless it is not explicitly asserted (well-typed) the
fact aSalary : integer.
On the other hand one may want to interpret constructively desiderata about
domain and range of properties, as it is typical, e.g. of RDFS[31]. Consider the
program P3:

programmer[salary ⇒ integer].
g : programmer[salary → aSalary]
Y : integer ← X : programmer[salary → Y]

Here P3 has a single answer set containing the fact aSalary : integer.
The two types of semantics stem from profound philosophical differences: well-
typedness is commonly (but not necessarily) associated to modeling languages
inspired from database systems, living under a single model semantics and Closed
World Assumption. To a large extent one can instead claim that first order logics
(and descendant formalisms, such as descriptions logics and RDFS), is much
more prone to deal constructively with incomplete information.
It is however worth noting that despite their conceptual difference, constructive
and well-typed semantics are often needed together. As a matter of example,
modeling in Java (as well as C++ and F-logic) needs both flavors. Construc-
tiveness comes into play in inheritance within class taxonomies (e.g., if A : :B
and B : :C hold, the information A : :C does not need to be well-typed and is
inferred automatically), but well-typedness is required in several other contexts,
(e.g. strong type-checking prescribes that a function having a given signature
can not be invoked using actual parameters which are not explicitly known to
fulfil the function signature).
Whenever required, fas programs can be coupled with axiomatic modules en-
coding both well-typed and constructive axioms.
The following axiomatic module CO encodes constructively how the operators
⇒ and → can be related each other:

co15 : V : T ← C[A ⇒ T], I : C, I[A → V].

while W, shown next, encodes the same relation under a well-typed semantics.
w16 : ← C[A ⇒ T], I : C, I[A → V], not V : T.

5 Properties of fas programs
fas programs have some property of interest. First, F-logic entailment can me
modeled on top of fas programs by means of the axiomatic modules C,S,F ,
and CO. Let A = C ∪ S ∪ F ∪ CO.

Theorem 1. Given a positive, non-disjunctive, fas program P with default con-
texts only, and a formula φ, then P |=A φ iff P |=f φ.

Proof. (Sketch). (⇒) Assume P ∪ A is inconsistent. Given that P is a positive
program, then inconsistency amounts to the violation of some instance of con-
straints c3, f5 or f6. We can show that, accordingly, there is no F-model for P .
On the other hand, if P ∪A is consistent, one can show that the unique answer
set of P is the least F-model of P .
(⇐) It can be shown that if P has no F-model, then P ∪ A is inconsistent.
Viceversa, if P has some F-model its least model corresponds to the unique
answer set of P ∪ A. ¤

One might wonder at the significance of |=A-entailment for disjunctive programs
with negation. This entailment regime diverges quickly from the behavior of
monotonic logic as soon as negation as failure and disjunction is considered, and
is thus incomparable with first order F-logic. It is matter of future research to
investigate on the relationship between fas programs and F-logic under well-
founded semantics.
As a second important property, we show that contexts can be exploited for
modeling hybrid environments in which more than one semantics has to be taken
in account. For instance one might desire a context s in which only C ∪ S hold
as axiomatic modules (this is typical e.g. of RDFS reasoning restricted to ρ-DF
[22]), while in a context b we would like to have a different entailment regime,
taking in account e.g. B and F .
We will say that an axiomatic module (resp. a program, a formula) A is defined
at context c if for each rule r ∈ A, each atom c ∈ r has context c. If an axiomatic
module (resp. a program, or a formula) A is defined at the default context d,
then the axiomatic module A@c, defined at context c, is obtained by replacing
each atom a appearing in A with a@c.

Example 3. Consider the program P4 defined as follows. P4 has two contexts, rdf
and inh. P4 contains knowledge coming from an RDF triplestore defined in term
of the facts t(gb, rdf: type, hp)@rdf , t(gb, name, “Gibbi”)@rdf , etc. Also P4 contains
the rules X : C@rdf ← t(X, rdf : type, C)@rdf , X[M → V]@rdf ← t(X, M, V)@rdf ,
C : :D@rdf ← t(C, rdfs : subClassOf, D)@rdf . Then, we add to P4 the program
P1@inh where P1 is taken from Section 4, plus the rule X : C@inh ← X : C@rdf .
We want that C and S hold under the rdf context, while C and B hold under the
inh context. This can be obtained by defining A = (C ∪ S)@rdf ∪ (C ∪ B)@inh
and evaluating P4 under |=A-entailment.
For instance, P4 |=A gb : [income •→ 1000]@inh .

We clarify next how contexts interact each other. First, we consider programs
in which contexts are strictly separated: that is, each rule in a program contains
only atoms either with context a or only atoms with context b. This way, a
program can be seen as composed by two separate modules, one defining a and
the other defining b. The following proposition shows that programs defined in
separated context behave separately under their axiomatic regime.

Proposition 1. It is given a program P = P ′@a∪P ′′@b, and axiomatic modules
A@a and B@b. Then, for formulas φ@a and ψ@b, we have that, if P∪A@a∪B@b
is consistent,

P |=A@a∪B@b φ@a ∧ ψ@b ⇔ P ′ |=A φ ∧ P ′′ |=B ψ

Contexts can be seen in some sense as separate knowledge sources, each of which
having its own semantics for its data. In such a setting, it is however important
to consider cases in which knowledge flows bidirectionally from a context to
another and viceversa.
This situation is typical of languages implementing hybrid semantics schemes.
For instance, DL+log [28] is a rule language where each knowledge base com-
bines a description logic base D (living under first order semantics), with a rule
program P (living under answer set semantics). D and P can mutually exchange
knowledge: in the case of DL+log , predicates of D can appear in P , allowing
flow of information from D to P .
Similarly, we are assuming to have a program P , two contexts a and b, each of
which coupled with axiomatic modules A@a and B@b. The program P freely
combines atoms with context a with atoms with context b, possibly in the same
rule.
For simplicity, the following theorem is given for programs containing simple
naf-literals only.
Given an interpretation I we define Ia as the subset of I containing only atoms
with context a. The extended reduct P ∗Ia of a ground program P is given by
modifying each rule r ∈ P in the following way:

– if l@a ∈ H(r) and l@a 6∈ Ia then delete l@a from r;
– if l@a ∈ H(r) and l@a ∈ Ia then delete r;
– if l@a ∈ B(r) and l@a ∈ Ia then delete l@a from r;
– if l@a ∈ B(r) and l@a 6∈ Ia then delete r;
– if not l@a ∈ B(r) and l@a 6∈ Ia then delete not l@a from r;
– if not l@a ∈ B(r) and l@a ∈ Ia then delete r;

Theorem 2. Let P be a program containing only atoms with context a and b,
and A@a and B@b be two axiomatic modules.
Then,

M ∈ ansA@a∪B@b(P) ⇔ Ma ∈ ansA@a(P ∗Mb) ∧Mb ∈ ansB@b(P ∗Ma)

Roughly speaking, the above theorem states that from the point of view of
context a one can see atoms from context b as external facts, and viceversa. An
answer set M of the overall program is found when, assuming Ma as the set of
true facts for a, we obtain that Mb is the answer set of P ∗Ma ∪ B@b, i.e. an
answer set of the program obtained by assuming facts in Ma true. Viceversa, if
one assumes Mb as the set of true facts for context b, one should obtain Ma as
the answer set of P ∗Mb ∪A@a.

Proof. (Sketch). (⇒) Assume M ∈ ans(P ∪A@a∪B@b), it is easy, yet tedious,
to construct Ma and Mb and verify that Ma ∈ ans(P ∗Mb ∪ A@a) and Mb ∈
ans(P ∗Ma ∪ B@b). Given Pa = P ∗Mb ∪ A@a and Pb = P ∗Ma ∪ B@b, the proof
is conducted by showing that Ma (resp. Mb) is a minimal model of PMa

a (resp.
PMb

b).
(⇐) Given Ma and Mb such that Ma ∈ ans(P ∗Mb∪A@a) and Mb ∈ ans(P ∗Ma∪
B@b), the proof is carried out by showing that M = Ma∪Mb is a minimal model
of P ∪A@a ∪A@bM . ¤

6 System Overview

fas programs have been implemented within the dlt environment [8]. The cur-
rent version of the system is freely available on the dlt Web page8, together
with examples, a tutorial, and the axiomatic modules herein presented.
dlt works as a front-end for an answer set solver of choice S. Programs are
rewritten in the syntax of S and then processed. Resulting answer sets in the
format of S are then processed back and output in dlt format. dlt is compatible
with most of the languages of the dlv family such as dlv [19], dlvhex [13] and
the recent dlv-complex9. The native features of the solver of choice are made
available to the dlt programmer: this way features such as soft constraints,
aggregates (dlv), external predicates (dlvhex), and function, list and set terms
(dlv-complex) are accessible. Limited support is given also for other ASP solvers.
dlt allows the syntax presented in this paper and implements the presented
semantics. Atoms without context specification are assumed to have the default
context d. In order to avoid typing, the default implicit context can be switched
by using a directive in the form @name., which sets the implicit context to name
for the rules following the directive.
We overview next some of the other features of dlt, which, for space reasons,
can not be focused in the present work.

Complex nested expression. dlt allows the usage of negated attribute expres-
sions. From the operational point of view, if a frame literal in the body of a rule
r has subject o and a negative attribute not m, our prototype removes not m
from the attributes of o, adds not a to the body of r, where a is a fresh auxiliary
atom, and adds a new rule a ← o[m]. to the program. This procedure can be
iterated until no negated attribute appears in the program. Then, the answer
sets of the original program are the answer sets of the rewritten program without
auxiliary atoms. Since negated attributes can appear in negative literals and can
be nested, they behave like the nested expressions of [20], allowing in many case
to represent information in a more succinct way. The model-theoretical seman-
tics of this aspect of the language is not focused in this paper and is matter of
future work.

Example 4. The following rule states that a programmer P is suitable for project
p3 if P know c++ and perl, but is not married to another programmer knowing
c++ and perl.

P [suitable →→ p3] ← X : programmer,
P : programmer[skills →→ {“c++”, “perl”},

not married → X[skills →→ {“c++”, “perl”}].

Template definitions. A dlt program may contain template atoms, that allow to
define intensional predicates by means of a subprogram, where the subprogram
is generic and reusable. This feature provides a succinct and elegant way for
quickly introducing new constructs using the dlt language, such as predefined
search spaces, custom aggregates, etc. Differently from higher order constructs,
which can be used for the same purpose, templates are based on the notion of
8 http://dlt.gibbi.com.
9 http://www.mat.unical.it/dlv-complex.

generalized quantifier, and allow more versatile usage. Syntax and semantics of
template atoms are described in [8].

7 Related Work and Conclusions

Stable vs well-founded semantics. fas programs have some peculiar differences
with respect to the original F-logic. Importantly, while well-founded semantics
[14] is at the basis of the nonmonotonic semantics of F-logic, fas programs live
under stable model semantics. The two semantics are complementary in several
respects. The well-founded semantics is preferable in terms of computational
costs: at the same time, this limits expressiveness with respect to the stable
model semantics, which for disjunctive programs can express any query in the
computational class Σp

2 .
On the other hand, the well-founded semantics is three-valued. Having a third
truth value as first class citizen of the language is an advantage in several sce-
narios, such as just in the case of object inheritance. Indeed, the undefined value
is exploited in F-Logic when inheritance conflicts can not be solved with a clear
truth value. Note, however, that the stable model semantics gives finer grained
details in situations in which the well-founded semantics leaves truth values un-
defined. The reader can find a thorough comparison of the two semantics in [14].
fas answer sets should not be confused with the notion of stable object model
given in [33].

Semantic Web languages. Since F-logic features a natural way for manipulating
ontologies and web data, it has been investigated for a long as suitable basis for
representing and reasoning on data on the web. The two main F-Logic systems
Flora and Florid ([32, 21]) share with fas programs the ability to work both on
the level of concepts and attributes and on instances.
Several Semantic Web initiatives point to F-logic as rule-based language core,
like SWSL ([1]) and WSML ([11]) which in its more powerful variants is based
on F-logic layered on top of Description Logic [10].
F-logic has been investigated as a logical way to provide reasoning capability on
top of RDF in the system TRIPLE ([30]) that has native support for contexts
(called models), URIs and namespaces. It is possible also to personalize semantics
either via rule axiomatization (e.g. one can simulate RDFS reasoning by means
of TRIPLE rules) or by means of interfacing external reasoners. The semantics
of the full TRIPLE language has not been clearly formalized: its positive, non-
higher order fragment coincides with Horn logic.
The possibility to define custom rule set for specifying the semantics which best
fits the concrete application context is also allowed in OWLIM ([18]).

Answer Set Programming Several works share some point in common with this
paper in the field of Answer Set Programming. An inspiring first definition of
F-logic under stable model semantics can be found in [10]. The fragment con-
sidered focuses on first order F-logic with class hierarchies, and do not explicitly
axiomatize structural inheritance with constructive semantics and single valued
attributes. Higher order reasoning is present in dlvhex [12]. Contexts were inves-
tigated under stable model semantics also in [23]. In this setting, context atoms
are exploited to give meaning to a form of scoped negation, useful in Semantic

Web applications where data sources with complete knowledge need to be inte-
grated with sources expected to work under Open World Assumption. Similarly
to our work, multi-context systems of [4] are used in order to define hybrid sys-
tem with a logic of choice. Contexts can transfer knowledge each other by means
of bridge rules, while in our setting it is not necessary a clear distinction between
knowledge bases and bridge rules.
Nested attribute expressions behave like nested expressions as in [20], although
we do not allow the use of negation in the head of rules. A different approach to
nonmonotonic inheritance in the context of stable model semantics was proposed
in [5], in which modules (which can be overridden each other) are associated
with each object, and objects are partially sorted by an isa relation. The idea
of defining an object-oriented modeling language under stable model semantics
has been also subject of research in [26] and [25].
As a matter of future research, the authors plan to investigate thoroughly about
the relationship between F-logic under well-founded semantics and similar for-
malizations of non-monotonic inheritance under stable model semantics. Also,
the usage of arbitrarily nested molecules, including negation as failure, deserve
further investigation.

References

1. Battle S. et al. Semantic Web Services Language.
http://www.w3.org/Submission/SWSF-SWSL/.

2. Harold Boley and Michael Kifer. Rif core design. W3C Editor’s Draft, 2007.
3. Harold Boley, Michael Kifer, Paula-Lavinia Pătrânjan, and Axel Polleres. Rule

interchange on the web. In Reasoning Web 2007. LNCS 4636, pages 269–309.
4. Gerhard Brewka and Thomas Eiter. Equilibria in heterogeneous nonmonotonic

multi-context systems. In AAAI, pages 385–390, 2007.
5. Francesco Buccafurri, Wolfgang Faber, and Nicola Leone. Disjunctive Logic Pro-

grams with Inheritance. TPLP, 2(3), May 2002.
6. Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Enhancing Disjunctive

Datalog by Constraints. IEEE TKDE, 12(5):845–860, 2000.
7. Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone. Com-

putable functions in ASP: Theory and implementation. Unpublished, 2008.
8. Francesco Calimeri and Giovambattista Ianni. Template programs for disjunctive

logic programming: An operational semantics. AI Communications, 19(3):193–206,
2006.

9. Jos de Bruijn et al. WSMO Final Draft, 2005.
http://www.wsmo.org/TR/d2/v1.2/.

10. Jos de Bruijn and Stijn Heymans. Translating ontologies from predicate-based to
frame-based languages. In RuleML, pages 7–16, 2006.

11. Jos de Bruijn, Holger Lausen, Axel Polleres, and Dieter Fensel. The web service
modeling language wsml: An overview. In ESWC, pages 590–604, 2006.

12. Thomas Eiter, Giovambattista Ianni, Hans Tompits, and Roman Schindlauer. A
uniform integration of higher-order reasoning and external evaluations in answer
set programming. In IJCAI, pages 90–96, 2005.

13. Thomas Eiter, Giovambattista Ianni, Hans Tompits, and Roman Schindlauer. Ef-
fective Integration of Declarative Rules with External Evaluations for Semantic
Web Reasoning. In ESWC, pages 273–287, 2006.

14. Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded se-
mantics for general logic programs. J. ACM, 38(3):620–650, 1991.

15. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

16. Hasan M. Jamil. Implementing abstract objects with inheritance in datalog¬. In
VLDB, pages 56–65, 1997.

17. Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-
oriented and frame-based languages. Journal of the ACM, 42(4):741–843, 1995.

18. Atanas Kiryakov, Damyan Ognyanov, and Dimitar Manov. Owlim - a pragmatic
semantic repository for OWL. In WISE Workshops, pages 182–192, 2005.

19. Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Si-
mona Perri, and Francesco Scarcello. The dlv system for knowledge representation
and reasoning. ACM TOCL, 7(3):499–562, 2006.

20. Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested Expressions in
Logic Programs. AMAI, 25(3–4):369–389, 1999.

21. Bertram Ludäscher et al. Managing semistructured data with florid: A deductive
object-oriented perspective. Inf. Syst., 23(8):589–613, 1998.

22. Sergio Muñoz, Jorge Pérez, and Claudio Gutiérrez. Minimal deductive systems for
rdf. In ESWC, pages 53–67, 2007.

23. Axel Polleres, Cristina Feier, and Andreas Harth. Rules with contextually scoped
negation. In ESWC, pages 332–347, 2006.

24. Teodor C. Przymusinski. Stable Semantics for Disjunctive Programs. New Gener-
ation Computing, 9:401–424, 1991.

25. Francesco Ricca et al. OntoDLV: an ASP-based System for Enterprise Ontologies.
Journal of Logic and Computation, 2008. Forthcoming.

26. Francesco Ricca and Nicola Leone. Disjunctive logic programming with types and
objects: The dlv+ system. J. Applied Logic, 5(3):545–573, 2007.

27. Dumitru Roman et al. Web service modeling ontology. Applied Ontology, 1(1):77–
106, 2005.

28. Riccardo Rosati. Dl+log: Tight integration of description logics and disjunctive
datalog. In KR, pages 68–78, 2006.

29. Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and implementing
the stable model semantics. Artif. Intell., 138(1-2):181–234, 2002.

30. Michael Sintek and Stefan Decker. TRIPLE - an RDF query, inference, and trans-
formation language. In: ISWC, pages 364–378 , 2002.

31. RDF Core Working Group. The Resource Description Framework., 2006.
http://www.w3.org/RDF/.

32. G. Yang, M. Kifer, and C. Zhao. Flora-2: A rule-based knowledge representation
and inference infrastructure for the semantic web. In CoopIS/DOA/ODBASE,
pages 671–688, 2003.

33. Guizhen Yang and Michael Kifer. Inheritance in Rule-Based Frame Systems: Se-
mantics and Inference. Journal on Data Semantics, 7:79–135, 2006.

