DLV External Built-In Predicates Testing Tool

User Guide
L OV ERVIEW ..t sss s st s s snssssnnsnsssnnnsnsnnnsnnnnnnnnnnns 2
1. INSTALLATION NOTES. .. oo assaessessssnnnsnnnsnnnsnnnnnnes 2
1.1. R QUIREMEN TS . ittt itiite ettt ettt e e e e et e e e e e e e et e e b e ea s s s e st s eaeeenssaneereenees
1.2. NS I N 1 T
A B] I) = O U O] 4
2.1. S N[0 =1 1SR 4
2.2. COMMAND LINE PARAMETERS ..ttt ettt et ettt e e e e et e e e et e e aeeaeneenaen e aenaenns 4
2.3. COMMAND LINE OPTIONS. ¢ttt ittt tenetsenetseessensasesssensa s essensanssrensesensssenssrenenrens 5
B, B X A P L EES ... e —————— 5
3.1. B RING LEN G TH e ettt ettt e e ettt e e e e e e e et e e e e e e e e e aeaenns

3.2. STRING CONCATENATION. . tttuteetteeeetieeeetieeeesieeeesaeeeenmnesseeesnseeenneeeennneeees 7

1 Overview

This user guide describes how to install and ren‘BLV External Built-in Testing’
(DEBT) software, a tool which aims to helpbav user testing an external built-in
predicate he has defined.

We suppose the reader i®ay programmer, so he already knows the system and
language. In addition, we suppose he is awareeobfiportunity offered from the most
recentoLv releases, to perform calls to external built-indicates defined by means of
external C++ functions. However, for a full destiop of the usage and capabilities of

DLV please refer to theLv homepagéhttp://www.dlvsystem.com theDLv online user

manual fttp://www.dbai.tuwien.ac.at/proj/dlv/imgn/ the pLv online user tutorial
(http://chkoch.home.cern.ch/chkoch/div/div_tutoh&hl). For a description of the

external built-ins new feature please refer to Ewernal Builtins User Manual.
Moreover, in thebLv External Builtins Tutorial many practical examplefs built-in
definitions may be found.

The DEBT tool is designed as a script to be used standard UNIX environment.
Starting from the built-in predicate name and detatf input and expected output
values for this, it generates proman programs, runs them, compares the results and
prints a report.

In the following sections we first describe whaheeded to run the tool and what has to
be modified to adapt the script to a specific emuinent. Then we show in detail how to
run the script and all the options which may becBgal. Finally, some complete usage

examples are shown.

1. Installation notes

This section specifies the software your systentdriede installed for using the DEBT

tool and what to do for correctly installing the BEfiles.

1.1. Requirements

= The DEBT tool is based on the BETL Il test toolk#oth software and
documentation may be downloaded from:
http://www.comnex.net/projects/betl/download.htm

= DEBT and BETL Il tools are both Perl script so PERIOO4 or up is
required (sedttp://www.perl.conj.

= The BETL Il test toolkit exploits the following Hanodules: Getopt::Long,
Data::Dumper, 10::File, nsgmls. Any good Perl digition already includes
this modules, anyway please refer to BETL Il docatagon for further

details.
1.2. Installation

1. Verify all requirements specified in the previowsggraph;

2. Download the DEBT installation file named: ‘debt.¢g’, a compressed
archive file;

3. Install the downloaded archive file into a libraoider (possibly a folder

within PATH environment variable, to invoke the td@m anywhere), for

example:

mkdir /home/username/debt

cd /home/username/debt

tar —xvzf /path/to/download/debt.tar.gz

4. modify the ‘testbuiltin’ shell script:

— replace the value of DLV_TO_TEST variable with fo# path to your
DLV executable;

— replace the value of PATH_TO_LIB variable with tpath to youmLv
external built-in libraries folder (usually the LIBolder, including
extpred.h and extpred.o);

— replace the value of PATH_TO_BETL variable witte thath to your
BETL compiler and interpreter folder (that one includiBgTLc and
BETLI files).

Note: all the installed files must reside in the saniddn

2. Test execution

This section shows the syntax of the DEBT tool. fiesaning and correct form of input
parameters is also specified. Finally, all the ptea@ command line options are listed

and explained.
2.1. Synopsis

To invoke the DEBT tool just type:

$ testbuiltin bui | ti nName t abl eNane [options]
where builtinName and tableName are two mandatory command line parameters and
[options] stands for a list of optional settingsbietter fit your needs. See below for an
explanation of what builtinName and tableName @spnt, as well as for a complete

specification of all the possible options.
2.2. Command line parameters

The first parameter is the name of the externdt-bupredicate being tested.

The second parameter is the name of a text filéaowing a table with a set of records
representing some input values and expected owtglues for the external built-in

predicate being tested. Such a text file has tpesthe following syntax: a record for
each line, and record values separated by the carharacter.

Example: a valid text file with a table values for the ext@ built-in predicate ‘#fatt’

computing the factorial of a given number may hédneeform:
2,2
3,6
4,24

..andsoon...
If a value is a string, you have to enclose it lesmwdouble quotes to distinguish it from
a symbolic value.
Note: If no different option is specified, the first paneter, that is the name of the
external built-in predicate, is also used:
— as the name (with a .C suffix) for locating the CHie containing the source

code for the built-in predicate. Note that the seuile is always expected to be

found in the folder indicated by the PATH_TO_LIBriable (whose value has
to be set at installation time);

as the name of the dynamic library (with a .soiguffontaining the object code

for the built-in predicate.

2.3. Command line options

The command line options accepted are:

-s | --source sourceFileName

to specify the file name with C++ source codetha external built-in predicate
to be tested. This option should be used onlyefgburce file has different name
with respect to the built-in. Note that the soufite is always expected to be
found in the folder indicated by the PATH_TO_LIBriable (whose value has
to be set at installation time);

-l | --lib libName

to specify the dynamic library name including tiigect code for the external
built-in predicate to test. This option should s&d only if the dynamic library
has different name with respect to the built-in;

-h | --help

to show an help message and terminate;

-e | --extendTable

to test the built-in predicate also on differentues, obtained considering all
possible combination of values included in thigleName file. At the moment, if
the built-in fails on some of those extended valineserror is not reported. This

will be fixed in a future release of the tool;

Each option can be specified both in the short f@rhfollowed by a single character)

and in the long one (‘--’ followed by the optionme). The order of the options is

meaningless.

3. Examples

The following examples illustrate DEBT tool usage test two specific built-in

predicates for string manipulation. In particulir, each example, we will show: built-

in source code, table values used for testing, DE®I invocation using different

command line options and the corresponding prodoogulit.
3.1. Stringlength

In this first example we consider an external bmiltunction computing the length of a
given character string. Two ‘oracle’ functions watefined: the “base” one having
patternii and another one with pattaimtaking as input a character string and returning
as output the string length. The name given tolhif-in function is ‘strlen’, so aLv

program may use the predicate #strlen.

#include "extpred.h"

#ifdef __ cplusplus
extern "C" {
#endif

BUILTIN(strlen,ii) {
if (argv[0].isString() && argv[1].isInt()) {
const char* s = argv[0].toString();
int | = argv[1].tolnt();
if (I == (int)strlen(s))
return true;
}

return false;

}

BUILTIN(strlen,io) {
if (argv[0].isString()) {
const char* s = argv[0].toString();
argv[1l] = CONSTANT((strlen(s)-1);
return true;

}

return false;

}
#ifdef __ cplusplus

}
#endif

Suppose now that this source code was saved it éileenamed ‘stringLength.C’ and
it was compiled in order to obtain the dynamicdyr ‘stringLength.so’. Now create a

text file containing the following table value andme it ‘strlenValues’

"mickey",6
"mouse”,5
"charlie",7
"woodstock",9
"beepbeep”,8

Writing on a UNIX shell the following command:

$ testbuiltin strlen strlenValues —s stringLength — | stringLength

we obtain this report message:

WARNING Oracle function(s) for pattern(s): 'oi' n ot defined.
test 2: *FAIL* strlen_io
=line 1 wanted: strlen("beepbeep",8) got: strle n("beepbeep",7)
=line 2 wanted: strlen("charlie",7) got: strlen ("charlie",6)
=line 3 wanted: strlen("mickey",6) got: strlen("mickey",5)
=line 4 wanted: strlen("mouse",5) got: strlen(" mouse",4)
=line 5 wanted: strlen("woodstock",9) got: strl en("woodstock",8)

The warning message just remarks that the oracletitn having patterroi is not
defined for this built-in predicate, in order tosere that it is intentional. The rest of the
message points out the failingioforacle test, showing the expected result (‘= lind
wanted: ...") and what the function returns instegot(...’). This is because we made
on purpose a mistake in the source code shown dbetegning the string length minus
one). If we replace the line:

argv[1l] = CONSTANT((strlen(s)-1);
with:

argv[1] = CONSTANT((strlen(s));

and then recompile the library, we obtain this repeessage:

WARNING Oracle function(s) for pattern(s): 'oi' n ot defined.
OK! All defined oracle functions succeeded.

Using the -e|--extendTable option for this builtpredicate we do not obtain any new
answer set element, because all possible combmatiogiven input values do not

produce new valid results.
3.2. String concatenation

The second example consists in the concatenatiawmfstrings. For this predicate,
oii. First and second terms are the head part andaihgart of the third term

respectively. The name given to this built-in fuantis ‘strcat’, so aLv program may

use the predicate #strcat.

#include "extpred.h"

#ifdef __ cplusplus
extern "C" {
#endif

BUILTIN(strcat,iii) {
if (argv[0].isString() && argv[1].isString() &&
argv|[2].isString()) {
const char* s1 = argv[0].toString();
const char* s2 = argv[1].toString();
const char* s = argv[2].toString();
char* dest = new char[strlen(s1)+strlen(s2)+1
strcpy(dest,sl);
strcat(dest,s2);
bool ris = (strcmp(dest,s) == 0);
delete [] dest;
if (ris)
return true;

}

return false;

}

BUILTIN(strcat,iio) {

if (argv[0].isString() && argv[1].isString()) {
const char* s1 = argv[0].toString();
const char* s2 = argv[1].toString();
char* dest = new char[strlen(s1)+strlen(s2)+1];
strcpy(dest,sl);
strcat(dest,s2);
argv[2] = CONSTANT(dest,true);
return true;

}

return false;

}

BUILTIN(strcat,ioi) {
if (argv[0].isString() && argv([2].isString()) {
const char* s1 = argv[0].toString();
const char* s = argv[2].toString();
int Is1 = strlen(s1);
int Is = strlen(s);
if (Is > Is1)
if (strncmp(s,sl,Is1l) ==0) {
char* dest = new char[ls-Is1+1];
strcpy(dest,s+lsl);
argv[1] = CONSTANT(dest,true);
return true;

}

return false;

}

BUILTIN(strcat,oii) {
if (argv[1].isString() && argv[2].isString()) {
const char* s2 = argv[1].toString();
const char* s = argv[2].toString();
int Is2 = strlen(s2);
int Is = strlen(s);

if (Is > Is2)
if (strncmp(s+(Is-Is2),s2,Is2) == 0) {
char* dest = new char[ls-Is2+1];
strncpy(dest,s,ls-Is2);
dest[ls-Is2] = "\0';
argv[0] = CONSTANT(dest,true);
return true;

}
}
return false;
}
#ifdef __ cplusplus
}
#endif

Suppose now that this source code was saved ixt éileenamed ‘strcat.C’ and it was
compiled in order to obtain the dynamic libraryr¢stt.so’. Now create a text file
containing the following table value and nametitcatValues'’:

"Mickey",”"Mouse”,"MickeyMouse”
"spider”,"man”,"spiderman”
"super”,”"man”,”superman”

Writing on a UNIX shell the following command:

$ testbuiltin strcat strcatValues

we obtain this report message:

WARNING Oracle function(s) for pattern(s): 'ioo o io ooi' not
defined.
OK! All defined oracle functions succeeded.

The warning message just remarks that the oranlgifitns having patterriso, oio, ooi
are not defined for this built-in predicate, in erdo ensure that is intentional.

Note that, in this case, we have not used-#heand-l command line option because
both source code file and dynamic library havestiime name as the built-in predicate.

Using the -e|--extendTable option:

$ testbuiltin —e strcat strcatValues

in addition to the usual report message, we ob#aiftong) table of further values
computed by the built-in predicate taking as inplifferent combination of user

provided values:

The following extended table values were also gener ated and
exploited for testing:

"Mickey","Mickey","MickeyMickey"
"Mickey","MickeyMouse","MickeyMickeyMouse"
"Mickey","spider","Mickeyspider"
"Mickey","man","Mickeyman"
"Mickey","spiderman”,"Mickeyspiderman"
"Mickey","super","Mickeysuper"
"Mickey","superman"”,"Mickeysuperman”
"Mouse","Mickey","MouseMickey"
"Mouse","Mouse","MouseMouse"
"Mouse","MickeyMouse","MouseMickeyMouse"
"Mouse","spider","Mousespider"
"Mouse","man","Mouseman"
"Mouse","spiderman”,"Mousespiderman"”
"Mouse","super","Mousesuper"
"Mouse","superman”,"Mousesuperman”
"MickeyMouse","Mickey","MickeyMouseMickey"
"MickeyMouse","Mouse","MickeyMouseMouse"
"MickeyMouse","MickeyMouse","MickeyMouseMickeyMouse "
"MickeyMouse","spider","MickeyMousespider"
"MickeyMouse","man","MickeyMouseman"
"MickeyMouse","spiderman","MickeyMousespiderman"
"MickeyMouse","super","MickeyMousesuper"
"MlckeyMouse superman”,"MickeyMousesuperman"
"spider”,"Mickey","spiderMickey"
"spider","Mouse","spiderMouse"
"spider","MickeyMouse","spiderMickeyMouse"
"spider","spider","spiderspider"
"spider”,"spiderman”,"spiderspiderman"
"spider","super","spidersuper"
"spider","superman","spidersuperman”
"man","Mickey","manMickey"
"man","Mouse","manMouse"
"man”,"MickeyMouse","manMickeyMouse"
"man","spider","manspider"
"man”,"man","manman"
"man","spiderman”,"manspiderman”

"man","super","mansuper"

"man","superman","mansuperman”
"spiderman”,"Mickey","spidermanMickey"
"spiderman”,"Mouse","spidermanMouse"
"spiderman","MickeyMouse","spidermanMickeyMouse"
"spiderman”,"spider","spidermanspider"
"spiderman”,"man","spidermanman”
sp|derman spiderman”,"spidermanspiderman”
"spiderman”,"super"”,"spidermansuper"
"spiderman","superman","spidermansuperman"
"super"”,"Mickey","superMickey"
"super","Mouse","superMouse"
"super”,"MickeyMouse","superMickeyMouse"
"super"”,"spider","superspider"
"super","spiderman","superspiderman”
"super","super","supersuper"
"super" "superman","supersuperman”
"superman”,"Mickey","supermanMickey"
"superman","Mouse","supermanMouse”

"superman","MickeyMouse","supermanMickeyMouse"

10

"superman","spider”,"supermanspider"

"superman","man","supermanman”

"superman","spiderman","supermanspiderman"”
"superman"," ","supermansuper"

,'super”,
"superman supermansuperman”

, superman,

WARNING Oracle function(s) for pattern(s): 'ioo o
defined.
OK! All defined oracle functions succeeded.

io ooi' not

11

