
Noname manuscript No.
(will be inserted by the editor)

Francesco Calimeri · Susanna Cozza ·
Giovambattista Ianni

External Sources of Knowledge and
Value Invention in Logic Programming

Received: date / Accepted: date

Abstract The issue of value invention in logic programming embraces many
scenarios, such as logic programming with function symbols, object oriented
logic languages, inter-operability with external sources of knowledge, or set
unification. This work introduces a framework embedding value invention in
a general context. The class of programs having a suitable (but, in general,
not decidable) ‘finite grounding property’ is identified, and the class of ‘value
invention restricted’ programs is introduced. Value invention restricted pro-
grams have the finite grounding property and can be decided in polynomial
time. They are a very large polynomially decidable class having this prop-
erty, when no assumption can be made about the nature of invented values
(while this latter is the case in the specific literature about logic programming
with function symbols). Relationships with existing formalisms are eventu-
ally discussed, and the implementation of a system supporting the class of
such programs is described.

Keywords Artificial Intelligence · Logic Programming · Answer Set
Semantics · Value Invention

1 Introduction

The notion of ‘value invention’ has been formerly adopted in the database
field (see e.g. [1; 2]) for denoting mechanisms aimed at allowing the intro-
duction of new domain elements in a logic based query language. Indeed,

Francesco Calimeri, Susanna Cozza, Giovambattista Ianni
Dipartimento di Matematica, Università della Calabria, I-87036 Rende (CS), Italy.
Tel.: +39 0984 49 {6430, 6480}
Fax: +39 0984 49 6410
E-mail: {calimeri,cozza,ianni}@mat.unical.it

2

applications of logic programming often need to deal with a universe of sym-
bols which is not known a priori. We can divide these demands in two main
categories:

(i) ‘Constructivist’ demands: the majority of logic programming languages
has the inherent capability to build new symbols from pre-existing ones,
e.g. by means of traditional constructs like functional terms. Furthermore,
manipulating and creating complex data structures other than simple
constant symbols, such as sets, or lists, is a source of value invention. Also,
controlled value invention constructs have been proposed in order to deal
with the creation of new object identifiers in object oriented deductive
databases [3].

(ii) ‘Externalist’ demands: in this setting, non-predictable external sources of
knowledge have to be dealt with. For instance, in the Semantic Web area,
rule based languages must explicitly embrace the case where ontologies
and the universe of individuals is external and not known a priori [4], or
is explicitly assumed to be open [5].

Whatever popular semantics is chosen for a rule based logic program
(well-founded, answer sets, first order, etc.), both of the above settings are
sources of undecidability that are difficult to cope with.

Top down solvers (such as SLD solvers) do not usually address this issue:
the programmer is requested to carry the burden of ensuring termination.
In order to achieve this, she has to have a good knowledge of the evaluation
strategy implemented in her specific adopted system, since termination is of-
ten algorithm-dependent. On the other hand, Bottom up solvers (such as DLV
or Smodels for the Answer Set Semantics [6; 7]), and in general, languages
derived from Datalog, are instead conceived for ensuring algorithm indepen-
dent decidability and full declarativity. To this aim, the implementation of
such languages relies on the explicit choice of computing a ground version of
a given program. Unfortunately, in a context where value invention is explic-
itly allowed, grounding a program against an infinite set of symbols leads to
an infinite ground program, which obviously cannot be built in practice.

Throughout this work we adopt the notion of VI programs, which are logic
programs enriched with the notion of external predicates. External predicates
model the mechanism of value invention by taking input from a given set of
values and returning (possibly newly invented) values. These are computed
by means of an associated evaluation function (called oracle). We prove that,
although assuming as decidable the external functions defining oracles, the
consistency check of VI programs is, in general, undecidable. Therefore, it is
important to investigate on (nontrivial) sub-classes of decidable programs.
We address this problem identifying a safety condition for granting decid-
ability of VI programs.

The contributions of the work are overviewed next:

– We introduce a formal framework for accommodating external source of
computation in the context of Answer Set Programming. In this frame-
work, logic programs (called VI programs), include the explicit possibility
of invention of new values from external sources (Section 3).

3

– We investigate the consequences of allowing value invention, in terms of
undecidability of consistency check for VI programs (Section 4).

– We show how to cope with value invention, providing a characterization
of those programs that can be computed even if external sources of com-
putation are exploited (Section 5).

– We introduce a safety condition defining the class of ‘value invention re-
stricted’ (VI-restricted, in the following) programs. This class enjoys the
finite grounding property characterizing those programs that can be com-
puted with a finite ground program. Decidability of consistency checking
is thus ensured (Section 6).

– We show that VI-restrictedness can be checked in polynomial time in the
size of the non-ground program (Section 7).

– We show that VI programs embed settings such as programs with func-
tion symbols, programs with sets (or, in general, logic languages with a
generalized notion of unification), or with external constructs (Section
8). Indeed, the condition of VI-restrictedness is generic: no assumption is
made on the structure of new invented symbols.

– We prove that the VI-restrictedness condition is less restraining than pre-
viously introduced syntactic restrictions (such as ω-restricted programs
[8]). Programmers are thus relieved from the burden of introducing ex-
plicit syntactic modifications. We prove also that finitary programs [9],
a class of programs with answer set semantics and function symbols, are
not directly comparable with VI-restricted programs (Section 9).

– We present a full prototype that integrates the support for VI programs
in the DLV system [10]. A static check for VI restrictedness is executed on
each DLV program using external sources of computation. Several libraries
of external predicates are available. We carried out some experiments,
confirming that the accommodation of external predicates does not cause
any relevant computational overhead (Section 10).

Although we take Answer Set as the reference semantics, our framework
relies on the traditional notion of ground program. Thus, results about VI-
restricted programs can be be adapted to semantics other than Answer Set
Programming, such as the Well-Founded Semantics [11], or else.

2 A Motivating Example

The Friend of a Friend (FOAF) [12] project is about creating a Web of
machine-readable homepages describing people, the links between them and
the things they create and do. It is an RDF/XML Semantic Web vocabulary.
Each person P stores her FOAF ontology portion at some url U .

In order to deal with such a vocabulary, a rule based logic language needs
some special construct for importing external knowledge. But this makes the
set of constant values unknown a priori, as it is always enriched at reason-
ing time. It is not possible to establish where and when new information is
brought into play, since the aim of the proposed formalism is to keep declar-
ativity (i.e. the order of evaluation for external sources of knowledge can not
be established).

4

Let’s imagine that we want to specify the transitive closure of the relation
of knowledge among people, starting from the homepage of a given person.
Each homepage contains a person description listing other linked people.
Let’s suppose also to have an external predicate, called “#rdf”, which allows
us to access a FOAF ontology located at URL:

#rdf(URL, Object1, Relation, Object2). (1)

Note that, for a given URL, the predicate #rdf induces a ternary relation
whose extension is not known a priori. It might ‘create’, in a sense explained
later on in the work, new information (symbols).

We say that external predicates allow ‘value invention’; the intuition of
VI-restricted programs is to investigate how new information propagates in
a program, and whether its size is finite.

We first collect a set of homepages. In order to avoid wrong information we
can accept only a restricted subset of somehow trusted URLs. Then we simply
encode the transitive closure of the graph representing people, exploiting the
knowledge provided by the collected pages. Let the starting homepage be
“myurl”; thus, the following program implements what is described above.

trusted(X,U) ← #rdf(“myurl”, X, “trusts”, U). (2)
url(X,U) ← #rdf(“myurl”, X, “seealso”, U), trusted(X,U). (3)
url(X,U) ← url(, U1), #rdf(U1, X, “seealso”, U), trusted(X,U). (4)
connected(X, Y) ← url(X, U), #rdf(U, X, “knows”, Y). (5)
connected(X, Y) ← connected(X, Z), url(Z, U), #rdf(U, Z, “knows”, Y).(6)

The above program has two sources of new values: trusted URLs, and persons.
For instance, in particular, rule (6) may induce a loop, leading to the inven-
tion of an infinite number of new symbols. As will be seen later, the above
program is anyway VI-restricted and can be solved using a finite ground ver-
sion of it: intuitively, the number of URLs to be taken into account is finite.
Although not explicitly bounded, new persons (coming from the value of Y
in the sixth rule) can be extracted only from a finite set of URLs. Observe
that rule (2) invents new values, but these do not ever propagate through a
loop involving an external atom, while this is the case of the Y variable in
the sixth rule.

It is worth noting that the programmer is not forced (in order to en-
sure decidability) to bound the domain of variables explicitly such as in this
modified version of rule (6): { connected(X, Y) ← known(Y), connected(X, Z),
url(Z, U), #rdf(U,Z,“knows”,Y). }, where the predicate known is supposed to
restrict the range of values for the Y variable.

3 Preliminaries

Let C, X , F , E and P be mutually disjoint sets whose elements are called con-
stant names, variable names, function names, external predicate names, and
ordinary predicate names, respectively. Unless explicitly specified, elements
from X (resp., C) are denoted with first letter in upper case (resp., lower

5

case). We assume that constants are encoded using some finite alphabet Σ,
i.e. they are finite elements of Σ∗. External predicate names, that is elements
from E are prefixed with ‘ # ’.

Elements from C ∪ X are called (simple) terms. A term may also be
functional, and in this case is of the form f(t1, . . . , tn), where t1, . . . , tn are
either simple terms or functional terms, and f is a function symbol from F .
A list of terms t1, . . . , tn is succinctly represented by t.

An atom is a structure p(t1, . . . , tn), where t1, . . . , tn are terms and p ∈
P ∪ E ; n ≥ 0 is the arity of the atom. p is the predicate name. The atom
is ordinary, if p ∈ P, otherwise we call it external atom. Given an ordinary
atom a, ¬a is said to be its complementary atom, where ‘‘¬’’ is intended
as the classical negation. Let A be a set of ordinary atoms. A is said to be
consistent if ∀a ∈ A we have that ¬a 6∈ A.

For instance, node(X), and #succ(a,Y) are atoms; the first is ordinary,
whereas the second is an external atom.

A literal l is of the form a or not a, where a is an atom; in the former
case l is positive, and in the latter case negative.

Let p be a predicate, p[i] is its i-th argument. A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn, notβn+1, . . . , notβm. (7)

where m ≥ 0, k ≥ 1, α1, . . . , αk, are ordinary atoms, and β1, . . . , βm are
(ordinary or external) atoms. We define H(r) = {α1, . . . , αk} (the head of
r) and B(r) = B+(r) ∪B−(r) (the body of r), where B+(r) = {β1, . . . , βn}
(the positive body of r) and B−(r) = {βn+1, . . . , βm} (the negative body of
r). E(r) is the set of external atoms of r. If H(r) = ∅ and B(r) 6= ∅, then r
is a constraint, and if B(r) = ∅ and H(r) 6= ∅, then r is a fact; r is ordinary,
if it contains only ordinary atoms. A VI program is a finite set P of rules;
it is ordinary if all rules are ordinary. Let A be a set of atoms and p be a
predicate. With small abuse of notation we say that p ∈ A if there is some
atom in A with predicate name p. An atom having p as predicate name is
usually referred as ap.

We denote as Attr(P) the set of all arguments of all the predicates ap-
pearing in the program P . The dependency graph G(P) of P is built in the
standard way by inserting a node np for each predicate name p appearing in
P and a directed edge (p1, p2), labelled r, for each rule r such that p2 ∈ B(r)
and p1 ∈ H(r).

The following is a short VI program:

mustChangePasswd(Usr) ← passwd(Usr,Pass),
#strlen(Pass,Len), #<(Len,8). (8)

We define the semantics of VI programs by generalizing the answer-set
semantics, proposed by [13] as an extension of the stable model semantics of
normal logic programs [14].

We denote with U the default Herbrand Universe. If F is empty then
C = U . In case functional symbols are allowed, U consists of the set C plus
all possible functional term that can be built with constants and function
symbols from C and U .

6

From now on, we will assume to deal with VI programs without functional
terms, unless otherwise specified. We assume also that VI programs have no
constraints,1 only ground facts, and that each rule is safe (with respect to
negation), i.e. for each rule r, each variable appearing in some negated atom
a ∈ B−(r) or in the head, appears also in some positive atom b ∈ B+(r)2.

In the sequel, we will assume P as a VI program. The Herbrand base of P
with respect to U , denoted HBU (P), is the set of all possible ground versions
of ordinary atoms and external atoms occurring in P obtained by replac-
ing variables with elements from U . The grounding of a rule r, grndU (r),
is defined accordingly, and the grounding of program P by grndU (P) =⋃

r∈P grndU (r). Note that this ground program can be of infinite size even
when C = U .

An interpretation I for P is a pair 〈S, F 〉 where:

– S ⊆ HBU (P) is a consistent set of ordinary atoms; we say that I (or
by small abuse of notation, S) is a model of ordinary atom a∈HBU (P),
denoted I |= a (S |= a), if a∈S.

– F is a mapping associating with every external predicate name #e ∈ E , a
decidable n-ary function (which we call oracle) F (#e) assigning each tuple
(x1, . . . , xn) either 0 or 1, where n is the fixed arity of #e, and xi ∈ U . I
(or, by small abuse of notation, F) is a model of a ground external atom
a = #e(x1, . . . , xn), denoted I |= a (F |= a), if F (#e)(x1, . . . , xn) = 1.

A positive literal is satisfied if its atom is satisfied, whereas a negated literal
is satisfied if its corresponding atom is not satisfied.

Example 1 We give an interpretation I = 〈S, F 〉 such that the external pred-
icate #strlen is associated to the oracle F (#strlen), and F (#<) to #<. In-
tuitively these oracles are defined such that #strlen(pat4dat,7) and #< (7,8)

are satisfied by I, whereas #strlen(mypet,8) and #< (10,8) are not.
The following is a ground version of rule 8:

mustChangePasswd(frank) ← passwd(frank,pat4dat),
#strlen(pat4dat,7), #<(7,8).

(9)

ut
Let r be a ground rule. We define:

i. I |=H(r) iff there is some a ∈ H(r) such that I |= a;
ii. I |=B(r) iff I |= a for each atom a∈B+(r) and I 6|= a for each atom

a∈B−(r);
iii. I |= r (i.e., r is satisfied) iff I |=H(r) whenever I |= B(r).

We say that I is a model of a VI program P with respect to a universe
U , denoted I |=UP , iff I |= r for all r∈ grndU (P). For a fixed F , a model
M =< S, F > is minimal if there is no model N =< T, F > such that
S ⊂ T .

1 Under Answer Set semantics, a constraint ← B(r) can be easily simulated
through the introduction of a corresponding standard rule fail ← B(r), not fail,
where fail is a fresh predicate not occurring elsewhere in the program.

2 See section 9 for a discussion about the different notions of safety adopted in
this paper.

7

Let P be a ground program. The Gelfond-Lifschitz reduct [13] of P , w.r.t.
an interpretation I, is the positive ground program P I obtained from P by:

– deleting all rules having a negated literal not satisfied by I;
– deleting all negated literals from the remaining rules.

I ⊆HBU (P) is an answer set for a program P w.r.t. U iff I is a minimal
model for the positive program grndU (P)I . Let ansU (P) be the set of answer
sets of grndU (P). We call P F-satisfiable if it has some answer set for a fixed
function mapping F , i.e. if there is some interpretation 〈S, F 〉 which is an
answer set. We will assume in the following to deal with a fixed set F of
functions mappings for external predicates.

Example 2 Consider the following program P :

r ← p.
r ← q.
p ← #e(a,b), not q.
q ← not p.

(10)

and the interpretation I = 〈{p, r}, F 〉, where the oracle F (#e), associated
to the external predicate #e, is defined such that #e(a,b) is satisfied by I.
Thus, the Gelfond-Lifschitz reduct w.r.t. I is:

r ← p.
r ← q.
p ← #e(a,b).

(11)

I is a minimal model for the reduct; thus, it’s also an answer set for P . ut

4 Properties of VI Programs

Although simple in its definition, the above semantics does not give any hint
on how to actually compute the answer sets of a given program P . In general,
given an infinite domain of constants U , and a program P , HBU (P) is infinite.

Theorem 1 Let P be a VI program, U be a domain of constants, F be a
function mapping such that its co-domain contains only 2-valued functions
decidable in polynomial time in the size of their arguments. Deciding whether
P is F -satisfiable in the domain U is undecidable.

Proof The proof is easily entailed by Proposition 3 (appearing in Section 8,
and stating that the Answer Set Semantics of an ordinary program P with
function symbols can be reduced to the Answer Set Semantics of a VI pro-
gram P), and by what we know about positive Horn programs with function
symbols (indeed, they are undecidable: see e.g. [15]). ut

4.1 Splitting sets

It is of interest to tailor cases where a finite portion of U is enough to evalu-
ate the semantics of a given program. In the following we reformulate some

8

results regarding splitting sets. The notion of splitting set has been intro-
duced in [16] in order to provide a technique for decomposing a given ground
program P , so that its answer sets can be computed from the answer sets
of two separate programs. This technique is commonly adopted for enabling
modular computation of the answer sets. In this paper splitting sets are ex-
ploited as a tool for decomposing P into a finite part P ′ and an infinite part
P ′′. Then we identify classes of programs for which P ′′ is provable to be
always consistent, since it has a single, empty, answer set. Thus, computing
the answer sets of P can be reduced to computing the answer sets of P ′.

Definition 1 Let P be a VI program. A splitting set is a set of atoms
A ∈ HBU (P) such that for each atom a ∈ A, if a ∈ H(r) for some r ∈
grndU (P), then B(r) ∪ H(r) ⊆ A. The bottom bA(P) is the set of rules
{r | r ∈ grndU (P) and H(r) ⊆ A}. A literal whose atom belongs to A is
said A-literal. Given an interpretation I, the residual rA(P, I) is a program
obtained from grndU (P) by deleting all the rules whose body contains an
A-literal not satisfied by I, and removing from the remaining rules all the
A-literals. ut
Example 3 Consider the program 10 of example 2. A = {p, q, #e(a, b)} is a
splitting set for P . The bottom bA(P) is the set containing the last two rules
of P . Consider the interpretation I = 〈{p, r}, F 〉, where the oracle F (#e), as-
sociated to the external predicate #e, is defined such that #e(a,b) is satisfied
by I. The residual rA(P \bA(P), I) is the program consisting of the single rule:

r ← . ut
We reformulate here the splitting theorem as given in [17].

Theorem 2 (Splitting theorem [16; 17]) Let P be a program and A be a
splitting set. Then, M ∈ ansU (P) iff M can be split in two disjoint sets I
and J , such that I ∈ ansU (bA(P)) and J ∈ ansU (rA(P) \ bA(P)), I).

4.2 Safety

We consider now an interesting subclass of VI-programs, namely vi-safe pro-
grams; we will exploit the above theorem in order to prove that each vi-safe
program can be evaluated simply taking into account only the constants
originally appearing in the program itself.

Definition 2 Let r be a rule. A variable X is vi-safe in r if it appears in some
ordinary atom a ∈ B+(r). A rule r is vi-safe if each variable X appearing in
r is vi-safe. A program P is vi-safe if each rule r ∈ P is vi-safe.

Note that the notion of vi-safety makes distinction between ordinary and
external atoms, while safety as defined in Section 3, does not. That is, for
making a variable safe, it is necessary its appearance in a positive literal,
while vi-safety requires a variable to appear explicitly in a ordinary (non-
external) atom. Both conditions are syntactic. As an important semantic
consequence, vi-safety prevents completely the appearance of new symbols
in a given program, as next theorem shows.

9

Theorem 3 Let P be a vi-safe VI program. Let U ⊂ U be the set of constants
appearing in P . Then ansU (P) = ansU (P).

Proof Let’s denote with A the set of ground atoms appearing in grndU (P).
Assuming P as vi-safe, it is easy to see that A is a finite splitting set for
P . Furthermore, grndU (P) = bA(P). For each M ∈ ansU (P), we have that
rA(grndU (P) \ bA(P),M) is consistent and its only answer set is the empty
set (indeed, no rule can be ever satisfied unless the variables are bound to
constants appearing in U). Thus M ∪ ∅ ∈ ansU (P) (Theorem 2). Viceversa,
assuming an answer set M ∈ ansU (P) is given, same arguments easily lead
to conclude that M ∈ ansU (P). ut

In case a vi-safe program is given, the above theorem allows to consider
as the set of ‘relevant’ constants only those values explicitly appearing in the
program at hand. The semantics of a vi-safe program P can be evaluated by
means of the following algorithm:

1. compute grndU (P), where U is defined as in Theorem 3;
2. remove from grndU (P) all the rules containing at least one external literal

e such that F 6|= e, and remove from each rule all the remaining external
literals, obtaining a reduced ground program that we will call grndU (P).

3. evaluate the answer sets of grndU (P) by means of a standard Answer Set
solver.

It is worth pointing out that, assuming the complexity of computing ora-
cles is polynomial in the size of their arguments, this algorithm has the same
complexity as computing grndU (P)3.

Example 4 Consider the rule 8 and the following two facts:

passwd(jack,short).
passwd(bill,longpasswd). (12)

The resulting ground program after step 1 contains, among the others,
the rules:

mustChangePasswd(jack) ← passwd(jack,short),
#strlen(short,5), #<(5,8).

mustChangePasswd(bill) ← passwd(bill,longpasswd),
#strlen(longpasswd,10), #<(10,8).

(13)

Step 2 is such that only one of the two above rules is kept (after modifi-
cation):

mustChangePasswd(jack) ← passwd(jack,short). (14)

that no longer contains external atoms. ut
3 Assuming rules can have unbounded length, grounding a disjunctive logic pro-

gram is in the worst case exponential in the size of the Herbrand base (see e.g.
[18]).

10

5 Dealing with Value Invention

Although 2-valued oracles are important for clarifying the given semantics,
we aim at introducing the possibility to specify functional oracles, keeping
anyway the simple reference semantics given previously.

For instance, assume U contains encoded values that can be interpreted
as natural numbers and that the external predicate #sqr is defined such
that the atom #sqr(X,Y) is satisfied whenever Y encodes a natural number
representing the square of the natural number X; we want to extract a series
of squared values from this predicate; consider the short program

number(2) ← .
square(Y) ← number(X), #sqr(X,Y). (15)

In the presence of unsafe rules as in the above example, Theorem 3 ceases
to hold: it is indeed unclear whether there is a finite set of constants which
the program can be grounded on. In the above example, we can intuitively
conclude that the set of meaningful constants is {2, 4}. Nonetheless, it is
in general undecidable, given a computable oracle f , to establish whether a
given set S contains all and only those tuples t such that f(t) = 1.

In the new setting we are going to introduce, it is also very important
that an external atom brings knowledge from external sources of computa-
tion, in terms of new symbols added to a given program. We extend our
framework with the possibility of explicitly computing missing values on de-
mand. Although restrictive, this setting is not far from a realistic scenario
where external predicates are defined by means of generic partial functions.

Definition 3 Let #p be an external predicate name of arity n, and let F (#p)
be its oracle function. A pattern is a list of i’s and o’s, where a i represents a
placeholder for a constant (or a bounded variable), and an o is a placeholder
for a variable. Given a list of terms, the corresponding pattern is given by
replacing each constant with a i, and each variable with a o. Positions where
o appears are called output positions whereas those denoted with i are called
input positions. For instance, the pattern related to the list of terms (X, a, Y)
is (o, i, o). ut

Let pat be a pattern of length n having k placeholders i (input posi-
tions), and n − k placeholders of o type (output positions). A functional
oracle F (#p)[pat] for the pattern pat, associated with the external predicate
#p, is a partial function taking k constant arguments from U and returning a
finite relation of arity n− k, and such that d1, ..., dn−k ∈ F (#p)[pat](c1, ..., ck)

iff F (#p)(h1, . . . , hn) = 1, where for each l(1 ≤ l ≤ n), hl = cj if the j-th
i value occurs in position l in pat, otherwise hl = dj if the j-th o value oc-
curs in position l in pat. Let pat[j] be the j-th element of a pattern pat. Let
outputpat(X) be the sub-list of X such that pat[j] = o for each Xj ∈ X, and
inputpat(X) be the sub-list of X such that pat[j] = i for each Xj ∈ X.

An external predicate #p might be associated to one or more functional
oracles ‘consistent’ with the originating 2-valued one. For instance, consider
the #sqr external predicate, defined as mentioned above. We can have two

11

functional oracles, F(#sqr)[i, o] and F(#sqr)[o, i]. The two functional oracles
are such that, e.g. F(#sqr)[i, o](3) = 9 and F(#sqr)[o, i] (16) = 4, consistently
with the fact that F(#sqr)(3, 9) = F(#sqr)(4, 16) = 1, whereas F(#sqr)[o, i](5)
is set as undefined since F(#sqr)(X, 5) = 0 for any natural number X.4

For the sake of simplicity, in the sequel, given an external predicate #e,
we will assume that it comes equipped with its oracle F (#e) (called also
base oracle) and exactly one functional oracle F (#e)[pat#e], having pattern
pat#e. It is worth noting that this does not cause any loss of generality:
indeed, having an external predicate with two (or more) different functional
oracles is equivalent to having two (or more) different external predicates with
one functional oracle each, and using the proper one every time a particular
oracle is desired.

Once functional oracles are given, it is important to investigate which are
the cases where they can be used for computing the actual set of ground
instances of a given rule.

To this end, we introduce the notion of weakly safe variable and of weakly
safe rule. Intuitively, a variable is weakly safe if its domain, although not ex-
plicitly bound to the domain of an ordinary atom, can be computed indirectly
through a functional oracle.

For instance, the second rule of Program 15 is not vi-safe (since Y is not
vi-safe), but is such that, intuitively, the domain of Y can be computed once
the domain of X is known, provided a proper oracle F (#sqr)[i, o] is given for
#sqr. The following definition captures this intuition.

Definition 4 Let r be a rule. A variable X is weakly safe in r if either

– X is vi-safe (i.e. it appears in some positive atom of B+(r) \ E(r)); or
– X appears in some external atom #e(T) ∈ E(r), the functional oracle of

#e is F (#e)[pat], X appears in output position with respect to pat and
each variable Y appearing in input position in the same atom is weakly
safe.

A weakly safe variable X is free if it appears in B+(r) only in output position
of some external atom. A rule r is weakly safe if each variable X appearing
in some atom a ∈ B(r) is weakly safe. A program P is weakly safe if each
rule r ∈ P is weakly safe.

Example 5 Assume that #sqr is associated to the functional oracle F (#sqr)
[i, o] defined above. The second rule of Program 15 is weakly safe (X is vi-
safe, while Y appears in output position in the atom #sqr(X, Y)). The same
rule is not weakly safe if we consider the functional oracle F (#sqr)[o, i]. ut
Proposition 1 Let E be a set of external predicates, and L be the list of
functional oracles associated to elements of E . It can be checked in polynomial
time whether a program P is weakly safe.

Proof Simply observe that for each rule r ∈ P it can be checked in time
linear in the number of atoms of r whether the patterns of the functional
oracle associated to each external atom make the rule vi-safe or not. ut

4 Unlike this example, note that in the general case functional oracles might
return a set of tuples and are not restricted to single output values.

12

Weakly safe rules can be grounded with respect to functional oracles as
follows.

Definition 5 Let I = 〈S, F 〉 an interpretation. We call ins(r, I) the set of
ground instances rθ of r for which I |= B+(rθ), and such that I |= E(rθ). ut
Proposition 2 Let I be a finite interpretation, and r be a weakly safe rule.
ins(r, I) is finite.

Proof Indeed, given a weakly safe rule r, the set of functional oracles as-
sociated to each external atom, and a set of ordinary ground atoms I, any
ground rule r′ which is member of ins(r, I) can be generated by the following
algorithm:

1. replace positive literals of r with a consistent nondeterministic choice of
matching ground atoms from I; let θ the resulting variable substitution;

2. until θ instantiates all the variables of r:
– pick from rθ an external atom #e(X)θ such that θ instantiates all the

variables X ∈ inputpat(X).
– choose nondeterministically a tuple 〈a1, . . . , ak〉 ∈ F (inputpat(Xθ)),

then update θ by assigning a1, . . . , ak to outputpat(Xθ);

3. return r′ = rθ. ut
Weakly safe rules have the important property of producing a finite set

of relevant ground instances provided that we know a priori the domain of
positive ordinary body atoms. Although desirable, weak safety is intuitively
not sufficient in order to guarantee finiteness of answer sets and decidability.
For instance, it is easy to see that the program:

square(2) ← .
square(Y) ← square(X), #sqr(X,Y).

(16)

has the infinite set of atoms {square(2), square(4), . . . } as answer set.

6 Decidable VI Programs

The introduction of new symbols in a logic program by means of external
atoms is a clear source of undecidability. As illustrated in Section 8 below,
value invention is nonetheless desirable in a variety of contexts.

Our approach investigates which programs, allowing value invention, can
be solved by means of a finite ground program having a finite set of models
of finite size.

Definition 6 A class of VI programs V has the finite grounding property if,
for each P ∈ V there exists a finite set U ⊂ U such that ansU (P) = ansU (P).

ut
This class of programs (having the finite grounding property) is unluckily

not recognizable in finite time.

13

Theorem 4 Recognizing the class of all the VI programs having the finite
grounding property is undecidable.

Proof Positive logic programs with function symbols can simulate Turing
machines. Also weakly safe VI programs can mimic (see section 8.1) programs
with function symbols. Given a Turing machine T and an input string x we
can thus build a suitable VI program PT ,x encoding T and x. T (x) terminates
iff PT ,x has the finite grounding property. Indeed, if T (x) terminates, the
content of a finite set of symbols U , such that Definition 6 is applicable, can
be inferred from the finite number of transitions of T (x). Viceversa, if U is
given, the evolution of T (x) until its termination can be mimicked by looking
at the answer sets of grndU (PT ,x). Hence the result follows. ut

Note that te above theorem holds under the assumption that functional
oracles might have an infinite co-domain, although functional oracles are
supposed to associate, to each fixed combination of input values, a finite
number of combination of values in output. Also, it is assumed to deal with
weakly safe programs.

6.1 VI-restricted programs

The intuition leading to our definition of VI-restrictedness, is based on the
idea of controlled propagation of new values throughout a given program.
Assume the following VI program is given (#b has a functional oracle with
pattern [i, o]):

a(k,c) ← .
p(X,Y) ← a(X,Y).
p(X,Y) ← s(X,Y), a(Z,Y).
s(X,Y) ← p(Z,X), #b(X,Y).

(17)

The last rule of the program generates new symbols by means of the Y
variable, which appears in the second attribute of s(X,Y) and in output
position of #b(X, Y). This situation is per se not a problem, but we observe
that values of s[2] are propagated to p[2] by means of the last but one rule,
and p[2] feeds input values to #b(X,Y) in the last rule. This occurs by means
of the binding given by the X variable. The number of ground instances to
be considered for the above program is thus in principle infinite, due to the
presence of this kind of cycles between attributes.

We introduce the notion of dangerous rule for those rules that propagate
new values in recursive cycles, and of dangerous attributes for those attributes
(e.g. s[2]) that carry new information in a cycle.

Actually, the above program can be reconducted to an equivalent finite
ground program: we can observe that p[2] takes values from the second and
third rule above. In both cases, values are given by bindings to a[2] which
has, clearly, a finite domain. So, the number of input values to #b(X,Y) is
bounded as well. In some sense, the ‘poisoning’ effect of the last (dangerous)
rule, is canceled by the fact that p[2] limits the number of symbols that can
be created.

14

In order to formalize this type of scenarios we introduce the notion of
savior and blocked attributes. p[2] is savior since all the rules where p appears
in the head can be proven to bring values to p[2] from blocked attributes, or
from constant values, or from other savior attributes. Also, s[2] is dangerous
but blocked with respect to the last rule, because of the indirect binding
with p[2], which is savior. Note that an attribute is considered blocked with
respect to a given rule. Indeed, s[2] might not be blocked in other rules where
s appears in the head.

We define an attribute dependency graph useful to track how new sym-
bols propagate from an attribute to another by means of bindings of equal
variables.

Definition 7 The attribute dependency graph AG(P) associated to a pro-
gram P is defined as follows. For each predicate p ∈ P of arity n, there is a
node for each predicate attribute p[i](1 ≤ i ≤ n), and, looking at each rule
r ∈ P , there are the following edges:

– (q[j], p[i]), if p appears in some atom ap ∈ H(r), q in some atom aq ∈
B+(r) \ E(r) and q[j] and p[i] share the same variable in aq and ap

respectively.
– (q[j], #p[i]), if q appears in some atom aq ∈ B+(r) \ E(r), #p in some

atom a#p ∈ E(r), q[j] and #p[i] share the same variable in aq and a#p

respectively, and i is an input position for the functional oracle of #p;
– (#q[j], #p[i]), if #q appears in some atom a#q ∈ E(r), #p in some a#p ∈

E(r), #q[j] and #p[i] share the same variable in a#q and a#p respectively,
j is an output position for the functional oracle of #q, i is an input
position for the functional oracle of #p;

– (#p[j], #p[i]), if #p appears in some atom a#p ∈ E(r), #p[j] and #p[i]
both have a variable in a#q and a#p respectively, j is an input position for
the functional oracle of #p, and i is an output position for the functional
oracle of #p;

– (#q[j], p[i]), if p appears in some atom ap ∈ H(r), #q in some atom a#q ∈
E(r), #q[j] and p[i] share the same variable in a#q and ap respectively,
and j is an output position for the functional oracle of #q; ut

Example 6 The attribute dependency graph induced by the first three rules of
the motivating example in Section 2 is depicted in Figure 1. ut
Definition 8 Let P be a weakly safe program. Then5:

– A rule r poisons an attribute p[i] if some atom ap ∈ H(r) has a free
variable X in position i. p[i] is said to be poisoned by r. For instance,
connected[2] is poisoned by rule (6).

– A rule r is dangerous if it poisons an attribute p[i] (p ∈ H(r)) appearing
in a cycle in AG(P). Also, we say that p[i] is dangerous. For instance, rule
(6) is dangerous since connected[2] is poisoned and appears in a cycle.

– Let r be a dangerous rule. A dangerous attribute p[i] (bounded in H(r) to
a variable name X), is blocked in r if for each atom a#e ∈ E(r) where X

5 All examples refer to the Motivating Example, Section 2. Also, we assume that
#rdf has functional oracle with pattern [i, o, o, o]

15

trusted(X,U) ← #rdf(“myurl”, X, “trusts”, U).
url(X,U) ← #rdf(“myurl”, X, “seealso”, U), trusted(X,U).
url(X,U) ← url(, U1), #rdf(U1, X, “seealso”, U), trusted(X,U).

Fig. 1 Attributes Dependency Graph (Predicate names shortened to the first letter).

appears in output position, each variable Y appearing in input position
in the same atom is savior. Y is savior if it appears in some predicate
q ∈ B+(r) in position i, and q[i] is savior.

– An attribute p[i] is savior if at least one of the following conditions holds
for each rule r ∈ P where p ∈ H(r).
– p[i] is bound to a ground value in H(r);
– there is some savior attribute q[j], q ∈ B+(r) and p[i] and q[j] are

bound to the same variable in r;
– p[i] is blocked in r.

For instance, the dangerous attribute connected[2] of rule (6) is blocked
since the input variable U is savior (indeed it appears in url[2]).

– A rule is VI-restricted if all its dangerous attributes are blocked. P is said
to be VI-restricted if all its dangerous rules are VI-restricted. ut

Theorem 5 VI-restricted programs have the finite grounding property.

Proof Let P be a VI-restricted program. We show how to compute a finite
ground program grP such that ansU (P) = ansU (grP), where U is the set of
constants appearing in grP .

Let’s call A the set of active ground atoms, initially containing all atoms
appearing in some fact of P . grP can be constructed by an algorithm A
that repeatedly updates grP (initially empty) with the output of ins(r, I)
(Definition 5) for each rule r ∈ P , where I = 〈A,F 〉; all atoms belonging to
the head of some rule appearing in grP are then added to A. The iterative
process stops when A is not updated anymore. That is, grP is the least fixed
point of the operator

TP (X) = {⋃r∈P ins(r, I) | I = 〈A, F 〉, and A = atoms(X)}
where X is a set of ground rules and atoms(X) is the set of ordinary atoms
appearing in X. T∞P (∅) is finite in case P is VI-restricted. Indeed, grP might
not cease to grow only in case an infinite number of new constants is generated
by the presence of external atoms. This may happen only because of some
dangerous rule having some poisoned attributes. However, in a VI-restricted
program all poisoned attributes are blocked in dangerous rules where they
appear, i.e. they depend from savior attributes. Now, for a given savior at-
tribute p[i], the number of symbols that appear in position i in an atom ap

such that ap ∈ T∞P (∅) is finite. This means that only a finite number of calls
to functional oracles is made by A, each one producing a finite output.

16

Because of the way it has been constructed, it is easy to see that A =
atoms(grP) is a splitting set [16], for grndU (P). Based on this, it is possible
to observe that no atom a 6∈ A can be in any answer set, and to conclude that
ansU (P) = ansU (P), where U is the set of constants appearing in A. ut

7 Recognizing VI-restricted Programs

An algorithm recognizing VI-restricted programs is depicted in Figure 2. The
idea is to iterate through all dangerous rules trying to prove that all of them
are VI-restricted. In order to prove VI-restriction for rules, we incrementally
build the set of all savior attributes; this set is initially filled with all attributes
which can be proven to be savior (i.e. they do not depend from any dangerous
attribute). This set is updated with a further attribute p[i] as soon it is
proved that each dangerous attribute which p[i] depends on is blocked. The
set RTBC of rules to be checked initially consists of all dangerous rules, then
the rules which are proven to be VI-restricted are gradually removed from
RTBC. If an iteration ends and nothing new can be proven the algorithm
stops. The program is VI-restricted if RTBC is empty at the last iteration.

The algorithm consumes polynomial time in the size of a program P : let
m be the total number of rules in P , n the number of different predicates, k
the maximum number of attributes over all predicates, and l the maximum
number of atoms in a single rule. O(n ∗ k) is an upper bound to the total
number of different attributes, while O(l∗k) is an upper bound to the number
of variables in a rule.

A naive implementation of the isBlocked (Appendix A) function has
complexity O(n∗ l∗k2). The recognizer function (Figure 2) iterates O(n∗k)
times over an inner cycle which performs at most O(m ∗ k ∗ l) steps (when
all attributes are initially in NSA and only one attributes can be stated as
savior at each step); each inner step iterates over all rules in RTBC, which
are at most m; and for each rule all free variables must be checked (this
requires O(k ∗ l) checks, in the worst case).

8 Modeling Semantic Extensions by VI Programs

Several semantic extensions contemplating value invention can be mapped to
VI programs. We show next how programs with function symbols and with
sets can be translated to weakly safe VI programs. When the resulting trans-
lation is VI-restricted as well, these semantic extension can be thus evaluated
by an answer set solver extended with external predicates.

8.1 Functional terms

It is worth noting that we consider here rule based languages allowing func-
tional terms such that the variables appearing in the head appear also in the
positive body. A program P with functional terms is reduced to a VI program
F(P) as follows.

17

Bool Function recognizer (var SA: Set{ Attr };
% SA is initialized with provable savior attributes
% (i.e. attributes that do not depend from
% dangerous attributes.

var NSA: Set{ pair〈 Attr, Set{ Attr } 〉 };
% NSA is initialized with attributes which cannot be
% proven to be savior, each of which is associated with the
% set of dangerous attributes that prevent them to be savior.

var RTBC : Set{ Rule }) % Set of dangerous rules to check.
Bool NSA Updated = true;
While (NSA Updated) do % Try to prove VI-restriction when some change occurs.

NSA Updated = false;
For each Rule r ∈ RTBC do % free(r) = free variables appearing in the rule r.

Set{Var} varsTBC = free(r);
Bool allBlocked = true;
For each Var v ∈ varsTBC do

% isBlocked tells if v is blocked in r by means of attributes
% currently in SA.
If (isBlocked(v, r, SA)) then

% headAttr returns reference to the head attribute of r
% containing v.
Attr p[i] = headAttr(v, r);
% update processes the NSA set, deleting p[i] from each set S.
% such that p[i] ∈ S and 〈q[j], S〉 ∈ NSA.
% Then each attribute q[j] such that 〈q[j], S〉 ∈ NSA
% and S = ∅ is moved from NSA to SA.
update(NSA, SA, p[i]);
% A change occurred, so we have to continue cycling.
NSA Updated = true;

Else % At least one free variable can’t be proved as blocked.
allBlocked = false;

EndIf
EndFor
If (allBlocked) then

RTBC.delete(r); % r is VI-restricted: can be deleted from RTBC.
EndIf

EndFor
EndWhile
If (RTBC == ∅) then

Return true
Else % Display the set of rules that can’t be proved as VI-restricted.

printINSAne(RTBC)
Return false

EndIf
EndFunction

Fig. 2 The VI-Restricted Recognizer Algorithm

For each natural number k, we introduce two distinct external predicates:
#functionk and #function′k, of arity k + 2 each; they are such that:
F (#functionk)(Ft, f, X1, . . . , Xk) = F (#function′k)(Ft, f, X1, . . . , Xk) = 1 if and
only if the term Ft is f(X1, . . . , Xk). Each #functionk (#function′k, respec-
tively) predicate is associated to a functional oracle F (#functionk)[o, i, i, . . . , i]

(F (#function′k) [i, o, o, . . . , o], respectively).
The family of #functionk external predicates are intended to construct

a functional term if all of its arguments are bound, whereas the family of
#function′k predicates are exploited when the whole functional term is known
and we want to extract its arguments.

The transformation F is such that, any functional term t = f(X1, . . . , Xn),
appearing in some rule r ∈ P , is replaced by a fresh variable Ft. A proper
atom #functionk(Ft, f, X1, . . . , Xn) or #function′k(Ft, f, X1, . . . , Xn) is then
added to the body of r. This kind of transformation is performed until a

18

functional term is still in r. We choose #function′k if t appears in the positive
body of r, whereas an atom using #functionk is used if t appears in the
negative body or in the head of r.

Example 7 The rule { p(s(X)) ← a(X, f(Y, Z)). } contains two func-
tion symbols, s and f. It can be rewritten as { p(Ft1) ← a(X, Ft2),
#function1(Ft1, s, X), #function′2(Ft2, f, Y, Z). } ut

Proposition 3 Let P be a weakly safe logic program with functional terms
P . Then: (i) F(P) is weakly safe, and (ii) there is a 1-to-1 mapping between
ansU (P) and ansU (F(P)). ut

Proof (i) Each variable in F(P) already appears in P , and thus is weakly safe
by hypothesis. The only exceptions are constituted by the fresh variables Fts.
Whatever the rule, such a variable will always appear in some external atom
(even if appears also in a regular atom); by definition of F, this must be
either of type #functionk() or of type #function′k(). In the first case, Ft is
the only output term (all the others are input ones): this means that Ft is
weakly safe by Definition 4, second point. In the latter case, Ft is an input
term, and thus weakly safe by Definition 4, first point.

(ii) It is easy to see that semantics of a VI program P is defined such that
the answer sets of F(P) are the answer sets of grndU (F(P)), which does not
contain any external atom. Because of the way the families of #functionk

and #function′k external predicates are defined, this ground program is the
same as grndU (P).

8.2 Set unification and set terms

The accommodation of sets in logic programming has often been attempted;
the reader may refer to [19] for a survey on sets in logic programming and
on set unification methods and algorithms.

Set terms are usually encoded as lists of elements. But, unlike lists, set
terms do not have to carry information about the position of a given element
inside the set itself. Thus the classic notion of term unification has to be
generalized.

For instance, if a set term is encoded as {X, a, b, c} then it has to unify
with the encoding {d, a, b, c}, but also with {a, d, b, c}.

It is possible to embody set constructors and set unification in the context
of VI programs by means of a proper reduction. Roughly speaking, a logic
program with sets replaces the classical notion of term with the notion of
set term. A set term is either (i) a classical term, or (ii) a term of the form
{X1, . . . , Xn} where X1, . . . , Xn are set terms, or (iii) a term of the form
X ∪Y where X and Y are set terms. Two ground set terms are equal if they
contain the same set of ground terms.

A program with set terms P is reduced to a VI program S(P) as follows.
Remarking that the special symbol {} represents the empty set, the following
set of external predicates are introduced:

19

(i) a pair of external predicates #setk, #set′k for each natural number k,
having exactly k + 1 arguments each such that F (#setk)(X, Y1, . . . , Yk)

= F (#set′k)(X, Y1, . . . , Yk) = 1 if X encodes the set {Y1, . . . , Yk}. Predi-
cates #setk have the functional oracle F (#setk)[o, i, . . . , i], while predicates
#set′k has the functional oracle F (#set′k)[i, o, . . . , o];

(ii) two ternary external predicates #union and #union′; they are such that
F (#union)(X, Y, Z) = F (#union′)(X, Y, Z) = 1 either if X = Y ∪ Z, or if
X and Y are classical terms, Z = {} and X = Y . The predicate #union

has the functional oracle F (#union)[o, i, i], while the predicate #union′

has the functional oracle F (#union′)[i, o, o].

Then each rule r ∈ P is modified, until it has no set terms, by:

– choosing a set term t = {X1, . . . , Xn} appearing in r, replacing it with a
fresh variable St, and adding to the body of r
– the external atom #setn(St, X1, . . . , Xn), if the set term appears in the

negative body or in the head of r;
– the external atom #set′n(St, X1, . . . , Xn) otherwise;

– replacing each set term X ∪ Y appearing in r with a fresh variable Ut,
and adding in the body of r the external atom #union(Ut, X, Y) if the set
term appears in the negative body or in the head of r, #union′(Ut, X, Y)

otherwise. This and the previous step are applied to r for all set terms;
– if a variable X appears in r for m times (m > 1), then each occurrence

of X is replaced with a fresh variable Xi(1 ≤ i ≤ m), and for each pair
(Xi, Xj), 1 ≤ i < j ≤ m, the atom #union(Xi, Xj , {}) is added to r. This
last step is due since we have to force occurrences of the same variable
in a rule to be unified by means of set unification instead of the classic
unification.

Example 8 If we consider the rule: { p(X ∪ Y) ← a({a, X}), b({Y}). }, then
the analogous VI rule is: { p(St1) ← a(St2), b(St3), #union(St1, X1, Y1),
#set′2(St2, a, X2), #set′1(St3,Y2), #union(X1,X2,{}), #union(Y1,Y2,{}). } ut
Proposition 4 Let P be a logic program with set terms. Then S(P) is, by
construction, weakly safe. Also, there is a 1-to-1 mapping between ansU (P)
and ansU (S(P)). ut
Proof Fully analogue to the proof of Proposition 3.

9 Relationships with other Classes of Programs allowing Value
Invention

9.1 ω-restricted programs

In the same spirit of this paper are ω-restricted programs [8], that allow
function symbols under answer set semantics. The introduced restrictions
aim at controlling the creation of new functional terms.

Definition 9 [8] Let P be a program with function symbols and no external
predicates. An ω-stratification is a traditional stratification (i.e. a function

20

mapping each predicate name to a level number) extended by the ω-stratum,
which contains all predicates depending negatively on each other. ω is con-
ventionally assumed to be uppermost layer of the program. Given an ω-
stratification for P , a rule r is ω-restricted iff all variables appearing in r also
occur in a positive body literal belonging to a strictly lower stratum than the
head. A program P is ω-restricted iff all the rules are ω-restricted. ut

ω-restricted programs have the finite grounding property: only a finite
amount of functional terms can be created since each variable appearing in
the head of a rule must be bound to a predicate belonging to a lower layer.
VI-restricted programs do not introduce special restrictions for non-stratified
cycles, instead. Also, it is not necessary to bound the domain of each variable
to a previous layer explicitly. The class of VI-restricted programs contains,
in a sense, the class of ω-restricted ones. That is, any ω-restricted program
P is such that the counterpart VI program F(P) is VI-restricted.

Theorem 6 Let P be an ω-restricted program. F(P) is VI-restricted.

Proof Given an ω-restricted program P , we observe that:

– Attributes belonging to predicates which are not in the ω-stratum are ob-
viously savior: the relevant instantiation of these predicates is computable
starting from the lowermost layer, and is finite.

– The rewritten rules in F(P) corresponding to function-free rules cannot
be dangerous, since there is no value invention at all.

– Rules with functional terms are rewritten using external atoms; then, all
variables occurring in these new external atoms already occur in the orig-
inal rules, except for fresh variables substituting functional terms. Thus,
the variables appearing in the poisoned attributes must necessarily ap-
pear also in a predicate belonging to a strictly lower stratum than the
head (ω-restrictedness). Let’s consider a fresh variable Ft1 appearing in
#function′k(Ft1, X1, . . . , Xk). If Ft1 is already bound to a positive atom,
then there is no value invention; otherwise, all terms X1, . . . , Xk are bound
either to a positive atom or to another external atom in output position
(see Section 8.1). As stated before, the attributes where X1, . . . , Xk ap-
pear are savior, and so Ft1 is as well. ut

On the other hand, the opposite does not hold.

Theorem 7 It is possible to find non-ω-restricted programs whose transfor-
mation F outputs a VI-restricted program.

Proof The program Pnωr:

p(f(X)) ← q(X), t(X).
q(X) ← p(X). p(1). t(1).

is easily recognizable as not ω-restricted; nevertheless, the transformation
F(Pnωr) is VI-restricted:

p(F1) ← q(X), t(X), #function2(F1, f,X).
q(X) ← p(X). p(1). t(1). ut

21

9.2 Finitary programs

Finitary programs allow function symbols under answer set semantics [9].
Although they don’t have the finite grounding property, brave and cautious
ground querying is decidable. A ground program P is finitary iff its depen-
dency graph G(P) is such that (i) any atom p appearing as node in G(P)
depends only on a finite set of atoms (through head-body dependency), and
(ii) G(P) has only a finite number of cycles with an odd number of negated
arcs.

Theorem 8 The class of finitary programs is not comparable with the class
of VI-restricted programs.

Proof A program having rules with free variables is not finitary (eg. p(X) ←
q(X, Y)): a ground instance p(a) may depend on infinite ground instances
of q(X, Y) e.g.(q(a, f(a)), q(a, f(f(a)))...). In general, the same kind of rules
are allowed in VI-restricted programs. Vice versa, programs which are in
the class {F(P) | P is finitary} are not necessarily VI-restricted: for instance
the translation of the finitary program {p(0); p(s(X)) ← p(X)} is not VI-
restricted. ut

9.3 Other literature

In the above cited literature, infinite domains are obtained through the intro-
duction of compound functional terms. Thus, the studied theoretical insights
are often specialized to this notion of term, and take advantage, e.g., of the
common unification rules of formal logics over infinite domains. In this set-
ting, it is possible to study ascending and descending chains of functional
terms in order to prove decidability. Similar to our approach is the work
on open and conceptual logic programs [20], that addresses the possibility
of grounding a logic program, under Answer Set Semantics, over an infinite
domain, in a way similar to classical logics and/or description logics. Each
constant symbol has no predefined compound structure however. Also simi-
lar are [1; 3] and [21], where special constructs, aimed at creating new tuple
identifiers in relational databases is introduced.

In [22] and [4] the authors address the issue of implementing general-
ized quantifiers under Answer Set Semantics, in order to enable Answer Set
Solvers to communicate, both directions, with external reasoners. The ap-
proach is different from the one considered in this work, as it is inspired from
second order logics and allows bidirectional flow of relational data (to and
from external atoms), whereas, in our setting, the information flow is strictly
value (first order) based, and allows relational output only in one direction.
HEX programs, as defined in [4], do not address explicitly the issue of value
invention (although semantics is given in terms of an infinite set of symbols).
A simple safety condition for HEX programs is given in [23]. VI programs
can simulate external predicates of [4] when relational input is not allowed.

An external predicate à la [4] (HEX predicate) is of the form #g[Y1, . . . ,
Ym](X1, . . . , Xn), where Y1, . . . , Yn are input terms and X1, . . . , Xn are out-
put terms. Semantics of these atoms is given by means of a base oracle

22

f#g(I, Y1, . . . , Ym, X1, . . . , Xm) where I is an interpretation. Note that HEX
predicates depend on a current interpretation, thus enabling to quantify over
predicate extensions. Assuming that for each HEX predicate f#g do not de-
pend on the current interpretation, and that higher order atoms (another
special construct featured by HEX programs) are not allowed we can state
the following equivalence theorem.

Theorem 9 If an HEX program P does not contain higher order atoms, but
only HEX predicates, then it is equivalent to a VI program.

Proof By construction: it is easy to obtain an equivalent VI program P ′ by
simply replacing each HEX atom of the form #g[Y1, . . . , Ym](X1, . . . , Xn)
by an external atom of the form #g′(Y1, . . . , Ym, X1, . . . , Xn); then defin-
ing each evaluation function F (#g′) such that for each I we have that
f#g′(Y1, . . . , Ym, X1, . . . , Xm) = f#g(I, Y1, . . . , Ym, X1, . . . , Xm). ut

9.4 Other notions of safety

The adoption of a terminology like weakly (resp. strong) safe rule, safe pro-
gram, has been used in the past literature with several intended meanings.
Our notion of safe rule mimics the traditional syntactic notion, carrying the
same name, adopted for Datalog [24] and sometimes also referred as range-
restrictedness in the database field. It is worth noting that there is some
literature where the notion of safety is semantic more than syntactic. In such
acception, a logic program P is considered safe if its iterative fixpoint seman-
tics terminates giving a finite result like in [25; 26]. This idea resembles our
idea of finite grounding. Nonetheless, this notion of safety is usually related
to the termination of a specific algorithm (namely, the traditional iterative
application of the immediate consequence operator), on a given positive Dat-
alog program, while ours is independent from a given operational semantics.

Also, in [1], value invention is considered in the context of queries and up-
date languages for databases. Abiteboul and Vianu allow non range-restricted
rules in a program. Non range-restricted variables appearing in rules are given
a special semantics such that they can be associated with freshly created sym-
bols. Their notion of strong safety resembles our notion of vi-safety, in the
sense that both notions disallow at all the appearance of variables that may
carry invented values. In the same work, the word safe is referred to a query
(or update program) whose output contains only symbols appearing in the
input database.

The notion of weak safety has been also overridden many times in liter-
ature. Just to cite some, it refers to programs whose invented values may
play a role, but only within intermediate predicates of a given query [21;
1], and not within output predicates. Also, weak safety refers to logic pro-
grams allowing input relations of infinite size. Weakly safe programs assure
that each single step of their iterative computation gives finite output [26], al-
though they might not be safe in the sense of [25] (i.e. their overall evaluation
does not terminate).

In our acception, a weakly safe rule is such that available oracles ensure
that it can be found an order of evaluation for the external atoms appearing

23

in a rule. Nonetheless, by Proposition 2, weakly safe rules have a property
that might be considered close to the notion of weak safety in the sense of
[26].

10 Implementation and Experiments

The proposed language has been integrated into the ASP system DLV [6]. The
resulting system is called DLV-EX [27].

10.1 Design of the system

From a practical point of view, the external atoms are dealt with in the
following steps (see Figure 3):

1. at design time: a developer provides a library of external atoms, each of
them associated with a set of functional oracles.6 Each functional oracle
has a corresponding pattern. Although useful in practice, it is not compul-
sory to provide functional oracles other than the base oracle. However,
the absence of specific functional oracles limits de facto the possibility
to exploit an external atom in weakly safe rules. A testing environment
helps checking the correctness of the oracles by means of automatically
generated test programs.

2. at run-time (pre-processing stage): first, each rule is checked to be weakly
safe, and at the same time the system associate to each external atom a
proper oracle (the user is not in charge of specifying the one to be chosen);
then, the program is checked to be VI restricted;

3. at run-time (rule instantiation stage): the optimized grounder of the DLV

system has been extended in order to compute ins(r,A) for a given rule
r and a set of ‘active’ atoms A, in the presence of external atoms. For
each external atom in r, the chosen functional oracle is repeatedly invoked
according to Definition 5.

10.2 Integration into DLV

We briefly recall the instantiation algorithm of the DLV system [18]. Given a
rule r, this algorithm exploits an intelligent backjumping algorithm, where a
given atom a ∈ B(r) is picked at each stage and it is tried to be instantiated
with respect to currently allowed values. The picking order is crucial in order
to tailor the search space to the smallest extent. Each atom has a set of
possible instances, which will be known only at the end of the computation;
nevertheless, its size can be estimated, and used as a guideline for the choice
of the atom to be picked. In principle, it is preferred to pick first those atoms

6 The real implementation allows the association of more than one functional
oracle to each external predicate, since this is far more comfortable from the user’s
viewpoint.

24

Fig. 3 System Architecture

whose estimated number of instances is smaller. Of course, this estimate
might not be accurate in some border cases.

Point 2 and 3 above have been integrated in the grounding algorithm.
Point 2 required the implementation of the recognition algorithm de-

picted in Figure 2 which is invoked before the actual grounding process. The
algorithm has been implemented exploiting what already provided by the
dependency graph computed by DLV, i.e., starting from the information on
components of a program (presence of cycles, rules involved, etc.), and the
relationships among variables; a check on dangerous attributes to verify if
all of them are blocked is performed. This stage is performed only once, an-
alyzing statically all rules in the program. When a program is recognized as
VI-restricted the usual evaluation starts; otherwise, an error message listing
the dangerous rules is shown. However, it is always possible to relax this
check, either for a specific external built-in predicate, or for all of them.7

Given a rule r, among possible choices of functional oracles, the algorithm
prefers patterns with bigger numbers of unbounded variables. This intuitively
allows to reduce the space of possible instantiations for a given external
atom. For instance, given the atom #sqr(X,Y), the choosing algorithm prefers,
whenever possible, to choose the oracle with pattern [i, o] instead of the base
oracle (pattern [i, i]), since this way it is searched only the space of values
where Y is equal to the square of X. In the second case, an oracle with

7 Indeed, it is worth to remember that there may be some programs having the
finite grounding property even if they can not be recognized as being VI-restricted.

25

Problem a b c
knowledge-discovery 6.88 6.78 6.72
constraint-3col[n=30,e=40] 0.00 0.00 0.01
scheduling 0.85 0.85 0.89
scheduling-alternate 0.88 0.88 1.01
cristal 8.45 8.62 10.33
2qbf1 0.39 0.40 0.38
ancestor 109.65 109.90 108.45
3col-simplex1 2.14 2.20 2.11
3col-n-ladder 2.10 2.20 2.01
3col-random1 0.31 0.31 0.31
hp-random1 1.60 1.71 1.92
decomp2 12.78 11.93 12.32
hanoi-towers 0.30 0.31 0.38
ramsey(3,7) != 22 22.01 21.71 21.98
21-queens 0.99 0.99 1.60
school timetabling 93.95 99.60 103.66

Table 1 Average Real Grounding Times.

pattern [i, i] forces in principle to check all the possible couples of values for
X and Y . It is worth noting that the choice of the oracle does not affect the
result of the computation, since each oracle must be coherent to the base
one.

Thus, the atom pick-up ordering strategy has an impact in performance
of point 3. This strategy relies on the assumption, often true in practice, that
the computation of a functional oracle is less time consuming than several
computations of the corresponding base oracle.

10.3 Testing

First of all, it is worth stating that the implementation of such extension
into the system has not been a matter of performance: what is relevant,
here, is the possibility to widely customize the system capabilities and to
deal with value invention. Nevertheless, it is still important to ensure that
the system does not perform too bad on standard DLV programs (i.e., VI-
free). Thus, some benchmarks8 have been carried out; all the pre-existing
built-in atoms available in DLV (such as arithmetic and relational operators)
have been rewritten using the new general framework. In order to appreciate
the impact and the possible overhead of the new construct, we built three
different versions of the DLV system:

a. the DLV system ‘‘as it is’’, i.e., without any support to VI programs;
b. the DLV system modified in order to support VI programs;
c. the DLV system as the latter, but with the pre-existing built-in predi-

cates (arithmetic predicates, comparison predicates), replaced by external
atoms equipped with proper oracles.

The three versions have been tested on a set of problems coming from a
suite used to be exploited by the DLV team for internal purposes. The full set

8 For some notes on benchmarking have a look at http://www.dbai.tuwien.ac.
at/proj/dlv/bench/.

26

of problem, instances and executables is available at http://www.gibbi.com/

test amai2007.tar.gz; results are reported in Table 1. At a glance, ground-
ing times are basically equivalent. In some cases, system c is affected by a
small loss of performances: this was an expected payload, as calls to built-in
predicates were replaced by indirect invocation to external modules. Other
swings in performance among all the systems are due to the modification of
the atom pick-up order, induced by the presence of external atoms whose es-
timated domain size might be different; as already discussed, this may affect
(heavily, sometimes) the instantiation performances (see again [18]).

Some usage experiments have been carried out as well; several users have
started implementing some customized external built-ins, and the feedbacks
are very positive, so that some relevant scientific works have taken advantage
from the new system [28; 29].

10.4 Libraries

Defining a new external predicate entails the implementation of one or more
oracles written in the C++ language. External predicate definitions can be
grouped in one or more libraries and have to be compiled such that they
can be dynamically linked to the DLV-EX executable. Proper tools have been
designed and realized in order to help the user in compiling and collecting
oracles. A special directive inside DLV-EX programs tells the system which
libraries have to be linked at runtime.

Since the first release of the system prototype, we realized a number of
external predicates of practical interest. These, as well as some of those de-
veloped by other users for their own purposes, have been collected in libraries
which are now publicly available. Currently, there are three main libraries.
Two of them include a very rich set of manipulation functions for natural
and real number, respectively. It is worth noting that, at present, numeric
data different from natural numbers are not natively supported by the DLV

system. The third library includes a set of predicates for string manipulation.
Libraries are continuously enriched and improved, and others are coming.

The system itself, as well as examples, manuals, and external built-in
libraries, can be found on the system website [27].

11 Conclusions

VI programs herein presented accommodate several cases where value in-
vention is involved in logic programming. VI-restrictions allow to actually
evaluate, by means of a finite ground program, a variety of programs (such
as those with function symbols or set constructors) in many nontrivial cases
(all those whose corresponding translation is VI-restricted).

A topic for future work is to investigate to what extent the notion of VI-
restrictedness can be relaxed, yet keeping the complexity of recognizing the
class in polynomial time. Intuitively, local analysis techniques can enlarge
the class of programs whose finite grounding property is decidable, but this

27

would force to renounce to polynomial complexity of checking. Nonetheless,
the spirit of restriction checkers is to keep evaluation times greatly smaller
than the overall solving times.

Specific extensions of the DLV system with function symbols and sets,
using VI as underlying framework, are in advanced stage of development and
will be dealt with in appropriate papers.

Acknowledgements We thank anonymous referees for their useful comments and
suggestions. We also acknowledge Nicola Leone for his fruitful comments on the
former versions of this paper.

The work has been supported by the Italian Research Ministry (MIUR) under
the projects ‘Logic based Knowledge representation languages: extensions and op-
timization techniques’ (Interlink II04CG8AGG), ‘Application and enhancement of
Disjunctive Logic Programming’ (PRIN 2006019157), and by the Austrian Science
Funds (FWF), under the projects ‘Answer Set Programming for the Semantic Web’
(FWF P17212).

References

[1] Abiteboul, S., Vianu, V.: Datalog Extensions for Database Queries and Up-
dates. Journal of Computer and System Sciences 43(1) (1991) 62–124

[2] Cabibbo, L.: Expressiveness of Semipositive Logic Programs with Value In-
vention. In: Logic in Databases. (1996) 457–474

[3] Hull, R., Yoshikawa, M.: ILOG: Declarative Creation and Manipulation of Ob-
ject Identifiers. In McLeod, D., Sacks-Davis, R., Schek, H.J., eds.: 16th Inter-
national Conference on Very Large Data Bases, August 13-16, 1990, Brisbane,
Queensland, Australia, Proceedings, Morgan Kaufmann (1990) 455–468

[4] Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of
Higher-Order Reasoning and External Evaluations in Answer Set Program-
ming. In: International Joint Conference on Artificial Intelligence (IJCAI)
2005, Edinburgh, UK (2005) 90–96

[5] Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Nonmonotonic ontological and
rule-based reasoning with extended conceptual logic programs. In: Proceedings
of the Second European Semantic Web Conference, ESWC 2005. Volume 3532
of Lecture Notes in Computer Science. (2005) 392–407

[6] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello,
F.: The DLV System for Knowledge Representation and Reasoning. ACM
Transactions on Computational Logic 7(3) (2006) 499–562

[7] Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable
Model Semantics. Artificial Intelligence 138 (2002) 181–234

[8] Syrjänen, T.: Omega-restricted logic programs. In: Proceedings of the 6th In-
ternational Conference on Logic Programming and Nonmonotonic Reasoning,
Vienna, Austria, Springer-Verlag (2001)

[9] Bonatti, P.A.: Reasoning with Infinite Stable Models. In: Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence (IJCAI)
2001, Seattle, WA, USA, Morgan Kaufmann Publishers (2001) 603–610

[10] Faber, W., Pfeifer, G.: DLV homepage (since 1996) http://www.dlvsystem.
com/.

[11] Ross, K.: The Well-Founded Semantics for Disjunctive Logic Programs.
In Kim, W., Nicolas, J.M., Nishio, S., eds.: Deductive and Object-Oriented
Databases. Elsevier Science Publishers B. V. (1990) 385–402

[12] Miller, L., Brickley, D.: The Friend of a Friend (FOAF) Project (since 2000)
http://www.foaf-project.org/.

28

[13] Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunc-
tive Databases. New Generation Computing 9 (1991) 365–385

[14] Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Program-
ming. In: Logic Programming: Proceedings Fifth Intl Conference and Sympo-
sium, Cambridge, Mass., MIT Press (1988) 1070–1080

[15] Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive
Power of Logic Programming. ACM Computing Surveys 33(3) (2001) 374–425

[16] Lifschitz, V., Turner, H.: Splitting a Logic Program. In Van Hentenryck, P.,
ed.: Proceedings of the 11th International Conference on Logic Programming
(ICLP’94), Santa Margherita Ligure, Italy, MIT Press (1994) 23–37

[17] Bonatti, P.A.: Reasoning with infinite stable models. Artificial Intelligence
156(1) (2004) 75–111

[18] Leone, N., Perri, S., Scarcello, F.: Improving ASP Instantiators by Join-
Ordering Methods. In Eiter, T., Faber, W., Truszczyński, M., eds.: Logic
Programming and Nonmonotonic Reasoning — 6th International Conference,
LPNMR’01, Vienna, Austria, September 2001, Proceedings. Volume 2173 of
Lecture Notes in AI (LNAI)., Springer Verlag (2001)

[19] Dovier, A., Pontelli, E., Rossi, G.: Set unification. Theory and Practice of
Logic Programming (2006) To appear.

[20] Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Semantic web reasoning with
conceptual logic programs. In: Rules and Rule Markup Languages for the Se-
mantic Web: Third International Workshop, RuleML 2004, Hiroshima, Japan,
November 8, 2004. (2004) 113–127

[21] Cabibbo, L.: The Expressive Power of Stratified Logic Programs with Value
Invention. Information and Computation 147(1) (1998) 22–56

[22] Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Nonmonotonic description
logic programs: Implementation and experiments. In: Logic for Programming,
Artificial Intelligence, and Reasoning, 11th International Conference, LPAR
2004. (2004) 511–527

[23] Eiter, T., Ianni, G., Tompits, H., Schindlauer, R.: Effective Integration of
Declarative Rules with External Evaluations for Semantic Web Reasoning. In:
Proceedings of the 3rd European Semantic Web Conference (ESWC 2006).
(2006) 273–287

[24] Ullman, J.D.: Principles of Database and Knowledge-Base Systems, Volume
I. Computer Science Press (1988)

[25] Ramakrishnan, R., Bancilhon, F., Silberschatz, A.: Safety of recursive horn
clauses with infinite relations. In: Proceedings of the Sixth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, March 23-
25, 1987, San Diego, California, ACM (1987) 328–339

[26] Sagiv, Y., Vardi, M.Y.: Safety of datalog queries over infinite databases. In:
Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, March 29-31, 1989, Philadelphia, Pennsylva-
nia, ACM Press (1989) 160–171

[27] Calimeri, F., Ianni, G.: DLVEX homepage (since 2004) http://www.mat.
unical.it/ianni/wiki/dlvex.

[28] Palopoli, L., Rombo, S., Terracina, G.: Flexible Pattern Discovery with (Ex-
tended) Disjunctive Logic Programming. In: International Symposium on
Methodologies for Intelligent Systems (ISMIS 2005). Volume 3448 of Lec-
ture Notes in AI (LNAI)., Saratoga Springs, New York, USA, Springer-Verlag
(2005) 504–513

[29] Cumbo, C., Iiritano, S., Rullo, P.: Reasoning-based knowledge extraction for
text classification. In: Discovery Science. (2004) 380–387

29

A Details on VI-restrictedness Recognizing Algorithm

Briefly, recalling Definition 8, it is enough to find at least an external atom in the
body of the given rule such that the variable appears in output position and all the
variables in input position are blocked.

Bool Function isBlocked (v: Var; % The variable to be checked as blocked.
r: Rule; % Current rule.
SA: Set{ Attr }) % Savior attributes.

% The set of all external predicate atoms in the positive body,
% including the free variable v.
Set{External Atom} EAS = externalAtomsWithFreeVar(r, v);
Bool isB = false;
External Atom #b = EAS.first();
% At least one external predicate must have all of its input variables blocked.
While (!isB && #b 6= EAS.end()) do

% The set of input variables for the current external predicate.
Set{ Var } inputV arsTBC = inputPatternVars(#b);
Bool allV arsBlocked = true;
Var currInputV ar = inputV arsTBC.first();
% Check savior property for all variables included in inputV arsTBC.
While (allV arsBlocked && currInputV ar 6= inputV arsTBC.end()) do

% All the attributes of standard positive atom in the rule,
% having as variable currInputV ar.
Set{ Attr } potentiallySavior =

attrsWithVar(currInputV ar, r);
Bool saviorAttrFound = false;
Attr currAttr = potentiallySavior.first();
% One savior attribute is sufficient.
While (!saviorAttrFound &&

currAttr 6= potentiallySavior.end()) do
If (currAttr ∈ SA) then

saviorAttrFound = true;
Else

currAttr = potentiallySavior.next();
EndIf

EndWhile
If (saviorAttrFound) then

% Check the next input variable.
currInputV ar = inputV arsTBC.next();

Else
% This input variable is currently not blocked.
allV arsBlocked = false;

EndIf
EndWhile
If (allV arsBlocked) then

% An external predicate atom having
% all its input variables blocked has been found.
isB = true;

Else
% Try the next external atom including the free variable v.
#b = EAS.next();

EndIf
EndWhile
return isB;

EndFunction

Fig. 4 The isBlocked Algorithm

