
Decidable fragments of Logic Programming
with Value Invention

Francesco Calimeri and Susanna Cozza and Giovambattista Ianni?

Abstract. The issue of value invention in logic programming embraces
many scenarios, such as logic programming with function symbols, ob-
ject oriented logic languages, inter-operability with external sources of
knowledge, set unification. This paper introduces a framework embed-
ding value invention in a general context. The class of programs having
a suitable (but, in general, not decidable) ‘finite grounding property’ is
identified, and the class of ‘value invention restricted’ programs is in-
troduced. Value invention restricted programs have the finite grounding
property and can be decided in polynomial time. They are, in a sense, the
broadest polynomially decidable class having this property, whenever no
assumption can be made about the nature of invented values (while this
latter is the case in the specific literature about logic programming with
function symbols). Relationships with existing formalisms are eventually
discussed; in particular, value invention restricted programs subsume ω-
restricted programs and are incomparable with finitary programs.

1 Introduction

The notion of ‘value invention’ has been formerly adopted in the database field
(see e.g. [1, 2]) for denoting those mechanisms aimed at allowing to introduce
new domain elements in a logic based query language. Indeed, applications of
logic programming often need to deal with a universe of symbols which is not
a priori known. We can divide these demands in two main categories: (i) ‘Con-
structivist’ demands: the majority of logic programming languages has indeed
the inherent possibility to build new symbols from pre-existing ones, e.g. by
means of traditional constructs like functional terms. Manipulating and creating
complex data structures other than simple constant symbols, such as sets, lists,
is also a source of value invention. Also, controlled value invention constructs
have been proposed in order to deal with the creation of new object identifiers
in object oriented deductive databases [3]. (ii) ‘Externalist’ demands: in this
setting, non-predictable external sources of knowledge have to be dealt with.
For instance, in the Semantic Web area, rule based languages must explicitly
embrace the case where ontologies and the universe of individuals is external
and not a priori known [4], or is explicitly assumed to be open [5].

Whatever popular semantics is chosen for a rule based logic program (well-
founded, answer set, first order, etc.), both of the above settings are a source of
undecidability difficult to cope with.

Top down solvers (such as SLD solvers), do not usually address this issue,
and leave to the programmer the burden of ensuring termination. Also, the
? Dipartimento di Matematica, Università della Calabria, I-87036 Rende (CS), Italy.

e-mail:{calimeri,cozza,ianni}@mat.unical.it.

programmer needs a good knowledge of the evaluation strategy implemented
in her adopted system, since termination is often algorithm dependent. Bottom
up solvers (such as DLV or Smodels for the Answer Set Semantics [6, 7]), and
in general, languages derived from Datalog, are instead conceived for ensuring
algorithm independent decidability and full declarativity.

To this aim, the implementation of such languages relies on the explicit choice
of computing a ground version of a given program. In a context where value
invention is explicitly allowed, grounding a program against an infinite set of
symbols leads to an infinite ground program which cannot be built in practice.

The paper adopts the notion of VI programs, which are logic programs en-
riched with the notion of external predicate [8]. External predicates model the
mechanism of value invention by taking input from a given set of values and
returning (possibly newly invented) values. These latter are computed by means
of an associated evaluation function (called oracle).

In [8] we proved that, although assuming as decidable the external functions
defining oracles, the consistency check of VI programs is, in general, undecidable.

Thus, it is important to investigate on nontrivial sub-classes of decidable
programs. This problem is not addressed satisfactorily in the above paper, which
is mainly focused on the operational and declarative properties of the framework
and its technical realizability. Indeed, a very strict safety condition for granting
decidability of VI programs is therein given.

The contributions of the paper are overviewed next:
– We introduce a safety condition defining the class of ‘value invention restricted’
(VI-restricted, in the following) programs. This class enjoys the finite ground-
ing property, characterizing those programs that can be computed with a finite
ground program. Decidability of consistency checking is thus ensured (Section 4).
– The VI-restrictedness condition is less restraining than previously introduced
syntactic restrictions (such as ω-restricted programs [9] or semi-safe programs
[8]). The programmer is thus relieved from the burden of introducing explicit
syntactic modifications. However, VI-restrictedness can be checked in time poly-
nomial in the size of the non-ground program (Section 5).
– The above condition is generic: no assumption is made on the structure of
new invented symbols. Indeed, VI programs embed settings such as programs
with function symbols, programs with sets (in general logic languages with a
generalized notion of unification), or with external constructs (Section 6).
– VI-restricted programs subsume the class of ω-restricted programs [9]. Finitary
programs [10], a class of programs with answer set semantics and function sym-
bols, are not directly comparable with VI-restricted programs. Also, our former
definition of semi-safe programs [8] is subsumed (Section 7).
– Our framework relies on the traditional notion of ground program. Thus, results
about VI-restricted programs can be be adapted to semantics other than Answer
Set Programming, such as the Well-Founded Semantics.

2 Motivating example

The Friend of a Friend (FOAF) [11] project is about creating a Web of machine-
readable homepages describing people, the links between them and the things

they create and do. It is an RDF/XML Semantic Web vocabulary. Each person
P stores its FOAF ontology portion at some url U .

In order to reason on this vocabulary, a rule based logic language would need
some special construct for importing this external knowledge. The aim of this
language is anyway to keep decidability and declarativity. So it is important not
to rely on an operational semantics for the language. In this spirit, [4] introduces
a form of external predicates, very similar to ours.

Imagine we want to perform the transitive closure of the relation of knowledge
among people, starting from the homepage of a given person. Let’s suppose to
have an external predicate called “#rdf” which allows us to access a FOAF
ontology located at URL:

#rdf(URL, Object1, Relation, Object2).

We first collect a set of homepages. In order to avoid wrong information we
can accept only a restricted subset of somehow trusted urls. Then we simply
encode the transitive closure as usual, exploiting the knowledge provided by
the collected pages. Let the starting homepage be “myurl”; thus, the following
program implements what described above.

trusted(X, U) ← #rdf(“myurl”, X, “trusts”, U). (1)
url(X, U) ← #rdf(“myurl”, X, “seealso”, U), trusted(X, U). (2)
url(X, U) ← url(, U1), #rdf(U1, X, “seealso”, U), trusted(X, U). (3)
connected(X, Y) ← url(X, U), #rdf(U, X, “knows”, Y). (4)
connected(X, Y) ← connected(X, Z), url(Z, U), #rdf(U, Z, “knows”, Y).(5)

The above program has two sources of new values: trusted urls, and persons.
For instance, in particular the fifth rule may induce a loop, leading to the in-
vention of an infinite number of new symbols. The above program is anyway
VI-restricted and can be solved over a finite ground version of it. Intuitively,
the number of URLs is finite. Although not explicitly bounded, new persons
(coming from the value of Y in the fifth rule) can be extracted only from a
finite set of URLs. Observe that rule 1 invents new values, but these do not
ever propagate through a loop involving an external atom, while this is the case
of the Y variable in the fifth rule. The intuition of VI-restricted programs is
to investigate how new information propagates in a program, and whether it
is bounded in some way. Note that a programmer is not explicitly forced (in
order to ensure decidability) to bound variables explicitly such as in this modi-
fied version of the fifth rule: { connected(X,Y) ← known(Y), connected(X, Z),
url(Z, U), #rdf(U,Z, “knows”, Y). }.

3 Preliminaries

In this section we briefly recall some notions which we introduced in [8]. Our
framework coincides basically with Answer Set Programming, extended with the
notion of external atom.

Let U , X , E and P be mutually disjoint sets whose elements are called con-
stant names, variable names, external predicate names, and ordinary predicate
names, respectively. Unless explicitly specified, elements from X (resp., U) are
denoted with first letter in upper case (resp., lower case); elements from E are

usually prefixed with ‘ # ’. U constitutes the default Herbrand Universe. We
assume that any constant appearing in a program or generated by external com-
putation is taken from U , which is possibly infinite1.

Elements from U ∪ X are called terms. An atom is a structure p(t1, . . . , tn),
where t1, . . . , tn are terms and p ∈ P ∪ E ; n ≥ 0 is the arity of the atom. p is
the predicate name. The atom is ordinary, if p ∈ P, otherwise we call it external
atom. A list of terms t1, . . . , tn is succinctly represented by t. A positive literal
is an atom, whereas a negative literal is not a where a is an atom.

Given a predicate p, p[i] is its i-th argument. A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn, notβn+1, . . . , notβm, (6)

where m ≥ 0, k ≥ 1, α1, . . . , αk, are ordinary atoms, and β1, . . . , βm are (or-
dinary or external) atoms. We define H(r) = {α1, . . . , αk} and B(r) = B+(r)
∪B−(r), where B+(r) = {β1, . . . , βn} and B−(r) = {βn+1, . . . , βm}. E(r) is
the set of external atoms of r. If H(r) = ∅ and B(r) 6= ∅, then r is a constraint,
and if B(r) = ∅ and H(r) 6= ∅, then r is a fact; r is ordinary, if it contains only
ordinary atoms. A VI program is a finite set P of rules; it is ordinary, if all rules
are ordinary. We assume P has no constraints2, only ground facts, and that each
rule is safe with respect to negation, i.e. for each rule r, each variable appearing
in some negated atom a ∈ B−(r) or in the head, appears also in some positive
atom b ∈ B+(r). Given a set of atoms A and a predicate p, with small abuse of
notation we say that p ∈ A if there is some atom in A with predicate name p.
An atom having p as predicate name is usually referred as ap.

We denote as Attr(P) the set of all arguments of all the predicates appearing
in the program P . The dependency graph G(P) of P is built in the standard way.

We give the semantics by generalizing the answer-set semantics [12].
In the sequel, we will assume P as a VI program. The Herbrand base of P

with respect to U , denoted HBU (P), is the set of all possible ground versions
of ordinary atoms and external atoms occurring in P obtained by replacing
variables with constants from U . The grounding of a rule r, grndU (r), is defined
accordingly, and the grounding of program P by grndU (P) =

⋃
r∈P grndU (r).

Note that this ground program can be of infinite size.
An interpretation I for P is a pair 〈S, F 〉 where:

– S ⊆ HBU (P) contains only ordinary atoms; I (or, by small abuse of notation,
S) is a model of ordinary atom a∈HBU (P), denoted I |= a (S |= a), if a∈S.
– F is a mapping associating with every external predicate name #e ∈ E , a decid-
able n-ary function (which we call oracle) F (#e) assigning each tuple (x1, . . . , xn)
either 0 or 1, where n is the fixed arity of #e, and xi ∈ U . I (or, by small abuse of
notation, F) is a model of a ground external atom a = #e(x1, . . . , xn), denoted
I |= a (F |= a), if F (#e)(x1, . . . , xn) = 1.

A positive literal is satisfied if its atom is satisfied, whereas a negated literal
is satisfied if its corresponding atom is not satisfied.

1 Also, we assume that constants are encoded using some finite alphabet Σ, i.e. they
are finite elements of Σ∗.

2 Under Answer Set Programming semantics, a constraint ← B(r) can be easily simu-
lated through the introduction of a corresponding standard rule fail ← B(r), not fail,
where fail is a fresh predicate not occurring elsewhere in the program.

Let r be a ground rule. We define:

i. I |=H(r) iff there is some a ∈ H(r) such that I |= a;
ii. I |=B(r) iff I |= a for each atom a∈B+(r) and I 6|= a for each atom a∈B−(r);
iii. I |= r (i.e., r is satisfied) iff I |=H(r) whenever I |= B(r).

We say that I is a model of a VI program P with respect to a universe U , denoted
I |=UP , iff I |= r for all r∈ grndU (P). For a fixed F , a model M =< S, F > is
minimal if there is no model N =< T, F > such that S ⊂ T .

Given a general ground program P , its Gelfond-Lifschitz reduct [12] w.r.t.
an interpretation I is the positive ground program P I obtained from P by:
(i) deleting all rules having a negated literal not satisfied by I; (ii) deleting
all negated literals from the remaining rules. I ⊆HBU (P) is an answer set for a
program P w.r.t. U iff I is a minimal model for the positive program grndU (P)I .
Let ansU (P) be the set of answer sets of grndU (P). We call P F-satisfiable if
it has some answer set for a fixed function mapping F , i.e. if there is some
interpretation 〈S, F 〉 which is an answer set. We will assume in the following
to deal with a fixed set F of functions mappings for external predicates. F -
satisfiability is undecidable [8]. Given an external predicate name #p, of arity n
and its oracle function F (#p), a pattern is a list of b’s and u’s, where a b represents
a placeholder for a constant (or a bounded variable), and an u is a placeholder for
a variable. Given a list of terms, the corresponding pattern is given by replacing
each constant with a b, and each variable with a u. Positions where u appears are
called output positions whereas those denoted with b are called input positions.
For instance, the pattern related to the list of terms (X, a, Y) is (u, b, u).

Let pat be a pattern of length n having k placeholders b (input positions), and
n−k placeholders of u type (output positions). A functional oracle F (#p)[pat] for
the pattern pat, associated with the external predicate #p, is a partial function
taking k constant arguments from U and returning a finite relation of arity n−k,
and such that d1, ..., dn−k ∈ F (#p)[pat](c1, ..., ck) iff F (#p)(h1, . . . , hn) = 1, where
for each i(1 ≤ i ≤ n), hi = cj if the j-th b value occurs in position i in pat,
otherwise hi = dj if the j-th u value occurs in position i in pat.

An external predicate #p might be associated to one or more functional ora-
cles ‘consistent’ with the originating 2-valued one. For instance, consider a binary
external predicate #sqr, intuitively associating a natural number to its square
value. We can have two functional oracles, F(#sqr)[b, u] and F(#sqr)[u, b]. The
two functional oracles are such that, e.g. F(#sqr)[b, u](3) = 9 and F(#sqr)[u, b]
(16) = 4, consistently with the fact that F(#sqr)(3, 9) = F(#sqr)(4, 16) = 13.

In the sequel, given an external predicate #e, we will assume that it comes
equipped with its oracle F (#e) (called also base oracle) and one functional oracle
F (#e)[pat#e], having pattern pat#e

4.
We recall now a first condition of safety, which unfortunately does not guar-

antee finiteness and decidability, but will be exploited in the next Section. Given
a rule r, a variable X is weakly safe in r if either (i) X is safe (i.e. it appears

3 Unlike this example, note that in the general case functional oracles might return a
set of tuples and are not restricted to single output values.

4 In [8] we address explicitly the issue of external predicates equipped with multiple
functional oracles.

in some positive atom of B+(r) \E(r); or (ii) X appears in some external atom
#e(T) ∈ E(r), the functional oracle of #e is F (#e)[pat], X appears in output
position with respect to pat and each variable Y appearing in input position in
the same atom is weakly safe. A weakly safe variable X is free if it appears in
B+(r) only in output position of some external atom. A rule r is weakly safe if
each variable X appearing in some atom a ∈ B(r) is weakly safe. A program P
is weakly safe if each rule r ∈ P is weakly safe.
Example 1. Assume that #sqr is associated to the functional oracle F (#sqr)[b, u]
defined above. The program { square(Y) ← number(X), #sqr(X,Y) } is weakly safe
(intuitively the value of Y can be computed once the value of X is known). The
same rule is not weakly safe if we consider the functional oracle F (#sqr)[u, b]. 2

Definition 1. Let A = 〈I, F 〉 an interpretation. We call ins(r,A) the set of
ground instances rθ of r for which A |= B+(rθ), and such that A |= E(rθ). 2

Proposition 1. [8] Given an interpretation A and a weakly safe rule r, ins(r,A)
is finite. 2

Weakly safe rules have the important property of producing a finite set of relevant
ground instances provided that we know a priori the domain of positive ordinary
body atoms. Although desirable, weak safety is intuitively not sufficient in order
to guarantee finiteness of answer sets and decidability. For instance, it is easy
to see that the program { square(2) ←; square(Y) ← square(X), #sqr(X,Y); } has
answer set {square(2), square(4), . . . }.

4 Decidable VI programs

The introduction of new symbols in a logic program by means of external atoms
is a clear source of undecidability. As illustrated in Section 6, value invention is
nonetheless desirable in a variety of contexts.

Our approach investigates which programs can be solved by means of a finite
ground program having a finite set of models of finite size. This class of programs
(having the finite grounding property) is unluckily not recognizable in finite time.
We assume to deal with functional oracles that might have an infinite co-domain.
Nonetheless, we will assume also to deal with weakly safe programs and with
functional oracles associating to each fixed combination of the values in input
always a finite number of combination of values in output.

Definition 2. A class of VI programs C has the finite grounding property if, for
each P ∈ C there exists a finite set U ⊂ U such that ansU (P) = ansU (P). 2

Theorem 1. Recognizing the class of all the VI programs having the finite
grounding property is undecidable.

Proof. (Sketch). Positive logic programs with function symbols can simulate Tur-
ing machines. Also weakly safe VI programs can mimic (see section 6 and [8])
programs with function symbols. Given a Turing machine T and an input string
x we can thus build a suitable VI program PT ,x encoding T and x. T (x) ter-
minates iff PT ,x has the finite grounding property. Indeed, if T (x) terminates,

the content of U can be inferred from the finite number of transitions of T (x).
Viceversa, if U is given, the evolution of T (x) until its termination can be mim-
icked by looking at the answer sets of grndU (PT ,x). 2

4.1 VI-restricted programs

The intuition leading to our definition of VI-restrictedness, is based on the
idea of controlled propagation of new values throughout a given program. As-
sume the following VI program is given (#b has a functional oracle with pat-
tern [b, u]): { a(k,c) ←; p(X,Y) ← a(X,Y); p(X,Y) ← s(X,Y), a(Z,Y); s(X,Y) ←
p(Z,X), #b(X,Y).}. The last rule of the program generates new symbols by means
of the Y variable, which appears in the second attribute of s(X, Y) and in out-
put position of #b(X, Y). This situation is per se not a problem, but we observe
that values of s[2] are propagated to p[2] by means of the last but one rule, and
p[2] feeds input values to #b(X, Y) in the last rule. This occurs by means of the
binding given by the X variable. The number of ground instances to be consid-
ered for the above program is thus in principle infinite, due to the presence of
this kind of cycles between attributes.

We introduce the notion of dangerous rule for those rules that propagate new
values in recursive cycles, and of dangerous attributes for those attributes (e.g.
s[2]) that carry new information in a cycle.

Actually, the above program can be reconducted to an equivalent finite
ground program: we can observe that p[2] takes values from the second and
third rule above. In both cases, values are given by bindings to a[2] which has,
clearly, a finite domain. So, the number of input values to #b(X,Y) is bounded as
well. In some sense, the ‘poisoning’ effect of the last (dangerous) rule, is canceled
by the fact that p[2] limits the number of symbols that can be created.

In order to formalize this type of scenarios we introduce the notion of savior
and blocked attributes. p[2] is savior since all the rules where p appears in the head
can be proven to bring values to p[2] from blocked attributes, or from constant
values, or from other savior attributes. Also, s[2] is dangerous but blocked with
respect to the last rule, because of the indirect binding with p[2], which is savior.
Note that an attribute is considered blocked with respect to a given rule. Indeed,
s[2] might not be blocked in other rules where s appears in the head.

We define an attribute dependency graph useful to track how new symbols
propagate from an attribute to another by means of bindings of equal variables.

Definition 3. The attribute dependency graph AG(P) associated to a weakly
safe program P is defined as follows. For each predicate p ∈ P of arity n, there
is a node for each predicate attribute p[i](1 ≤ i ≤ n), and, looking at each rule
r ∈ P , there are the following edges:
– (q[j], p[i]), if p appears in some atom ap ∈ H(r), q appears in some atom
aq ∈ B+(r) \ E(r) and q[j] and p[i] share the same variable.
– (q[j], #p[i]), if q appears in some atom aq ∈ B+(r) \ E(r), #p appears in
some atom a#p ∈ E(r), q[j] and #p[i] share the same variable, and i is an input
position for the functional oracle of #p;
– (#q[j], #p[i]), if #q appears in some atom a#q ∈ E(r), #p in some a#p ∈ E(r),
#q[j] and #p[i] share the same variable, j is an output position for the functional
oracle of #q, i is an input position for the functional oracle of #p;

– (#p[j], #p[i]), if #p appears in some atom a#p ∈ E(r), #p[j] and #p[i] both
have a variable, j is an input position for the functional oracle of #p and i is an
output position for the functional oracle of #p;
– (#q[j], p[i]), if p appears in some atom ap ∈ H(r), #q appears in some atom
a#q ∈ E(r) and #q[j] and p[i] share the same variable, and j is an output posi-
tion for the functional oracle of #q; 2

Example 2. The attribute dependency graph induced by the first three rules of
the motivating example in Section 2 is depicted in Figure 1. 2

Definition 4. It is given a weakly safe program P . The following definitions are
given (all examples refer to the Motivating Example, Section 2, and we assume
#rdf has functional oracle with pattern [b, u, u, u]):
– A rule r poisons an attribute p[i] if some atom ap ∈ H(r) has a free variable
X in position i. p[i] is said to be poisoned by r. For instance, connected[2] is
poisoned by rule (5).
– A rule r is dangerous if it poisons an attribute p[i] (p ∈ H(r)) appearing in
a cycle in AG(P). Also, we say that p[i] is dangerous. For instance, rule (5) is
dangerous since connected[2] is poisoned and appears in a cycle.
– Given a dangerous rule r, a dangerous attribute p[i] (bounded in H(r) to a
variable name X), is blocked in r if for each atom a#e ∈ E(r) where X appears
in output position, each variable Y appearing in input position in the same atom
is savior. Y is savior if it appears in some predicate q ∈ B+(r) in position i, and
q[i] is savior.
– An attribute p[i] is savior if at least one of the following conditions holds for
each rule r ∈ P where p ∈ H(r).

– p[i] is bound to a ground value in H(r);
– there is some savior attribute q[j], q ∈ B+(r) and p[i] and q[j] are bound to

the same variable in r;
– p[i] is blocked in r.

For instance, the dangerous attribute connected[2] of rule (5) is blocked since
the input variable U is savior (indeed it appears in url[2]).
– A rule is VI-restricted if all its dangerous attributes are blocked. P is said to
be VI-restricted if all its dangerous rules are VI-restricted. 2

Fig. 1. Attributes Dependency Graph (Predicate names are shortened to the first letter)

Theorem 2. VI-restricted programs have the finite grounding property.

Proof. (Sketch). Given a VI-restricted program P , we show how to compute a
finite ground program grP such that ansU (P) = ansU (grP), where U is the set
of constants appearing in grP .

Let’s call A the set of active ground atoms, initially containing all atoms
appearing in some fact of P . grP can be constructed by an algorithm A that re-
peatedly updates grP (initially empty) with the output of ins(r, I) (Definition 1)
for each rule r ∈ P , where I = 〈A,F 〉; all atoms belonging to the head of some
rule appearing in grP are then added to A. The iterative process stops when A
is not updated anymore. That is, grP is the least fixed point of the operator

TP (Q) = {⋃r∈P ins(r, I) | I = 〈A,F 〉, and A = atoms(Q)}

where atoms(Q) is the set of ordinary atoms appearing in Q. T∞P (∅) is finite
in case P is VI-restricted. Indeed, grP might not cease to grow only in case an
infinite number of new constants is generated by the presence of external atoms.
This may happen only because of some dangerous rule having some ‘poisoned’
attributes. However, in a VI-restricted program all poisoned attributes are blocked
in dangerous rules where they appear, i.e. they depend from savior attributes. It
can be shown that, for a given savior attribute p[i], the number of symbols that
appear in position i in an atom ap such that ap ∈ T∞P (∅) is finite. This means
that only a finite number of calls to functional oracles is made by A, each of
which producing a finite output.

Because of the way it has been constructed, it is easy to see that the set
A = atoms(grP) is a splitting set [13], for grndU (P). Based on this, it is pos-
sible to observe that no atom a 6∈ A can be in any answer set, and to conclude
that ansU (P) = ansU (P), where U is the set of constants appearing in A. 2

5 Recognizing VI-restricted Programs

An algorithm recognizing VI-restricted programs is depicted in Figure 2. The
idea is to iterate through all dangerous rules trying to prove that all of them are
VI-restricted. In order to prove VI-restriction for rules, we incrementally build the
set of all savior attributes; this set is initially filled with all attributes which can
be proven to be savior (i.e. they do not depend from any dangerous attribute).
This set is updated with a further attribute p[i] as soon it is proved that each
dangerous attribute which p[i] depends on is blocked. The set RTBC of rules
to be checked initially consists of all dangerous rules, then the rules which are
proven to be VI-restricted are gradually removed from RTBC. If an iteration ends
and nothing new can be proved the algorithm stops. The program is VI-restricted
if RTBC is empty at the last iteration.

The algorithm execution takes polynomial time in the size of a program P : let
m be the total number of rules in P , n the number of different predicates, k the
maximum number of attributes over all predicates, and l the maximum number
of atoms in a single rule. O(n ∗ k) is an upper bound to the total number of
different attributes, while O(l ∗ k) is an upper bound to the number of variables
in a rule. A naive implementation of the isBlocked function has complexity
O(n ∗ l ∗ k2). The recognizer function (Figure 2) iterates O(n ∗ k) times over an
inner cycle which performs at most O(m ∗ k ∗ l) steps: each inner step iterates
over all rules in RTBC, which are at most m; and for each rule all free variables
must be checked (this requires O(k ∗ l) checks, in the worst case).

Bool Function recognizer (var SA: Set{ Attr };
% SA is initialized with provable savior attributes
% (i.e. attributes that do not depend from dangerous attributes.

var NSA: Set{ pair〈 Attr, Set{ Attr } 〉 };
% NSA is initialized with attributes which cannot be proven to be
% savior, each of which is associated with the set of dangerous
% attributes that prevent them to be savior

var RTBC : Set{ Rule }) % Set of dangerous rules to be checked.
Bool NSA Updated = true;
While (NSA Updated) do % Try to prove VI-restriction as far as some change occurs.

NSA Updated = false;
For each Rule r ∈ RTBC do % free(r)=the set of free variables appearing in the rule r.

Set{Var} varsTBC = free(r);
Bool allBlocked = true;
For each Var v ∈ varsTBC do

% isBlocked tells if v is blocked in r by means of attributes currently in SA.
If (isBlocked(v, r, SA)) then

% headAttr returns reference to the head attribute of r containing v
Attr p[i] = headAttr(v, r);
% update processes the NSA set, deleting p[i] from each set S
% such that p[i] ∈ S and 〈q[j], S〉 ∈ NSA.
% Then each attribute q[j] such that 〈q[j], S〉 ∈ NSA
% and S = ∅ is moved from NSA to SA.
update(NSA, SA, p[i]);
% A change occurred, so we have to continue cycling.
NSA Updated = true;

Else % At least one free variable can’t be proved as blocked.
allBlocked = false;

EndIf
EndFor
If (allBlocked) then

RTBC.delete(r); %.The rule is VI-restricted, can be deleted from RTBC.
EndIf

EndFor
EndWhile
If (RTBC == ∅) then

Return true
Else % Display the set of rules that can’t be proved as VI-restricted.

printINSAne(RTBC)
Return false

EndIf
EndFunction

Fig. 2. The VI-Restricted Recognizer Algorithm

6 Modeling semantic extensions by VI programs

Several semantic extensions contemplating value invention can be mapped to
VI programs. We show next how programs with function symbols and with sets
can be translated to weakly safe VI programs. When the resulting translation
is VI-restricted as well, these semantic extension can be thus evaluated by an
answer set solver extended with external predicates.
Functional terms. We consider rule based languages allowing functional terms
whose variables appearing in the head appear also in the positive body. A func-
tional term is either a constant, a variable, or f(X1, . . . , Xn), where f is a func-
tion symbol and X1, . . . , Xn are terms.

For each natural number k, we introduce two external predicates #functionk

and #function′k of arity k+2; they are such that f#functionk
(F, f,X1, . . . , Xk) =

f#function′k(F, f, X1, . . . , Xk) = true if and only if the term F is f(X1, . . . , Xk).
Each #functionk (#function′k) predicate is associated to a functional oracle
F (#functionk)[u, b, b, . . . , b] (F (#function′k)[b, u, u, . . . , u], respectively).

The two families of external predicates are respectively intended in order to
construct a functional term if all of its arguments are bounded (#functionk

predicates) or if the whole functional term is grounded and we want to take its
arguments (#function′k predicates).

Basically, this transformation flattens each rule r ∈ P containing some func-
tional term t = f(X1, . . . , Xn), by replacing it with a fresh variable F , and adding
an appropriate atom #functionk(F, X1, . . . , Xn) or #function′k(F, X1, . . . , Xn)
to the body of r. The transformation is continued until a functional term is still
in r. We choose #function′k if t appears in the body of r, whereas an atom using
#functionk is used if t appears in the head of r.
Example 3. The rule { p(s(X)) ← a(X, f(Y, Z)). } contains two function sym-
bols, s and f. The rewritten rule is { p(F1) ← a(X, F2), #function1(F1, s, X),
#function′2(F2, f, Y, Z). } 2

Proposition 2. Given a logic program with functional terms P , F(P) is the
program obtained by applying the above transformation; it is weakly safe. Also,
there is a 1-to-1 mapping between the answer sets of P and ansU (F(P)). 2

Set unification. The accommodation of sets in logic programming, often at-
tempted, obliges to reconsider the classic notion of term unification to a gener-
alized one. For instance, the set term {X, a, b, c} can be grounded to {a, d, b, c}.
It is possible to embody set constructors and set unification in the context of
VI programs. Roughly speaking, a logic program with sets replaces the classical
notion of term with the notion of set term. A set term is either a (i) classical
term or, (ii) {X1, . . . , Xn} where X1, . . . , Xn are set terms, or (iii) X ∪Y where
X and Y are set terms. Two ground set terms {a1, . . . , an} are equal if they
contain the same set of ground terms. For space reasons, we only outline here a
method, and refer the reader to [14] for a survey on sets in logic programming
and on set unification methods and algorithms.

Remarking that the special symbol {} represents the empty set, the following
set of external predicates are introduced: (i) A pair of external predicates #setk,
#set′k for each natural number k; each of them has k + 1 arguments such that
f#setk (X, Y1, . . . , Yk) = f#set′

k
(X, Y1, . . . , Yk) = true if X is the set {Y1, . . . , Yk}.

#setk has the functional oracle F (#setk)[u, b, . . . , b] while #set′k has the func-
tional oracle F (#setk)[b, u, . . . , u]; (ii) Two ternary external predicate #union and
#union′; they are such that f#union(X, Y, Z) = f#union′(X, Y, Z) = true either
if X = Y ∪ Z, or if X and Y are classical terms, Z = ∅ and X = Y . #union has
the functional oracle F (#union)[u, b, b] while #union′ has the functional oracle
F (#union′)[b, u, u].

A logic program with set terms P is replaced by an equivalent VI program
by modifying each rule r ∈ P this way:
– Replacing each set term {X1, . . . , Xn} appearing in r with a fresh variable T ,
and adding in the body of r the external atom #setn(T,X1, . . . , Xn) if the set
term appears in the head of r , #set′n(T, X1, . . . , Xn) otherwise;
– Replacing each set term X ∪ Y appearing in r with a fresh variable U , and
adding in the body of r the external atom #union(U,X, Y) if the set term
appears in the head of r, #union′(U,X, Y) otherwise. This and step 6 are applied
to r until it contains any set term;
– If a variable X appears in r for m times (m > 1), then each occurrence of X
is replaced with a fresh variable Xi(1 ≤ i ≤ n), and for each pair (Xi, Xj), 1 ≤
i < j < m the atom #union(Xi, Xj , {}) is added to r.

Example 4. Let’s consider the rule: { p(X ∪ Y) ← a({a, X}), b({Y}). }; the anal-
ogous VI rule is: { p(S1) ← a(S2), b(S3), #union(S1, X1, Y1), #set′2(S2, a, X2),
#set′1(S3, Y 2), #union(X1,X2,{}), #union(Y1,Y2,{}). } 2

Proposition 3. Given a logic program with set terms P , we call S(P) the VI

program obtained applying the above transformation. S(P) is weakly safe. There
is a 1-to-1 mapping between the answer sets of P and ansU (S(P)). 2

7 Relationships with other classes of programs

ω-restricted programs. In the same spirit of this paper are ω-stratified pro-
grams [9], that allow function symbols under answer set semantics. The in-
troduced restrictions aim at controlling the creation of new functional terms.

Definition 5. [9] An ω-stratification is a traditional stratification extended by
the ω-stratum, which contains all predicates depending negatively on each other.
ω is conventionally assumed to be uppermost layer of the program. A rule r is
ω-restricted iff all variables appearing in r also occur in a positive body literal
belonging to a strictly lower stratum than the head. A program P is ω-restricted
iff all the rules are ω-restricted. 2

ω-stratified programs have the finite grounding property: only a finite amount
of functional terms can be created since each variable appearing in a rule’s
head must be bounded to a predicate belonging to a lower layer. VI-restricted
programs do not introduce special restrictions for non-stratified cycles. Also, it
is not necessary to bound each variable to a previous layer explicitly. The class
of VI-restricted programs contains, in a sense, the class of ω-restricted ones.

Theorem 3. Given an ω-restricted program P , F(P) is VI-restricted.

Proof. We are given an ω-restricted program P . We observe that:
–Attributes belonging to predicates which are not in the ω-stratum can be proven
to be savior: the relevant instantiation of these predicates is computable starting
from the lowermost layer, and is finite.
–The rewritten rules in F(P) corresponding to function-free rules cannot be
dangerous, since there is no value invention at all.
–Rules with functional terms are rewritten using external atoms; then, all vari-
ables occurring in these new external atoms already occur in the original rules,
except fresh variables used for substituting functional terms (that we call FTRs,
functional term representations). Thus, the variables appearing in the poisoned
attributes must necessarily appear also in a predicate belonging to a strictly
lower stratum than the head (ω-restrictedness). Let’s consider an FTR appear-
ing in an external atom #function′k(F1, X1, . . . , Xk) in first position. If F1 is
already bound to a positive atom, then there is no value invention; otherwise, it
can be shown that all terms X1, . . . , Xk are bound either to a positive atom or
to another external atom in output position (see Section 6). As stated before,
the attributes where X1, . . . , Xk appear are savior, and so the FTR F1 as well. 2

On the other hand, the opposite does not hold.

Theorem 4. It is possible to find non-ω-restricted programs whose transforma-
tion F outputs a VI-restricted program.

Proof. The program Pnωr = {p(f(X)) ← q(X), t(X); q(X) ← p(X); p(1); t(1)}
is not ω-restricted, while F(Pnωr) = {p(F1) ← q(X), t(X), #function2(F1, f, X);
q(X) ← p(X); p(1); t(1)} is VI-restricted. 2

Finitary programs. Finitary programs allow function symbols under answer set
semantics [10]. Although they don’t have the finite grounding property, brave
and cautious ground querying is decidable. A ground program P is finitary iff its
dependency graph G(P) is such that (i) any atom p appearing as node in G(P)
depends only on a finite set of atoms (through head-body dependency), and (ii)
G(P) has only a finite number of cycles with an odd number of negated arcs.

Theorem 5. The class of finitary programs is not comparable with the class of
VI-restricted programs.

Proof. (sketch) A program having rules with free variables is not finitary (eg.
p(X) ← q(X, Y)): a ground instance p(a) may depend on infinite ground in-
stances of q(X, Y) e.g.(q(a, f(a)), q(a, f(f(a)))...). In general, the same kind of
rules are allowed in VI-restricted programs. Vice versa, the class of programs
{F(P) | P is finitary} is not VI-restricted: for instance the translation of the
finitary program {p(0); p(s(X)) ← p(X)} is not VI-restricted. 2

Other literature. In the above cited literature, infinite domains are obtained
through the introduction of compound functional terms. Thus, the studied the-
oretical insights are often specialized to this notion of term, and take advantage
e.g., of the common unification rules of formal logics over infinite domains. It is,
in this setting, possible to study ascending and descending chains of functional
terms in order to prove decidability. Similar to our approach is the work on
open logic programs, and conceptual logic programs [15]. Such paper addresses
the possibility of grounding a logic program, under Answer Set Semantics, over
an infinite domain, in a way similar to classical logics and/or description log-
ics. Each constant symbol has no predefined compound structure however. Also
similar are [3] and [16], where a special construct, aimed at creating new tuple
identifiers in relational databases is introduced.

In [17] and [4] the authors address the issue of implementing generalized
quantifiers under Answer Set Semantics, in order to enable Answer Set Solvers
to communicate, both directions, with external reasoners. This approach is dif-
ferent from the one considered in this paper since the former is inspired from
second order logics and allows bidirectional flow of relational data (to and from
external atoms), whereas, in our setting, the information flow is strictly value
(first order) based, and allows relational output only in one direction. HEX pro-
grams, as defined in [4], do not address explicitly the issue of value invention
(although semantics is given in terms of an infinite set of symbols). VI programs
can simulate external predicates of [4] when relational input is not allowed.

An external predicate à la [4] (HEX predicate) is of the form #g[Y1, . . . ,
Ym](X1, . . . , Xn), where Y1, . . . , Yn are input terms and X1, . . . , Xn are output
terms. Semantics of these atoms is given by means of a base oracle f#g(I, Y1, . . . ,
Ym, X1, . . . , Xm) where I is an interpretation. Note that HEX predicates depend
on a current interpretation, thus enabling to quantify over predicate extensions.

Assuming that for each HEX predicate f#g do not depend on the current inter-
pretation, and that higher order atoms (another special construct featured by
HEX programs) are not allowed we can state the following equivalence theorem.

Theorem 6. An HEX program without higher order atoms is equivalent to
a VI program where each HEX atom #g[Y1, . . . , Ym](X1, . . . , Xn) is replaced
by an atom #g′(Y1, . . . , Ym, X1, . . . , Xn), provided that each evaluation func-
tion f#g′ is such that for each I we have that f#g′(Y1, . . . , Ym, X1, . . . , Xm) =
f#g(I, Y1, . . . , Ym, X1, . . . , Xm). 2

VI-restricted programs overcome the notion of semi-safe programs [8]. These
programs have the finite grounding property: a weakly safe program P is semi-
safe if each cycle in G(P) contains only edges whose label corresponds to a
safe rule. Semi-safe programs are strictly contained in the class of VI-restricted
programs.

8 Conclusions

VI programs herein presented accommodate several cases where value invention
is involved in logic programming. VI-restrictions allow to actually evaluate by
means of a finite ground program a variety of programs (such as those with
function symbols or set constructors) in many nontrivial cases.

A topic for future work is to investigate to what extent the notion of VI-
restrictedness can be relaxed although keeping the complexity of recognizing the
class in polynomial time. Intuitively, local analysis techniques can enlarge the
class of programs whose finite grounding property is decidable, but this would
force to renounce to polynomial complexity. Nonetheless, the spirit of restriction
checkers is to keep evaluation times greatly smaller than the overall solving times.

VI programs have been implemented in the DLV system as well as a VI-
restriction checker. Further details on the implementation can be found in [8]. A
complete toolkit for developing custom external predicates is provided. Specific
extensions of the DLV system with function symbols and sets, using VI as under-
lying framework, are in advanced stage of development and will be dealt with in
appropriate papers. The system prototype, examples, manuals and benchmark
results are available at http://www.mat.unical.it/ianni/wiki/dlvex.

References

1. Abiteboul, S., Vianu, V.: Datalog Extensions for Database Queries and Updates.
JCSS 43(1) (1991) 62–124

2. Cabibbo, L.: Expressiveness of Semipositive Logic Programs with Value Invention.
Logic in Databases. (1996) 457–474.

3. Hull, R., Yoshikawa, M.: ILOG: Declarative Creation and Manipulation of Object
Identifiers. VLDB 1990. 455–468.

4. Eiter, T., et al.: A Uniform Integration of Higher-Order Reasoning and External
Evaluations in Answer Set Programming. IJCAI 2005, 90–96.

5. Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Nonmonotonic ontological and
rule-based reasoning with extended conceptual logic programs. ESWC 2005. 392–
407.

6. Leone, N., et al.: The DLV System for Knowledge Representation and Reasoning.
ACM TOCL (2006) To appear. http://www.arxiv.org/ps/cs.AI/0211004.

7. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable
Model Semantics. Artificial Intelligence 138 (2002) 181–234.

8. Calimeri, F., Ianni, G.: External sources of computation for Answer Set Solvers.
LPNMR 2005, LNCS 3662. 105–118.

9. Syrjänen, T.: Omega-restricted logic programs. LPNMR 2001. 267-279.
10. Bonatti, P.A.: Reasoning with Infinite Stable Models. IJCAI 2001. 603–610.
11. The Friend of a Friend (FOAF) Project. http://www.foaf-project.org/.
12. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive

Databases. New Generation Computing 9 (1991) 365–385.
13. Lifschitz, V., Turner, H.: Splitting a Logic Program. ICLP 1994. 23–37.
14. Dovier, A., Pontelli, E., Rossi, G.: Set unification. TPLP (2006) To appear.
15. Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Semantic web reasoning with

conceptual logic programs. RuleML 2004. 113–127.
16. Cabibbo, L.: The Expressive Power of Stratified Logic Programs with Value In-

vention. Inf. and Comp. 147(1) (1998) 22–56.
17. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Nonmonotonic description logic

programs: Implementation and experiments. LPAR 2004. 511–527.

