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Abstract. The paper introduces Answer Set Programming with Exter-
nal Predicates (ASP-EX), a framework aimed at enabling ASP to deal with
external sources of computation. This feature is realized by the introduc-
tion of “parametric” external predicates, whose extension is not specified
by means of a logic program but computed through external code. With
respect to existing approaches it is explicitly addressed the issue of inven-
tion of new information coming from external predicates, in form of new,
and possibly infinite, constant symbols. Several decidable restrictions of
the language are identified as well as suitable algorithms for evaluating
Answer Set Programs with external predicates. The framework paves the
way to Answer Set Programming in several directions such as pattern
manipulation applications, as well as the possibility to exploit function
symbols. ASP-EX has been successfully implemented in the DLV system,
which is now enabled to make external program calls.

1 Introduction

Among nonmonotonic semantics, Answer Set Programming (ASP) is nowadays
taking a preeminent role, witnessed by the availability of efficient answer-set
solvers, like ASSAT [Lin and Zhao, 2002], Cmodels [Babovich and Maratea,
2003], DLV [Leone et al., 2005b], and Smodels [Simons et al., 2002], and various
extensions of the basic language with features such as classical negation, weak
constraints, aggregates, cardinality and weight constraints. ASP has become an
important knowledge representation formalism for declaratively solving AI prob-
lems in areas including planning [Eiter et al., 2003], diagnosis and information
integration [Leone et al., 2005a], and more.

Despite these good results, state-of-the-art ASP systems hardly deal with
data types such as strings, natural and real numbers. Although simple, this
data types bring two kinds of technical problems: first, they range over infinite
domains; second, they need to be manipulated with primitive constructs which
can be encoded in logic programming at the cost of compromising efficiency
and declarativity. Furthermore, interoperability with other software is nowadays
important, especially in the context of those Semantic Web applications aimed
at managing external knowledge.

The contributions of the paper are the following:
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– we introduce a formal framework, named ASP-EX, for accommodating external
predicates in the context of Answer Set Programming;

– ASP-EX includes the explicit possibility of invention of new values from ex-
ternal sources: since this setting could lead to non-termination of any con-
ceivable evaluation algorithm, we tailor specific cases where decidability is
preserved.

– we show that ASP-EX enhances the applicability of Answer Set Programming
to a variety of problems such as string and algebraic manipulation. Also the
framework paves the way for simulating function symbols in a setting where
the notion of term is kept simple (Skolem terms are not necessary).

– we discuss implementation issues, and show how we have integrated ASP-EX

in the DLV system, which is, this way, enabled with the possibility of using
external sources of computation.

– we carry out some experiments, confirming that the accommodation of ex-
ternal predicates does not cause any relevant computational overhead.

2 Motivating example

The introduction of external sources of computation in tight synergy with An-
swer Set Solvers opens a variety of possible applications. We show next an ex-
ample of these successful experiences.

The discovery of complex pattern repetitions in string databases plays an
important role in genomic studies, and in general in the areas of knowledge
discovery. Genome databases mainly consist of sets of strings representing DNA
or protein sequences (biosequences) and most of these strings still require to be
interpreted. In this context, discovering common patterns in sets of biologically
related sequences is very important.

It turns out that specifying pattern search strategies by means of Answer Set
Programming and its extensions is an appealing idea: constructs like strong and
weak constraints, disjunction, aggregates may help an algorithm designer to fast
prototype search algorithms for a variety of pattern classes.

Unfortunately, state-of-the-art Answer Set Solvers lack the possibility to deal
in a satisfactory way with infinite domains such as strings or natural numbers.
Furthermore, although very simple, such data types need of ad hoc manipulation
constructs, which are typically difficult to be encoded and cannot be efficiently
evaluated in logic programming.

So, in order to cope with these needs, one may conceive to properly extend
answer set programming with the possibility of introducing external predicates.
The extension of an external predicate can be efficiently computed by means of
an intensional definition expressed using a traditional imperative language.

Thus, we might allow a pattern search algorithm designer to take advantage
of Answer Set Programming facilities, but extended with special atoms such as
e.g. #inverse(S1,S2) (true if S1 is the inverse string of S2), #strcat(S1,S2,S3) (true
if S3 is equal to the concatenation of S1 and S2), or #hammingDistance(S1,S2,N)

(true if S1 has N differences with respect to S2). Note that it is desirable that
these predicates introduce new values in the domain of a program whenever
necessary. For instance, the semantics of #strcat(a,b,X) should be such that X

matches with the new symbol ab.



Provided with a suitable mechanism for defining external predicates, the
authors of [Palopoli et al., 2005] have been able to define and implement a
framework allowing to specify and resolve genomic pattern search problems; the
framework is based on automatically generating logic programs starting from
user-defined extraction problems, and exploits disjunctive logic programming
properly extended in order to enable the possibility of dealing with a large variety
of pattern problems. The external built-in framework implemented into the DLV

system is essential in order to deal with strings and patterns. We provide next
syntax and semantics of the proposed framework.

3 Syntax and semantics

Let U , X , E and P be mutually disjoint sets whose elements are called constant
names, variable names, external predicate names, and ordinary predicate names,
respectively. Unless explicitly specified, elements from X (resp., U) are denoted
with first letter in upper case (resp., lower case); elements from E are usually
prefixed with “# ”. U will constitute the default Herbrand Universe. We will
assume that any constant appearing in a program or generated by external
computation is taken from U , which is possibly infinite1.

Elements from U ∪ X are called terms. An atom is a structure p(t1, . . . , tn),
where t1, . . . , tn are terms and p ∈ P ∪ E ; n ≥ 0 is the arity of the atom.
Intuitively, p is the predicate name. The atom is ordinary, if p ∈ P, otherwise
we call it external atom. A list of terms t1, . . . , tn is succinctly represented by
t. A positive literal is an atom, whereas a negative literal is not a where a is an
atom.

For example, node(X), and #succ(a,Y) are atoms; the first is ordinary, whereas
the second is an external atom.

A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn, notβn+1, . . . , notβm, (1)

where m ≥ 0, k ≥ 1, α1, . . . , αk, are ordinary atoms, and β1, . . . , βm are (ordinary
or external) atoms. We define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪B−(r),
where B+(r) = {β1, . . . , βn} and B−(r) = {βn+1, . . . , βm}. E(r) is the set of
external atoms of r. If H(r) = ∅ and B(r) 6= ∅, then r is a constraint, and if
B(r) = ∅ and H(r) 6= ∅, then r is a fact; r is ordinary, if it contains only ordinary
atoms. A ASP-EX program is a finite set P of rules; it is ordinary, if all rules are
ordinary. Without loss of generality, we will assume P has no constraints2 and
only ground facts.

The dependency graph G(P ) of P is built in the standard way by inserting a
node np for each predicate name p appearing in P and a directed edge (p1, p2),
labelled r, for each rule r such that p2 ∈ B(r) and p1 ∈ H(r).

The following is a short ASP-EX program:

1 Also, we assume that constants are encoded using some finite alphabet Σ, i.e. they
are finite elements of Σ∗.

2 A constraint ← B(r) can be easily simulated through the introduction of a cor-
responding standard rule fail ← B(r), not fail, where fail is a fresh predicate not
occurring elsewhere in the program.



mustChangePasswd(Usr) ← passwd(Usr,Pass),
#strlen(Pass,Len),#<(Len,8).

(2)

We define the semantics of ASP-EX by generalizing the answer-set semantics,
proposed by Gelfond and Lifschitz [1991] as an extension of the stable model
semantics of normal logic programs [Gelfond and Lifschitz, 1988]. In the sequel,
we will assume P is a ASP-EX program. The Herbrand base of P with respect
to U , denoted HBU (P ), is the set of all possible ground versions of ordinary
atoms and external atoms occurring in P obtained by replacing variables with
constants from U . The grounding of a rule r, grndU (r), is defined accordingly,
and the grounding of program P by grndU (P ) =

⋃
r∈P grndU (r).

An interpretation I for P is a couple 〈S, F 〉 where:

– S ⊆ HBU (P ) contains only ordinary atoms; We say that I (or by small
abuse of notation, S) is a model of ordinary atom a∈HBU (P ), denoted
I |= a (S |= a), if a∈S.

– F is a mapping associating with every external predicate name #e ∈ E , a
decidable n-ary Boolean function (which we will call oracle) F (#e) assigning
each tuple (x1, . . . , xn) either 0 or 1, where n is the fixed arity of #e, and
xi ∈ U . I (or by small abuse of notation, F ) is a model of a ground external
atom a = #e(x1, . . . , xn), denoted I |= a (F |= a), if F (#e)(x1, . . . , xn) = 1.

A positive literal is modeled if its atom is modeled, whereas a negated literal is
modeled if its corresponding atom is not modeled.

Example 1 We give an interpretation I = 〈S, F 〉 such that the external predi-
cate #strlen is associated to the oracle F (#strlen), and F (#<) to #<. Intuitively
these oracles are defined such that #strlen(pat4dat,7) and #< (7,8) are modeled
by I, whereas #strlen(mypet,8) and #<(10,8) are not.

The following is a ground version of rule 2:

mustChangePasswd(frank) ← passwd(frank,pat4dat),
#strlen(pat4dat,7),#<(7,8).

(3)

2

Let r be a ground rule. We define

i. I |=H(r) iff there is some a ∈ H(r) such that I |= a;
ii. I |=B(r) iff I |= a for each atom a∈B+(r) and I 6|= a for each atom a∈B−(r);
iii. I |= r (i.e., r is satisfied) iff I |=H(r) whenever I |=B(r).

We say that I is a model of a ASP-EX program P with respect to a universe
U , denoted I |=UP , iff I |= r for all r∈ grndU (P ). A model M is minimal if there
is no model N such that N ⊂ M .

Given a general ground program P , its GL reduct w.r.t. an interpretation I

is the positive ground program P I , obtained from P by:

– deleting all rules having a negated literal which is not modeled by I;
– deleting all the negated literals from the remaining rules.



I ⊆HBU (P ) is an answer set for a program P w.r.t. U iff I is a minimal
model for the positive program grndU (P )I . Let ansU (P ) be the set of answer
sets of grndU (P ). We call P F-satisfiable, if it has some answer set for a fixed
function mapping F , i.e. if there is some interpretation 〈S, F 〉 which is an answer
set. In the following we will assume the semantics associated to each external
predicate is defined a priori, i.e. F is fixed.

4 Properties of ASP-EX programs

Although simple in its definition, the above semantics does not give any hint on
how to actually compute answer sets of a given program P . In general, given an
infinite domain of constants U , and a program P , HBU (P ) is indeed infinite.

Theorem 1. It is given a ASP-EX program P , a domain of constants U , and a
function mapping F where the co-domain of F contains only boolean functions
decidable in polynomial time in the size of their arguments. Deciding whether P

is F -satisfiable in the domain U is undecidable.

Proof. (Sketch) The proof is carried out by showing that the Answer Set Se-
mantics of a ordinary program P with function symbols3 can be reduced to the
Answer Set Semantics of a ASP-EX program P . We take advantage of a family of
external predicates {#functioni}. In a given interpretation 〈S, F 〉, F will be such
that #functioni(C, f, x1, . . . , xi) is modeled if C unifies with the compound term
f(x1, . . . , xi).

This allows to rewrite a logic program P with function symbols by means of
external predicates. For instance, given the rule

p(s(X)) ← a(X, f(Y, h(Z))).

This can be rewritten in an equivalent ASP-EX rule:

p(S) ← a(X, F ), #function1(S, s, X), #function2(F, f, Y, H),
#function1(H, h, Z).

2

Tailoring cases where a finite portion of U is enough to evaluate the semantics
of a given program is thus of interest. In the following we reformulate some results
regarding splitting sets [Lifschitz and Turner, 1994].

Definition 1. Given a ASP-EX program P , a splitting set is a set of atoms
A ∈ HBU (P ) such that for each atom a ∈ A, if a ∈ H(r) for some r ∈ grndU (P ),
then B(r) ∪ H(r) ⊆ A. The bottom bA(P ) is the set of rules
{r | r ∈ grndU (P ) and H(r) ⊆ A}. The residual rU (P, I) is a program obtained
from grndU (P ) by deleting all the rules which are not modeled by I, and remov-
ing from the remaining rules all the a ∈ A modeled by I. 2

We take advantage here of the formulation of the splitting theorem as given
in [Bonatti, 2004].

3 Positive Horn programs with function symbols are undecidable, see e.g. [Dantsin et
al., 2001]



Theorem 2. (Splitting theorem [Lifschitz and Turner, 1994; Bonatti, 2004])
Given a program P and a splitting set A, M ∈ ansU (P ) iff M can be split in
two disjoint sets I and J , such that I ∈ ansU (bA(P )) and
J ∈ ansU (rU (grndU (P ) \ bA(P )), I).

Definition 2. Given a rule r, a variable X is safe in r if it appears in some
ordinary atom a ∈ B+(r). A rule r is safe if each variable X appearing in r is
safe. A program P is safe if each rule r ∈ P is safe.

Theorem 3. Given a safe ASP-EX program P , let U ⊂ U be the set of constants
appearing in P . Then ansU (P ) = ansU (P ).

Proof. (Sketch) The line of reasoning of the theorem is proving that, assuming P

is safe, grndU (P ) is a finite splitting set for P . Furthermore, grndU (P ) = bU (P ).
For each M ∈ ansU (P ), we can prove that rU (grndU (P )\bU (P ),M) is consistent
and its only answer set is the empty model. Thus M ∪ ∅ ∈ ansU (P ). Viceversa,
assuming an answer set M ∈ ansU (P ) is given, same arguments lead to conclude
that M ∈ ansU (P ). 2

In case a safe program is given, the above theorem allows to consider as the
set of “relevant” constants only those values explicitly appearing in the program
at hand. Intuitively, the semantics of a safe program P can be evaluated by
means of the following steps:

– compute grndU (P );
– remove from grndU (P ) all the rules containing at least one external literal

e such that F 6|= e, and remove from each rule all the remaining external
literals.

– compute the remaining ordinary program by means of a standard Answer
Set solver.

It is worth pointing out that, assuming the complexity of computing oracles is
polynomial in the size of their arguments, this algorithm as same complexity as
computing grndU (P )4.

5 Dealing with values invention

Although important for clarifying the given semantics, it is an actual practice to
specify external sources of computation not in terms of boolean oracles. So we
aim at introducing the possibility to specify functional oracles, keeping anyway
the simple reference semantics given previously. In the new setting we are going
to introduce, it is also very important that an external atom brings knowledge
from external sources of computation, in terms of new symbols added to a given
program.

For instance, assume U contains encoded values that can be interpreted as
natural numbers and that the external predicate #sqr is defined such that the
atom #sqr(X,Y) is true whenever Y encodes a natural number representing the

4 Assuming rules can have unbounded length, grounding a disjunctive logic program
is in the worst case exponential in the size of the Herbrand base (see e.g. [Leone et
al., 2001]).



square of the natural number X; we want to extract a series of squared values
from this predicate; consider the short program

number(2) ←
square(Y) ← number(X),#sqr(X,Y).

(4)

In the presence of unsafe rules as in the above example, Theorem 3 ceases to
hold: it is indeed unclear whether there is a finite set of constants which the
program can be grounded on. In the above example, we can intuitively conclude
that the set of meaningful constants is {2, 4}. It is however undecidable, given a
computable boolean oracle f to establish whether a given set S contains all and
only all those tuples t such that f(t) = 1.

In order to overcome these limits, we extend our framework with the possibil-
ity of explicitly computing missing values on demand. Although restrictive, this
setting is not far from a realistic scenario where external predicates are defined
by means of generic partial functions instead of boolean ones.

Definition 3. It is given an external predicate name #p, having arity n and
its oracle function F (#p). A pattern is a list of b’s and u’s. A b will represent
a placeholder for a constant (or a bounded variable), whereas an u will be a
placeholder for a variable. Given a list of terms, the corresponding pattern will
be given by replacing each constant with a b, and each variable with a u. 2

For instance, the pattern related to the list of terms (X, a, Y ) is (u, b, u). Let
pat be a pattern of length n having k placeholders b (which we will call input
positions), and n−k placeholders of u type (which we will call output positions).
A functional oracle F (#p)[pat] for the pattern pat, associated to the external
predicate #p, is a partial function taking k constant arguments from U and
returning a tuple of arity n−k, and such that F (#p)[pat](a1, ..., ak) = b1, ..., bn−k

iff F (#p)(a1, . . . , ak, b1, . . . , bn−k) = 1. Let pat[j] be the j-th element of a pattern
pat. Let unboundpat(X) be the sub-list of X such that pat[j] = u for each
Xj ∈ X, and boundpat(X) be the sub-list of X such that pat[j] = b for each
Xj ∈ X.

An external predicate #p might be associated to one or more functional
oracles “consistent” with the originating boolean oracle. For instance, consider
the #sqr external predicate, defined as mentioned above. We associate to it two
functional oracles, F (#sqr)[b, u] and F (#sqr)[u, b]. The two functional oracles are
such that, e.g.

F (#sqr)[b, u](3) = 9 (5)

F (#sqr)[u, b](16) = 4 (6)

consistently with the fact that F (#sqr)(3, 9) = F (#sqr)(4, 16) = 1, whereas
F (#sqr)[u, b](5) is set as undefined since F (#sqr)(X, 5) = 0 for any natural X.

In the sequel, given an external predicate #e, we will assume it comes equipped
with its oracle F (#e) (called also base oracle) and a list of consistent functional
oracles {F (#e)[pat1], . . . , F (#e)[patm]}, having different patterns pat1, . . . , patm

5.

5 Note that functional oracles prevent, to some extent, to define multivalued functions
and/or generic relations. We consider anyway this setting acceptable for a variety of
applications.



Adopting functional oracles in the context of safe programs is however to
big a restriction. We thus aim at enlarging the class of programs that can be
evaluated against a finite Herbrand universe. To this end, we introduce a relaxed
notion of safety. Intuitively, a variable is weakly safe if its value, although not
explicitly appearing in a program, can be computed through a functional oracle.

Definition 4. Given a rule r, let E(r) its set of external atoms. A choice C of
functional oracles is a mapping C : E(r) 7→ N associating each external atom of
r with the index of one of its functional oracles. Given a choice C, let FC(#e) a
shortcut for the functional oracle F (#e)[patC(#e)].

Given a rule r and a choice C, a variable X is weakly safe in r w.r.t. to C if
either

– X is safe; or
– X appears in some external atom #e(X) ∈ B+(r), X ∈ unboundpat

C(#e)

and each variable Y ∈ boundpat
C(#e)

is weakly safe. 2

A rule r is weakly safe if there is a choice Cr such that each variable X

appearing in some atom a ∈ B(r) is weakly safe with respect to Cr. A program
P is weakly safe if each rule r ∈ P is weakly safe. 2

Example 2 Assume that #sqr is associated to the list of functional oracles
{F (#sqr)[b, u], F (#sqr)[u, b]} defined above. Given a choice of oracles C such
that C(#sqr(X,Y )) = 2, the second rule of Program 4 is not weakly safe (intu-
itively there is no way for computing the value of the variable Y with the oracle
F (#sqr)[u, b]. The same rule is weakly safe if we set C(#sqr(X,Y)) = 1. 2

It turns out that deciding whether a given rule is weakly safe or not depends
on a given choice, but also from the set of available functional oracles. It is
assumed indeed that an external predicate does not come with all its possible
functional oracles.

Proposition 1. Given a set of external predicates E, and a list of functional
oracles for each #e ∈ E, it can be checked in polynomial time whether a program
P is weakly safe.

Proof. (Sketch) Simply observe that for each rule r ∈ P it can be checked in
time linear in the number of atoms of r whether a choice making r weakly safe
exists. 2

Weakly safe rules can be grounded with respect to functional oracles as fol-
lows.

Definition 5. Given a weakly safe rule r, a choice C for it, and a set of ordinary
ground atoms A, a ground rule r′ is member of ins(r,A) if r can be grounded
to r′ by the following algorithm:

1. replace positive literals of r with a consistent nondeterministic choice of
matching ground atoms from A; let θ the resulting variable substitution;

2. until θ instantiates all the variables of r:



– pick from rθ an external atom #e(X)θ such that θ instantiates all the
variables X ∈ boundpat

C(#e)
(X).

– If FC(#e)(boundpat
C(#e)

(Xθ)) = a1, . . . , ak, then update θ by assigning

a1, . . . , ak to unboundpat
C(#e)

(Xθ); else fail;

3. return r′ = rθ. 2

Example 3 Let’s consider the second rule of Program 4; then,
ins(r, {number(1), number(2)}) contains the two rules:

square(1) ← number(1), #sqr(1, 1).
square(4) ← number(2), #sqr(2, 4).

2

Although desirable, weak safety is not sufficient in order to intuitively guar-
antee finiteness of answer sets and decidability. For instance, the program

square(2) ←
square(Y ) ← square(X), #sqr(X, Y ).

(7)

is modeled by the infinite set of atoms {square(2), square(4), . . . }.
We thus introduce the notion of semi-safe program. Intuitively a semi-safe

program is such that external atoms cannot create infinite chains of new values
to be taken in account.

Definition 6. A weakly safe program P is semi-safe if each cycle in G(P ) con-
tains only edges corresponding to safe rules. 2

Example 4 For instance, the program

square(Y ) ← square(X), number(Y ), #sqr(X, Y ).
square(Y ) ← number(X), #sqr(X, Y ).

is semi-safe. 2

We extend next Theorem 3 to the case of semi-safe programs.

Theorem 4. It is given a semi-safe program P . Then there is a finite set of
constants U such that ansU (P ) = ansU (P ).

Proof. (Sketch) The set U is defined as all the constant symbols appearing in
the set of atoms T∞

P (∅) where the operator TP is defined as follows.

TP (A) = A ∪ {a ∈ H(r′)|r′ ∈ ins(r,A) for some r ∈ P}

It is provable that T∞
P (∅) = Tn

P (∅) for some n in case P is semi-safe; T∞
P (∅)

is a splitting set, and U is finite; as in Theorem 3 for each M ∈ ansU (P ), we can
prove that rU (grndU (P )\bT∞

P
(P ),M) is consistent and its only answer set is the

empty model. Thus M ∪ ∅ ∈ ansU (P ). Assuming an answer set M ∈ ansU (P )
is given, same arguments lead to conclude that M ∈ ansU (P ). 2

The above theorem allows to compute semantics of a semi-safe program P

by means of a traditional answer set solver, following the steps:



– compute the ground program T∞
P (∅). This computation involves a number of

evaluation of ins(r,A) that trigger evaluation of functional oracles whenever
needed;

– eliminate external literals as in the case of safe programs;
– evaluate the remaining ordinary program by means of a traditional solver;

We observe that, assuming F contains polynomial-time functional oracles, the
complexity of the above algorithm is not greater than the complexity of com-
puting grounding for an ordinary program.

6 Implementation and experiments

The proposed language has been integrated into the ASP system DLV [Leone et
al., 2005b]. We called this prototype DLV-EX. From a practical point of view, the
external atoms are dealt with in the following steps (see Figure 1):

1. at design time: a developer provides a library of external atoms, each of
them associated with a set of functional oracles. Each functional oracle has
a corresponding pattern. Although useful in practice, it is not compulsory to
provide functional oracles other than the base oracle. However, the absence
of specific functional oracles limits de facto the possibility to exploit an
external atom in weakly safe rules. A testing environment helps checking the
correctness of the oracles by means of automatically generated test programs.

2. at run-time in a pre-processing stage: each rule is checked to be weakly safe,
and a suitable choice of functional oracles is made. Then the overall program
is checked to be semi-safe. It is anyway possible to relax this second condition,
provided that termination of grounding algorithms is not guaranteed in this
case. It is worth pointing out that an user developing a logic program is not
in charge of specifying a choice of oracles, since the system itself will choose
the best functional oracles among a variety of possibilities.

3. at run-time during the rule instantiation stage: the optimized grounder of
the DLV system has been extended in order to compute ins(r,A) for a given
rule r and a set of “active” atoms A. For each external atom in r,the chosen
functional oracles are repeatedly invoked according to Definition 5.

Point 2 and 3 above are integrated in the existing grounding algorithm of the
system. We briefly recall the rule instantiation algorithm of the DLV system [Leone
et al., 2001]. Given a rule r, this algorithm exploits an intelligent backtracking
algorithm, where a given atom a ∈ B(r) is picked at each stage and it is tried
to be instantiated with respect to currently allowed values. The picking order is
crucial in order to tailor the search space to the smallest extent: in principle, it
is preferred to pick first those atoms whose estimated set of possible values is
smaller.

The presence of external atoms impacts within such algorithm in a two-
fold way: for what point 2 above is concerned, given a rule r, among possible
choices of functional oracles, our algorithm prefers those patterns whose number
of unbounded variables is bigger. This intuitively allows to reduce the space of
possible instantiations for a given external atom. For instance, given the atom
#sqr(X,Y), the choosing algorithm prefers, whenever possible, to choose the or-
acle with pattern (b, u) instead of the base oracle (which can be seen has having



Fig. 1. System Architecture

the pattern (b, b)), since this way it is searched only the space of values where
Y is equal to the square of X. In the second case, an oracle with pattern (b, b)
forces in principle to check all the possible couples of values for X and Y .

Point 3 impacts on the atom pick-up ordering strategy. For the same reasons
above, it is preferred to pick up external atoms, with pattern having many un-
bounded variables, as earlier as possible. This strategy relies on the assumption,
often true in practice, that the computation of a functional oracle is less time
consuming than several computations of the corresponding base oracle.

All the pre-existing built-in atoms available in the DLV system (such as arith-
metic and relational operators) have been rewritten using the new general frame-
work. We carried out some experiment in order to appreciate the impact and
the possible overhead of the new construct. Results are encouraging: grounding
times are in most cases equivalent, and the slowdown reported in few cases is
never above 6-7%.

External predicate definitions can be grouped in one or more libraries. Li-
braries have to be compiled such that they can be dynamically linked to the
DLV-EX executable; oracles are written in the C++ language. A special directive
inside DLV-EX programs tells the system which libraries have to be linked at run-
time. Also, built-in developers are enabled to redefine predefined operators in
order to deal with new data types, e.g. real numbers.

Some usage experiments have been carried out as well; few users have been
requested to start implementing some customized libraries [Palopoli et al., 2005;
Cumbo et al., 2004], and early feedbacks are positive both from the correctness
and the ease of use points of view.

7 Related works

For what the possibility of calling external modules in a logic program is con-
cerned, it is worth to mention the foundational work of Eiter et al. [1997]. This
paper takes the notion of generalized quantifier, known in formal logics, and
adapts it in the context of modular logic programming. A generalized quanti-
fier indeed, can be seen as a way for delegating the truth value of a formula



to an external source of computation. Based on this work, the same authors
are addressing the issue of implementing generalized quantifiers under Answer
Set Semantics, in order to enable Answer Set Solvers to communicate, in both
directions, with external reasoners [Eiter et al., 2004; 2005]. This approach is
different from the one considered in this paper since the former is inspired from
second order logics and allows bidirectional flow of relational data (to and from
an external atom), whereas, in our setting, the information flow is strictly value
based. Nonetheless, HEX programs, as defined in [Eiter et al., 2005], do not deal
with infinite domains explicitly.

Although this know-how has not been explicitly divulgated yet, other Answer
Set Solvers introduced the possibility to deal with externally computed functions
[Syrjänen, 2002; Osorio and Corona, 2003].

Furthermore, there are several works aiming at bringing in Answer Set Pro-
gramming a restricted capability of dealing with infinite domains. Among these,
it is worth citing the notion of ω-restricted programs [Syrjänen, 2001]. ω-restricted
programs allow to keep decidability of Answer Set Semantics in the presence of
functions symbols, and constitute a subclass of finitary programs. It is indeed
important to recall the work of Bonatti [2004], aimed at tailoring the class of
finitary programs. Although, in general, recognizing this class of programs is
undecidable, finitary programs allow function symbols but are decidable under
brave/skeptical reasoning with ground queries. As shown in Theorem 1, external
functions might be exploited in order to simulate function symbols. It is a matter
of future search to extend the notion of semi-safe program to a larger class and
investigate equivalence conditions with the notion of finitary program.

In the above cited literature, infinite domains are obtained through the intro-
duction of compound functional terms. Thus the studied theoretical insights are
often specialized to this notion of term, and take advantage e.g., of the common
unification rules of formal logics over infinite domains. Similar in spirit to our
approach is the work on open logic programs, and conceptual logic programs
[Heymans et al., 2004]. Such paper addresses the possibility of grounding a logic
program, under Answer Set Semantics, over an infinite domain, in a way similar
to classical logics and/or description logics. Each constant symbol has no prede-
fined compound structure however. Also similar is the work of Cabibbo [1998],
which extend the work of Hull and Yoshikawa [1998]. The latter authors in-
troduce a language (ILOG) with a special construct aimed at introducing new
invented values in a logic program, for the purpose of creating new tuple iden-
tifiers in relational databases. Based on this work, Cabibbo investigates about
decidable fragments of the language. Despite some crucial semantic differences,
the presented notion of weak safety is similar to the one herein presented, and
describes conditions such that new values do not propagate in infinite chains.

8 Conclusions

We presented a framework where external atoms with value invention are taken
in account. The purpose of this work is in the direction of closing the gap between
Answer Set Programming and practical applications. Also, we believe this works
paves the way to an actual implementation of finitary programs with function
symbols. The system prototype, examples, manuals and benchmark results are
available at http://www.mat.unical.it/kali/dlv-ex.
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