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1 Introduction

The formal framework underlying the information integration model (IIM) of the IN-
FOMIX system has been completely specified in the deliverable D3.1, which is mainly
devoted to the description of the languages for the mapping specification and of the types
of integrity constraints the designer is allowed to specify in the global schema. We briefly
recall that this framework accounts for data integration systems consisting of a global
schema G, which specifies the global (user) elements, a source schema S, which describes
the structure of the data sources in the system, and a mapping M, which specifies the
relationship between the sources and the global schema.

In the framework, M can be expressed in both the two approaches for specifying the
mapping commonly adopted in the theory and practice of data integration [9]: the global-
as-view (GAV) approach, in which global elements are defined as views over the sources,
and the local-as-view (LAV), in which, conversely, source elements are characterized as
views over the global schema.

Up to this point, less attention has been paid to the formal description of the user
query language, which at large extent has been assumed to be the select-project-join
fragment of standard SQL, whose power is equivalent to the one of non-recursive Datalog
programs. The main reason for postponing the choice of the user query languages and
for temporarily dealing with this language can be understood by looking at the result
provided in the deliverables D3.1 and D3.3, where it is put in evidence that the interaction
between the classes of constraints allowed on G makes query answering difficult under the
different semantics considered, and may lead to undecidable cases even when the user
query language is non-recursive Datalog. The focus of these results is to highlight the
intrinsic difficulty of query answering in data integration systems, due to the results of
hardness and undecidability holding for not highly expressive query languages.

1.1 Requirements for the Infomix Query Language

In this report we are interested in finding some space for enriching this ‘basic’ query
language with some additional features, still guided by the fact that, in the spirit of the
INFOMIX approach, the resulting language must be fully declarative and the DLV system
must be able to evaluate it efficiently and preserve scalability as much as possible.

Specifically, we consider the use of (stratified) negation, recursion and aggregate func-
tions for enriching non-recursive Datalog programs, and we investigate the interactions
(possible increase of computational complexity or cause of undecidability) of such features
with the different kinds of constraints allowed on the global schema. In this analysis, we
deal with all the kinds of integrity constraints (ICs in the following) the user is allowed
to specify over the global schema in the INFOMIX system:

• Key Dependencies (KDs), i.e., constraints expressing that each tuple in any relation
can be fully identified by the values of certain attributes.

• Inclusion Dependencies (IDs), i.e. constraints expressing that (a projection of) a
given relation is included in (a projection of) another relation, and
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ICs UCQs recursion
stratified
negation

aggregates
Datalog¬s

with aggregates

KDs + + + + +
IDs +/- - - - -
EDs + + + + +

EDs and KDs + + + + +

Figure 1: Interactions of ICs with the features of the query language.

• Exclusion Dependencies (EDs), i.e. constraints expressing that two relations (or
projections on them) are disjoint.

We point out that the type of mapping over the sources does not matter for the analysis
of the query language as well as the view definition language of the sources.

In Figure 1, we summarize the results described in this report. We put in evidence
the categories of ICs (+) allowed in order to maintain the decidability of the query an-
swering as the expressiveness of the query language is changed. The case of the union of
conjunctive queries (UCQs) is of particular interest, as it is fully decidable in the case in
which IDs are Non-Key Conflicting Inclusion Dependencies (NKCIDs), i.e. IDs which do
not propagate a proper superset of the key of the relation into its right-hand side. For
instance, this class comprises the well known class of foreign-key dependencies.

Conversely, recursion, negation and aggregates can be only used in the absence of
inclusion dependencies, no matter of particular restrictions, and can be combined without
any decidability problem, leading to the language Datalog¬s with aggregates.

Although UCQs is the only language (w.r.t. the extensions considered) that is fully
decidable in the INFOMIX setting, we decide to not restrict the attention to UCQs and
we assume Datalog¬s with aggregates to be the user query language (from now on we
will call this language IQL, Infomix Query Language). This language is indeed powerful
enough for expressing significant, real-world queries and it is still decidable in the presence
of common ICs such as keys and exclusion dependencies.

Obviously, each time the user wants to specify also IDs, the module which is respon-
sible for the query preprocessing will automatically restrict the language to UCQs, by
disallowing the use of the other complex features, and possibly informing the user about
the adopted restrictions.

The rest of the present document is structured as follows. In the next section, we
briefly recall some preliminaries on the relational model and, specifically, on the syntax
and the semantics of the integrity constraints. Section 3 presents an overview of the
Information Integration setting of the INFOMIX system, whereas in Section 4 we analyze
the basic query language for the INFOMIX system. In Section 5, we formally present the
grammar of the IQL in EBNF notation and the semantics, and, finally, in Section 7 we
draw our conclusions.
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2 Theoretical Background

In this section we recall some theoretical background that will be useful for the following
discussions. In particular, we present the basic notions of the relational model, on which
we will build in the next section our formal framework for data integration, and briefly
recall the complexity classes that will be mentioned in this report. This section is intended
to be a brief introduction to such matters; for further background we refer the reader
to [7, 1, 12].

2.1 The relational Model

We assume to deal with an infinite, fixed database domain U whose elements can be refer-
enced by constants c1,. . . , cn under the unique name assumption, i.e., different constants
denote different real-word objects.

A relational schema (or simply schema) RS is a pair 〈Ψ, Σ〉, where:

• Ψ is a set of relations, each with an associated arity that indicates the number of
its attributes. The attributes of a relation r ∈ Ψ of arity n (denoted as r/n) are
represented by the integers 1, . . . , n;

• Σ is a set of integrity constraints expressed on the relations in Ψ, i.e., assertions on
the relations in Ψ that are intended to be satisfied by database instances.

A database instance (or simply database) DB for a schema RS = 〈Ψ, Σ〉 is a set of
facts of the form r(t) where r is a relation of arity n in Ψ and t is an n-tuple of constants
of U . We denote as rDB the set {t | r(t) ∈ DB}. A database DB for a schema RS is
said to be consistent with RS if it satisfies all constraints expressed on RS. The notion
of satisfaction depends on the type of constraints defined over the schema.

The integrity constraints that we consider are inclusion dependencies (IDs), key de-
pendencies (KDs) and exclusion dependencies (EDs). More specifically,

• an inclusion dependency is an assertion of the form r1[A] ⊆ r2[B], where r1, r2

are relations in Ψ, A = A1, . . . , An (n ≥ 0) is a sequence of attributes of r1, and
B = B1, . . . , Bn is a sequence of distinct attributes of r2. Therefore, we allow for
repetition of attributes in the left-hand side of the inclusion1. A database DB for
RS satisfies an inclusion dependency r1[A] ⊆ r2[B] if for each tuple t1 ∈ rDB1 there
exists a tuple t2 ∈ rDB2 such that t1[A] = t2[B], where t[A] indicates the projection
of the tuple t over A;

• a key dependency is an assertion the form key(r) = A, where r is a relation in Ψ,
and A = A1, . . . , An is a sequence of distinct attributes of r. A database DB for
RS satisfies a key dependency key(r) = A if for each t1, t2 ∈ rDB with t1 6= t2 we
have t1[A] 6= t2[A]. We assume that at most one key dependency is specified for
each relation;

1Repetitions in the right-hand side force equalities between attributes of the relation in left-hand side,
hence they imply constraints that we do not consider in this report.
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• an exclusion dependency is an assertion of the form (r1[A] ∩ r2[B]) = ∅, where r1

and r2 are relations in Ψ, A = A1, . . . , An and B = B1, . . . , Bn are sequences of
attributes of r1 and r2, respectively. A database DB for RS satisfies an exclusion
dependency (r1[A]∩r2[B]) = ∅ if there do not exist two tuples t1 ∈ rDB1 and t2 ∈ rDB2

such that t1[A] = t2[B].

Sets of inclusion, key and exclusion dependencies expressed on the database schema
are denoted by ΣI , ΣK , and ΣE, respectively. Furthermore, we use RS = 〈Ψ, ΣI , ΣK , ΣE〉
as a shortcut for RS = 〈Ψ, ΣI ∪ΣK ∪ΣE〉. In the absence of some kind of dependencies,
we disregard the corresponding symbol. When a database DB satisfies all dependencies
in Σ (resp. ΣI , ΣK , or ΣE), we say that DB is consistent with Σ (resp. ΣI , ΣK , or ΣE).

A relational query (or simply query) over RS is a formula that specifies a set of data
to be retrieved from a database. In this document, we consider the classes of conjunctive
queries, union of conjunctive queries and DATALOG queries. A conjunctive query (CQ)
q of arity n over the schema RS is written in the form

q(~x) ← conj (~x, ~y)

where

• q belongs to a new set of symbols Q (the alphabet of queries, that is disjoint from
both U and Ψ);

• q(~x) is the head of the conjunctive query;

• conj (~x, ~y) is the body of the conjunctive query, which is a conjunction of atoms that
involve ~x = X1, . . . , Xn and ~y = Y1, . . . , Ym, where all Xi and Yj are either variables
or constants of U ;

• the predicate symbols of the atoms in conj (~x, ~y) are in Ψ;

• the number of variables of ~x is called the arity of q, and is the arity of the relation
denoted by the query q.

Given a database DB, the answer to q over DB, denoted qDB, is the set of n-tuples of
constants 〈c1, . . . , cn〉, such that, when substituting each ci for Xi, the formula

∃~y.conj (~x, ~y)

evaluates to true in DB.
A set of conjunctive queries with the same head predicate is a Union of Conjunctive

Queries (UCQ). More formally, a UCQ is written in the form

q(~x) ← conj 1(~x, ~y1) ∨ · · · ∨ conj m(~x, ~ym)

The answer to a UCQ q over a database DB, as usually denoted qDB, is the set of
n-tuples of constants 〈c1, . . . , cn〉, such that, when substituting each ci for Xi, the formula

∃~y1.conj 1(~x, ~y1) ∨ · · · ∨ ∃~ym.conjm(~x, ~ym)
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evaluates to true in DB.
Finally a DATALOG query is a collection of rules, each having the same form as a

conjunctive query, except that predicate symbols in the body of the rules can be in Q as
well. In a DATALOG query, each head predicate of the rules refers to an intermediate
relation, disjoint from predicates referring to database relations. The intermediate pred-
icates are called Intensional DataBase (IDB) predicates, whereas predicates referring to
stored relations are called Extensional DataBase (EDB) predicates. Given a DATALOG
query q and a database DB, the answer qDB of q over DB is the minimal fixpoint model
of q and DB [2].

Given a CQ, UCQ, or DATALOG query q, we also say that qDB denotes the set of
tuples that satisfy q over DB.

3 Formal Framework for Information Integration

Informally, a data integration system consists of a (virtual) global schema, which specifies
the global (user) elements, a source schema, which describes the structure of the sources
in the system, and a mapping, which specifies the relationship between the sources and
the global schema. User queries are posed on the global schema, and the system provides
the answers to such queries by exploiting the information supplied by the mapping and
accessing the sources that contain relevant data. Thus, from the syntactic viewpoint, the
specification of an integration system depends on the following parameters:

• The form of the global schema, i.e., the formalism used for expressing global elements
and relationships between global elements. Several settings have been considered
in the literature, where, for instance, the global schema can be relational, object-
oriented [4], semi-structured [11], based on Description Logics [8, 5], etc.;

• The form of the source schema, i.e., the formalism used for expressing data at the
sources and relationships between such data. In principle, formalisms commonly
adopted for the source schema are the same mentioned for the global schema;

• The form of the mapping. Two basic approach have been proposed in the literature,
called respectively global-as-view (GAV) and local-as-view (LAV) [10, 9]. The GAV
approach requires that the global schema is defined in terms of the data sources:
more precisely, every element of the global schema is associated with a view, i.e., a
query, over the sources, so that its meaning is specified in terms of the data residing
at the sources. Conversely, in the LAV approach, the meaning of the sources is
specified in terms of the elements of the global schema: more exactly, the mapping
between the sources and the global schema is provided in terms of a set of views
over the global schema, one for each source element;

• The language of the mapping, i.e., the query language used to express views in the
mapping;

• The language of the user queries, i.e., the query language adopted by users to issue
queries on the global schema.
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Let us now turn our attention on the semantics. According to [9], the semantics of a
data integration system is given in terms of instances of the elements of the global schema
(e.g., one set of tuples for each global relation if the global schema is relational, one set of
objects for each global class if it is object-oriented, etc.). Such instances have to satisfy
(i) the integrity constraints expressed between elements of the global schema, and (ii) the
mapping specified between the global and the source schema.

Roughly speaking, the notion of satisfying the mapping depends on how the data that
can be retrieved from the sources are interpreted with respect to the data that satisfy
the corresponding portion of the global schema. Three different assumptions have been
considered for such interpretation: the assumption of sound mapping, adopted when all
data that can be retrieved at the sources satisfy the corresponding portion of the global
schema but may result incomplete; the assumption of complete mapping, adopted when no
data other than those retrieved at the sources satisfy the corresponding portion of global
schema, i.e., they are complete but not all sound; the assumption of exact mapping, when
data are both sound and complete.

In the following we formally define the data integration framework underlying the
INFOMIX IIM. We consider here a relational setting, i.e., the global and the source
schema are expressed in the relational model. However, our framework can be in principle
generalized to different data models.

3.1 Syntax

A data integration system I is a triple 〈G,S,M〉, where:

• G is the global schema expressed in the relational model with inclusion, key and
exclusion dependencies, i.e., G = 〈Ψ, Σ〉, where Σ = ΣI ∪ ΣK ∪ ΣE;

• S is the source schema expressed in the relational model without integrity con-
straints, i.e., S = 〈ΨS , ∅〉. Dealing with only relational sources is not restrictive,
since we can always assume that suitable wrappers present sources in the relational
format. Furthermore, assuming that no integrity constraint is specified on S is
equivalent to assuming that data satisfy constraints expressed on the sources in
which they are stored. This is a common assumption in data integration, because
sources are in general autonomous and external to the integration system, and satis-
faction of constraints at the sources should be guaranteed by local data management
systems;

• M is the mapping between G and S. In our framework we consider both the GAV
and the LAV mapping. More precisely,

– the GAV mapping is a set of assertions of the form 〈rG, qS〉, where rG is a
global relation and qS is the associated query over the source schema S. In
this document, we study the setting in which the language used to express
queries in the GAV mapping is non-recursive Datalog;

– the LAV mapping is a set of assertions of the form 〈rS , qG〉, where rS is a source
relation and qG is the associated query over the global schema G. We assume
that queries in the LAV mapping are Conjunctive Queries.

c©2003/Infomix 9 UNICAL, TUWIEN, UNIROME1
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Finally, a query over I (also called user query in the following) is a formula that specifies
which data to extract from the integration system. Each user query is issued over the
global schema G, and we assume that the language used to specify user queries is Union
of Conjunctive Queries.

3.2 Semantics

Intuitively, to define the semantics of a data integration system, we have to start with a
set of data at the sources, and we have to specify which are the data that satisfy the global
schema with respect to such data at the sources, according to the assumption adopted
for the mapping. Thus, in order to assign the semantics to a data integration system
I = 〈G,S,M〉, we start by considering a source database for I, i.e., a database D for the
source schema S. Then, we consider the assumption on M, and denote it with as(M),
and pose as(M) = s, c, or e, for the sound, complete, and exact assumption, respectively.

Based on D and as(M), we now specify which is the information content of the global
schema G. We call any database B for G a global database for I. Formally, the semantics
of I w.r.t. D and as(M), is the set of global databases B for I such that:

(i) B is consistent with G;

(ii) B satisfies as(M) with respect to D, i.e.,

– if M is GAV, B satisfies as(M) if for each assertion 〈rG, qS〉 ∈ M we have that

(a) rBG ⊇ qDS if as(M) = s;

(b) rBG ⊆ qDS if as(M) = c;

(c) rBG = qDS if as(M) = e;

– if M is LAV, B satisfies as(M) if for each assertion 〈rS , qG〉 ∈ M we have that

(a) rDS ⊆ qBG if as(M) = s;

(b) rDS ⊇ qBG if as(M) = c;

(c) rDS = qBG if as(M) = e;

Intuitively, in GAV (and in LAV) the three different assumptions allow us to model
different situation in which queries over S (resp. relations in S) provide (a) any subset of
tuples that satisfy the corresponding relation in G (resp. query over G), (b) any superset
of such tuples, or (c) exactly such tuples.

The semantics of I w.r.t. D and as(M), is denoted with semas(M)(I,D), where
as(M) = s, c, e respectively for the sound, complete, or exact assumption. Obviously,
semas(M)(I,D) contains in general several global databases for I.

Finally, we give the semantics of queries. Formally, given a source database D for I
and an assumption as(M) on M, we call certain answers (or simply answers) to a query
q of arity n with respect to I, D and as(M), the set

ansas(M)(q, I,D) = {〈c1, . . . , cn〉 | 〈c1, . . . , cn〉 ∈ qB for each B ∈ semas(M)(I,D) }
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The problem of query answering is the problem of computing the set ansas(M)(q, I,D).
It should be easy to see that query answering in data integration systems is essentially a
form of reasoning in the presence of incomplete information [14].

We will assume, in the following, to work with the sound mapping assumption. As
better explained in deliverables D1.2 and D3.1, this semantics is the most significant in
our context. Anyway, the Infomix Query Language well fits the loosely-sound and loosely-
exact semantics, since restrictions we are going to introduce are the same in these latter
cases.

4 Query Languages and Interaction with ICs

In this section we analyze the basic query language for the INFOMIX system, i.e. Datalog
with stratified negation and aggregates.

Throughout the description, in order to provide some explicative examples we shall
refer to a global schema G = 〈Ψ, ΣI〉, where Ψ contains the following relations:

employee(Ename, Salary ,Dep,Boss)
department(Code,Director)

storing information about the employees of the departments of a given company. Specif-
ically, each employee has associated a Boss which is an employee in its turn (often with
a much higher salary).

4.1 Non-recursive Datalog Programs

Syntax: Following Prolog’s convention, strings starting with uppercase letters denote
variables, while those starting with lower case letters denote constants. A term is either
a variable or a constant. An atom is an expression p(t1, . . .,tn), where p is a predicate of
arity n and t1,. . . ,tn are terms. A Datalog rule r is a formula

a :- b1, · · · , bk.

where a, b1, · · · , bk are atoms and k ≥ 0. The atom a will be called the head of r, while the
conjunction b1, ..., bk is the body of r. Let H(r) and B(r) be sets denoting the predicates
in the head and in the body of r, respectively.

If B(r) = ∅, the rule is called a fact, and we usually omit the “ :- ” sign.
A datalog program P is a finite set of datalog rules. Given a Datalog program P , the

dependency graph G(P) is a directed graph whose nodes are the predicate symbols in P
and such that there exists an edge from the predicate b to the predicate a if and only if
P contains a rule r where a ∈ H(r) and b ∈ B(r).

An interesting syntactic restriction on Datalog programs is in disallowing recursion.
This can be formalized by constraining the dependency graph to be acyclic.

Example 4.1 The program
a :- b, c.
b :- d.
d :- a.

c©2003/Infomix 11 UNICAL, TUWIEN, UNIROME1
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is recursive, since in the corresponding dependency graph we have a cycle constituted by
the arcs (a, b), (b, d) and (d, a). 2

Semantics: The Herbrand Universe UP of a program P is the set of all constants ap-
pearing in P , and its Herbrand Base BP is the set of all ground atoms constructed from
the predicates appearing in P and the constants from UP . A term (resp. an atom, a rule
or a program) is ground if no variables occur in it. A rule r′ is a ground instance of a rule
r, if r′ is obtained from r by replacing every variable in r with some constant in UP . We
denote by ground(P) the set of all ground instances of the rules in P .

An interpretation of P is any subset of BP . The value of a ground atom L w.r.t. an
interpretation I, valueI(L), is true if L ∈ I and false otherwise. The truth value of a
conjunction of ground literals C = L1, . . . , Ln is the minimum over the values of the Li,
i.e. valueI(C) = min({valueI(Li) | 1 ≤ i ≤ n}); if n = 0, then valueI(C) = true. A
ground rule r is satisfied by I if valueI(Head(r)) ≥ valueI(Body(r)). Thus, a rule r with
empty body is satisfied by I if valueI(Head(r)) = true. An interpretation M for P is a
model of P if M satisfies all rules in ground(P).

Non-recursive Datalog programs are very popular as query languages because they
can be specified as the union of conjunctive queries, where each conjunctive query is
expressible in the select-project-join fragment of SQL.
Query: Without loss of generality, we reformulate the notion of DATALOG query as a
mapping from a database to a given goal relation. A query is a pair 〈G,P〉 where G is a
predicate symbol, called goal, and P is a datalog program. The query Q is non-recursive
iff P is non-recursive. Given a database D, a tuple t of a relation r, can be seen as a
ground fact of the form r(t). Thus, given D, we we denote by L(D) the set of ground
facts derived from each tuple in D.

The result of a query Q = 〈G,P〉 on an input database D is defined in terms of
the models of PD = P ∪ L(D). Specifically, the result, denoted by Q(D), is the set
{t | ∃M ∈ PD ∧G(t) ∈ M}. For instance the query 〈q0,P0〉, where P0 is as follows

q0 (Ename) :- employee(Ename, 100 .000 ,Dep,Boss), department(Dep, leone).

returns all the employees working at the department whose chief is leone having a salary
of 100 .000 euros for year.

This fragment of SQL has been widely investigated in the past reports of the INFOMIX
project. Specifically, in the deliverable D3.1 it has been evidenced that it is a fully
decidable query language, if the set of ICs the user is allowed to specify are: KDs, EDs,
and NKCIDs.

4.2 Recursion

It is well known that there are certain (polynomial computable) queries that cannot be
expressed in non-recursive Datalog programs [1].

Example 4.2 Consider a situation in which we need to know whether the employee e1

is the boss of the employee e either directly or even by means of a number of employee
e2, .., en such that e1 is the boss of e2, e2 is the boss of e3,..., en is the boss of e.
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Thus, by this query we are interested in knowing whether the level in the company
of an employee is greater than that of another. Intuitively, as this query is based on
a recursive definition, it cannot be expressed in non-recursive Datalog. Conversely, by
allowing recursion we obtain the query 〈q,P1〉, where P1 is

q(E1, E2) :- employee(E1 , Salary ,Dep,E2 ).
q(E1, E2) :- q(E1, E3), employee(E3 , Salary ,Dep,E2 ).

and we can simply check whether the tuple (e1, e) is in the result. 2

Unfortunately, recursive programs cannot be treated like UCQs. In fact, the recent
work of Calvanese and Rosati [6] proves that, in the presence of either inclusion dependen-
cies or key and foreign key dependencies, answers to recursive queries over finite databases
are in general different from the answers obtained over unrestricted databases. More im-
portant, it proves that, both for unrestricted and for finite databases, recursive query
answering is undecidable in the presence of inclusion dependencies or in the presence of
key and foreign key dependencies.

The above results imply that, under the sound semantics, the presence of even very
simple forms of integrity constraints makes the problem of answering recursive queries
(and the problem of deciding query containment of a conjunctive query w.r.t. a recursive
query) undecidable.

4.3 Negation

An interesting extension of Datalog is the introduction of negation. A literal l is either
an atom a or its negation not a. Specifically, a generalized rule r is a formula

a :- b1, · · · , bk, not bk+1, · · · , not bm.

where a is an atom and b1, · · · , bm are literals and m ≥ k ≥ 0. Moreover, B(r) =
B+(r) ∪ B−(r) denotes the set of the body literals, where B+(r) (the positive body) is
{b1,. . . , bk} and B−(r) (the negative body) is {bk+1, . . . , bm}.

Datalog with negation (Datalog¬) is strictly more expressive than Datalog. Unfortu-
nately, an undisciplined use of negation may lead to programs whose meaning is difficult
to be understood from the end user. We believe that free negation is not well suited for
being part of a query language devoted to a broad range of users. Thus, in the follow-
ing we provide some restrictions on the use of negation, which lead to more expressive
languages w.r.t. recursive programs, still close to SQL standards.

We first provide some preliminary definitions.

Definition 4.1 Functions || || : BP → {0, 1, . . .} from the ground (classical) literals of
the Herbrand Literal Base BP to finite ordinals are called level mappings of P . 2

Level mappings give us a useful technique for describing various classes of programs.

Definition 4.2 A Datalog program P is called (locally) stratified ([3, 13]), if there is a
level mapping || ||s of P such that, for every rule r ∈ ground(P),
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1. For any l ∈ B+(r), and for any l′ ∈ H(r), ||l||s ≤ ||l′||s;
2. For any l ∈ B−(r), and for any l′ ∈ H(r), ||l||s < ||l′||s. 2

Example 4.3 Consider the following two programs.

P1 : p(a) :- not q(a). P2 : p(a) :- not q(b).
p(b) :- not q(b). q(b) :- not p(a).

It is easy to see that program P1 is stratified, while program P2 is not. A suitable level
mapping for P1 is the following:

||p(a)||s = 2 ||p(b)||s = 2 ||q(a)||s = 1 ||q(b)||s = 1

As for P2, an admissible level mapping would need to satisfy ||p(a)||s < ||q(b)||s and
||q(b)||s < ||p(a)||s, which is impossible. 2

Within the INFOMIX setting we enable the query to have stratified negation, denoted
by Datalog¬s , but in this case IDs cannot be specified over the global schema. A datalog
query with stratified negation is is a pair 〈G,P〉 where G is a predicate symbol, called
goal, and P is a Datalog¬s program. The semantics is the same of the case of recursive
queries, provided the fact that, given an interpretation I, the value of a ground negated
literal not L is true if and only if valueI(L) is false.

Example 4.4 The following query computes (using the goal topEmployee) the employees
which have no other boss than the director.

topEmployee(E) :- employee(E , Salary ,Dep,Boss),
department(Dep,Boss), not otherBoss(E, Boss).

otherBoss(E, Boss) :- employee(E , Salary ,Dep,Boss ′), Boss′ 6= Boss.

2

In the absence of integrity constraints, in the presence of key dependencies only, or in
the presence of key dependencies and exclusion dependencies, query answering is decidable
for queries with negation as well. Actually, in the case of IDs issued over the global schema,
there is no systematic result up to the present time. Thus, we decided to not allow the
user to express negation in such complex setting.

4.4 Aggregate Functions

We conclude the overview on the additional features for the query language by considering
aggregate functions.

A symbolic set is a pair {Vars : Conj}, where Vars is a list of variables and Conj is
a conjunction of standard literals.2 A ground set is a set of pairs of the form 〈t : Conj〉,

2Intuitively, a symbolic set {X :a(X, Y ), p(Y )} stands for the set of X-values making a(X,Y ), p(Y )
true, i.e., {X :∃Y s.t . a(X, Y ), p(Y ) is true}. Note that also negative literals may occur in the conjunction
Conj of a symbolic set.
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where t is a list of constants and Conj is a ground (variable free) conjunction of standard
literals. An aggregate function is of the form f(S), where S is a set, and f is a function
name among #count, #min, #max, #sum. Let I be an interpretation for a program P .
The informal semantics of the aggregate functions are as follows:

• #count{V ars : Conj}. #count returns the number of ground instances of V ars
which satisfy the conjunction Conj w.r.t. the interpretation I.

• #sum{V ars : Conj}. #sum computes the sum of all the values of the first
variable in Vars in the ground instances satisfying the conjunction Conj w.r.t. the
interpretation I.

• #min{V ars : Conj}. Let X be the first variable of Vars. Then, the function #min
returns the minimum value of the variable X among those taken in the ground
instances of Vars making the conjunction Conj true w.r.t. the interpretation I.

• #max{V ars : Conj}. Let X be the first variable of Vars. Then, the function
#max returns the maximum value of the variable X among those taken in the
ground instances of Vars making the conjunction Conj true w.r.t. the interpretation
I.

An aggregate atom is Lg ≺1 f(S) ≺2 Rg, where f(S) is an aggregate function, ≺1,≺2∈
{=, <, ≤, >,≥}, and Lg and Rg (called left guard, and right guard, respectively) are
terms. One of “Lg ≺1” and “≺2 Rg” can be omitted. Given an interpretation I, the
aggregate literal is true if and only if the value taken by the aggregate function f(S)
belongs to the range specified by the guard values Lg and Rg.

A Datalog (resp. Datalog¬s) program with aggregates is a Datalog (resp. Datalog¬s)
program whose atom can be also aggregate atoms.

Example 4.5 The following program computes the employee having the best salary:

bestSalary(E, S) :-Employee(E, S, , ), S = #max{Sal : Employee( , Sal, , )}.

2

The decidability of query answering, when the language is enriched with aggregate
operators, is much more intricate than the other cases, and much more efforts must be
spent for studying the interaction of aggregate data with complex ICs. We will allow
aggregate queries only in the presence of KDs and in the presence of EDs, the only cases
where decidability of query answering is known.

5 IQL grammar

We provide in the following a complete specification of the language grammar, given in
EBNF notation. Definition of terminal entities like variable, constant, are not given.
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program = goal, {rule};

goal = "GOAL ", predicatename, ";";

rule = head, "." | head, ":-", body, ".";

body = literal, {"," literal }, ".";

head = atom;

literal = ["not"], atom | ["not"], aggregateatom | builtin;

atom = predicatename, [ "(" term {,term} ")" ];

aggregateatom = guard, operator, aggregatefunction, [operator, guard] |

aggregatefunction, operator, guard;

guard = variable | number;

term = variable | constant | number | stringconstant;

operator = "=" | "<" | "<=" | ">" | ">=";

alloperators = operator | "<>";

builtin = term, alloperators, term;

aggregatefunction = ( "#count","#min","#max","#sum" ),

"{", variable, ["," variable] ":" atom, ["," atom] "}";

An IQL program P is valid iff the following conditions hold:

• P is stratified and nonrecursive;

• aggregated atoms are safe in each rule.

Stratification

From the practical point of view, we prefer to introduce the concept of usual stratification,
instead of the, more precise, notion of local stratification. The choice is motivated by the
consideration that local stratification strictly depends on data which a query is applied
on. Thus, it may be confusing for an end-user: a given IQL program may turn out to be
or not to be locally stratified (and thus it can be evaluated) depending on the input data.
We extend the notion of stratification taking into account aggregate atoms.

Given an IQL program P , let us define a order relation between the predicates of P
as follows. Given two predicates A and B,

- B ≺ A if there exists a rule r in P such that A appears in the head of r, and B
appears in an aggregate atom of the body of r.

- B ¹ A if there exists a rule r in P such that A appears in the head of r, and B
occurs in the body of r (as the predicate of a standard atom).

Example 5.1 Let P be the program

r1 : q(X) :- s(X).
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r2 : q(X) :- p(X), #count{Y : a(Y,X), not b(X)} ≤ 2.

in which in the body of the rule r2 appears an aggregate atom of the type count. From
the rule r1 it follows that

s ¹ q

and from r2 it follows that
p ¹ q

a ≺ q

b ≺ q

A stratification for P is a partition 〈S1, ..., Sn〉 of the set of the predicates of P that
respects the relation ” ≺ ” above defined. Given two predicates A and B belonging to Si

and Sj, respectively, A ≺ B implies i ≺ j, and A ¹ B implies i ¹ j.
A program P is stratified if there exists a stratification for P .

Example 5.2 The program in the example 5.1 is stratified. In fact

〈{a, b, s, p}, {q}〉
is a stratification for this program. On the contrary, the following is not stratified:

r1 : q(X) :- p(X).
r2 : p(X) :-#count{Y : q(Y )} ≤ 2.

In fact it is easy to see that no partition of the predicates of P can satisfy the stratification
conditions.

Remark All predicates appearing in an aggregate function must belong to a component
of the positive dependency graph, which is strictly lower than the component of the head
of the rule.

To check this condition, we will enrich the positive dependency graph with all arcs of
the form h ← p, where h is a head predicate and p is a predicate appearing in the aggregate
function. Then, we will check that h and p do not belong to the same component of the
positive dependency graph.

Safety

Regular head and body variables must respect the standard safety conditions. Suppose
that the aggregate atom F , defined in the following, appears in the body of a rule r:

Lg ≤ f{V ars : Conj} ≤ Ug

then, the following conditions have to be verified:

1. Each guard of F , Lg and Ug, must be either a constant (actually, a non-negative
integer) or it must appear also in the set of variables occuring in the body of the
rule r. If the guard does not appear in this set, the aggregate literal must be an
assignment, as shown in example 5.4.
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2. Each variable appearing in a negative literal in Conj must also appear either among
the variables of the body of r or in a positive literal of Conj.

Remark Note that variables appearing in the body of r can be saved by an assigning
aggregate.

Example 5.3 Let P be an IQL program made by the following rules:

r1 : p(X) :- q(X, Y ), Y ≤ #count{V : a(V )} ≤ Z.
r2 : p(X) :- q(X, Y ), Y ≤ #sum{V : a(V ), not b(Z)} ≤ 5.
r3 : p(X) :- q(X, Y ), p(Z), Z ≤ #count{V : a(V )} ≤ Y.

The rule r1 is an example of an unsafe rule. Indeed, the variable Z, representing the
upper guard on the aggregate literal count, doesn’t appear in any other literal of the body
of the rule.

Also the rule r2 violates the safety conditions. In fact, note that the variable Z,
occurring in a negative literal of the conjunction inside sum, doesn’t appear in any other
positive literal of the conjunction itself or in the body of the rule.

The rule r3 on the contrary respects all safety conditions.

Example 5.4 The following is an example of assignment.

h(X) :-X = #count{V : a(V )}.

All the ground instances of a(V) are counted up and the value of count is assigned to X.

6 IQL Semantics

Let P be an IQL program, and let 〈S1, ..., Sn〉 be a stratification for P . Moreover let r be
a rule of P .

A substitution for r is a function β mapping the set of variables of r to the set of
constants of the Herbrand Universe of P , UP .

Given a conjunction Conj, we will denote with β(Conj) the conjunction obtained
from Conj, substituting each variable X appearing in Conj, with its image through β,
β(X).

Definition 6.1 (Local and Global Variables) A global variable of r is a variable appearing
in some standard atom of r.
A local variable of r is a variable X in a set V ars : Conj of an aggregate function of the
body of r.

Example 6.1 In the rule r defined as

p(X) :- q(X, Y ), 1 ≤ #sum{V : a(V,W ), not b(W,Y )} ≤ X.

The variables X and Y are global, while the variables V and W are local.
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Definition 6.2 ( Instances and preinstances of rules) A preinstance of r is a rule σ(r)
obtained substituting each variable X of r with a constant σ(X), where σ is a substitution
from the set of the global variables of r in the Herbrand Universe UP of P (i.e., in the set
of all the constants appearing in P). An instance r′′ of r is obtained from a preinstance
r′ of r, substituting each symbolic set V ars : Conj occurring in (a function of) r′ with
the set Q of the pairs < γ(V ars), γ(Conj) > where γ is a substitution from the set of the
local variables in UP .

Example 6.2 Let us refer to the rule r defined in the example 6.1. An example of
preinstance r′ of r in which the constant 2 is associated to the global variable X and the
value 1 to the global variable Y , is given by

p(2) :- q(2, 1), 1 ≤ #sum{V : a(V,W ), not b(W, 1)} ≤ 2.

Supposing that the values in UP that can be associated to the local variables V and W
are 1 and 2, the instance r′′ of r, corresponding to the preinstance r′ is given by

p(2) :- q(2, 1), 1 ≤ #sum{< 1 : a(1, 1), not b(1, 1) >,

< 1 : a(1, 2), not b(2, 1) >,

< 2 : a(2, 1), not b(1, 1) >,

< 2 : a(2, 2), not b(2, 1) >} ≤ 2.

The set Q represents therefore the instantiation of the symbolic set V ars:Conj. The
instantiation ground(P) of P is the set of all the possible instances of all the rules of P .
In general an interpretation is used to associate a meaning to an instantiated program
ground(P). We describe this by transforming our syntactic constructions in a different
domain, therefore we have to define an association between constants and objects in
the different domain and an association between predicate symbols and functions which
associate true or false to a given n-tuple.

Definition 6.3 (Interpretation) An interpretation for the program P is a subset I of
ground atoms belonging to the Herbrand Base BP .

Let r be an instance of a rule r of P and let f(Q) be a function occurring in the
body of r. To define the value of the function f(Q) w.r.t. I, it is necessary to specify the
meaning assumed by Q in I. In fact, Q becomes a real set when it is valued w.r.t. an
interpretation I. The value I(Q) of Q w.r.t. I is the set

{a : (<a,Conj>∈ Q) ∧ (Conj is true w.r.t. I)}.

The value I(f(Q)) of f(Q) w.r.t. I is the result of the application of the function f to
I(Q).
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Example 6.3 Let f(S) be the function

#count{X : a(X,Y ), b(X)}

One of its instantiations f(Q) is given by the application of the function count to the set
of pairs Q obtained by the generation of all the possible ground instances of S. In relation
with the symbolic set S of this example, Q will be given by

< 1, (a(1, 1), b(1)) >

< 1, (a(1, 2), b(1)) >

< 2, (a(2, 1), b(2)) >

< 2, (a(2, 2), b(2)) >

Let us suppose now that it is defined for the program P in which f(Q) appears, the
interpretation I

I = {a(1, 1), a(2, 1), b(1), b(2)}
The value I(f(Q)) of f(Q) w.r.t. I will be given by the application of count to the only
instances of S for which the conjunction of S is true w.r.t. I, i.e. by

#count{< 1 : a(1, 1), b(1) >,< 2 : a(2, 1), b(2) >}.

An aggregate atom
A = Lg ≤ f(Q) ≤ Ug

is true w.r.t. I if both the relations

Lg ≤ I(f(Q))

I(f(Q)) ≤ Ug

are true w.r.t I.

Example 6.4 Let us consider the function f(S)

#count{X : a(X,Y ), b(X)}

and the interpretation I
I = {a(1, 1), a(2, 1), b(1), b(2)}

already used in the example 6.3 and suppose that f(S) is defined inside the aggregate
atom A . Let A be

0 ≤ #count{f(S)} ≤ 10

The instance obtained for the symbolic set f(S) in correspondence of the interpretation
I

#count{< 1 : a(1, 1), b(1) >,< 2 : a(2, 1), b(2) >}.
returns the value 2. Being this value inside the range of values defined by the two guards
of the aggregate atom A it will be true w.r.t. the interpretation I .
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A positive aggregate literal L is true w.r.t. I if the corresponding aggregate atom A ∈
I; otherwise L is false w.r.t. I. A negative aggregate literal not L is true w.r.t. I if the
corresponding aggregate atom A is false w.r.t. I; otherwise not L is false w.r.t. I.
The notions of satisfaction of the rules, minimal model and stable model for programs with
functions, are immediately extended from DLP, through the application of the definitions
reported above (the reader may refer to deliverable D1.2, and to [7]). The output of a
IQL query will be the extension of the predicate specified within the GOAL statement
inside the (unique) stable model of an IQL program.

7 Conclusions

We introduced in this deliverable the Infomix Query Language, which will be used as the
query language for the end-user within the Infomix platform. The language is powerful
enough to accommodate most common user needs, since IQL features select-project-join
capabilities, stratified negation, and aggregates. Some of these capabilities cannot be em-
ployed in presence of certain kinds of integrity constraints on the global schema. Anyway,
it is specified how to tailor the language implementation in order to identify and filter out
such cases.
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