Infomaix Infomix: Boosting Information Integration 1.0

Project Number:
Project Acronym:
Project Full Name:

Deliverable Number:
Title:

Workpackage:
Document Type:
Distribution:

Status:

Document file:
Version:

Number of pages:

Due Date:
Delivery Date:

Partners contributed:
Partners owning;:

Man Months:

Short Description:

IST-2001-33570
INFOMIX
Infomix: Boosting the Information Integration

D6.2

Methods for data acquisition and transformation
WP6

Deliverable

INFOMIX Consortium

Final

WP6 T2 D6.2 0202.pdf

1.0

33

December 31, 2003
December 22, 2003

TUWIEN, RODAN
TUWIEN
6

The purpose of this document is to describe methods for homogeneous access to data
residing in information sources to be integrated, and to select and adapt available
research results for their realization from the fields of information integration and
agent technology. The data in the sources are given in the raw data formats specified
in Project Report D6.1, and have to be transformed into an appropriate format for
internal integration use. In the course of this, the INFOMIX Source Data Format
(ISDF), which provides a uniform logical format of the source data to the user, has to
be taken into account, as well as an internal integration data format, which is the one
used by the internal integration algorithms. Furthermore, the usage of methods and
techniques for information extraction from implicit representation in this framework

will be respected.

(©2003/Infomix

1 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

Document Change Record

Version | Date Reason for Change
v.1.0 September 4, 2003 | First draft
v.1.1 September 13, 2003 | Amalgamate Warsaw minutes

v.1.2 October 6, 2003 Add RODAN input
v.1.3 November 4, 2003 Introduce IGDF, IIDF

v.14 November 14, 2003 | Sketch data cleaning

v.1.5 November 15, 2003 | Solidify wrapper descriptions

v.1.6 December 2, 2003 | Detail data cleaning

v.1.7 December 2, 2003 Detail raw data to ISDF transformations

v.1.8 December 3, 2003 | Detail caching and data transfer

v.2.0 December 4, 2003 Detail ISDF to IIDF transformation

v.2.1 December 15, 2003 | Incorporate comments by UNIROME and UNICAL
v.2.2 December 16, 2003 | Incorporate design input by RODAN

(©2003/Infomix 2 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

Contents
1 Introduction 4
2 Preliminaries 5
2.1 DAT functionality and architecture 5
2.2 DAT tools o 8
2.3 DAT-relevant data formats in INFOMIX 8
3 Wrapper Generation 9
3.1 Code wrapper definition 12
3.2 Query wrapper definition Lo 13
3.3 Visual wrapper definition Lo 15
4 Wrapper Execution 16
4.1 Mapping from Raw Data to ISDF 17
4.2 TIDF . . . 18
4.3 Mapping of ISDF to IIDF 19
4.4 Conversion of IGDF to IIDF 21
4.5 DataCleaning L 22
4.5.1 Data Cleaning in INFOMIX 23
5 Auxiliary Functions 24
5.1 Schema Editing and Browsing o000, 24
5.2 Source Data Browsing 24
6 Implementation Guidelines 24
6.1 Data Transfer 25
6.2 Materialization and Caching oo 0oL, 25
6.3 OOPortal for implementing the DAT layer 27
6.4 Object Model of the DAT Layer 27
6.5 Functionality of first implementation prototype 29
7 Conclusion 30

(©2003/Infomix 3 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

1 Introduction

The INFOMIX project is aimed at exploiting advanced reasoning capabilities in order to
provide a set of techniques and tools for next-generation information integration. An im-
portant aspect of this problem is that data and information is in general not available in a
homogeneous format, but rather in different formats, which range from structured formats
such as relational data or object-oriented data formats, over semi-structured formats like
XML to completely unstructured data in form of plain text. The INFOMIX information
integration system shall be able to deal with different data formats and support their
logical integration. To this end, the INFOMIX system (D2.2) has been equipped with
a conceptually layered architecture, in which the lowest level, the Data Acquisition and
Transformation Layer (DAT Layer), provides “low-level” access to the data sources which
should be integrated (see Figure 1).

INFOMIX
Query (Re)formulation Information Model Model Manager
" Information
Servieelevel | |7 Computational |
Logic System
" Internal Integration Engine =
' Integration Level 1

)

ata Acquisition and
ransformation Level

Data Sources 8 8 I 8

Figure 1: Conceptual layers of the INFOMIX information integration system.

-

Data Acquisition and Transformation

Objectives. The aim of this document is to specify the methods and means for re-
alizing data acquisition and transformation at the DAT Layer of the INFOMIX system
(“Data Wrapping”), following the functionality given in Project Report D2.2 (INFOMIX
Architecture) and building upon Project Report D6.1 (Heterogeneous Data Source Type
Description), where the different “raw” data formats to be handled are described. Raw
source data have to be transformed into the logical INFOMIX Source Data Format (ISDF)
as well as into the Internal Integration Data Format (IIDF), which has been presupposed

(©2003/Infomix 4 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

in Project Report D4.2 (Algorithms and Implementation Techniques for the Internal In-
tegration Formalism) and will be defined in Section 4.2 of this report. Besides these
basic functionalities, different methods for specifying and generating wrappers for the
DAT layer by the user, respectively the system administrator, will be described. This
document will serve as a basis for the implementation of the DAT Layer (Work Package
WP7.3).

Relations to other documents. This report is directly related to the documents D1.3
(Review of Techniques and Systems for Acquisition and Transformation of Heterogenous
Data), D2.1 (Functional Specification of the INFOMIX System), D2.2 (INFOMIX Sys-
tem Architecture), D4.2 (Algorithms and Implementation Techniques for the Internal
Integration Formalism), D6.2 (Heterogeneous Data Source Type Description). It is fur-
thermore relevant for the implementation of the INFOMIX prototype, in particular for
the Information Integration Management Layer prototype (Deliverable 7.1) and for the
Data Acquisition Layer prototype (Deliverable 7.3).

Intended audience and usage guidelines. This report is accessible to the public.

Notational conventions. Nothing particular.

2 Preliminaries

In this section, we briefly recall some conclusions and findings from previous documents
of the INFOMIX project which are relevant to this document.

2.1 DAT functionality and architecture

The functionality of the DAT Layer, and a rough architecture, has been described in
the INFOMIX system architecture (D2.1), in which the Design-Time and the Run-Time
architecture of the system has been described, shown in the Figures 2 and 3.

The DAT Layer is, since it is a conceptual layer, not explicitly outlined in this func-
tional system architecture.

The data acquisition and transformation in INFOMIX will be realized through wrap-
pers, which retrieve the data from the sources in the raw data format and transform them
into the logical source format, ISDF, as well as into the internal integration format, IIDF.
The particular conversion methods from raw format to ISDF and from ISDF to IIDF
(resp., from raw format to IIDF directly) will be dealt with in Section 4.

The Design-Time part, however, comprises the Wrapper Generation Interface and the
Wrapper Generator, while the Run-Time part comprises the Wrapper Ezecutor. The
functionality of the Wrapper Generator and the Wrapper Executor will be recalled and
detailed in Sections 3 and 4, respectively.

(©2003/Infomix) TUWIEN, RODAN

1.0

10n

Boosting Information Integrati

Infomix

Infomaix

Consistency Check Response

uojessusD
77717 35ddeim s1eAidy

BEVENSSEIIS

v

SdAL B1eq pue soinog
©JEWaYOS PajeIoosse

pue siaddel) uo uonewloju|

I uoneisuag Jaddelpn 81eAldY

3BINCS PPV’

Wrapper
Generation
Interface

SN0
STAL BTE PUE S30INOX

Wrapper

Legend:

— Data Flow

-----+ Control Flow

K
g
W @
g
=
- :
g
H
5 g
w =
3 -
5 3
H
o §
=
g
g |«
g
=
BJEWAYOS PUB S92IN0S

pajeloosse ‘siaddeip uo Uonewioju]
EJBWAYIS PUE S30INOS_PAJBIDOSSE

‘s1addeipp uo uonewloyu| BI0)S |

pue ssadd UO uoneuLIojU| !

5 — c
c uoijezifensia g..m o
ELBYS 120 © O
2 | EaEw:u mewLwO m. =@ buiddepy
% uoezifensin 32 m oo e
(=) \ EJEWaYSS 9dIN0s W % S uo mco;mo.cﬁo_z
10165 Buiddeny ™

Buiddely 81813Q/A}IPOIN/PPY

109[q0 eWAYIS

Tedo|S 818 T/MTPON/PPY

i BWSUS [BG0/S

BWRIS [BG0[0

EEWEV I

UOHEZIENnsiA_ ejelliagos soinog

JUIETISUOD S13[8d/ AIPOIN/PPY

Activate Consistency Check

Global
Schema

Mapping

Repository

S
m Buiddepy
nnv sbuiddepy
© [uouonewow
[0) - sbuiddepy
o UoeLWioju 199 ~
3

Interface

User
Interface.

B0IN0S pUE [EG0[S "SBuUIdde]y U6 U0 i)

109(qo BWaYDS [BGOID

€U0 SUOREDNIPOI ™|

305100 BWBLOS [Eq0]

109[qo ewayo! _mno__%

Global

Schema

meeoo-------v Metadata

=
k<] JUENSU0D

o T93]G0 EWRLIS [BGO[0

2 JUIBJISUOD JO |
@ | 198O eSS [EYOTS BI61RT
O] BWaDS [eqo|B UO UoREewIop|

JUles}SUOD puEe spalqo
BUI3GSS [Eqo|b UG UoNBliiou] 169

UE [2q0|6 UO Uonew.oU|

“““““““““““““““““““““““““““““““ N
c
D - ejewsyos
2B 901N0S puE [BqO]6 UO UOHEW.IOM|
‘@O
m .nn.v sBuiddew uo uonewuoyu)
OO
E
e
g
2
Blo 5
35 2
g8
[
2 .
S oL
53
2°
2% 2
oouw

TUWIEN, RODAN

itecture of the INFOMIX system.

Design-Time Arch

2

Figure

(©2003/Infomix

1.0

10n

Integrat

10n

Boosting Informat

Infomix

‘ Wrapper 2|

‘ Wrapper 1

Infomaix

I¢)
o
)
2
O
o —
O
= o
[[SIe%q] ..m 5
a3 £0
hel
e 8
=020 %] 3
095 > g
533 2 g
25 Q2 o 8
[agagni
=
“““““““““ 5 W
h] o) oo
| 1 o5 o |
m m -
" 5 | e £
” 2 2[5 - pataReauest,
| 211 o
o N P
WoIB0I4 BOpIod SNoUNI] > W Sl 5 290 Refrieved Data
L =]
Juewebuouoa! Jomsup Alens)| % 2 3 m o %. %
L <& I > 0] . =
ToMSUD AionS)! ; S . |yobodad| > @ =5
; ” 0 pezuydo | 5 I N
! ! o g () c=E
i ! 9 ¢ >0 20 = 0
! ! B &Pl 5 MmBmnl 28 R |
H 1 m S 30 woiboidadl A A O o
1 | o = =
1 1 o I el
' i 2| 5
i i SIER G
! ! 2|g2 Qg
1
| " 2(85 . peloduoopoooleg 48
i 1 0|3 § o0
! ! ! 108jN0aX3 1oddDIM SIOAIOY 2o
1 1 M s ettt ettt inieteinitainttainintainieinintatniniatniiainiiainiiuinie a8
v | m m m 50 POO] OF DJOP 50IN0S m”m
! | ' W_ ” - a”w
i » G,O
m nhv ! 5 £ || wobod Bojpyog aAouUNisIq ..nlu > em e 17
i I P
— ! = D1 oy 5 % | ¥ SBuiddow U6 UoPWIo] o] ..@
[0) ' S Q1 h = ' | $Weyos 82IN0s UO UCHOUION] oIk}
P s 23 8 | ey I 3
D ! w IS 5] l\ﬁ\owmw* > m Dwayos pqo|B UO UOHOULIOM| m a
i 5 = T o O
|8 E[Rens) 55 | __Diowsyos 80nos pub_odolf, s&
| 1 T ‘sBuiddojy UO UoIDULIOM| §99) P P
i
” N L
| i 1 i i
! ' T S[08|q0 DWBYSS [OGO[0 UO UCHOWIO| i |
1 TTTTTTTTspoelqo puisos 1Gojp ud uogouIo 9 T T T T m
i i i
i 1 i
1 1 i
i i 1
i 1 i
1 1 i
i i 1
| | "
1
10800 PUIBYDS [0GOI6 40BIeS | m !
1
$109[q0 PUIBYS [DOID! 5 m o] \Lﬁlwﬁo\wﬂm DUWISGSS JOGoIB U0 Uolollojui s~~~ T T T
3180 g ! /08I0 DUIBUDS [0GOI6 UO UOHOULIOW|
i |0£ 3 i
S 038 !
1 0 @ @ i
= i
] i
18 1
;

-----+ Control Flow

— Data Flow

Legend:

TUWIEN, RODAN

Wrapper k

Wrapper 3

Architecture of INFOMIX system - Run-Time part.

Figure 3

(©2003/Infomix

Infomaix Infomix: Boosting Information Integration 1.0

2.2 DAT tools

In document D1.3, we have provided a review of techniques and systems for acquisition
and transformation of heterogenous data from the perspective of the envisaged DAT layer
of the INFOMIX system. In it, the data from the (physical) sources should be mapped
into a logical (virtual) format which amounts to a restricted fragment of XML. From the
wide range of DAT tools which are available, the report D1.3 concluded that the following
two tools should find application in the development of the INFOMIX system prototype:

1. The OfficeObjects Portal, in particular the OfficeObjects Repository together with
OfficeObjects Data Extractor, of RODAN, for wrapping structured and also semi-
structured data; and

2. LiXto Suite, comprising LiXto Visual Wrapper and the LiXto Transformation Server,
of LiXto GmbH for wrapping unstructured, poorly structured, and semistructured
data.

2.3 DAT-relevant data formats in INFOMIX

The DAT layer of INFOMIX is concerned with different data formats, which correspond
to the data flow in the INFOMIX system (see Figure 4).

INFOMIX Source Data Format
(ISDF)

Raw Data Formats Internal Integration Data

Format (IIDF)

E‘*“@

|
|
Wrappers N Mapping
N | g |
| |
N
Heterogeneous DAT Layer Integration Layer

Data Sources
User

Figure 4: DAT-Relevant Data Formats.

Raw Data Formats: At the input side to the system are the source data in their individ-
ual formats, called raw data formats. They comprise relational data, object-oriented
data, XML data, HTML data and to some extent embedded data (e.g., postscript),
some of them under certain restrictions; we refer to D6.1 for details.

INFOMIX Source Data Format (ISDF): The heterogeneous raw data are transformed
to the homogenous INFOMIX Source Data Format (ISDF), by means of wrappers
as specified in the INFOMIX architecture. The ISDF provides a (logical) view of the

(©2003/Infomix 8 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

H Input ‘ From ‘ Functionality H
Source and Data Type Designer Specification of the sources
to be wrapped
Source Schema, Designer Specification of the sources

to be wrapped

Information about Wrappers | Metadata Repository | Visualization of information
and associated schemas on generated wrappers and
associated schemas

Table 1: Inputs of the Wrapper Generation Interface.

wrapped data which is accessible to the user, and is the uniform logical format of
source data for defining mappings between the global data format at the user side,
and the local data format at the (wrapped) sources. The ISDF has been specified in
document D6.1. It has been designed as a (rather plain) fragment of XML Schema
which comprises in essence complex value data that are relational in the core.

Internal Integration Data Format (IIDF) The source data needs to be transformed
into an internal format which is used at the internal integration level. This format,
the Internal Integration Data Format (IIDF) is by the nature of the INFOMIX
integration algorithms the relational data format. The IIDF has been presupposed
in document D4.2, and will be further elaborated on in Subsection 4.2 below.

3 Wrapper Generation

The Wrapper Generation Interface allows to incorporate data sources into the system, by
specifying the necessary pieces of information, from which then individual wrappers for
the data sources are generated.

The Wrapper Generation Interface module is in charge of both the generation of the
wrappers for the sources participating in the data integration system and the storage in
the Metadata Repository, of source schemas and associations between source relations and
wrappers. All of these tasks are accomplished at design time, setting up the system for
run time, during which user interactions on the DAT layer would be impractical and are
therefore not foreseen in Figure 2.

In particular, the designer specifies, by means of the Wrapper Generation Interface,
the set of sources and the format of the data stored in the sources; in case, the designer
might also specify some logical source schemas in the ISDF, e.g. if sources do not allow
to construct an ISDF automatically. The inputs and outputs of the Wrapper Generation
Interface are recalled in Tables 1 and 2.

Since all user interaction with the Wrapper Generation Interface is done by the de-
signer (who will in general be some kind of administrator rather than a user of the IN-
FOMIX system), when referring to “user” in this context we actually mean the user of
the Wrapper Generation Interface, which is the designer.

(©2003/Infomix 9 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

H Output ‘ To ‘ Functionality H
Set of Sources Wrapper Generator | Activation of the
and associated data formats Wrapper Generator
Source Schemas Wrapper Generator | Activation of the
Wrapper Generator
Information about wrappers | Designer Visualization of information
and associated schemas on generated wrappers and
associated schemas

Table 2: Outputs of the Wrapper Generation Interface.

Wrapper Type | Query Formulation Support | Wrapper Generation Support
Code Wrapper none none

Query Wrapper none automatic

Visual Wrapper semi-automated automatic

Table 3: Ways of Wrapper specification in INFOMIX

The INFOMIX prototype will provide different ways of generating wrappers. They
comprise, depending on the type of data source which should be incorporated to the
data integration system and on the information needed, the possibility of graphical spec-
ification, manual specification, or low-level specification in terms of an API executing
proprietary code. As far as possible, the user will be relieved from technical details and
information required for wrapper execution at run time is compiled automatically, when-
ever this is feasible.

In more detail, the following possibilities for wrapper generation will exist, which are
supplied with different high-level user support (cf. Table 3):

Code wrappers: At the lowest level are code wrappers. They provide a means to inte-
grate, through a well-defined API, any data source into the data integration system.
The wrapper is conceived as a black box, which is called via the API for wrapper
execution at runtime. The code implementing the API and retrieving the data from
the source, has to be provided at design time by the user. No user support can be
provided for the generation of code wrappers.

Query wrappers: At the mid- to high-level support are Query Wrappers. Here, a data
source is incorporated to the data integration systems via a query, formulated in
some query language, which is shipped to the data source for retrieving the data.
Prototypical query wrappers will use the ODBC or JDBC interfaces to relational
databases. The data retrieved, if not already in ISDF, has to be converted to ISDF,
at least conceptually (see the discussion in Section 4). At this level, automatic
support for wrapper generation is given: The user just provides a query, the ISDF
schema of the source and further configuration information; the wrapper is then
generated automatically from this information. No support for the formulation of

(©2003/Infomix 10 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

the query will be provided. While such a support does not seem impossible, the
additional complexity caused by necessary interactions with the underlying database
systems is prohibitive.

Visual wrappers: At the high-end of user support, visual tool support is given. That is,
graphical tools are available for defining wrappers, which basically help the user to
define, by the use of examples, a query expression in an underlying query language
for retrieving the desired data from the source in a convenient way. In particular,
at this level Rodan’s Data Extractor and LiXto’s Wrapper Generator as well as
Transformation Server will be used. Here, the underlying systems provide (semi-
Jautomatic support for formulating the queries and for generating the wrappers.
Thus, user support is given to a higher degree than at the level of Query Wrappers
(since the user is eased from writing a complicated query expression in a query
language).

The above possibilities for wrapper generation will be detailed in Sections 3.1, 3.2,
and 3.3, respectively.

Wrapper Meta Data. As outlined in the INFOMIX architecture (Fig. 2), the Wrap-
pers are stored in the INFOMIX Metadata Repository. By Meta data we refer to infor-
mation which will be used by the Wrapper Executor at runtime in order to invoke and
execute wrappers. The various wrapper types have different meta data associated with
them. However, there is a meta data core which is common to all wrapper types. This
core comprises the following items:

e The name of the data source,

e the location of the data source,

e the ISDF schema of the wrapped source data, and

e the IIDF schema of the data wrapped to the internal integration format.

We remark that in some cases, automatic ISDF schema and IIDF schema creation is
needed and desired (in particular, for relational sources). However, not in all cases schema
creation will be fully automatic, and user interaction will be necessary. In case of query
and visual wrappers, suggestions of ISDF and IIDF schemas will be made to the user,
respectively.

Besides the core attributes, the descriptions of the various wrappers have, according
to their type, further attributes as detailed in the subsections below.

Parameters in data access We remark at this point that with respect to optimization
and performance issues, it would be desirable that wrappers can handle to some extent
parameters in the data access. For instance, it is desirable that data selection is carried
out already at the data source, i.e., at the level of raw data, if this is feasible, rather than
at the level of the ISDF if the definition of a mapping between the data source and a

(©2003/Infomix 11 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

global relation involves such data selection. In this way, a possibly much smaller portion
of data needs to be transferred.

For example, in case of a query wrapper realized with ODBC, the query to the source
which retrieves the data might be adjusted in order to carry out a selection for the name
“John Doe” already at the source site. Such a selection might come in e.g. in the process
of query optimization, if constants are pushed towards the sources. The issues of query
optimization will be addressed in Work Package WP5.

This requires, however, that such data selection capabilities are supported by the
wrapper. Not all of the wrapper types outlined above do provide such capabilities (e.g.,
code wrappers cannot support them). Query Wrappers are, in general, flexible and allow
for a rewriting of the query shipped to the data source such that selection is pushed
through. For visual wrappers, the situation is different and no such easy rewriting is
possible. For this reason, the use of parameters in the description of data access for such
wrappers is suggestive, which might dynamically be instantiated or set to a default value
for data access. This will be detailed below.

3.1 Code wrapper definition

A Code wrapper uses fixed code that provides data in source data format. Source con-
figuration parameters (like e.g. a database name) can be either hardcoded or stored in
some configuration file, thus viewing a code wrapper at run time as a black box which
produces only output. At design time, a code wrapper is therefore to be viewed as an
entity with an optional proprietary configuration parameter. Note that as a consequence
(query-)optimization techniques are not applicable through code wrappers.

Way of specification: The extraction method of a code wrapper should be written in
or made available through Java to be invoked by the INFOMIX Demonstration Platform
(IDP) using the Java reflection mechanism.

At design time, the user will specify the code wrapper details like method name, class
or package (there will be a possibility to select one of the previously defined APT defini-
tions). The user can also define an optional string parameter to instantiate a parametric
code wrapper. The interpretation of these parameters depends on the wrapper extrac-
tion method (for example in object oriented method an object name can be passed as a
parameter).

So strictly speaking, a code wrapper is actually a pair of the actual code along with a
parameter. However, this parameter is processed only at design time, and hence at run
time it is not possible to determine that two code wrappers rely on the same code base
with just differing parameters. Therefore no reasoning or optimization effort can be done
in this direction. This run-time-view also justifies the view of a code wrapper to be one
inseparable entity. The parameter should just facilitate code re-use.

The following API serves as a specification both at design and at run time. Wrapper
and API are de facto equal for code wrappers.

API:

(©2003/Infomix 12 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

method (buffer,parameter) Retrieves all the data in the wrapped source, and material-
izes it in ISDF into the given buffer area. The optional parameter is specified at
design time and is stored with the meta data. method is determined by the meta
data package, class, and method.

Meta data needed:

method The name of the method which performs the data extraction.
class The extraction method class name.

package The extraction method package name.

parameter An optional method parameter.

method: GetObjectsAsXML
class: 000bjectList
package: pl.rodan.ooportal
parameter: | "+43-1-[0-9-/]*"

Table 4: Example Meta Data for a Code Wrapper

Table 4 gives an example for the meta data associated with a code wrapper. When
the wrapper is invoked, 000bjectList.GetObjectsAsXML (buffer,"+43-1-[0-9-/]1*")
of package pl.rodan.ooportal will be executed. Here the parameter is used to specify a
regular expression which matches phone numbers in Austria. The way how this parameter
is used is determined by the method code.

3.2 Query wrapper definition

Query wrappers are specified in terms of a view expressed as a query in some query
language. The sources they access typically are database systems, in particular such
wrappers provide an interface to relational databases via ODBC or JDBC. However, in
principle such a source can be any system interfaced via a query language.

Way of specification: The user has to define the query language to use, and also
connection parameters, including database location and authentication information. After
defining the source connection parameters, the user will be asked to provide the query to
be executed. Query validation will not be performed, but in the case of the SQL query the
application will check if that query starts with clause “select”, to make sure that update
or insert query will not be executed accidentally.

(©2003/Infomix 13 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

Meta data needed:

query language Query language (a dictionary type). For the prototype, there will be
one kind of query language — SQL. Later-on the number of query languages can be
extended (with XPath, for example).

database type The type of the database. There will be several predefined data types
for SQL (ORACLE, MSSQL, POSTGRES and ODBC), but also a new database
type can be added. The ODBC is not a real database type, but it defines when the
jdbc:odbc bridge should be used instead of the jdbc connection.

driver The driver to be used to access the database. Several jdbc database drivers will
be provided with IDP. If the user chooses a driver not provided with IDP, she must
put the proper database driver into the IDP class-path.

user Name of the database user.
password Password of the database user.
connection string A database connection string (specifying name, location, etc).

query The query to be filed.

query language: SQL

database type: POSTGRES

driver: org.postgresql.Driver

user: infomix

password: infomix

connection string: | jdbc:postgresql://192.168.1.102:5432/infomix

query: select name, surname from users where name like ’T%’

Table 5: Example Meta Data for a Query Wrapper

Table 5 contains example meta data of a query wrapper. When the wrapper is invoked,
it will retrieve tuples by executing the query (possibly extended by dynamically passed
additional conditions) in the specified database, using the driver and login information.

The run-time API for query wrappers contains (beside the buffer to store retrieved
data) an optional condition, which can be passed down to the wrapper by a higher-level
module.

API:

query_method (buffer,condition) Retrieves all the data from the database, specified
by the associated meta data, under a possible additional condition specified as
an argument. The additional parameter can serve as a handle for future query
optimization.

(©2003/Infomix 14 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

3.3 Visual wrapper definition

Visual wrappers are used to specify the source schema and to define source view query
definitions by graphical means. The tools supported by the prototype will be Office Ob-
jects QBE, LiXto Visual Wrapper, and LiXto Transformation Server. These tools will
be embedded into the INFOMIX prototype, and will require some local setup informa-
tion (such as the URL to LiXto Transformation Server), which will be stored in IDP
configuration files.

Way of specification: The user has to select one of the three available DAT visual
tools (Office Object QBE, LiXto Visual Wrapper, LiXto Transformation Server). We will
first describe requirements for each of these and will then formulate a generalization in
order to unify the meta data.

Office Object QBE The user has to select one of the available “extractions” in the
system (defined previously using Office Object QBE). If there are some required param-
eters defined in the extraction, the user will be asked to enter them. The definition of an
extraction in Office Object QBE is documented in the Office Object manuals.

LiXto Visual Wrapper The user has to provide the name of the “wrapper program”
defined previously in the LiXto Visual Wrapper tool. Then, the user has to provide
the URL of the page the wrapper program should operate on (if not, then default page
specified in the LiXto wrapper program will be used). The process of creating a wrapper
program is well-documented in the LiXto manuals.

LiXto Transformation Server The identifier of a pipe, which was previously defined
in the LiXto Transformation Server, must be specified by the user. The access to such
a pipe possibly requires authorization, in such a case the user has to specify a username
and the associated password. The way how a pipe is created in LiXto Transformation
Server is described in the LiXto manuals.

Meta data needed: In all three cases, an external system is used to create a re-
source (extraction, wrapper program, or pipe, respectively), which is later referred to by
name. Some of these resources need to be instantiated by specifying some parameter or a
URL. For LiXto Transformation Server some authorization to access a resource is possibly
needed.

So we propose the following generalization for meta data storage: For each wrapper
its type and resource name must be stored, along with its instantiation parameter. Since
authorization might also be needed in the future for other wrapper types, we have decided
not to view authorization as a special kind of parameter, but to represent it separately
in the meta data storage. That means that currently the instantiation parameter will
always be empty for a LiXto Transformation Server wrapper, while user and password
information will always be empty for other wrappers.

(©2003/Infomix 15 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

type Indicates whether the wrapper is an Office Object QBE, LiXto Visual Wrapper,
LiXto Transformation Server type wrapper.

resource name For Office Object QBE this is the extraction definition name, for LiXto
Visual Wrapper it is the program file path, for LiXto Transformation Server the
pipe identifier.

parameter This can be a string with extraction parameters for Office Object QBE, an
URL to the page to be operated on for LiXto Visual Wrapper. Currently not used
for LiXto Transformation Server.

user Specifies user information for authorization. Currently only used for LiXto Trans-
formation Server pipes.

password Specifies password information for authorization. Currently only used for
LiXto Transformation Server pipes.

type: Office Object (BE type: LiXto Transformation Server
resource: FAMILY resource: world.lila.p1l

parameter: | &name=’Smith’ parameter:

user: user: infomix

password: password: | infomix

Table 6: Example Meta Data for Visual Wrappers

Table 6 shows example meta data for an Office Object QBE wrapper (left), which
passes an extraction parameter (that name should be ’Smith’) to the extraction named
FAMILY. The right part of Table 6 are the meta data for a LiXto Transformation Server
pipe named world.lila.pl, to be accessed by user infomix with password infomix.

Finally, the API definition of visual wrappers is very simple, as no data is passed at
run-time.

API:

visual wrapper (buffer) This method simply invokes the associated wrapper and stores
the results in the buffer.
4 Wrapper Execution

The execution of wrappers at run time will be taken care of by the Wrapper executor.
The inputs and outputs of running a particular Wrapper are recalled in Tables 7 and 8.

(©2003/Infomix 16 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

H Input ‘ From ‘ Functionality H
Source Data to Load Query Reformulator | Wrapper Execution
Wrappers to be executed | Metadata Repository | Wrapper Execution
Retrieved Data Wrappers Wrapper Execution

Table 7: Inputs of the Wrapper Executor.

H Output ‘ To ‘ Functionality H

Retrieved Data | Internal Data Store | Wrapper Execution
Data Request Wrappers Wrapper Execution

Table 8: Outputs of the Wrapper FExecutor.

4.1 Mapping from Raw Data to ISDF

Raw data is mapped into ISDF upon wrapper execution. However, there may be excep-
tional cases, where raw data is mapped directly into IIDF (see Section 6.1).

In general, it is the task of an administrator to specify a mapping to ISDF for the
data at hand. Depending on the type of wrapper that is built for a source, the “mode” of
specifying the mapping may vary, e.g by writing code in case of a code wrapper definition
or by graphically defining an extraction in case of a visual wrapper definition.

Nevertheless, as for schema generation, there may be automatic support for the map-
ping generation for particular raw data formats. Predominantly for relational data, the
mapping — like the schema — will be generated automatically following a procedure for
mapping relational data to XML. Automating such mappings is discussed e.g. in [19].
Several implemented tools are available for this task, among them:

e DB2XML [30, 29]

e Oracle XML SQL Utility

e ODBC2XML [25]

e IBM DB2 XML Extender [15]
e XML-DBMS [3]

e SilkRoute [10]

e Xperanto [7]

A listing of tools for converting relational data into XML with detailed descriptions
is maintained at http://www.rpbourret.com/xml/ProdsMiddleware.htm. During the
implementation phase, a commitment to one of these tools should be made.

(©2003/Infomix 17 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

4.2 1IDF

The Internal Integration Data Format (IIDF) is the data format on which the internal
INFOMIX integration algorithms work. This format has been presupposed in Deliverable
D4.2 already, without explicit specification, as the relational data format. The reason for
this is threefold:

e Firstly, the theoretical results about integration have been developed with the rela-
tional data format as core in mind.

e Secondly, the DLV deductive database system, is geared towards relational data.

e Thirdly, for scalability issues the usage of efficient database engines for subtasks or
optimization in the data integration process has been recognized as a promising ap-
proach. Here, relational database technology is currently by far the most developed
and sophisticated.

More precisely, the IIDF consists of the standard, flat relational data format. The
data is stored in a relational storage, the Internal Data Store (IDS), which comprises
database tables of the form

table name(C1l: type_1, C2: type_2,...., Cn: type.n)

where table_name is the the name of the relation and C1,..., Cn are the columns, which are
typed with respective types type_1,..., type_n. As for the types, there are no particular
restrictions imposed except for those which emerge from the particular software which
implements the IDS. Furthermore, the data mapped to IIDF (which are both data from
the global schema and the local sources) might incur implicit restrictions to the datatypes
foreseen (cf. the ISDF definition in Deliverable D6.1).

While the IDS is not bound to a particular location, for efficiency reasons it is intended
to be kept in main memory whenever feasible.

The INFOMIX internal integration algorithms, and in particular the DLV system
employed shall access the IDS holding the data for integration through an ODBC interface.
The ODBC interface developed for DLV to this end is described in Deliverable D4.2; we
do not repeat it here.

Since DLV can handle only a restricted set of data types, basically,

e integers of bounded range, where the range is dynamically specified at runtime, and
e strings,

a type conversion of data in the IDS to the DLV types is necessary. This conversion is
performed during the access of the IDS through ODBC calls, where the conversion of any
data type to type integer and/or type string is feasible; we refer to Deliverable D4.2 for
further details.

(©2003/Infomix 18 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

4.3 Mapping of ISDF to IIDF

The mapping of the semistructured ISDF to the relational IIDF requires a specific trans-
formation algorithm. Several techniques to store XML data in relational databases have
been proposed in literature; In [27] three inlining algorithms are presented that focus
on the table level of the schema conversions, whereas [11] concentrates on the attribute
and value level of the schema, comparing different algorithms and their performance. A
method to preserve semantic constraints of a DTD is discussed in [18]. STORED [8] is
a data mining based system that directly uses the XML document instead of a DTD to
create the relational schema. A utility to exchange data between XML and a relational
DBMS is presented in [2], where the user is able to specify a mapping by a template
language.
The Mapping of ISDF to IIDF comprises two major tasks:

e Resolving the conflict between the two-level nature of relational schemas vs. the
arbitrary nesting of XML schemas. To this end, the ISDF has to be “flattened” into
the two-level IIDF structure.

e Dealing with set-valued attributes in the ISDF by decomposing the respective ele-
ment into a separate relation.

The flattening algorithm starts with the creation of a table for the root element of the
XML schema, denoting it with the element’s name, and continues by processing each child
element as follows:

1. A simple type child element is translated into a relational attribute.

2. A complex type child element, its attributes, and (possibly nested) elements are
translated into respective relational attributes, using the “dot” notation (explained
below).

3. A multi-valued complex type child element causes the addition of a primary key
attribute (unless such a primary key has already been created) and the creation of
a separate relation, where a foreign key is added, referencing the aforementioned
primary key. For each child element of the multi-valued element, the algorithm is
started recursively, using the newly created relation.

Preserving the overall structure when decomposing data in multiple relations demands
private and foreign key datatypes. Basically they can be emulated by one of the existing
simple types together with the specific constraints that are inherent to key attributes (i.e.,
values of the primary key must be unique, each value of a foreign key has to exist as a
primary key value in the according relation). We will call these datatypes primary key
and foreign key.

A foreign key has to include the relation and attribute name which it references. We
will express this information via the foreign key attribute name, encoding the referenced
relation name as well as the primary key attribute name (see Example 4.1).

The “dot” notation mentioned in step 2 ensures, that the entire path from the root
element is preserved in order to guarantee a bidirectional mapping. This notation is

(©2003/Infomix 19 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

characterized by concatenated element names, according to the entire path from the root
element, separated by dots (see the following example). To illustrate the application of
the algorithm, we reuse Example 5.3 of D6.1:

Example 4.1 A soccer team with all its players included is given by the following schema:

<xsd:complexType name="SoccerTeam'">
<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="Coach'">
<xsd:complexType>
<xsd:attribute name="FirstName" type='"xsd:string"
use="required"/>
<xsd:attribute name="LastName" type='"xsd:string"
use="required"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="Player" maxoccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="FirstName" type="xsd:string"
use="required"/>
<xsd:attribute name="LastName" type="xsd:string"
use="required"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

Applying the mapping algorithm results in the following relational schema:

SoccerTeam(Name: string,
Coach.FirstName: string,
Coach.LastName: string,
PK: primary key)

Player (FK.SoccerTeam.PK: foreign_key,

FirstName: string,
LastName: string)

Note how the complex type element Coach has been split into two attributes using the
“dot” notation. This is feasible as there will be exactly one Coach element in each
SoccerTeam element. For the complex type element Player element the situation is
different because an arbitrary number of Player elements can occur in a SoccerTeam
element. Therefore, Player is transformed into a separate relation, which is linked to the
SoccerTeam relation by a foreign key. To this end, a primary key has to be introduced
in the SoccerTeam relation. Note that if other elements were present in SoccerTeam,
which can occur multiple times, e.g. CupsWon, the corresponding relations would re-use
the primary key PK of SoccerTeam.

(©2003/Infomix 20 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

Consider some example data in ISDF extended from Example 5.3 in Deliverable 6.1 de-
picted in Table 9.

<SoccerTeam>
<Name>Bayern Munich</Name>
<Coach FirstName="Ottmar" LastName="Hitzfeld"/>
<Player FirstName="Oliver" LastName="Kahn'"/>
<Player FirstName="Giovane" LastName="Elber"/>
</SoccerTeam>
<SoccerTeam>
<Name>Reggina</Name>
<Coach FirstName="Franco" LastName="Colomba'"/>
<Player FirstName="Emanuele" LastName="Belardi'/>
<Player FirstName="Shunsuke" LastName="Nakamura"/>
<Player FirstName="David" LastName="Di Michele"/>
</SoccerTeam>

Table 9: Example ISDF data.

The corresponding data mapped into IIDF is given in Tables 10 and 11.

‘ Name ‘ Coach.FirstName ‘ Coach.LastName ‘ PK ‘
Bayern Munich Ottmar Hitzfeld 001
Reggina Franco Colomba 002

Table 10: Relation SoccerTeam.

FK.SoccerTeam.PK ‘ FirstName LastName

001 Oliver Kahn
001 Giovane Elber
002 Emanuele Belardi
002 Shunsuke Nakamura
002 David Di Michele

Table 11: Relation Player.

Note that the implicit key constraints are fulfilled: Each tuple in SoccerTeam has a unique
primary key value PK, and each foreign key value of FK.SoccerTeam.PK in Player exists
as a primary key in SoccerTeam.

4.4 Conversion of IGDF to IIDF

While strictly speaking not pertinent to this document, we mention here that also the
data in the global schema, which conform to the INFOMIX Global Data Format (IGDF,

(©2003/Infomix 21 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

which is in essence relational data format), must for integration purposes be in IIDF.
However, since the IGDF is a plain relational format, no special conversion is needed.

4.5 Data Cleaning

In a general setting, the data retrieved from the sources have to be reconciled, converted
and combined in order to make them fit into the structures of the global schema. This
is relevant if the sources, as is expected to be the case, are independent and they are
not controlled by the integration system. Data Cleaning and Reconciliation refers to a
number of issues arising when considering integration at the extensional/instance level.

A first issue in this context is the (low-level) interpretation and merging of the data
provided by the sources. Interpreting data can be regarded as the task of casting them
into a common representation. Moreover, the data returned by various sources need
to be converted and merged to provide the data integration system with the requested
information. Accordingly, data cleaning problems can be grouped in two main categories:
differences in representation of the same data and invalid data.

Different Data Representation When gathering information from different indepen-
dent data sources, it is likely to happen that the same information is represented
in different ways in different sources. [24] identifies three main categories of such
conflicts. Naming conflicts arise when the same name is used for different objects,
or when different names are used for the same object. Structural conflicts are more
general, and occur when the difference in the representation lies in the structure of
the representation itself. Examples of structural conflicts are the use of different
data formats in different sources for the same field. A common example for this is
the different representation of dates, e.g., by strings “Nov 13, 2003” vs. “November
13th, 2003”. Another example is the fact that data that are represented by more
than one field in a source may be represented in a single field in another one; [1]
presents an approach to give a field structure to free-text addresses.

Other structural conflicts, in the relational model, are due to different relational
modeling in different sources, e.g., attribute vs. relation representation, different
data types, etc. Finally, data conflicts appear only at the instance level, and are
mainly related to different value representations. For example, the currency may
be expressed in Japanese Yen in a source and in Euros in another. Another typical
case is the different representation of the same value; for instance, “Simon M. Sze”
vs. “Sze, S. M.”.

Invalid Data Invalid data can be caused by extracting data from multiple sources, or
they can exist in a single source, due to incorrect data entries. For example, a “City”
field may contain the value “Italy”, or a simple misspelling may occur, e.g., the field
“Country” contains the value “Brazik” instead of “Brazil”. A slightly more complex
problem is due to inconsistencies among different fields of the same record; for ex-
ample, a record regarding a person may have the value “12 December 1973 for the
date of birth and the value “12” for the age. Violation of functional dependencies
within a table is another typical example of such inconsistencies. Dealing with in-
valid data at this level, however, requires to take a “semantic” point of view and, in

(©2003/Infomix 22 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

a more sophisticated version, to perform reasoning tasks which involve richer seman-
tic knowledge about the background of the application. However, such a “semantic
approach” based on heuristics and characterized by a more pragmatic spirit [5], may
exceed plain data cleaning capabilities and interfere with an inconsistency handling
layer on top of it.

Another problem in data cleaning is that of overlapping data [13, 21, 22, 26, 23], also
referred as duplicate elimination problem or merge/purge problem. This problem arises
when different records of data representing the same real-world entity are gathered in
a data integration system. In this case, duplicates have to be detected and merged.
Most efforts in data cleaning have been devoted to the solution of the duplicate detection
problem, which is a central issue.

In [13, 22] methods are proposed which are based on the use of a sliding window moving
along an ordered list of records to be analyzed: a key is associated to each record and
records in the windows having the same key are merged into a single record. Obviously,
these methods heavily depend on the sorting, and therefore on the key, both based on
heuristics.

An alternative to window scan is to partition the records into clusters, where in each
cluster records are stored, that match each other according to a certain criterion (see,
e.g., [22]). Duplicate elimination can be performed on each cluster separately, and in
parallel.

Finally, knowledge-based approaches have been used in data cleaning [12, 20]. This
approaches favor the use of declarative specifications for the matching operations. How-
ever, human validation and verification of the results is in general needed at the end of
the data cleaning process.

4.5.1 Data Cleaning in INFOMIX

As for the INFOMIX DAT layer, it is desirable to allow for some data cleaning capabili-
ties. For the purpose of the overall system, data cleaning is needed because otherwise a
number of (inessential) inconsistencies might surface, which make the integration problem
computationally complex and lead to semantical worse integration results.

Data cleaning can be viewed as task which should be accomplished by the wrapper.
However, also some extra piece of “data cleaning” software might be used, which receives
the data from a wrapper as input, together with some data cleaning directives, and
outputs the cleaned data. We thus have an exztended wrapper accomplishing this task.
The capabilities of LiXto’s Transformation Server, which also allows for data cleaning,
can be utilized in this way to a certain extent.

However, the development and implementation of data cleaning methods is not on
the agenda of the INFOMIX project. For the purpose of the prototype development,
some elementary data cleaning capabilities should be realized at the wrapper level, which
are tailored for the specific applications considered in the course of the project. These
capabilities need not comprise comprehensive and advanced services, and may focus on
the aspects of common data representation within single attributes, and the correction of
values because of spelling errors.

(©2003/Infomix 23 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

In particular, for the intended model application in the domain of organization admin-
istration, data cleaning support for common representation of date formats, correction of
misspelled names and constituents of addresses etc. should be given.

5 Auxiliary Functions

At the design time (cf. Figure 2), the Wrapper Generation Interface (WGI) should be
provided by the DAT layer, as discussed in Section 3. Besides specifying wrappers and
sources, this module should also provide some auxiliary added-value functions, as outlined
below.

5.1 Schema Editing and Browsing

The administrator or user of the WGI should be able to access, browse and edit the
schemas of the sources in addition to be able to just specify them. The editing function-
ality has to be provided anyway, as it is necessary for creating the schema for sources
where the schema cannot be generated automatically.

Any XML schema editor and/or XML schema browser can be used to provide such a
functionality. Listings of available tools can be found at http://www.w3.org/XML/Schema
orhttp://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/
XML/Tools/Editors/Schema_and_DTD/.

5.2 Source Data Browsing

In addition, it will be useful for the user or administrator to browse the data in the sources.
In essence, this refers to viewing the result of wrapper executions, and is therefore in
between the design- and run-time system. In particular, if used during the design phase,
it anticipates some run-time functionality (executing wrappers), and if used at run-time
it provides direct access to the sources, which is considered to be a design-time privilege.

Such a feature has not been explicitly been included in the INFOMIX architecture,
but even though it blurs the design- and run-time separation, providing it would imply a
true benefit for designers, allowing for validation or debugging.

Any XML browsers can be employed to provide such functionalities, listings of avail-
able tools for XML browsing can be found at http://directory.google.com/Top/
Computers/Data_Formats/Markup_Languages/XML/Tools/Browsers/ or http://www.
wdvl.com/Software/XML/browsers.html.

6 Implementation Guidelines

As for types of wrappers and supported raw data formats, not every possible combination
needs to be implemented. In particular, we foresee the possibility of wrapping OODBMSs
but only Code wrappers as described above might be supported in this case and no
concrete OODBMS will actually be wrapped.

(©2003/Infomix 24 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

6.1 Data Transfer

While wrappers are specified to produce ISDF data, the Internal Data Store (IDS) will
expect IIDF data. So, in general this implies that a data transformation from ISDF to
IIDF is necessary. Indeed, in Section 4.3 we have described methods for achieving this.

A first, naive approach will therefore always invoke this transformation. However, the
IIDF is essentially the relational data format, and also query wrappers are usually defined
on relational data. In this particular setting, it is evident that the transformation from
relational format to ISDF and then back to relational format produces redundant ISDF
data. If the wrappers allows for doing so, the production of ISDF data should be skipped,
yielding directly relational IIDF data. However, it is still necessary to produce ISDF data
if needed and the ISDF schema definition must always be available, as this is the user’s
view of the source data. We will therefore refer to this technique as Bypassing or Lazy
ISDF Generation.

INFOMIX Source Data Format
(ISDF)

8 3 Bypassingi
: e

Wrappers Mapping
|
|

\
)
|

Heterogeneous DAT Layer - Integration Layer

Data Sources
User

Figure 5: Bypassing and Lazy ISDF Generation.

Raw Data Formats Internal Integration Data

Format (IIDF)

Note that not only query wrappers are candidates for bypassing techniques. If the
wrappers permit this, raw data could be mapped to IIDF directly, rather than producing
ISDF as an intermediate step. In essence this would mean to push the data conversion
from between the Wrapper Executor and IDS into the wrappers (cf. Figure 3). However,
also in this case the corresponding ISDF data must be producable upon request. In
the setting of Figure 4, bypassing can be visualized as in Figure 5. Here, it becomes
evident that a bidirectional mapping between ISDF and IIDF guarantees that ISDF data
can always be produced from IIDF data upon request, rather than having to invoke the
wrapper in order to produce ISDF data.

6.2 Materialization and Caching

With respect to the data explicitly managed by a data integration system, it is in general
possible to follow two different approaches, called materialized and virtual. In the ma-
terialized approach, the system computes the extensions of the structures in the global

(©2003/Infomix 25 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

schema by replicating the data at the sources. In the virtual approach, data residing
at the sources are accessed during query processing, but they are not replicated in the
integration system.

The materialized approach to data integration is the most closely related to Data
Warehousing [16, 9, 28, 6, 17]. In this context, data integration activities are relevant
for the initial loading and for the refreshing of the Warehouse, but not directly for query
processing. Obviously, maintenance of replicated data against updates to the sources is a
central aspect in this context, and the effectiveness of maintenance affects timeliness and
availability of data. A naive way to deal with this problem is to recompute materialized
data entirely from scratch in the presence of changes at the sources. This is expensive and
makes frequent refreshing impractical. The study of the materialized data management is
an active research topic that is concerned with both the problem of choosing the data to
be materialized into the global schema, and reducing the overhead in the re-computation.
However, an in-depth analysis of this problem is outside the scope of this report (see
(31, 14, 4]).

INFOMIX follows the virtual approach to data integration, in which sources are ac-
cessed on the fly, i.e., each time a user query is posed to the system, since it provides the
user only with a virtual global schema, whose extension is not stored in a Data Ware-
house or similar. Still, it is possible and, in fact, even likely that at run time the same
sources will be accessed in equal or similar ways frequently when processing user queries.
In the setting described so far, this would entail wrapper invocations each time a source
is accessed, possibly repeating computations often.

It would therefore be natural to provide means in order to assimilate the virtual to
the materialized approach, but without having to deal with problems arising from it in
the integration framework proper. Such means would be caching techniques, in which an
intermediate storage (the cache) holds results of previous wrapper executions and takes
data from this intermediate storage when the same or similar source access has to be
processed again.

Caching techniques work transparently, i.e. the conceptual system behavior does not
change by their addition, only performance is affected. In this way, the integration for-
malism is relieved from having to deal with materialization issues, but its performance can
still benefit from transparent materialization. We point out that such methods are there-
fore to be regarded as optimizations and are therefore not of immediate importance for
the prototype. However, the system design should incorporate the possibility of plugging
in such caching modules.

Concerning the question where exactly such a caching module should be located, we
note that while ISDF is more a ’logical’ data format used for specifying schemata, the
important format for actually providing data in stored form to other system layers via
the IDS is the IIDF, especially since the ISDF can be “bypassed” by applying “lazy ISDF
generation” as outlined in Section 6.1. Hence, the caching module should handle data in
IIDF and should be located in the Wrapper Executor at its interface with the IDS.

A cache can be plugged into the DAT layer as follows: Whenever the Wrapper Executor
(cf. Figure 3) receives a query, it checks whether a materialized view of exactly the same
query is stored in the cache. If so, it uses the materialized data and does not invoke any
wrapper. The Wrapper Executor can also check whether a more general query is stored

(©2003/Infomix 26 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

in the cache and retrieve the data by executing a trimming query over the stored view. If

nothing matches in the cache, the standard wrapper invocation is initiated. The retrieved

data can be stored in the cache — if the cache capacity is exceeded, one of several standard

replacement strategies (like first-in-first-out or least-frequently-used etc.) can be adopted.
We give the following implementation guidelines with respect to caching:

e Caching must be transparent.
e Use simple, proved, and readily available techniques.

e Some of the tools which will be incorporated as wrappers offer their own caching
possibilities. These should be exploited whenever possible.

6.3 OOPortal for implementing the DAT layer

OOPortal is a platform for information management application development. Thus, at
the system level, INFOMIX will be realized as an application built on top of the OOPortal
platform. As such, an oo-analysis will be carried out, as usual for OOPortal applications.

The result of the analysis is a schema for the full application domain in terms of
OOPortal classes. Hence, although OOPortal objects consist of content plus meta-data,
it need not be the case that every ’logical source’ is reflected in a single OOPortal object
with its schema, kind of raw data format, etc. as meta-data and its data as content. It
may well be that, in the implementation, a ’logical source’ is internally represented by
several OOPortal objects.

In Section 6.4 a preliminary UML model of the DAT layer is given, which serves
as a first recommendation for implementation within OOPortal. This model is subject
to further reviews, discussions and improvements within the INFOMIX consortium, and
RODAN in particular. With respect to this oo-analysis we note that:

e Currently, inheritance is not supported in OOPortal. The way inheritance is im-
plemented at the moment uses a particular type field and depending on its value a
pointer is interpreted as a pointer to a particular data structure.

e Care needs to be taken: The same external source may be accessed by different
wrappers.

e The INFOMIX meta-data repository will be a ’logical’ entity in the sense, that
the meta-data may be ’physically’ distributed over several objects stored in the
OOPortal.

6.4 Object Model of the DAT Layer

Figure 6 shows a UML class association diagram of the DAT Layer from the logical
perspective, based and elaborated on the specifications in this report. It is important
to bear in mind that each of the boxes represents a class of instances rather than an
individual object. This diagram can serve as a starting point for the design of the IDP,
and can be refined in consecutive steps of the application development.

The diagram consists of three separate spheres:

(©2003/Infomix 27 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

HETEROGENEOUS DATA SOURCES INTERNAL DATA STORE
ExternalData ExtractionParameter INFLUENCED BY |WrappedData (ISDF Format)
-name : String
-value : String
SOURCE FOR * CREATED BY COMPLIANT WITH
USES FOR
IMETADATA]
REPRESENTS EXTRACTS FROM EXTRACTION CREATES SPECIFIES SCHEMA FOR
I
ExternalDatalnfo Wrapper WrappedDataSchema
USED BY USES
RDBMS XML HTML CodeWrapper QueryWrapper VisualWrapper

-schema : Unknown : Document -url : String -method : String -query : String -externalApplicationReference : String

-url : String -url : String ~class : String -queryLanguage : String

~driver : String -package : String

-user : String -parameter : String

-password : String

-databaseType : String
-attribute_4 : int

Figure 6: UML Object Model of the DAT Layer

e Heterogeneous Data Sources (outside DAT, presented only for overall picture)
e Metadata
e Internal Data Store

The Heterogeneous Data Sources sphere contains an ExternalData entity, which
represents any external and heterogeneous data sources accessible from the IDP system.
The Metadata sphere contains the following entities:

ExternalDatalnfo represents specific information for a given external data type. The
information is necessary to identify, locate and connect to these data sources. For
now, there are three external data source types supported. These types are repre-
sented by:

RDBMS entity contains attributes specific for RDBMS support like database
type, URL, driver, schema (optional - if needed, could be retrieved from the
original external data source) and authorization data (user, password)

XML entity contains an XML schema (optional attribute) and a URL of the XML
code

HTML entity contains a URL of the HTML code

Wrapper represents information necessary for data extraction. For now, there are three
wrapper types supported. These types are represented by:

(©2003/Infomix 28 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

CodeWrapper entity contains information on a specific code to be executed upon
extraction

QueryWrapper entity contains information on the query language and a possibly
parameterized query

VisualWrapper entity contains the reference to any external extraction applica-
tion (e.g. OfficeObjects DataExtractor, LiXto; it is important to notice that
each of these applications is responsible for definition, storage and exploitation
of its own specific queries, programs etc. - these are hence not modeled in the
diagram)

WrappedDataSchema represents internal unified data format (ISDF'), specifies schema
of wrapped data, defined during wrapper design time

The Internal Data Store sphere contains the following entities:

WrappedData represents ISDF formatted data retrieved by any of available wrappers

ExtractionParameter represents the actual parameter set used during a particular
extraction, e.g. name of a person whose monthly salaries are to be extracted. A
number of pairs (parameter name, parameter value) can be passed to the wrapper
during its execution. Such defined parameters allow either for substitution of hard
coded values or for restriction of extraction set (e.g. (first_name,” Jan”)).

6.5 Functionality of first implementation prototype

The INFOMIX prototype will be realized in two stages. The first prototype should be
available, after a first rapid implementation phase, by the end of month 23 of the project.
It will not offer the full functionality of the system, though.

As for the first prototype, the INFOMIX DAT layer shall exhibit the following features
and limitations:

e The main focus is the servicing of data sources in the relational format, with wrapper
generating support at the level of code wrappers and query wrappers.

e Automatic wrapper generation will be supported for relational data sources, includ-
ing the generation of ISDF schema information. However, while the ISDF schema
is visible, support of materializing the XML document (for viewing purposes) need
not be realized. According to lazy ISDF generation, relational source data might
be straight queried using SQL for simple mappings to global relations.

e Concerning access of other types of data sources (whose support is not mandatory
for the first prototype), just graphical support by LiXto Visual Wrapper will exist,
where a proposal for the ISDF schema is either created automatically by Visual
Wrapper, or the ISDF schema is first created manually by the administrator using
the INFOMIX interface and then uploaded to Visual Wrapper).

(©2003/Infomix 29 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

e No type-checking of the source data with respect to the ISDF schema will be per-
formed. That is, it is assumed that all data are of proper types.

e The mapping of ISDF to IIDF can be dispensed for the first prototype, since the
latter is intended to support only mappings for a GAV style data integration, where
the data integration algorithms do not access source data explicitly.

7 Conclusion

This report is the second of two reports aiming at the definition and description of a
framework for engineering the “low level” data access to data of different data sources,
which will be used for the design and implementation of the data acquisition and trans-
formation layer of the INFOMIX system. In the second document, we have taken up the
basis for such a framework as being developed by

(1) specifying the raw data formats for the heterogeneous sources supported by the
INFOMIX system and by

(17) specifying a homogenized data format at the source level, the INFOMIX source data
format, to which the heterogeneous source data formats are converted.

Building on this, we defined methods for data acquisition and transformation, includ-
ing methods for wrapper generation, methods for mapping the internal source data format
to the internal integration data format, and suitable caching techniques.

Acronyms

1. DAT = Data Acquisition and Transformation.
2. DBMS = Database Management System.
3. DTD = Data Type Definition.
4. HTML = Hypertext Markup Language.
5. IDP = INFOMIX Demonstration Platform.
6. IDS = Integration Data Storage.
7. IIDF = Internal Integration Data Format.
8. IGDF = INFOMIX Global Data Format.
9. ISDF = INFOMIX Source Data Format.
10. JDBC = Java Database Connectivity.

11. ODBC = Open Database Connectivity.

(©2003/Infomix 30 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

12. ODBMS = Object DBMS.

13. ODMG = Object Data Management Group.

14. OQL = Object Query Language.

15. RDBMS = Relational DBMS.

16. SGML = Standard Generalized Markup Language.

17. SQL = Structured Query Language.

18. W3C = World Wide Web Consortium.

19. WGI = Wrapper Generation Interface

20. WP = Workpackage.

21. WWW = World Wide Web.

22. XML = Extensible Markup Language.

References

[1] Vinayak R. Borkar, Kaustubh Deshmukh, and Sunita Sarawagi. Automatically
extracting structure from free text addresses. IEFEE Data Engineering Bulletin,
23(4):27-32, 2000.

[2] Ron Bourret, Christof Bornhévd, and Alejandro P. Buchmann. A generic
load/extract utility for data transfer between xml documents and relational
databases. In Proceedings of the Second International Workshop on Advance Is-
sues of E-Commerce and Web-Based Information Systems (WECWIS 2000), pages
134-143, June 2000.

[3] Ronald Bourret. Xml-dbms. http://www.rpbourret.com/xmldbms/.

[4] Mokrane Bouzeghoub, Francoise Fabret, Helena Galhardas, Maja Matulovic-Broqué,
Joao Pereira, and Eric Simon. Data warehouse refreshment. In Matthias Jarke,
Maurizio Lenzerini, Yannis Vassiliou, and Panos Vassiliadis, editors, Fundamentals
of Data Warehouses, pages 47-86. Springer, 1999.

[6] Mokrane Bouzeghoub and Maurizio Lenzerini. Introduction to the special issue on
data extraction, cleaning, and reconciliation. Information Systems, 26(8):535-536,
2001.

[6] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and

Riccardo Rosati. Data integration in data warehousing. International Journal of
Cooperative Information Systems, 10(3):237-271, 2001.

(©2003/Infomix 31 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

Michael J. Carey, Daniela Florescu, Zachary G. Ives, Ying Lu, Jayavel Shanmuga-
sundaram, Eugene J. Shekita, and Subbu N. Subramanian. Xperanto: Publishing
object-relational data as xml. In WebDB (Informal Proceedings) 2000, pages 105—
110, 2000.

Alin Deutsch, Mary F. Fernandez, and Dan Suciu. Storing semistructured data with
STORED. In Alex Delis, Christos Faloutsos, and Shahram Ghandeharizadeh, editors,
Proceedings of the 1999 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’99), pages 431-442. ACM Press, June 1999.

Barry Devlin. Data Warehouse: From Architecture to Implementation. Addison
Wesley Publ. Co., Reading, Massachussetts, 1997.

Mary F. Fernandez, Yana Kadiyska, Dan Suciu, Atsuyuki Morishima, and
Wang Chiew Tan. Silkroute: A framework for publishing relational data in xml.
ACM Transactions on Database Systems, 27(4):438-493, 2002.

Daniela Florescu and Donald Kossmann. A performance evaluation of alternative
mapping schemes for storing XML data in a relational database. Technical report,
Inria, Institut National de Recherche en Informatique et en Automatique, 1999.

Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, and Cristian Saita.
Delarative data cleaning: language, model and algorithms. Technical Report 4149,
INRIA, 2001.

Mauricio A. Hernandez and Salvatore J. Stolfo. The merge/purge problem for large
databases. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, 1995.

Richard Hull and Gang Zhou. A framework for supporting data integration using
the materialized and virtual approaches. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, pages 481-492, 1996.

IBM. Ibm db2 xml extender. http://www.ibm.com/software/data/db2/
extenders/xmlext/.

W. H. Inmon. Building the Data Warehouse. John Wiley & Sons, second edition,
1996.

Matthias Jarke, Maurizio Lenzerini, Yannis Vassiliou, and Panos Vassiliadis, editors.
Fundamentals of Data Warehouses. Springer, 1999.

Dongwon Lee and Wesley W. Chu. Constraints-preserving transformation from xml
document type definition to relational schema. In Alberto H. F. Laender, Stephen W.
Liddle, and Veda C. Storey, editors, Proceedings of the 19th International Conference
on Conceptual Modeling (ER 2000), volume 1920 of LNCS, pages 323-338. Springer,
October 2000.

(©2003/Infomix 32 TUWIEN, RODAN

Infomaix Infomix: Boosting Information Integration 1.0

[19] Dongwon Lee, Murali Mani, and Wesley W. Chu. Schema conversion methods be-
tween xml and relational models. In Borys Omelayenko and Michel C. A. Klein,
editors, Knowledge Transformation for the Semantic Web, volume 95 of Frontiers in
Artificial Intelligence and Applications. 10S Press, 2003.

[20] Wai Lup Low, Mong Li Lee, and Tok Wang Ling. A knowledge-based approach for
duplicate elimination in data cleaning. Information Systems, Special Issue on Data
Extraction, Cleaning and Reconciliation, 26(8), December 2001.

[21] Alvaro E. Monge and Charles P. Elkan. The field matching problem: algorithms and
applications. In Int. Conf. on Practical Applications of Prolog (PAP’97), 1996.

[22] Alvaro E. Monge and Charles P. Elkan. An efficient domain-independent algo-
rithm for detecting approximately duplicate database records. In Proc. of the ACM-
SIGMOD workshop on research issues on knowledge discovery and data mining, 1997.

[23] Alvaro E. Monge and Charles P. Elkan. Matching algorithms within a duplicate
detection system. IEEE Data Engineering Bulletin, 23(4):14-20, 2000.

[24] Erhard Rahm and Hong Hai Do. Data cleaning: problems and current approaches.
IEEE Data Engineering Bulletin, 23(4):3-13, 2000.

[25] Intelligent Systems Research. Odbc2xml. http://www.intsysr.com/odbc2xml . htm.

[26] Abhik Roychoudhury, I. V. Ramakrishnan, and Terrance Swift. A rule-based data
standardizer for enterprise data bases. In Int. Conf. on Practical Applications of
Prolog (PAP’97), pages 271-289, 1997.

[27] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J. De-
Witt, and Jeffrey F. Naughton. Relational databases for querying xml documents:
Limitations and opportunities. In Malcolm P. Atkinson, Maria E. Orlowska, Patrick
Valduriez, Stanley B. Zdonik, and Michael L. Brodie, editors, Proceedings of the 25th
International Conference on Very Large Data Bases (VLDB °99), pages 302-314.
Morgan Kaufmann, September 1999.

[28] Dimitri Theodoratos and Timos Sellis. Data warehouse design. In Proceedings of the
Twentythird International Conference on Very Large Data Bases (VLDB’97), pages
126-135, 1997.

[29] Volker Turau. Db2xml. http://www.informatik.fh-wiesbaden.de/ turau/
DB2XML/.

[30] Volker Turau. Making legacy data accessible for xml applications, 1999. Available
on http://www.informatik.fh-wiesbaden.de/ turau/veroeff . html.

[31] Janet L. Wiener, Himanshu Gupta, Wilburt J. Labio, Yue Zhuge, Hector Garcia-
Molina, and Jennifer Widom. A system prototype for warehouse view maintenance.
Technical report, Stanford University, 1996. Available at http://www-db-stanford.
edu/warehousing/warehouse.html.

(©2003/Infomix 33 TUWIEN, RODAN

