
Parallel Algorithms and

Distributed Systems

A.A. 2013/2014
5 ECTS credits, 3 theory(24 hours) + 2 lab(24 hours)

Lecturer: William Spataro
Department of Mathematics and Computer Science -

UNICAL
Email: spataro@unical.it
Web: www.mat.unical.it/spataro
Phone: 0984.494875-3691-6464

MPI – Codes, etc

Beowulf Howto

1. modify/etc/hosts

2. Export all home directories, in /etc/exports

/home node02(rw)

For each new user, update:
scp /etc/passwd node02:/etc

scp /etc/shadow node02:/etc

scp /etc/group node02:/etc

echo "Enabling ssh communication..."

cp -r /root/.ssh /home/$1

chown -R $1:$2 /home/$1/.ssh

Examples in MPI

Compiling and Execution

Ver 1
mpicc –o program_name program_name.c

Or, in panic:

cc –o program_name program_name.c

–I/usr/local/mpich-1.2.5/include

–L/usr/local/mpich-1.2.5/lib

To execute on n processes:

mpirun –np n program_name

Compiling and Execution

Ver 2

mpicc –o program_name program_name.c

Or, in panic:

cc –o program_name program_name.c

–I/usr/local/mpich2-1.2/include

–L/usr/local/mpich2-1.2/lib

To execute on n processes:

mpd & // only at the beginning of the session

mpiexec -n num_proc program_name

mpdallexit // at the end of the session

Debugging tips

• Run the program with one process just like

a normal sequential program

• Run the program on 2-4 processes. Check

sending of messages (correct recipient,

tags, etc.)

• Run the program on 2-4 processors

Hello World!

A simple ping
#include "mpi.h"

#include <stdio.h>

int main(argc,argv)

int argc;

char *argv[]; {

int numtasks, rank, dest, source, rc, count, tag=1;

char inmsg, outmsg='x';

MPI_Status Stat;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

dest = 1;

source = 1;

rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

}

else if (rank == 1) {

dest = 0;

source = 0;

rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

}

rc = MPI_Get_count(&Stat, MPI_CHAR, &count);

printf("Task %d: Received %d char(s) from task %d with tag %d \n",

rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG);

MPI_Finalize();

}

Vector sum (without

Broadcast and Reduce)

«Global» variables!

Let’s get timings!
• To "take" the execution time of an MPI program we can use the timer

function MPI_Wtime (void)

• First step: Synchronize all processes via a call to MPI_Barrier()

• Get initial time with

start=MPI_Wtime();

• At the end of the code, call MPI_Barrier() to re-synchronize processes

• Take final time with

finish=MPI_Wtime();

• Let only process 0 print the elapsed time:
printf(“Elapsed time is = %f seconds\n”, finish-start);

• MPI_Wtime() returns the wall-clock time, that is includes also system
time, etc

Sum of the elements of a

vector (dynamic

allocation)

Compile with mpiCC!

Example: Numerical Integration

y

f(x)


b

a

dxxf)(

f(x)

ba

a b
x

y

x

f(xi)

f(xi-1)

xi-1 xi

h

f(x)

x

y

trapezoids

+

Example: Numerical Integration

• Trapezoid rule

• Each rectangle has base h=(b-a)/n

• The trapezium has left-most base [a, a+h], the next [a+h,

a+2h], the next [a+2h, a+3h], etc

• Let’s denote xi=a+ih, i=0,...,n

• So, the left side of each trapezoid is f(xi-1), while the right is

f(xi)

Example: Numerical Integration

• The area of ​​the i-th trapezoid is ½ h[f(xi-1)+f(xi)]

• The approximation of the entire area will be the sum of
the area of the trapezoids:

½ h[f(x0)+f(x1)]+½ h [f(x1)+f(x2)]+...+½ h [f(xn-1)+f(xn)]=

=h/2[f(xo)+2f(x1)+2f(x2)+...+f(xn)]=

=[f(xo)/2+f(xn)/2+f(x1)+f(x2)+...+f(xn-1)]h

Sequential version

Parallelization

• A possible method is to assign a portion of

the interval [a, b] for each process (data

parallelism!)

• How does each process know the

subinterval and how many trapezoids to use?

• Natural solution: the first process computes

the first n/p trapezoids, the second the

second n/p trapezoids, etc. (where p is the

number of processes)

Parallelization

• Therefore, each process needs to know
o The number of processes, p

o Their rank

o The entire integration interval [a, b]

o The number of subintervals, n

• The first two information are provided by
MPI_Comm_size and MPI_Comm_rank, the latter two
should be provided by the user.

• Last observation: how are the partial sums added
together for each process?

• Possible Solution: Each process sends its partial sum
to process 0, and this performs the sum.

Each process (including 0)

calculates the sum of the

areas of the "local“ trapezoids

Process 0 receives all

(it has already its area!)

NB!

Ex: f(x)= x2

Area computation of local trapezoids

I/O

• The function f(x) and the variables a, b

and n well are "hardwired“

• f(x) can be defined as a pointer function

(or callback function) (home exercise)

• Although not a standard procedure, it is

advisable that a process takes care of the

I / O (for instance, process 0 sends the

initial data, a, b and n to processes)

I/O

If for each process I execute:

scanf(“%f %f %d”, &a, &b, &n);

What happens?

If for each process I execute:

printf (“%f %f %d”, a, b, n);

What happens?

Note different tags!!!

Note different tags!!!

Call to Get_data

Home work 

• Vector maximum

• Search of an element in a vector

• Summation of two matrixes

• From Pacheco, Programming Assignment

3.7.1

• From Pacheco, Exercise 4.6.2,

Programming Assignment 4.7.1, 4.7.2

Hard Homework 

• Matrix – Matrix Product (AxB=C)

• Advice:

for (each column x of B){

Compute parallel dot product matrix-

vettor Ax

}

Scalar Product

Let

x=(x0, x1, ..., xn-1)
T

y=(y0, y1, ..., yn-1)
T

x  y = x0y0 + x1y1 + ... + xn-1yn-1

Serial

Parallel – Block Mapping

Process Components

0

1

.

.

k

.

.

p-1

x0, x1, ..., xň-1

xň, xň+1, ..., x2ň-1

.

.

xkň, xkň+1, ..., x(k+1) ň-1

.

.

x(p-1) ň, x(p-1)ň+1, ..., xn-1

Parallel – Block Mapping

• This allocation "technique" is different than

that used, for example, for the "sum of the

elements of a vector", where each process

sees the entire data structure

• In this case, although each process

allocates the entire data structure, it

receives only the portion of data that

interests it

Parallel

“broadcast” n to all!

Vector portion ň

Broadcast more efficent than

multiple sends!

OSS: A Reduce in practice does the reverse path, so both have

O(log n) cost

Block mapping

Reads ň elements and sends

them (Block mapping) one

Process at a time

Read portion for

process 0

NB Use Scatter (homework)

Only the first n_bar of local_v are what each

process needs!

Each process has allocated all the

vector, but only the first ň elements

are its

reduce…. Do the sum of all
local_dot and place in dot

Matrix-Vettor Product

Let A=(aij) be a m x n matrix

Let x=(x0, x1, ..., xn-1)
T

The product y = Ax, is formed by all scalar
products of each row of A with x

Thus, the vector y will be given by:

y=(y0, y1, ..., ym-1)
T

with:

yk=ak0x0+ak1x1+...+ak,n-1xn-1

Serial

Data Distribution
• Block-row (panel) distribution

Process Elements

0
a00 a01 a02 a03

a10 a11 a12 a13

1
a20 a21 a22 a23

a30 a31 a32 a33

2
a40 a41 a42 a43

a50 a51 a52 a53

3
a60 a61 a62 a63

a70 a71 a72 a73

Mapping (4 processes)

(m,n) x (n,1) = (m,1)

 =

A x y

m

n

n

1

m

1

Gather or scatter?
• In order to form the scalar product of each row of A with

x, we must make a gather of x on each process, or a
scatter of each row of A on the processes

• For example, if m = n = p = 4, then a00, a01, a02 , a03 and
x0 are assigned to process 0, x1 to process, x2 to process
2, etc..

• In this way, to form the scalar product of the first row of A
with x, we can
– send x1, x2 and x3 to the process 0, or

– we can send a01 to the process 1, a02 and to process 2 and a01 to
process 3.

• The first step is a gather, the second a scatter!

• We will use gather in the example below ... (scatter for
the reading stage!)

m=n=p=4

P0

P1

P2

P3

x0

x1

x2

x3

Gather Scatter

a03a02a01a00

main

Mapping

 =

A x y

l
o
c
a
l
_
A

l
o
c
a
l
_
y

l
o
c
a
l
_
x

l
o
c
a
l
_
m

MAX_ORDER

l
o
c
a
l
_
n

Read and data allocation

Sets to zero the surplus

elements of the matrix

Process 0: reads all the matrix

Process 0: scatter all matrix, but each process
will receive aonly local_A

(in C le matrici sono row-wise)
CAREFUL! Scatter ok for static

allocated matrix/vectors!

Read and data allocation

Reads all the vector and

scatters it!

NB Like in all Scatters, it

should be the same!

AllGather

“We collect the pieces of x
on each process (in global_x)

WE could of used also
MPI_Gather with a for on all

processes

Matrix – Matrix Product : Serial

Algorithm

• O(n3) Cost

Matrix – Matrix Product :

Possible Allocations
C “rules” the

allocation

The portions in gray

of A and B that are required

By the gray portion of C

Case a

Case b

Matrix – Matrix Product

• For simplicity, we consider matrices of the same order (n, n)

• In case (a) we have a decomposition into one-dimensional blocks ; in
(b) a bi-dimensional block decomposition

• Each process in the case (a) will have n / p rows, while in case (b),
each process will have a block of dim

• In (a) we can use up to n processes, in (b) up to n2 (thus increasing
the degree of parallelism)

• The "counter" of case (a) is that each process requires the
corresponding n / p rows of A and of the whole B matrix, while in (b)
each process requires rows of A and columns of B

pnpn // 

pn / pn /

Algorithm case (a)

B C A

- Distribute the rows of B to all (Scatter)

- Broadcast all C (unfortunately !)

- Form the product of C with rows of B for each process.

These will be the corresponding rows of A

Returns the rows of A to a process using a gather

- This algorithm is different from that suggested by Pacheco, but similar

to that of the LLNLt utorial (master / slave)

To form this

row, we need

all C!

That's why we

broadcast all C

Algorithm case (a)

....

....

....

Remember what a gather does!

A is constructed from many Apart pieces!

That is, we collect the various rows!

The algorithm applies to only

4 processors!

Generalize it!

The algorithm applies only to these values​​! Generalize it!

A=BxC

Algorithm case (b)

• Suppose, for example, the partitioning of data as in Fig.

• The 4 submatrixes Ci,j (of dimension n/2 x n/2), can be computed

independently

OBS: other partitionings are also possible!

Block Algorithm (Serial) – Case (b)

Product and sum of matrixes

Parallel Algorithm (case b)

• Consider two matrixes (n  n) A e B partitioned in p blocks Ai,j and Bi,j

(0 ≤ i, j <) di dimension n

• Initially process Pi,j stores Ai,j and Bi,j and computes the block Ci,j of
the resulting matrix

• The computation of the submatrix Ci,j requires all submatrixes Ai,k

and Bk,j for 0 ≤ k <

• Execute All-to-all broadcast (that is MPI_Allgather) of A blocks
along the rows and of B along columns

• Execute the multiplication of local submatrixes

• Obs: The cost of this algorithm is identical to the
serial version (n3): q3 matrix products are carried
out, each of (n/q)  (n/q) matrixes and (n/q)3

additions and multiplications

Homework  - again?

• Pi computation with Montecarlo

• Vector Maximum

• Search of element in a vector

• Sum of two matrixes

Sum of elements of a

vector

Sum of elements o a

vector (dynamic

allocation)

Compile with mpiCC !

Output

NB Scatter called by all

processes!

Matrix Scatter

Get_data2 (with Broadcast)

Integrazione numerica (dal Pacheco)

Get_data2!

...

Numerical integration

(final)

?

Barrier estimation time

(average on 100 times)

Wow!

Derived Datatypes

Possible since elements of

A vector in C are contiguous!

Send a sub-vector from

process 0 to 1

Non contiguous elements

In C matrixes!

Initialization

Process 1 receives and

places the column in its own

A matrix

Send 3rd column from

process 0 to 1

Send column

Receive a “10 MPI_FLOAT data

element”

Initialization

Send a column 1 to row 1

on another process

Placed in third row, but can

go anywhere!!!

Send 3rd row from

process 0 to 1 (no use of

derived datatypes)

The trick is here! Locate the various

Rows of the triangle!

i

Send the upper triangle of a matrix

from 0 to 1

Virtual Topologies

#include<mpi.h>

#define TRUE 1

#define FALSE 0

void main(int argc, char *argv[]){

int rank; MPI_Comm vu; int dim[2],period[2],reorder;

int up,down,right,left;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

dim[0]=4; dim[1]=3;

period[0]=TRUE; period[1]=FALSE; reorder=TRUE;

MPI_Cart_create(MPI_COMM_WORLD,2,dim,period,reorder,&vu);

if(rank==9)

{ MPI_Cart_shift(vu,0,1,&left,&right);

MPI_Cart_shift(vu,1,1,&up,&down);

printf("P:%d I miei vicini sono destra:%d giù:%d sinistra:%d

sopra:%d\n", rank, right, down, left, up); }

MPI_Finalize();

}

P:9 I miei vicini sono destra:0 giù:10 sinistra:6 sopra:-1

Esempio

Gira solo con 12 procs!

Notate come “ricevo” in ordine:

ES: 4 riceve da right (=7)

7 spedisce a left (=4)

Ogni proc chiama MPI_Cart_shift

Non “dovrebbe” andare in deadlock!

Spediamo solo un intero!!!

Meglio Send/Receive non Bloccanti!

Ogni processo calcola

i propri vicini

Gira solo con 12 procs!

Ho sicuramente deadlock

perchè utilizzo per prima

receive bloccanti!

Utilizzando prima Send bloccanti,

come prima, dovrei evitare deadlock

(MPI a runtime decide buffered

o sincrono...)

Ogni processo calcola

i propri vicini

Gira solo con 12 procs!

Send sincrone!

Deadlock sicuro!!!

Ogni processo si mette

a spedire e si aspetta una

receive corrispondente che

non c’e’!

Potrei anche rendere queste

non bloccanti (v. dopo) – Fatelo!

Receive non bloccanti!
msg potrebbe essere “indefinito”

Gira solo con 12 procs!

Devo “aspettare” tutti!

Sicuramente tutti hanno ricevuto!

Individuo la colonna 2

Gira solo con 12 procs!

No deadlock!

Colonna 3

\

1. Creazione di una topologia 4

x 4 Cartesiana da 16

processori –

2. Scambiare il proprio rango

con i 4 vicini.

Determina i vicini! (vicinato

von Neumann)

No bloccanti?

No Deadlock!

Output

Gira solo con 16 procs!

