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2001/2002 – researchers see GPU as data-parallel 

coprocessor

The GPGPU field is born

2007 – NVIDIA releases CUDA 1.0

CUDA – Compute Uniform Device Architecture

GPGPU shifts to GPU Computing

2008 – Khronos releases OpenCL specification

2014 – Cuda 6.0

History



Nvidia creates CUDA to facilitate the development of 

parallel programs on GPUs (2007)

The CUDA language is ANSI C extended with very few 

keywords for labeling data-parallel functions (kernels) 

and their associated data

Nvidia technology benefits from massive economies 

of scale in the gaming market, CUDA-enabled cards 

are very inexpensive for the performance they 

provide 
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Scalable parallel programming model

Minimal extensions to familiar C/C++ environment

Heterogeneous serial-parallel computing

CUDA



Modello di esecuzione

• Un codice CUDA alterna porzioni di codice  

seriale, eseguito dalla CPU,e di codice  

parallelo, eseguito dalla GPU.

• Il codice parallelo viene lanciato, ad opera 

della CPU, sulla GPU come kernel.

La GPU esegue un solo kernel alla volta.

• Un kernel è organizzato in grids di blocks.

Ogni block contiene lo stesso numero di 

threads.

• Ogni block viene eseguito da un solo  

multiprocessore: non può essere spezzato su  

più SM, mentre più blocks possono risiedere 

ed essere eseguiti in parallelo dallo stesso 

multiprocessore.



Gerarchia dei thread

Thread: codice concorrente, eseguibile in 

parallelo ad altri threads su un device CUDA.

Warp: un gruppo di threads che possono essere 

eseguiti fisicamente in parallelo.

Half-warp: una delle 2 metà di un warp spesso 

eseguiti sullo stesso multiprocessore.

Block: un insieme di threads eseguiti sullo stesso 

Multiprocessore, e che quindi possono condividere 

memoria (stessa shared memory).

Grid: un insieme di thread blocks che eseguono 

un singolo kernel CUDA, in parallelismo logico, 

su una singola GPU.

Kernel: il codice CUDA che viene lanciato dalla 

CPU su una o più GPU.
Host = CPU

Device = GPU



Esecuzione del codice

Ogni blocco di Threads è caricato in un “Multiprocessor”Ogni thread è caricato in un “Miniprocessor””In ogni “miniprocessor” può essere caricato solo un warp di threads per volta



Multidimensionalità degli IDs

Il codice parallelo viene lanciato,
dalla CPU, sulla GPU , questa esegue
un solo kernel alla volta.

La dimensione della griglia si misura
in blocchi questi possono essere:

Block: 1-D o 2-D (3D da comp.
capability 2.0 in poi)

La dimensione dei blocchi si misura
in thread

Thread 1-D,2-D,3-D



Organizzazione gerarchica della memoria

• Register file: area di memoria privata di  

ciascun thread (var. locali).

• Shared memory: accessibile a tutti i threads

dello stesso block. Può essere usata sia come   

spazio privato che come spazio condiviso.

• Tutti i threads accedono alla medesima global  

memory (off-chip DRAM). 

• Memorie read-only accessibili da tutti i    

threads: constant e texture memory.

dotate di cache locale in ogni SM

• Global, constant e texture memory sono 

memorie persistenti tra differenti lanci di  

kernel della stessa applicazione.

• Global memory bandwidth: 2 ordini di 

grandezza superiori della shared memory!



G80 Implementation of  CUDA Memories

• Each thread can:
– Read/write per-thread 

registers

– Read/write per-thread local 
memory

– Read/write per-block shared 
memory

– Read/write per-grid global 
memory

– Read/only per-grid constant 
memory

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory



Extended C
• Declspecs

– global, device, shared, 

local, constant

• Keywords

– threadIdx, blockIdx

• Intrinsics

– __syncthreads

• Runtime API

– Memory, symbol, 

execution management

• Function launch

__device__ float filter[N]; 

__global__ void convolve (float *image)  {

__shared__ float region[M];

... 

region[threadIdx] = image[i]; 

__syncthreads()  

... 

image[j] = result;

}

// Allocate GPU memory

void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block

convolve<<<100, 10>>> (myimage);



Application Programming Interface

• The API is an extension to the C programming 

language

• It consists of:

– Language extensions

• To target portions of the code for execution on the device

– A runtime library split into:

• A common component providing built-in vector types and a 

subset of the C runtime library in both host and device 

codes

• A host component to control and access one or more 

devices from the host

• A device component providing device-specific functions



Language Extensions:

Built-in Variables

• dim3 gridDim;

– Dimensions of the grid in blocks

• dim3 blockDim;

– Dimensions of the block in threads

• dim3 blockIdx;

– Block index within the grid

• dim3 threadIdx;

– Thread index within the block



Common Runtime Component:

Mathematical Functions
• pow, sqrt, cbrt, hypot

• exp, exp2, expm1

• log, log2, log10, log1p

• sin, cos, tan, asin, acos, atan, atan2

• sinh, cosh, tanh, asinh, acosh, atanh

• ceil, floor, trunc, round

• Etc.

– When executed on the host, a given function uses 

the C runtime implementation if available

– These functions are only supported for scalar types, 

not vector types



Device Runtime Component:

Mathematical Functions
• Some mathematical functions (e.g. sin(x)) 

have a less accurate, but faster device-only 
version (e.g. __sin(x))

– __pow

– __log, __log2, __log10

– __exp

– __sin, __cos, __tan



CUDA Function Declarations

hosthost__host__ float HostFunc()

hostdevice__global__ void  KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable 

from the:

Executed 

on the:

• __global__ defines a kernel function

– Must return void

• __device__ and __host__ can be used 

together



Calling a Kernel Function – Thread Creation

• A kernel function must be called with an execution 

configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50);    // 5000 thread blocks 

dim3 DimBlock(4, 8, 8);   // 256 threads per block 

size_t SharedMemBytes = 64; // 64 bytes of shared 

memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes 

>>>(...);

• Any call to a kernel function is asynchronous from 

CUDA 1.0 on, explicit synch needed for blocking



Device Runtime Component:

Synchronization Function

• void __syncthreads();

• Synchronizes all threads in a block

• Once all threads have reached this point, 

execution resumes normally

• Used to avoid RAW / WAR / WAW hazards 

when accessing shared or global memory

• Allowed in conditional constructs only if the 

conditional is uniform across the entire thread 

block



Confronto codice seriale e parallelo

Programma CPU

void add_matrix
( float* a, float* b, float* c, int N ) {
int index;
for ( int i = 0; i < N; ++i )

for ( int j = 0; j < N; ++j ) {
index = i + j*N;
c[index] = a[index] + b[index];

}

}
int main() {
add_matrix( a, b, c, N );

}

Programma CUDA

__global__ add_matrix
( float* a, float* b, float* c, int N ) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int index = i + j*N;
if ( i < N && j < N )
c[index] = a[index] + b[index];

}

int main() {
dim3 dimBlock( blocksize, blocksize );
dim3 dimGrid( N/dimBlock.x, N/dimBlock.y );

add_matrix<<<dimGrid, dimBlock>>>( a, b, c, N );
}

Il ciclo for è sostituito da una griglia implicita



NVIDIA GPU Architecture
Fermi GF100
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SM Multiprocessor

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core
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Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core
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Core

Core

Core

Core

Core

Core

Instruction Cache

32 CUDA Cores per SM (512 total)

Direct load/store to memory
Usual linear sequence of bytes

High bandwidth (Hundreds GB/sec)

64KB of fast, on-chip RAM
Software or hardware-managed

Shared amongst CUDA cores

Enables thread communication

SIMT (Single Instruction Multiple Thread) execution



Compute Capability

The compute capability of a device describes its architecture, e.g.

Number of SMs and registers

Sizes of memories

Features & capabilities

We will concentrate on Fermi devices

Compute Capability >= 2.0

Compute 

Capability

Selected Features

(see CUDA C Programming Guide for complete list)

Tesla models

1.0 Fundamental CUDA support 870

1.3 Double precision, improved memory accesses, atomics 10-series

2.0 Caches, 3D grids, surfaces, ECC, P2P,

concurrent kernels/copies, function pointers, recursion

20-series

3.0 Dynamic parallelism K-series



GPUCPU

Heterogeneous computing



Application Code

+

GPU CPU
Use GPU to 
Parallelize

Compute-Intensive 
Functions

Rest of Sequential
CPU Code

Heterogeneous computing

HostDevice



Simple Processing Flow

1. Copy input data from CPU memory to 
GPU memory

PCI Bus



Simple Processing Flow

1. Copy input data from CPU memory to 
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

PCI Bus



Simple Processing Flow

1. Copy input data from CPU memory to 
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU 
memory

PCI Bus



Hello World!

int main(void) {

printf("Hello World!\n");

return 0;

}

Standard C that runs on the host

NVIDIA compiler (nvcc) can be used 

to compile programs with no device

code

Output:

$ nvcc 

hello_world.

cu

$ a.out

Hello World!

$



Hello World! with Device Code

__global__ void mykernel(void) {

}

int main(void) {

mykernel<<<1,1>>>();

printf("Hello World!\n");

return 0;

}

 Two new syntactic elements…



Hello World! with Device Code

__global__ void mykernel(void) {

}

CUDA C/C++ keyword __global__ indicates a function that:

Runs on the device

Is called from host code

nvcc separates source code into host and device components

Device functions (e.g. mykernel()) processed by NVIDIA compiler

Host functions (e.g. main()) processed by standard host compiler

gcc, cl.exe



Hello World! with Device Code

mykernel<<<1,1>>>();

Triple angle brackets mark a call from host code to device code

Also called a “kernel launch”

That’s all that is required to execute a function on the GPU!



Hello World! with Device Code

__global__ void mykernel(void) {

}

int main(void) {

mykernel<<<1,1>>>();

printf("Hello World!\n");

return 0;

}

mykernel() does nothing….

Output:

$ nvcc 

hello.cu

$ a.out

Hello World!

$



Parallel Programming in CUDA C/C++

 GPU computing is about massive parallelism

 We need a more interesting example…

 We’ll start by adding two integers and build up 

to vector addition

a b c



Addition on the Device

A simple kernel to add two integers

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

As before __global__ is a CUDA C/C++ keyword meaning

add() will execute on the device

add() will be called from the host



Addition on the Device

Note that we use pointers for the variables

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

add() runs on the device, so a, b and c must point to device 

memory

We need to allocate memory on the GPU



Memory Management

Host and device memory are separate entities

Device pointers point to GPU memory

May be passed to/from host code

May not be dereferenced in host code

Host pointers point to CPU memory

May be passed to/from device code

May not be dereferenced in device code

Simple CUDA API for handling device memory
cudaMalloc(), cudaFree(), cudaMemcpy()

Similar to the C equivalents malloc(), free(), memcpy()



Addition on the Device: add()

Returning to our add() kernel

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

Let’s take a look at main()…



Addition on the Device: main()

int main(void) {

int a, b, c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = sizeof(int);

// Allocate space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Setup input values

a = 2;

b = 7;



Addition on the Device: main()

// Copy inputs to device

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}



Moving to Parallel

GPU computing is about massive parallelism

So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< N, 1 >>>();

Instead of executing add() once, execute N times in parallel



CUDA logical architecture

A kernel is launched as a grid of 

blocks of threads

blockIdx and 

threadIdx can represent 

up to 3 dimensions

Built-in variables:

threadIdx

blockIdx

blockDim

gridDim

Device

Grid 1

Block (1,1,0)

Block

(0,1,0)

Block

(1,0,0)

Block

(0,0,0)

Block

(2,0,0)

Block

(1,1,0)

Block

(2,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

Thread

(4,0,0)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(4,1,0)

Thread

(0,2,0)

Thread

(1,2,0)

Thread

(2,2,0)

Thread

(3,2,0)

Thread

(4,2,0)



Vector Addition on the Device

With add() running in parallel we can do vector addition

Terminology: each parallel invocation of add() is referred to as a block

The set of blocks is referred to as a grid

Each invocation can refer to its block index using blockIdx.x

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

By using blockIdx.x to index into the array, each block handles a 

different index



Vector Addition on the Device

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

On the device, each block can execute in parallel:

c[0]  = a[0] + 

b[0];

c[1]  = a[1] + 

b[1];

c[2]  = a[2] + 

b[2];

c[3]  = a[3] + 

b[3];

Block 0 Block 1 Block 2 Block 3



Vector Addition on the Device: add()

Returning to our parallelized add() kernel

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

Let’s take a look at main()…



Vector Addition on the Device: main()

#define N 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = N * sizeof(int);

// Alloc space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values

a = (int *)malloc(size); random_ints(a, N);

b = (int *)malloc(size); random_ints(b, N);

c = (int *)malloc(size);



Vector Addition on the Device: main()

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N blocks

add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}



CUDA logical architecture

A kernel is launched as a grid of 

blocks of threads

blockIdx and 

threadIdx can represent 

up to 3 dimensions

Built-in variables:

threadIdx

blockIdx

blockDim

gridDim

Device

Grid 1

Block

(1,0,0)

Block

(0,0,0)

Block

(2,0,0)

Block

(1,1,0)

Block

(2,1,0)

Block

(0,1,0)

Block (1,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

Thread

(4,0,0)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(4,1,0)

Thread

(0,2,0)

Thread

(1,2,0)

Thread

(2,2,0)

Thread

(3,2,0)

Thread

(4,2,0)



Threads Hierarchy

A block can be split into parallel threads 

all threads execute the same sequential program

Thread block is a group of threads that can:

Synchronize their execution

Communicate via shared memory
t0 t1 … tB

Block b

Thread t



CUDA Threads

Terminology: a block can be split into parallel threads

Let’s change add() to use parallel threads instead of parallel blocks

We use threadIdx.x instead of blockIdx.x

Need to make one change in main()…

__global__ void add(int *a, int *b, int *c) {

c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}



Vector Addition Using Threads: main()

#define N 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = N * sizeof(int);

// Alloc space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values

a = (int *)malloc(size); random_ints(a, N);

b = (int *)malloc(size); random_ints(b, N);

c = (int *)malloc(size);



Vector Addition Using Threads: main()

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N threads

add<<<1,N>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}



Combining Blocks and Threads

We’ve seen parallel vector addition using:

Many blocks with one thread each

One block with many threads

Adapting vector addition to use both blocks and threads

Data indexing…



0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Indexing Arrays with Blocks and Threads

With M threads/block a unique index for each thread is given by:

int index = blockIdx.x * M + threadIdx.x;

No longer as simple as using blockIdx.x and threadIdx.x

Consider indexing an array with one element per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3



Indexing Arrays: Example

Which thread will operate on the red element?

int index = threadIdx.x + blockIdx.x * M;

=      5      +     2      * 8;

= 21;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 312 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8



Vector Addition with Blocks and Threads

What changes need to be made in main()?

Use the built-in variable blockDim.x for threads per block

int index = threadIdx.x + blockIdx.x * blockDim.x;

Combined version of add() to use parallel threads and parallel 

blocks
__global__ void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];

}



Addition with Blocks and Threads: main()

#define N (2048*2048)

#define THREADS_PER_BLOCK 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = N * sizeof(int);

// Alloc space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values

a = (int *)malloc(size); random_ints(a, N);

b = (int *)malloc(size); random_ints(b, N);

c = (int *)malloc(size);



Addition with Blocks and Threads: main()

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}



Handling Arbitrary Vector Sizes

Update the kernel launch:
add<<<(N + M-1) / M, M >>>(d_a, d_b, d_c, N);

Typical problems are not friendly multiples of blockDim.x

Avoid accessing beyond the end of the arrays:

__global__ void add(int *a, int *b, int *c, int n) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < n)

c[index] = a[index] + b[index];

}



__global__ void kernel( int *a, int dimx, int dimy )
{

int ix   = blockIdx.x*blockDim.x + threadIdx.x;
int iy   = blockIdx.y*blockDim.y + threadIdx.y;
int idx = iy*dimx + ix;

a[idx]  = a[idx]+1;
}

Kernel with 2D Indexing



int main()
{

int dimx = 16;
int dimy = 16;
int num_bytes = dimx*dimy*sizeof(int);

int *d_a=0, *h_a=0; // device and host pointers

h_a = (int*)malloc(num_bytes);
cudaMalloc( (void**)&d_a, num_bytes );

dim3 grid, block;
block.x = 4;
block.y = 4;
grid.x  = dimx / block.x;
grid.y  = dimy / block.y;

kernel<<<grid, block>>>( d_a, dimx, dimy );

cudaMemcpy( h_a, d_a, num_bytes, cudaMemcpyDeviceToHost );

......
}

__global__ void kernel( int *a, int dimx, int dimy )
{

int ix   = blockIdx.x*blockDim.x + threadIdx.x;
int iy   = blockIdx.y*blockDim.y + threadIdx.y;
int idx = iy*dimx + ix;

a[idx]  = a[idx]+1;
}

Kernel with 2D Indexing



MANAGING THE DEVICE

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS



Coordinating Host & Device

Kernel launches are asynchronous

Control returns to the CPU immediately

CPU needs to synchronize before consuming the results

cudaMemcpy() Blocks the CPU until the copy is complete

Copy begins when all preceding CUDA calls have completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have completed



Reporting Errors

All CUDA API calls return an error code (cudaError_t)

Error in the API call itself

OR

Error in an earlier asynchronous operation (e.g. kernel)

Get the error code for the last error:
cudaError_t cudaGetLastError(void)

Get a string to describe the error:
char *cudaGetErrorString(cudaError_t)

printf("%s\n", cudaGetErrorString(cudaGetLastError()));



Device Management

Application can query and select GPUs
cudaGetDeviceCount(int *count)

cudaSetDevice(int device)

cudaGetDevice(int *device)

cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

Multiple threads can share a device

A single thread can manage multiple devices
cudaSetDevice(i) to select current device

cudaMemcpy(…) for peer-to-peer copies✝

✝ requires OS and device support



Part II



A Simple Running Example

Matrix Multiplication

• Let’s now see a simple matrix multiplication example 

that illustrates the basic features of memory and 

thread management in CUDA programs

– Leave shared memory usage until later

– Local, register usage

– Thread ID usage

– Memory data transfer API between host and device

– Assume square matrix for simplicity
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Programming Model:

Square Matrix Multiplication Example

• P = M * N of size WIDTH x WIDTH

• Without tiling:

– One thread calculates one element of P

– Needed parts of M and N are loaded 

WIDTH times from global memory

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH



M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M
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Step 1: Matrix Multiplication

A Simple Host Version in C

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host in double 

precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)

{   

for (int i = 0; i < Width; ++i)

for (int j = 0; j < Width; ++j) {

double sum = 0;

for (int k = 0; k < Width; ++k) {

double a = M[i * width + k];

double b = N[k * width + j];

sum += a * b;

}

P[i * Width + j] = sum;

}

}

i

k

k

j



void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{
int size = Width * Width * sizeof(float); 

float* Md, Nd, Pd;

…

1. // Allocate and Load M, N to device memory 

cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);

cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device

cudaMalloc(&Pd, size);

Step 2: Input Matrix Data Transfer
(Host-side Code)



Step 3: Output Matrix Data Transfer
(Host-side Code)

2.   // Kernel invocation code – to be shown later

…

3.    // Read P from the device

cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices

cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}



Step 4: Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

// Pvalue is used to store the element of the matrix

// that is computed by the thread

float Pvalue = 0;
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Nd

Md Pd
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WIDTH WIDTH

Step 4: Kernel Function  (cont.)

for (int k = 0; k < Width; ++k) {

float Melement = Md[threadIdx.y*Width+k];

float Nelement = Nd[k*Width+threadIdx.x];

Pvalue += Melement * Nelement;

}

Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;

}

ty

tx

ty

tx

k

k



// Setup the execution configuration

dim3 dimGrid(1, 1);   // one block only!

dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Step 5: Kernel Invocation

(Host-side Code) 



Only One Thread Block Used !

• One Block of threads compute 
matrix Pd

– Each thread computes one 
element of Pd

• Each thread

– Loads a row of matrix Md

– Loads a column of matrix Nd

– Perform one multiply and 
addition for each pair of Md and 
Nd elements

– Compute to global memory 
access ratio* close to 1:1 (not 
very high)

• Size of matrix limited by the 
number of threads allowed in a 
thread block ! (e.g. 1024 only!)

Grid 1

Block 1

3 2 5 4

2

4

2

6

48

Thread

(2, 2)

WIDTH

Md Pd

Nd

*CGMA (Computation to Global Memory Access) index: around 20/30:1 to be REALLY good!
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Step 7: Handling Arbitrary Sized Square 

Matrices

• Have each 2D thread block to compute 

a (TILE_WIDTH)2 sub-matrix (tile) of 

the result matrix

– Each has (TILE_WIDTH)2 threads

• Generate a 2D Grid of 

(WIDTH/TILE_WIDTH)2 blocks
Md
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Pd

W
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TILE_WIDTH
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Matrix Multiplication Using 

Multiple Blocks

• Break-up Pd into tiles

• Each block calculates one 

tile

– Each thread calculates one 

element

– Block size equal tile size



P1,0P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2P1,2

P3,1P2,1

P0,3 P2,3 P3,3P1,3

Block(0,0) Block(1,0)

Block(1,1)Block(0,1)

TILE_WIDTH = 2

A Small Example



Pd1,0

A Small Example: Multiplication

Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3Pd3,3Pd1,3



Revised Matrix Multiplication 

Kernel using Multiple Blocks
__global__ void MatrixMulKernel(float* Md, float* Nd, float* 

Pd, int Width)

{

// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

}



// Setup the execution configuration

dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH);

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Revised Step 5: Kernel Invocation

(Host-side Code) 



Review: CUDA Thread Block

• All threads in a block execute the same 
kernel program (SPMD)

• Programmer declares block:

– Block size 1 to 1024 concurrent threads

– Block shape 1D, 2D, or 3D

– Block dimensions in threads

• Threads have thread id numbers within block

– Thread program uses thread id to select 
work and address shared data

• Threads in the same block share data and 
synchronize while doing their share of the 
work

• Threads in different blocks cannot 
cooperate:

– Each block can execute in any order relative 
to other blocks!

CUDA Thread Block

Thread Id #:
0 1 2 3 …          m   

Thread program



Transparent Scalability

• Since threads in different blocks cannot perform barrier 

synchronization with each other, the runtime system is free to 

assigns blocks to any processor at any time, depending on 

hardware

– A kernel scales across any number of parallel processors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative 

to other blocks. 

time

High-end device

Low-cost device
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G80 CUDA mode – A Review
• Processors execute computing threads

• New operating mode/HW interface for computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store



G80 Example: Executing Thread Blocks

• Threads are assigned to Streaming 

Multiprocessors in block granularity

– Up to 8 (physical) blocks to each SM 

as resource allows

– SM in G80 can take up to 768

(physical) threads

• Could be 256 (threads/block) * 3 

blocks 

• Or 128 (threads/block) * 6 blocks, etc.

• Threads run concurrently

– SM maintains thread/block id #s

– SM manages/schedules thread 

execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0



G80 Example: Warps and Thread 

Scheduling

• Each Block is executed as 

32-thread Warps

– An implementation decision, 

not part of the CUDA 

programming model

– Warps are scheduling units 

in SM

– SIMD !

• If 3 blocks are assigned to an 

SM and each block has 256 

threads, how many Warps are 

there in an SM?

– Each Block is divided into 

256/32 = 8 Warps

– There are 8 * 3 = 24 Warps 

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…
Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1

Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 … t31

…
Block 1 Warps



G80 Example: Thread Scheduling 

(Cont.)

• Each SM implements zero-overhead warp scheduling:

– Warps whose next instruction has its operands ready for 

consumption are eligible for execution (i.e. Cuda runtime system 

maintains a list of warp blocks…)

– (Latency tollerance) Eligible Warps are selected for execution 

on a prioritized scheduling policy (ex: Post office queue)

– All threads in a warp execute the same instruction when selected 

(i.e. SIMD fashion)



G80 Block Granularity Considerations (max 8 

blocks – 768 threads, which ever comes first!)

• For Matrix Multiplication using multiple blocks, should I 

use 8X8, 16X16 or 32X32 blocks?

– For 8X8, we have 64 threads per Block. Since each SM can take 

up to 768* threads, there are 12 Blocks. However, each SM can 

only take up to 8 Blocks, only 8*64=512 threads will go into each 

SM! 

– For 16X16, we have 256 threads per Block. Since each SM can 

take up to 768 threads, it can take up to 3 Blocks and achieve full 

capacity unless other resource considerations overrule.

– For 32X32, we have 1024 threads per Block. Not even one can fit 

into an SM! (max 768!)

* Physical threads for G80 ! 1024 virtual threads per block from Compute capability 2.0 on…



Hints…

1.Cuda occupancy calculator!

2.cudaGetDeviceProperties()



CUDA Variable Type Qualifiers

• __device__ is optional when used with 
__local__,  __shared__, or __constant__

• Automatic variables without any qualifier reside in 
a register
– Except arrays that reside in local memory

Variable declaration Memory Scope Lifetime

__device__ __local__ int LocalVar; local thread thread

__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application



Where to Declare Variables?

Can host access it?

Outside of 

any Function
In the kernel

yes no
global

constant

register (automatic)

shared

local



Global memory access efficiency
• Although having many threads available for execution can 

theoretically tolerate long memory access latency, one can 

easily run into a situation where traffic congestion (ie. too 

much global memory accesses ) prevents all but few threads 

from making progress, thus rendering some SM idle!

• A common strategy for reducing global memory traffic (i.e. 

increasing the number of floating-point operations performed 

for each access to the global memory) is to partition the data 

into subsets called tiles such that each tile fits into the 

shared memory and the kernel computations on these tiles 

can be done independently of each other.

• In the simplest form, the tile dimensions equal those of the 

block.



A Common Programming Strategy

• Global memory resides in device memory (DRAM) - much 

slower access than shared memory (up to 2 order 

magnitude!)

• So, a profitable way of performing computation on the 

device is to tile data to take advantage of fast shared 

memory:

– Partition data into subsets that fit into shared memory

– Handle each data subset with one thread block by:

• Loading the subset from global memory to shared memory, 

using multiple threads to exploit memory-level parallelism (i.e. 

cooperation)

• Performing the computation on the subset from shared 

memory; each thread can efficiently multi-pass over any data 

element

• Copying results from shared memory to global memory



A Common Programming Strategy 

(Cont.)

• Constant memory also resides in device memory 

(DRAM) - much slower access than shared 

memory

– But… cached!

– Highly efficient access for read-only data

• Carefully divide data according to access patterns

– R/Only  constant memory (very fast if in cache)

– R/W shared within Block  shared memory (very fast)

– R/W within each thread  registers (very fast)

– R/W inputs/results  global memory (very slow)



Matrix Multiplication using 

Shared Memory



Review: Matrix Multiplication 

Kernel using Multiple Blocks
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block sub-
matrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

}
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Idea: Use Shared Memory to reuse 

global memory data

• Each input element is 

read by Width threads.

• Load each element into 

Shared Memory and 

have several threads 

use the local version to 

reduce the memory 

bandwidth

– Tiled algorithms
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Tiled Multiply

• Break up the execution of the 

kernel into phases so that the 

data accesses in each phase is 

focused on one subset (tile) of 

Md and Nd



Pd1,0

A Small Example
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Every Md and Nd Element is used exactly 

twice in generating a 2X2 tile of P

P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Access

order



Pd1,0Md2,0
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Breaking Md and Nd into Tiles

• Break up the inner 
product loop of each 
thread into phases

• At the beginning of each 
phase, load the Md and 
Nd elements that 
everyone needs during 
the phase into shared 
memory

• Everyone access the Md 
and Nd elements from the 
shared memory during 
the phase



Each phase of a Thread Block uses one 

tile from Md and one from Nd
Step 4 Step 5 Step 6

T0,0 Md0,0

↓ 

Mds0,0

Nd0,0

↓ 

Nds0,0

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1

Md2,0

↓ 

Mds0,0

Nd0,2

↓ 

Nds0,0

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1

T1,0 Md1,0

↓ 

Mds1,0

Nd1,0

↓ 

Nds1,0

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1

Md3,0

↓ 

Mds1,0

Nd1,2

↓ 

Nds1,0

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1

T0,1 Md0,1

↓ 

Mds0,1

Nd0,1

↓ 

Nds0,1

PdValue0,1 += 

Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1

Md2,1

↓ 

Mds0,1

Nd0,3

↓ 

Nds0,1

PdValue0,1 += 

Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1

T1,1 Md1,1

↓ 

Mds1,1

Nd1,1

↓ 

Nds1,1

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1

Md3,1

↓ 

Mds1,1

Nd1,3

↓ 

Nds1,1

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1

Phase 1 Phase 2

time

Mds, Nds= shared



Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{
1.  __shared __float Mds[TILE_WIDTH][TILE_WIDTH];

2.  __shared __float Nds[TILE_WIDTH][TILE_WIDTH];

3.  int bx = blockIdx.x;  int by = blockIdx.y;

4.  int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5.  int Row = by * TILE_WIDTH + ty;

6.  int Col = bx * TILE_WIDTH + tx;

7.  float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element (#phases)

8.  for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared memory

9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];

10. Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];

11. __syncthreads();

12.    for (int k = 0; k < TILE_WIDTH; ++k)

13. Pvalue += Mds[ty][k] * Nds[k][tx];

14.    __syncthreads();

}

15. Pd[Row*Width + Col] = Pvalue;

}



CUDA Code – Kernel Execution 

Configuration
// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

dim3 dimGrid(Width  / TILE_WIDTH, 

Width /  TILE_WIDTH);



First-order Size Considerations in G80

• Each thread block should have many threads

– Global memory accesses reduced by N = #tile width !

– TILE_WIDTH of 16 gives 16*16 = 256 threads

• There should be many thread blocks

– A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

– TILE_WIDTH of 16 gives each SM 3 blocks, 768 threads (full 

capacity) 

• Each thread block performs 2*256 = 512 float loads from 

global memory for 256 * (2*16) = 8,192 mul/add 

operations. 

– Memory bandwidth no longer a limiting factor

inner product
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Tiled Multiply

• Each block computes one 

square sub-matrix Pdsub of size 
TILE_WIDTH

• Each thread computes one 

element of Pdsub
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Memory as a limiting factor to 

parallelism
• The limited amount of CUDA shared memory (e.g. 16KB) limits the 

number of threads that can simultaneously reside in the SM!

• For the matrix multiplication example, shared memory can become 

a limiting factor:

• TILE_WIDTH = 16,  so each block requires 16x16x4 = 1kB of 

storage for Mds + 1kB for Nds

– 2kB of shared memory per block

• The 16-kB shared memory allows 8 blocks to simultaneously reside 

in an SM. Ok!

• But the maximum number of threads per SM is 1024 (for Tesla T10)

– For 1024*1024 matrix only 1024/256 = 4 blocks are allowed in each SM

– only 4 x 2kB = 8kB of the shared memory will be used.

Hint: Use occupancy calculator



Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{
1.  __shared __float Mds[TILE_WIDTH][TILE_WIDTH];

2.  __shared __float Nds[TILE_WIDTH][TILE_WIDTH];

3.  int bx = blockIdx.x;  int by = blockIdx.y;

4.  int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5.  int Row = by * TILE_WIDTH + ty;

6.  int Col = bx * TILE_WIDTH + tx;

7.  float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element

8.  for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared memory

9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];

10. Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];

11. __syncthreads();

12.    for (int k = 0; k < TILE_WIDTH; ++k)

13. Pvalue += Mds[ty][k] * Nds[k][tx];

14.    __syncthreads();

}

15. Pd[Row*Width + Col] = Pvalue;

}



Tiling Size Effects
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• Global variables declaration

– __host__

– __device__... __global__, __constant__, __texture__

• Function prototypes

– __global__ void kernelOne(…)

– float handyFunction(…)

• Main ()

– allocate memory space on the device – cudaMalloc(&d_GlblVarPtr, bytes )

– transfer data from host to device – cudaMemCpy(d_GlblVarPtr, h_Gl…)

– execution configuration setup

– kernel call – kernelOne<<<execution configuration>>>( args… );

– transfer results from device to host – cudaMemCpy(h_GlblVarPtr,…)

– optional: compare against golden (host computed) solution

• Kernel – void kernelOne(type args,…)

– variables declaration - __local__, __shared__

• automatic variables transparently assigned to registers or local memory

– syncthreads()…

• Other functions

– float handyFunction(int inVar…);

Summary- Typical Structure of a 

CUDA Program

repeat

as 

needed


