Department of Mathematics University of Calabria

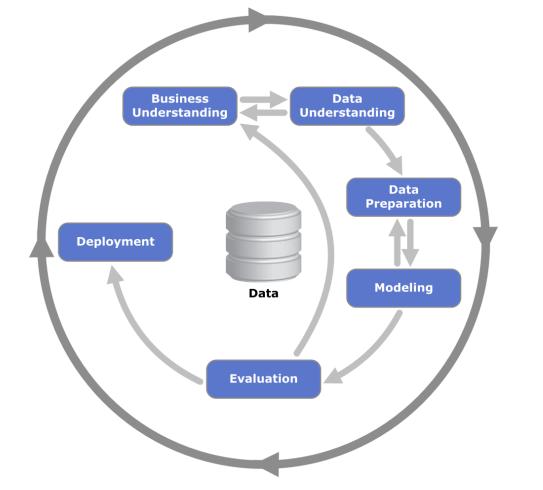
Business Intelligence and Analytics

(Data Mining)

Data Preparation

Ph.D. Ettore Ritacco

The Knowledge Discovery Process (CRISP-DM)



2

Department of Mathematics University of Calabria

About the Lecture

• Main Source:

• Tan, Steinbach, Kumar "Introduction to Data Mining"

3

Data Preparation

Data cleaning	• Fill in missing values, smooth noisy data, identify or remove outliers, remove redundant values or values with too high (or too low) variability, resolve inconsistencies
Data integration	 Integration of multiple databases, data cubes, or files
Data transformation	 Normalization and aggregation
Data reduction	 Obtain a reduced representation in volume (which produces similar statistical results)
Data discretization	 Sometimes required by the classification algorithms or computational cost issues

Data Quality

Data in the real world are dirty

- *incomplete*: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
- noisy: containing errors or outliers
- *inconsistent*: containing discrepancies in codes or names

No quality in data? Then no quality in mining results! BAD INPUT = WORSE OUTPUT

Data Cleaning

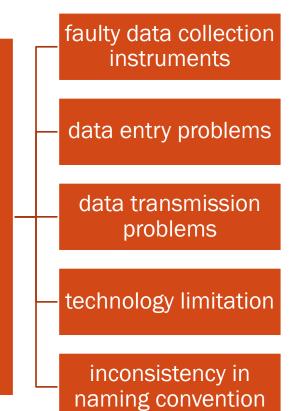
Identify Fill in outliers and missing smooth out values noisy data Correct Remove inconsistent irrelevant data data

Data Cleaning – Noisy Data

• Noise: random error or variance in a measured variable

7

Incorrect attribute values



Data Cleaning - Missing Data

Data is not always available

• E.g., many tuples have no recorded value for several attributes, such as customer income in sales data

Missing data may be due to

- Instrument malfunction
- Inconsistency with other recorded data and thus deleted
- Data not entered due to misunderstanding
- Information without importance at the time of entry
- Not register history or changes of the data

Missing data may need to be inferred.

How to Handle Missing Data?

- Ignore the Missing Value During Analysis
- Ignore the tuple (usually done when class label is missing)

 Use a global constant to fill in the missing value (e.g. "unknown", a new class value)

• Estimate Missing Values

- Use the attribute mean/mode to fill in the missing value
- Use the most probable value to fill in the missing value: inferencebased such as Bayesian formula or decision tree
- Replace with all possible values (weighted by their probabilities)

Data Preparation

Aggregation

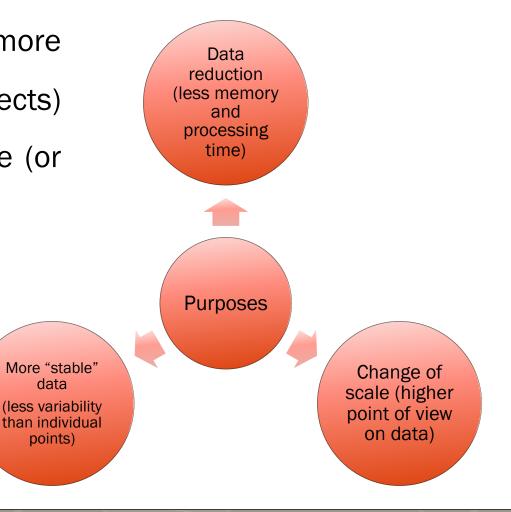
- Sampling
- Dimensionality Reduction
 - Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

• Combining two or more attributes (or objects) into a single attribute (or object)

Disadvantages:

Potential loss of

interesting details



11

More "stable"

data

points)

Data Aggregation – Example

Transaction ID	Item	Store Location	Date	Price	
:	;	:	:	1	
101123	Watch	Chicago	09/06/04	\$25.99	
101123	Battery	Chicago	09/06/04	\$5.99	
101124	Shoes	Minneapolis	09/06/04	\$75.00	
1	:	1	:	:	
-	•	•	•	• •	

- Transactions of a single store can be replaced by a single storewide transaction
- Aggregation operation depends on the type of the attribute (e.g. price can be averaged, summed...)

Data Preparation

• Aggregation

Sampling

Dimensionality Reduction

- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

Data Sampling

- Horizontal selection: instances removal.
- To process all the data is often too expensive or time consuming
- Often used for both the preliminary investigation of the data and the final data analysis

• Representative Sample

- A sample is representative if it holds ("almost") the same statistical properties of the original set.
- Using a representative sample will work almost as well as using the entire data sets

Sampling Tecniques

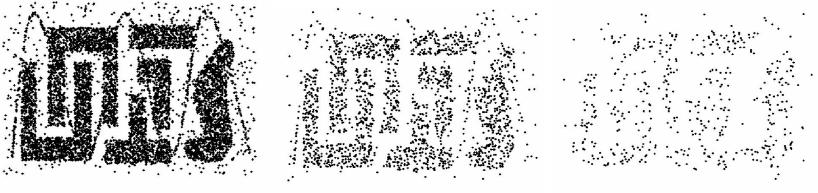
Simple Random Sampling	 There is an equal probability of selecting any particular item
Sampling without replacement	 As each item is selected, it is removed from the population
Sampling with replacement	 Objects are not removed from the population as they are selected for the sample. The same object can be picked up more than once
Stratified sampling	 Split the data into several partitions; then draw random samples from each partition Fixed size/percentage for each class

Department of Mathematics University of Calabria

16

– Sampling Loss of information

• Which is the most appropriate sample size?



8000 points

2000 Points

500 Points

If the sample is *too big*, there is no advantage of sampling
If the sample is *small*, erroneous patterns can be detected!

Progressive Sampling

- Start with a small sample size
- Increase the sample size until a sufficient sample size is reached
- Example:
 - Estimate the increase of the accuracy of a predictive model when increasing sample size.
 - Stop when the increase in the accuracy levels off.

Data Preparation

Aggregation

- Sampling
- Dimensionality Reduction
 - Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

Dimensionality Reduction

- As the dimensionality increases, data become sparse
- Risk: to produce low quality results with high dimensional data

The curse of dimensionality

Dimensionality Reduction:

 Obtaining a reduced representation of the data set that is much smaller in volume but yet produce the good analytical results

Dimensionality Reduction

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Produce more understandable models
- Allow data to be more easily visualized
- Eliminate irrelevant features or reduce noise

Dimensionality Reduction

o Feature Subset Selection

- Embedded approaches
- Filter approaches
- Wrapper approaches
- Linear Algebra Techniques
 - Principle Component Analysis
 - Singular Value Decomposition

Feature Subset Selection

Irrelevant and redundant features can be removed

Some features can be immediately removed by using common sense or domain knowledge.

A more systematic approach is required to select the best subset of features (Note that the possible subsets are 2ⁿ).

Features Subset Selection

Embedded approaches

Features selection is often performed as a part of the data mining algorithm

Filter approaches

- Features selection can be performed before the data mining algorithm is applied
- Using a specific and independent approach

Wrapper approaches

• A data mining algorithm is used as a black box to select the most relevant features

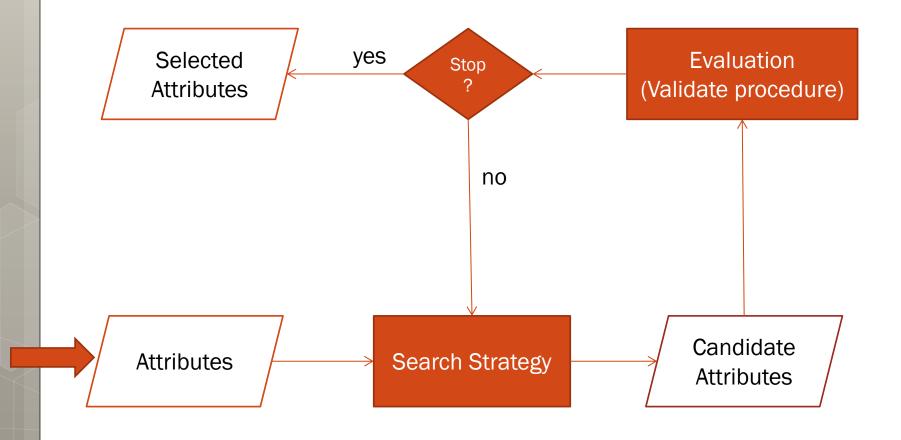
Features Selection – The process

• It consists of 4 main components:

- A quality measure (to evaluate the features subsets)
- A search strategy (the approach to be used)
- A stopping criterion
- A validation procedure

• Filter methods and wrapper ones differ only in the way they evaluate the subset.

Features Selection – The process



Data Preparation

• Aggregation

- Sampling
- Dimensionality Reduction
 - Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

Features Creation

 Create new attributes that can capture the important information in a data set much more efficiently than the original attributes

• General methodologies:

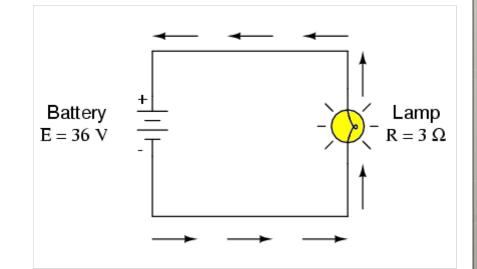
- Feature Extraction (domain-specific)
- Mapping Data to New Space
- Integrating knowledge from other data sources
- Feature Construction, by combining features

(e.g. density=mass/volume)

Features Creation

• Example:

- Available features:
 - Starting time
 - Ending time
 - Battery voltage
 - Assumed constant
 - Lamp resistance



- New features:
 - Current = Voltage / Resistance
 - Power = Voltage x Current
 - Work = Power x (Ending time Starting time)

Data Preparation

Aggregation

- Sampling
- Dimensionality Reduction
 - Feature subset selection
- Feature creation
- o Discretization and Binarization
- Attribute Transformation

Discretization and Binarization

Many classification algorithms require categorical attributes • Algorithms that find patterns often require **binary** Problems: attributes **Discretization:** Transforming a continuous attribute into categorical attribute • **Binarization:** Transforming continuous or discrete Solutions: attributes into one or more binary attributes

Binarization – Type 1

o cat_attr={awful, poor, OK, good, great}

• Conversion to 3 binary attributes

Cat_attr	Integer value	а	b	С
awful	0	0	0	0
poor	1	0	0	1
OK	2	0	1	0
good	3	0	1	1
great	4	1	0	0

Binarization – Type 1

• Technique:

Department of Mathematics University of Calabria

- Uniquely assign each original value to an integer in [0, m-1]
- Convert each integer value to a binary number
- Create $n = \lfloor ln(m) \rfloor$ binary attribute to replace the original one.

o Disadvantage:

• Creation of n attributes with unintended relationships

33

Binarization – Type 2

o cat_attr={awful, poor, OK, good, great}

• Introduction to 5 binary attributes:

- awful={0,1}
- poor={0,1}
- OK={0,1}
- $good=\{0,1\}$
- great={0,1}

Binarization – Type 2

• Technique:

- Create *m* binary attribute to replace the original one.
- Assign a value=1 to the binary attribute corresponding to the original value
- Assign 0 to the other attributes

• Disadvantage:

- The number of new attributes may be very large
- The best discretization depends on the algorithm being used

Decisions to take:

How many categories?

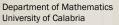
How to realize the mapping?

sort the values

Technique:

divide them into *n* intervals (using *n-1* **split points)**

Map all the values in one interval to the same categorical value

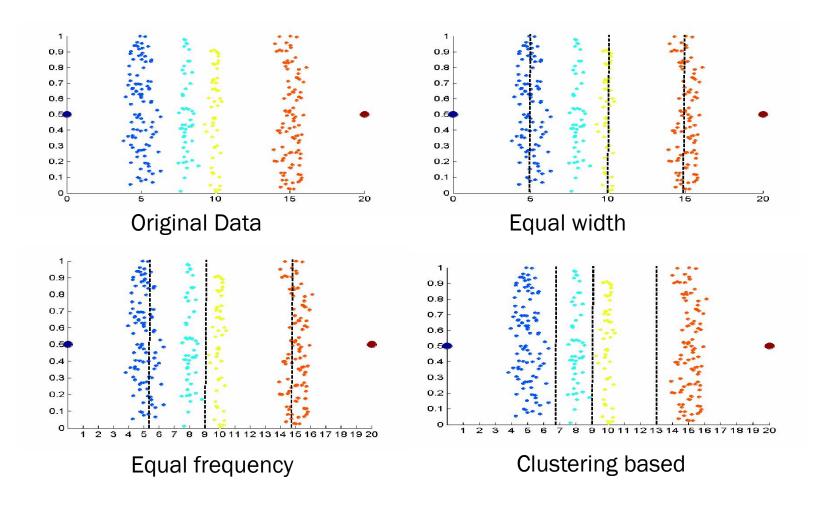


Unsupervised Discretization

• Information about the class attribute is not used

S	ග ප ප ග ප ප ප ප ප ප ප ප ප ප ප ප ප ප ප ප	 Divide the range into n intervals with the same width Can be badly affected by outliers
	Equal frequency	 Tries to put the same number of objects into each interval
AP	Clustering approach	• Based on the use of any clustering method

Unsupervised Techniques – Example



37

Supervised Discretization

- **Problem:** An interval constructed without knowledge about the class distribution often contains a **mixture of classes**.
- Using class information may produce better results
- A **simple approach** is that of choosing the split points in order to maximize the purity of the intervals

Data Preparation

• Aggregation

- Sampling
- Dimensionality Reduction
 - Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

Attribute Transformation

• Transformation of the values of an attribute

• Simple functional transformations

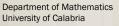
• Special case: Normalization

41

• Application of a function to all the values of an attribute

• Examples of transformation:

- logarithm function: used to produce a monotonic distortion of the values
- |x| function (Absolute value)
- $\frac{1}{x}$ function: another monotonic distortion



Attribute Transformation – Normalization

- Goal: to make an entire set of values to have a specific property.
- Example: • $x' = \frac{x - \bar{x}}{s_x}$ x' = 0 $\bar{x}' = 0$
- Since mean and standard deviation are affected by outliers, their can be replaced by be median and the absolute standard deviation