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Review of probability theory

� Definitions (informal)
� Probability is a number assigned to an event

� It indicates “how likely” the event will occur when a random 
experiment is performed

� A probability law for a random experiment is a rule that assigns 
probabilities to the events in the experiment

� The sample space Ω of a random experiment is the set of all possible 
outcomes

� Axioms of probability
� Axiom I: " # ≥ 0
� Axiom II: " Ω = 1
� Axiom III: # ∩ ) = ∅ ⇒ " # ∪ ) = " # + " )
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Review of probability theory

� More properties of probability

� ! ¬# = 1 − ! #

� 0 ≤ ! # ≤ 1

� ! ∅ = 0

� ! # ∪ + = ! # + ! + − ! # ∩ +

� # ⊂ + ⇒ ! # ≤ ! +
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Review of probability theory

� Conditional probability
� If ! and " are two events, the probability of !, when we already know 

that " has occurred, is:

# !|" = # ! ∩ "
# " '( # " > 0

⇒ # ! ∩ " = # !|" ⋅ # " = # "|! ⋅ # !
� This conditional probability # !|" is read:

� The “conditional probability of ! conditioned on "”, or simply
� “The probability of ! given "”

� Interpretation
� The new evidence “" has occurred” has the following effects:

� The original sample space Ω becomes "
� The event ! becomes ! ∩ "

� # " normalizes the probability of events that occur jointly with "

5



Department of Mathematics
University of Calabria

Theorem of total probability

� Let !",… , !% be a partition of Ω, i.e.:

� !' ∩ !) = ∅ ∀-, .
� ⋃01"% !0 = Ω

� Then:
� 2 = A ∩ Ω = 2 ∩ ⋃01"% !0 = ⋃01"% 2 ∩ !0

� So:
� 4 2 = 4 ⋃01"% 2 ∩ !0
= ∑01"% 4 2 ∩ !0
= ∑01"% 4 2|!0 ⋅ 4 !0
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Bayes’ Theorem
� Given the partition !", … , !% of Ω

� Given an occurring event '

� What is the probability of !(?

� By exploiting the conditional and total probabilities:

) !(|' = ) ' ∩ !(
) ' = ) '|!( ⋅ ) !(

) ' = ) '|!( ⋅ ) !(
∑/0"% ) '|!/ ⋅ ) !/

� This is known as Bayes Theorem or Bayes Rule, and is (one of) the most useful relation(s) in 
probability and statistics
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Random variables and distributions

� A random variable is a function that maps the events, in 

the sample space Ω, into a numerical space:

":Ω → %
� If % ⊆ ℕ then " is discrete

� If % ⊆ ℝ then " is continuous
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Random variables and distributions

� The probability of a random variable is a function, often called distribution, that maps the numeric values of the events to the 
real interval 0,1 :

$: & → 0,1

� Discrete case:

0 ≤ $ ) = + ≤ 1
$ ) = + = , +

$ ) ≤ + = - + = .
/01/

,(+3)

.
/∈6

$ ) = + = 1

� Continuous case:
$ ) = + = 0

$ ) ≤ + = - + = 7
89

/
, : ;:

$ < ≤ ) ≤ = = 7
>

?
, : ;: = - = − - <

$ −∞ ≤ ) ≤ ∞ = 1
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Random Variable Observation

Probability mass function
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distribution

Distribution function
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Random variables and distributions

� Expected value (average, mean):
� Discrete case:

!" # = %
&∈(

) ⋅ + # = )

� Continuous case:

!, # = -
(
) ⋅ . ) /)

� Variance:
012 # = ! # − ! # 4 = ! #4 − ! # 4

� Discrete case:

012" # = %
&∈(

) − ! # 4 ⋅ . )

� Continuous case:

012, # = -
(
) − ! # 4 ⋅ . ) /)
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Random vectors

� An extension of the concept of random variable
� A random vector !" is a function that assigns a vector of real numbers 

to each outcome in the sample space

� The probability of a random vector observation is a joint 

probability distribution function:

# !$ &̅ = ( ") ≤ &) ∩ ⋯∩ "- ≤ &-
� whose probability density function (continuous case) is

. !$ &̅ = /-012 3̅

/&) …/&-
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Random vectors
� Expected value:

E "# = &̅ = ' "#( , … , ' "#+
, = &(, … , &+ ,

� Variance should consider correlations è Covariance matrix:
-./ "# = Σ = ' "# − &̅ "# − &̅ , =

=
' 2( − &( 3 … ' 2( − &( 2+ − &+

… … …
' 2+ − &+ 2( − &( … ' 2+ − &+ 3

=
4(3 … 5./(,+
… … …

5./+,( … 4+3

� The covariance matrix indicates the tendency of each pair of features (dimensions in a 
random vector) to vary together.

� In general, covariance is:
-./ #, 6 = ' # − ' # ⋅ 6 − ' 6 = ' # ⋅ 6 − ' # ⋅ ' 6
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Normal distributions
� The multivariate Normal (Gaussian) distribution is 

continuous and defined as:

! "# %̅ = 1
2) * Σ

exp −12 %̅ − 0̅ 1Σ %̅ − 0̅

� where "2 = 3

� The univariate version is:

!# % = 1
2)45

exp − % − 0 5

245

� Expected value E 2 = 0

� Variance 789 2 = 45
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Normal distributions

� Confidence intervals

14



Department of Mathematics
University of Calabria

Binomial distribution
� Probability mass function

! "|$, & = ! ( = "|$, & = $
" &) ⋅ 1 − & -.)

where $ and " are integers, & is the probability of a target 

event and $" = -!
)!⋅ -.) !

� Cumulative distribution

! ( ≤ " =1
234

)
$
5 &2 ⋅ 1 − & -.2

� Expected value 6 ( = $ ⋅ &

� Variance 789 ( = $ ⋅ & ⋅ 1 − &
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$ = 20 & = 0,25
$ = 20 & = 0,50
$ = 20 & = 0,75
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Laws of large numbers
� The laws of large numbers describe the result of performing the same experiment a large 

number of times.

� Given a set of independent and identically distributed random variables !", … , !% , such that 
∀' ( !) = +, let define the sample average:

,% =
∑./"% !.
0

� The weak law of large numbers states that the sample average converges in 
probability towards the expected value:

lim%→56 ,% − + < const = 1

� The strong law of large numbers states that the sample average converges almost surely to 
the expected value

6 lim%→5,% = + = 1
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Central Limit Theorem

� Let !",… , !% be a sequence of & independent and identically 
distributed (i.i.d.) random variables drawn from a distribution 
of expected value ' and finite variance ()

� Let

*% =
∑-."% !-
&

� Theorem: For large enough &, the distribution of *% is close to a 

normal distribution with mean ' and variance /0
%

� No matter what the shape of the original distribution is!
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Estimation theory

� The estimation problem:

� Let ! = !#,… , !& be a set of ' i.i.d. random variable governed by 
a probability density function ( )|Θ , where Θ is unknown

� Find an estimation of Θ by exploiting the observations of the 
random variables

� Three common approaches to solve the problem are:

� Minimum Mean Squared Error / Least Squares Error
� Maximum Likelihood estimation
� Bayesian estimation
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Minimum Mean Squared Error

� Suppose we have a system governed by:

! = # $|Φ

� Suppose to run a set of experiments obtaining several 

observations for $ and !

� Objective:
� Find ' $|Θ , an approximation of # $|Φ , such that the mean 

square error
) ! − ' $|Θ +

is minimized
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Minimum Mean Squared Error

� The objective is too hard to automatically achieve

� New objective:
� Given a chosen function ! "|Θ , as approximation of % "|Φ , find 
Θ∗ such that:

Θ∗ = argmin
/

0 1 − ! "|Θ 3

� Exploiting the observations:

Θ∗ = argmin
/

4
567

8
95 − ! :5|Θ

3

� This estimation is also known as least squared error (LSE)
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Minimum Mean Squared Error
� Constant case: ! "|$ = $, where $ ∈ ℝ

� Then:

$∗ = argmin
/∈ℝ

0
123

4

51 − $ 7

� Optimization step --- We take derivatives and equate to 0

8
8$0

123

4

51 − $ 7 = −20
123

4

51 − $ = −2 0
123

4

51 −0
123

4

$ = −2 0
123

4

51 − : ⋅ $ = 0

⇒ : ⋅ $ =0
123

4

51 ⇒ $∗ =
1
:0
123

4

51 ?. A. BℎA DEFGHA FAE:
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Minimum Mean Squared Error
� Linear case: ! "|$, & = $ ⋅ " + &, where $, & ∈ ℝ

� Then

,∗ = argmin
4∈ℝ

5
678

9

:6 − $ ⋅ "6 − & <

� Optimization step --- We take derivatives and equate to 0

=
=$5

678

9
:6 − $ ⋅ "6 − & < = −25

678

9
:6 − $ ⋅ "6 − & ⋅ "6 = 0

=
=&5

678

9
:6 − $ ⋅ "6 − & < = −25

678

9
:6 − $ ⋅ "6 − & = 0
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Minimum Mean Squared Error

� This is a complete system of equations (2 equations and 2 variables), 

whose solution is:

!∗ = $∑&'() *&+& − ∑&'() *& ∑&'() +&
$ ∑&'() *&- − ∑&'() *&

- = ./0 1, 3
456[1]

9
&'(

)
+& − !∗ ⋅ *& − ; =9

&'(

)
+& − !∗9

&'(

)
*& − $ ⋅ ;

= 1
$9&'(

)
+& − !∗ ⋅ 1$9&'(

)
*& − ; = 0 ⇒ ;∗ = ? 3 −!∗? 1

23



Department of Mathematics
University of Calabria

Minimum Mean Squared Error

� Multivariate linear case:

! "#|&̅ = "# ⋅ &̅
where "# ∈ ℝ+× -./ and &̅ ∈ ℝ-./

� In expanded form:

0/
01
⋮
0+

=
1 4/,/
1 41,/

… 4/,-
… 41,-

⋮ ⋮
1 4+,/

⋱ ⋮
… 4+,-

⋅
89
8/
⋮
8-
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Minimum Mean Squared Error

� Then:

"̅∗ = argmin
+̅∈ℝ./0

12 − 14 ⋅ "̅ 66

� Optimization step --- We take derivatives and equate to 0

∇ 12 − 14 ⋅ "̅ 66 = −2 ⋅ 149 ⋅ 12 − 14 ⋅ "̅ = 0
⇒ 149 ⋅ 14 ⋅ "̅ = 149 ⋅ 12
⇒ "̅∗ = 149 ⋅ 14 <= ⋅ 149 ⋅ 12

� The term 149 ⋅ 14 <= ⋅ 149 is known as the pseudo-inverse of 14
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Minimum Mean Squared Error

� If !"# ⋅ !" is a singular matrix (non invertible) the objective 

can be modified in:

&̅∗ = argmin
/̅∈ℝ234

!5 − !" ⋅ &̅ 77 + 9 & 77

where 9 is a regularization parameter

� The estimation then is:

&̅∗ = !"# ⋅ !" + 9 ⋅ : ;< ⋅ !"# ⋅ !5
which is normally known as regularized LSE or ridge-

regression solution
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Maximum Likelihood Estimation
� Maximum Likelihood Estimation (MLE) is one of the most used parametric 

estimation method

� Let !",… , !% be i.i.d. random variables whose observations are &", … , &%
� Let ' &|Θ be a distribution that approximate the function that governs the data

� Goal:

Θ∗ = argmax
1

' !|Θ

= argmax
1

2
34"

%
' &3|Θ 56789 :ℎ9 <=59>?@:6<75 @>9 67A9'97A97:
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Likelihood
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Maximum Likelihood Estimation

� For the sake of simplicity (and numerical calculus), 

likelihood is typically expressed in logarithmic form:

!!" Θ|% = log*
+,-

.
/ 0+|Θ =1

+,-

.
log / 0+|Θ

� As before the optimization step can be performed by 

taking the derivatives

28



Department of Mathematics
University of Calabria

Maximum Likelihood Estimation
� Gaussian case:

! "#|Θ = ', )* = 1
2-)*

exp − "# − ' *

2)*

� The log likelihood is:

2
#34

5
log ! "#|Θ =2

#34

5
log 1

2-)*
exp − "# − ' *

2)*

=2
#34

5
log 1

2-)*
− "# − ' *

2)*

= −92 log 2-)
* − 1

2)*2#34

5
"# − ' *
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Maximum Likelihood Estimation

� Optimization step --- We take derivatives and equate to 0

!∗ = 1
%&'()

*
+'

,-∗ = 1
%&'()

*
+' − !∗ -
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Bayesian Estimation

� Bayesian estimation differs from MLE by considering Θ as 

a random variable, not a fixed value

� Maximum A Posteriori (MAP) estimation:

Θ∗ = argmax
)

* Θ|, = argmax
)

* ,|Θ ⋅ * Θ
* ,

= argmax
)

* ,|Θ ⋅ * Θ

31

A Priori knowledge about 
the parameter
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Bayesian Estimation

� The Map estimator enables the embedding of prior 

knowledge about the parameters Θ in terms of " Θ

� With limited data, " Θ is dominant

� With sufficient data, " Θ balances the likelihood with the 
background knowledge

� For large data repositories, " Θ approximates the MLE approach
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Optimization

� All the optimization steps seen so far are based on exact derivatives

� There are cases where derivatives are intractable due to the size of 

the problem

� Typically, we need find heuristics and we have to be content with 

optimal (non optima) solutions
� Newton-Raphson method (Root-finding algorithm)

� Gradient Descent (Finding local minimum)
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Newton-Raphson method

� Newton-Raphson method is an heuristic for solving the 

problem of finding approximations of the roots of a 

function:

! " = 0
� For example:

" + &' = 0
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Newton-Raphson method

� The idea is to exploit the derivative of the function to follow 

the tangent starting from a random initial point

35

� The algorithm is: update !
until convergence:

!"#$ = !&'( − *(!&'()
*-(!&'()

� In our example

*- !&'( = 1 + 01234

(very simple!)
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Gradient Descent

� Gradient Descent is an iterative algorithm 
for searching for minimal points

� Let ! #̅ be a multivariate and 
differentiable in a neighborhood of a point 
$%
� ! #̅ decreases fastest if one goes from $% in 

the direction of the negative gradient
� The algorithm is: update $% until convergence:

$%&'( = $%*+, − .∇! $%*+,
The parameter . is called learning rate and 
determines the behavior of the optimization
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Gradient Descent

� Possible behaviors according !
� Let assume that our error function is:

" # = 1
2 ⋅ ( ⋅ #

) #ℎ"+" ( ,- . /01-2.12
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