Department of Mathematics University of Calabria

Business Intelligence and Analytics

(Data Mining)

Estimation Theory

Ph.D. Ettore Ritacco

Outline

- 1. Review of probability theory
- 2. Theorem of total probability
- 3. Bayes' Theorem
- Random variables and distributions
- 5. Random vectors
- 6. Normal distribution
- 7. Laws of large numbers

- 8. Central Limit Theorem
- 9. Estimation theory
 - Minimum Mean Square Error
 - Maximum Likelihood Estimation
 - Bayesian Estimation
- 10. Optimization
 - Newton-Raphson method
 - Gradient Descent

Department of Mathematics University of Calabria

Review of probability theory

• Definitions (informal)

- Probability is a number assigned to an event
 - It indicates "*how likely*" the event will occur when a random experiment is performed
- A probability law for a random experiment is a rule that assigns probabilities to the events in the experiment
- The sample space Ω of a random experiment is the set of all possible outcomes

• Axioms of probability

- Axiom I: $p(A) \ge 0$
- Axiom II: $p(\Omega) = 1$
- Axiom III: $A \cap B = \emptyset \Rightarrow p(A \cup B) = p(A) + p(B)$

Review of probability theory

- More properties of probability
 - $p(\neg A) = 1 p(A)$
 - $0 \le p(A) \le 1$
 - $p(\emptyset) = 0$
 - $p(A \cup B) = p(A) + p(B) p(A \cap B)$
 - $A \subset B \Rightarrow p(A) \le p(B)$

Department of Mathematics University of Calabria

Review of probability theory

Conditional probability

• If *A* and *B* are two events, the probability of *A*, when we already know that *B* has occurred, is:

$$p(A|B) = \frac{p(A \cap B)}{p(B)} \quad if \quad p(B) > 0$$

$$\Rightarrow p(A \cap B) = p(A|B) \cdot p(B) = p(B|A) \cdot p(A)$$

- This conditional probability p(A|B) is read:
 - The "conditional probability of A conditioned on B", or simply
 - "The probability of A given B"
- Interpretation
 - The new evidence "*B* has occurred" has the following effects:
 - The original sample space Ω becomes B
 - The event A becomes $A \cap B$
 - p(B) normalizes the probability of events that occur jointly with B

Theorem of total probability

- Let $\{B_1, \dots, B_n\}$ be a partition of Ω , i.e.:
 - $B_i \cap B_j = \emptyset \quad \forall i, j$
 - $\bigcup_{k=1}^{n} B_k = \Omega$

• Then:

• $A = A \cap \Omega = A \cap (\bigcup_{k=1}^{n} B_k) = \bigcup_{k=1}^{n} A \cap B_k$

o So:

- $p(A) = p(\bigcup_{k=1}^{n} A \cap B_k)$ = $\sum_{k=1}^{n} p(A \cap B_k)$
 - $= \sum_{k=1}^{n} p(A|B_k) \cdot p(B_k)$

Bayes' Theorem

- Given the partition $\{B_1, \dots, B_n\}$ of Ω
- Given an occurring event A
- What is the probability of B_i ?
- By exploiting the conditional and total probabilities:

• This is known as Bayes Theorem or Bayes Rule, and is (one of) the most useful relation(s) in probability and statistics

Random variables and distributions

• A random variable is a function that maps the events, in the sample space Ω , into a numerical space:

 $X{:}\,\Omega\to Q$

• If $Q \subseteq \mathbb{N}$ then X is discrete

• If $Q \subseteq \mathbb{R}$ then X is continuous

Random variables and distributions

• The probability of a random variable is a function, often called *distribution*, that maps the numeric values of the events to the real interval [0,1]:

$$p: Q \rightarrow [0,1]$$

Random variables and distributions

• Expected value (average, mean):

• Discrete case:

$$E_p[X] = \sum_{x \in Q} x \cdot p(X = x)$$

• Continuous case:

$$E_f[X] = \int_Q x \cdot f(x) \, dx$$

• Variance:

$$Var[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$$

• Discrete case:

$$Var_p[X] = \sum_{x \in Q} (x - E[X])^2 \cdot f(x)$$

• Continuous case:

$$Var_{f}[X] = \int_{Q} (x - E[X])^{2} \cdot f(x) \, dx$$

Random vectors

• An extension of the concept of random variable

• A random vector \overline{X} is a function that assigns a vector of real numbers to each outcome in the sample space

• The probability of a random vector observation is a joint probability distribution function:

$$F_{\bar{X}}(\bar{x}) = p[(X_1 \le x_1) \cap \dots \cap (X_n \le x_n)]$$

• whose probability density function (continuous case) is

$$f_{\bar{X}}(\bar{x}) = \frac{\partial^{nF_{\bar{X}}(\bar{x})}}{\partial x_1 \dots \partial x_n}$$

Random vectors

• Expected value:

$$\mathbf{E}[\bar{X}] = \bar{\mu} = \left[E[\bar{X}_1], \dots, E[\bar{X}_n] \right]^T = [\mu_1, \dots, \mu_n]^T$$

• Variance should consider correlations \rightarrow Covariance matrix: $Cov[\bar{X}] = \Sigma = E[(\bar{X} - \bar{\mu})(\bar{X} - \bar{\mu})^T] =$

$$= \begin{bmatrix} E[(x_1 - \mu_1)^2] & \dots & E[(x_1 - \mu_1)(x_n - \mu_n)] \\ \dots & \dots & \dots \\ E[(x_n - \mu_n)(x_1 - \mu_1)] & \dots & E[(x_n - \mu_n)^2] \end{bmatrix} = \begin{bmatrix} \sigma_1^2 & \dots & cov_{1,n} \\ \dots & \dots & \dots \\ cov_{n,1} & \dots & \sigma_n^2 \end{bmatrix}$$

- The covariance matrix indicates the tendency of each pair of features (dimensions in a random vector) to vary together.
- In general, covariance is:

 $Cov[X,Y] = E[(X - E[X]) \cdot (Y - E[Y])] = E[X \cdot Y] - E[X] \cdot E[Y]$

Normal distributions

13

The multivariate Normal (Gaussian) distribution is 0 5 continuous and defined as: Mean $f_{\bar{X}}(\bar{x}) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left\{-\frac{1}{2}(\bar{x} - \bar{\mu})^T \Sigma(\bar{x} - \bar{\mu})\right\}$ 0.0012 0.001 **Covariance Matrix** • where $|\overline{X}| = n$ 0.0008 0.0006 0.000/ Mean The univariate version is: $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$ 0.4 0.3 Expected value $E[X] = \mu$ Variance 0.2 0.1 Variance $Var[X] = \sigma^2$ 0

Department of Mathematics University of Calabria

Normal distributions

14

0

15

Binomial distribution

• Probability mass function

$$p(k|n,q) = p(X = k|n,q) = \binom{n}{k} q^{k} \cdot (1-q)^{n-k}$$

where n and k are integers, q is the probability of a target

event and $\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$

• Cumulative distribution

$$p(X \le k) = \sum_{i=0}^{k} {n \choose i} q^{i} \cdot (1-q)^{n-i}$$
Expected value $E[X] = n \cdot q$
Variance $Var[X] = n \cdot q \cdot (1-q)$

$$\int_{0}^{1} \int_{0}^{0} \int_{0}^{0} \int_{0}^{1} \int_{0}^{1} \int_{0}^{0} \int_{0}^{1} \int_{0}^{$$

0.15 -

Laws of large numbers

- The laws of large numbers describe the result of performing the same experiment a large number of times.
- Given a set of independent and identically distributed random variables $\{X_1, ..., X_n\}$, such that $\forall k \ E[X_k] = \mu$, let define the sample average:

$$S_n = \frac{\sum_{i=1}^n X_i}{n}$$

• The **weak law of large numbers** states that the sample average converges *in probability* towards the expected value:

 $\lim_{n \to \infty} p(|S_n - \mu| < \text{const}) = 1$

• The strong law of large numbers states that the sample average converges *almost surely* to the expected value

$$p\left(\lim_{n\to\infty}S_n=\mu\right)=1$$

Central Limit Theorem

• Let $\{X_1, ..., X_n\}$ be a sequence of n independent and identically distributed (i.i.d.) random variables drawn from a distribution of expected value μ and finite variance σ^2

Let

$$S_n = \frac{\sum_{i=1}^n X_i}{n}$$

Theorem: For large enough n, the distribution of S_n is close to a normal distribution with mean μ and variance σ²/n
 No matter what the shape of the original distribution is!

Estimation theory

• The estimation problem:

- Let $X = \{X_1, ..., X_n\}$ be a set of n i.i.d. random variable governed by a probability density function $p(x|\Theta)$, where Θ is unknown
- Find an estimation of Θ by exploiting the observations of the random variables
- Three common approaches to solve the problem are:
 - Minimum Mean Squared Error / Least Squares Error
 - Maximum Likelihood estimation
 - Bayesian estimation

• Suppose we have a system governed by:

 $Y = f(X|\Phi)$

- Suppose to run a set of experiments obtaining several observations for *X* and *Y*
- Objective:
 - Find $g(X|\Theta)$, an approximation of $f(X|\Phi)$, such that the mean square error

 $E[Y - g(X|\Theta)]^2$

is minimized

• The objective is too hard to automatically achieve

• New objective:

• Given a chosen function $g(X|\Theta)$, as approximation of $f(X|\Phi)$, find Θ^* such that:

$$\Theta^* = \underset{\Theta}{\operatorname{argmin}} \{ E[Y - g(X|\Theta)]^2 \}$$

• Exploiting the observations:

$$\Theta^* = \underset{\Theta}{\operatorname{argmin}} \left\{ \sum_{i=1}^n (y_i - g(x_i | \Theta))^2 \right\}$$

• This estimation is also known as least squared error (LSE)

• Constant case: $g(x|\theta) = \theta$, where $\theta \in \mathbb{R}$

• Then:

$$\theta^* = \underset{\theta \in \mathbb{R}}{\operatorname{argmin}} \left\{ \sum_{i=1}^n (y_i - \theta)^2 \right\}$$

• Optimization step --- We take derivatives and equate to 0

$$\frac{\partial}{\partial \theta} \sum_{i=1}^{n} (y_i - \theta)^2 = -2 \sum_{i=1}^{n} (y_i - \theta) = -2 \left[\sum_{i=1}^{n} y_i - \sum_{i=1}^{n} \theta \right] = -2 \left[\sum_{i=1}^{n} (y_i) - n \cdot \theta \right] = 0$$

$$\Rightarrow \quad n \cdot \theta = \sum_{i=1}^{n} y_i \qquad \Rightarrow \qquad \theta^* = \frac{1}{n} \sum_{i=1}^{n} y_i \qquad (i.e. \ the \ sample \ mean)$$

22

• Linear case: $g(x|m,q) = m \cdot x + q$, where $m,q \in \mathbb{R}$

• Then

$$\theta^* = \underset{\theta \in \mathbb{R}}{\operatorname{argmin}} \left\{ \sum_{i=1}^n (y_i - m \cdot x_i - q)^2 \right\}$$

• Optimization step --- We take derivatives and equate to 0

$$\frac{\partial}{\partial m} \sum_{i=1}^{n} (y_i - m \cdot x_i - q)^2 = -2 \sum_{i=1}^{n} (y_i - m \cdot x_i - q) \cdot x_i = 0$$
$$\frac{\partial}{\partial q} \sum_{i=1}^{n} (y_i - m \cdot x_i - q)^2 = -2 \sum_{i=1}^{n} (y_i - m \cdot x_i - q) = 0$$

• This is a complete system of equations (2 equations and 2 variables), whose solution is:

$$m^{*} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \frac{Cov[X, Y]}{Var[X]}$$

$$\sum_{i=1}^{n} (y_i - m^* \cdot x_i - q) = \sum_{i=1}^{n} y_i - m^* \sum_{i=1}^{n} x_i - n \cdot q$$

$$= \frac{1}{n} \sum_{i=1}^{n} y_i - m^* \cdot \frac{1}{n} \sum_{i=1}^{n} x_i - q = 0 \qquad \Rightarrow \qquad q^* = E[Y] - m^* E[X]$$

• Multivariate linear case:

 $g(\bar{X}|\bar{A}) = \bar{X} \cdot \bar{A}$ where $\bar{X} \in \mathbb{R}^{n \times [m+1]}$ and $\bar{A} \in \mathbb{R}^{m+1}$

• In expanded form:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,m} \\ 1 & x_{2,1} & \dots & x_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & \dots & x_{n,m} \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{bmatrix}$$

• Then:

$$\bar{A}^* = \underset{\bar{A} \in \mathbb{R}^{m+1}}{\operatorname{argmin}} \{ \|\bar{Y} - \bar{X} \cdot \bar{A}\|_2^2 \}$$

• Optimization step --- We take derivatives and equate to 0

$$\nabla \| \bar{Y} - \bar{X} \cdot \bar{A} \|_{2}^{2} = -2 \cdot \bar{X}^{T} \cdot (\bar{Y} - \bar{X} \cdot \bar{A}) = 0$$

$$\Rightarrow (\bar{X}^{T} \cdot \bar{X}) \cdot \bar{A} = \bar{X}^{T} \cdot \bar{Y}$$

$$\Rightarrow \bar{A}^{*} = (\bar{X}^{T} \cdot \bar{X})^{-1} \cdot \bar{X}^{T} \cdot \bar{Y}$$

• The term $(\bar{X}^T \cdot \bar{X})^{-1} \cdot \bar{X}^T$ is known as the pseudo-inverse of \bar{X}

Minimum Mean Squared Error

• If $\overline{X}^T \cdot \overline{X}$ is a singular matrix (non invertible) the objective can be modified in:

$$\bar{A}^* = \underset{\bar{A} \in \mathbb{R}^{m+1}}{\operatorname{argmin}} \{ \|\bar{Y} - \bar{X} \cdot \bar{A}\|_2^2 + \alpha \|A\|_2^2 \}$$

where α is a *regularization* parameter

• The estimation then is:

$$\bar{A^*} = (\bar{X}^T \cdot \bar{X} + \alpha \cdot I)^{-1} \cdot \bar{X}^T \cdot \bar{Y}$$

which is normally known as *regularized LSE* or *ridgeregression* solution

- Maximum Likelihood Estimation (MLE) is one of the most used parametric estimation method
- Let $\{X_1, \dots, X_n\}$ be i.i.d. random variables whose observations are $\{x_1, \dots, x_n\}$
- Let $p(x|\Theta)$ be a distribution that approximate the function that governs the data *Likelihood*
- Goal:
 - $\Theta^* = \operatorname*{argmax}_{\Theta} p(X|\Theta)$

 $= \underset{\Theta}{\operatorname{argmax}} \prod_{i=1}^{n} p(x_i | \Theta) \quad (since \ the \ observations \ are \ independent)$

• For the sake of simplicity (and numerical calculus), likelihood is typically expressed in logarithmic form:

$$llk(\Theta|X) = \log \prod_{i=1}^{n} p(x_i|\Theta) = \sum_{i=1}^{n} \log p(x_i|\Theta)$$

• As before the optimization step can be performed by taking the derivatives

• Gaussian case:

$$p(x_i|\Theta = \{\mu, \sigma^2\}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x_i - \mu)^2}{2\sigma^2}\right\}$$

• The log likelihood is:

$$\sum_{i=1}^{n} \log p(x_i|\Theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x_i - \mu)^2}{2\sigma^2}\right\}\right)$$

$$= \sum_{i=1}^{n} \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \frac{(x_i - \mu)^2}{2\sigma^2}$$

$$= -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - \mu)^2$$

29

30

Optimization step — We take derivatives and equate to 0

Bayesian Estimation

 Bayesian estimation differs from MLE by considering Θ as a random variable, not a fixed value

• Maximum A Posteriori (MAP) estimation:

Bayesian Estimation

- The Map estimator enables the embedding of prior knowledge about the parameters Θ in terms of $p(\Theta)$
 - With limited data, $p(\Theta)$ is dominant
 - With sufficient data, $p(\Theta)$ balances the likelihood with the background knowledge
 - For large data repositories, $p(\Theta)$ approximates the MLE approach

Optimization

• All the optimization steps seen so far are based on exact derivatives

33

- There are cases where derivatives are intractable due to the size of the problem
- Typically, we need find heuristics and we have to be content with optimal (non optima) solutions
 - Newton-Raphson method (Root-finding algorithm)
 - Gradient Descent (Finding local minimum)

Newton-Raphson method

 Newton-Raphson method is an heuristic for solving the problem of finding approximations of the roots of a function:

$$f(x)=0$$

• For example:

Newton-Raphson method

• The idea is to exploit the derivative of the function to follow the tangent starting from a random initial point

• The algorithm is: update *x* until convergence:

$$x^{new} = x^{old} - \frac{f(x^{old})}{f'(x^{old})}$$

• In our example $f'(x^{old}) = 1 + e^{x^{old}}$ (very simple!)

Gradient Descent

- Gradient Descent is an iterative algorithm for searching for minimal points
- Let $F(\bar{x})$ be a multivariate and differentiable in a neighborhood of a point

 \overline{a}

- $F(\bar{x})$ decreases fastest if one goes from \bar{a} in the direction of the negative gradient
- The algorithm is: update \overline{a} until convergence:

 $\bar{a}^{new} = \bar{a}^{old} - \eta \nabla F(\bar{a}^{old})$

The parameter η is called learning rate and determines the behavior of the optimization

Gradient Descent

• Possible behaviors according η

• Let assume that our error function is:

 $e(w) = \frac{1}{2} \cdot C \cdot w^2$ (where C is a constant)

