

Business Intelligence and Analytics

Data Mining

Case study Image segmentation
Ph.D. Ettore Ritacco

Business Understanding

- We have a dataset whose instances were drawn randomly from a database of 7 outdoor images.
- The images were hand-segmented to create a classification for every pixel.
- Each instance is a 3×3 region.
- You have to build a mining model for classifying the instances into the 7 outdoor image classes

Data Understanding

- Image data described by high-level numeric-valued attributes, 7 classes
- Data Set Characteristics: Multivariate
o Number of Instances: 2310
o Attribute Characteristics: Real
- Number of Attributes: 20
- Missing Values? No

Data Understanding

- Attribute Information (1/2):

1. region-centroid-col: the column of the center pixel of the region.
2. region-centroid-row: the row of the center pixel of the region.
3. region-pixel-count: the number of pixels in a region $=9$.
4. short-line-density-5: the results of a line extraction algorithm that counts how many lines of length 5 (any orientation) with low contrast, less than or equal to 5 , go through the region.
5. short-line-density-2: same as short-line-density-5 but counts lines of high contrast, greater than 5.
6. vedge-mean: measure the contrast of horizontally adjacent pixels in the region. There are 6, the mean and standard deviation are given. This attribute is used as a vertical edge detector.
7. vegde-sd: (see 6, 1/2)
8. hedge-mean: measures the contrast of vertically adjacent pixels. Used for horizontal line detection.
9. hedge-sd: (see 8, 1/2).
10. intensity-mean: the average over the region of $(R+G+B) / 3$

Data Understanding

- Attribute information (2/2):

1. rawred-mean: the average over the region of the R value.
2. rawblue-mean: the average over the region of the B value.
3. rawgreen-mean: the average over the region of the G value.
4. exred-mean: measure the excess red: $(2 R-(G+B))$
5. exblue-mean: measure the excess blue: $(2 B-(G+R))$
6. exgreen-mean: measure the excess green: $(2 G-(R+B))$
7. value-mean: 3-d nonlinear transformation of RGB. (Algorithm can be found in Foley and VanDam, Fundamentals of Interactive Computer Graphics)
8. saturatoin-mean: (see 7, 2/2)
9. hue-mean: (see 7, 2/2)
10. class: target attribute \{brickface, sky, foliage, cement, window, path, grass.\}

Data Understanding

o Now... it's up to you...

