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How to evaluate a model?¢

o Select a fraining set

o Build a mining model

o Choose a quality measure

o Select a test set

o Apply the model on the test set

o Compute the value of the quality measure
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§ The fittfing problem

o Beyond the data analysis issues, there are
challenges even in the modeling and evaluate
phases in the CRISP-DM Methodology

o Namely

o Underfitting

o The model is too simple: the evaluation will be poor on
both the training and the evaluation set

o Overfitting

o The model is too complex, fitting as close as it can the
training data, the evaluation will be good on the
training set, but poor on the evaluation set
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Overfitting (due to noise)
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Overfitting
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How to mitigate the overfittige

4

o Prevention
o A good data preparation
o Avoiding

o Feed the building phase with further data for
improving the model’s generality (e.g. online

pruning)

o Recovery

o Manipulate the model after its creation (e.g. post
pruning)
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How to evaluate a model?¢

o Is a model that achieves /0% of global accuracy
a “good” model?
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How to evaluate a model?¢

o Is a model that achieves /0% of global accuracy
a “good” model?

o It depends...

o Is a model that achieves 95% of global accuracy
a “good"” model?
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How to evaluate a model?¢

o Is a model that achieves /0% of global accuracy
a “good” model?

o It depends...

o Is a model that achieves 95% of global accuracy
a “good"” model?

o It depends...
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How to evaluate a model?¢

o We can perform only comparative evaluations.

o A “null hypothesis” (in other words, a baseline) is
needed.

o We can only say, given a statistic, if a model is
better then another one, in terms of the chosen
statistic.
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True and estimated error

o The “true” error of a hypothesis h in the domain D

errue(h) = XP;II‘)(C(X) * h(x)) I

o The estimated (observed) error on a data set S

1
€estimation(N) = m Z e(x)

XES

o Where:

0 otherwise

o(x) = {1 if c(x) # h(x)
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True Error

o The probability of (exactly) r misclassifications in n
evaluations is governed by a binomial distribution:

Binomial distribution forn =40, p =0.3
0.14 I 1 - 1 I I I I

0.12} .
0.1} .

0.08} g i

0.06 |

0.04
0.02+
0 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40

Pr)

n
r

Pr(r) = (

) Ctrue (h)r(l — Ctrue (h))




Department of Mathematics
University of Calabria
I .
I '-

y =
True Error — Binomial Distribution

o Probability Mass Distribution
Pr(r) = ”

l(n—1)!

eerue (W) (1 = eque ()"

o Cumulative Distribution Funbc’rion

Pr(aSer)=z

r=a

! n-r
. Ctrue (h)r (1 — Ctrue (h))

r'(n—r)!
o Expected Value
E[R] = n - eyye(h)

o Variance & Standard Deviation

Var|R] = n - egye(h) - [1 — egye(B)] sd|R] = yVar|R]
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Estimated Error

o Given a setft of data S

1 |
Cestimation () = mz e(x)

XES

o Where e(x) are independent and identically
distributed (i.i.d.) Bernoullian random variables:

e(x) = {1 if c(x) # h(x) e(x)~Bernoulli(etrue(h))

0 otherwise
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Bernoulll Distribution

o Probability Mass Distribution

Pr(e(x); etrue(h)) = etrye (h)e(x)(l — €trye (h))l—e(x)

o Expected Value

Ele(X)] = etrue

o Variance & Standard Deviation

Var[e(X)] = egrue(h) - [1 — eqye(h)] dle(X)] = /Var[e(X)]
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Estimated Error Distribution

o From the probability theory, the sum of i.i.d.
Bernoulli variables is governed by a binomial
distribution

o Proof by induction:
hitp://www.statlect.com/uddbinl.htm

0 € .imation(N) 15 AlsO a binomial distribution

1
€estimation(N) = m z e(x)

XES

€estimation(h)~Binomial ( S|, etrue (h))
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Estimated Error Expected
Value & Variance

o Expected Value:

Eleestimation(B)] = E

1 1
mze@] - E;E[em]

XES

[ T/

= Ele(x)] = e¢rye(H)

%Z e(x)

XES

o Variance:

Var|eestimation(R)] = Var

= #z Varle(x)]

XES

1 1
= mVar[e(x)] = metrue(h) 1 — eqye(h)]
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' Summary 1/2

o There exists a link between the true error and the
estimated error, if the data set S is representative
of its domain

o The strong law of large numbers

1
Pr |sl|linooﬁ e(x) = eyye(h) | =1

XES

lim eestimation(h) = egrue(h) almost surely

|S|—00
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Summary 2/2

4

o The estimated error is a binomial distribution, if |S |
IS great “enough': I

E[eestimation(h)] = etrue (M) = eestimation ()

Ctrue (h) ’ [1 — Ctrue (h)] . Cestimation (h) ’ [1 — Cestimation (h)]
S| - S|

Varleestimation(h)] =

€estimation (h) ) [1 — €estimation (h)]

sd [eestimation(h)] - \/VClT[eestimation(h)] ) \/ S|
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Binomial — Normal Approximation

olf |S]| issufficient great (typically | S| > 30) the
binomial distribution can be approximated by a
normal distribution

o Central limit theorem

o “states that the distribution of the sum (or average) of a
large number of independent, identically distributed
variables will be approximately normal, regardless of
the underlying distribution.”
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Normal

o Normal distribution

Distribution

Normal distribution with rnean O, standard deviation 1

e
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Normal Distribution

4

o Normal distribution

i 0 = e |-
o Density f) = oo P 252

b
o Cumulative Prla<X<bh)= f f(x)dx
o Expected Value E[X]=u

o Variance Var[X]=o
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Mean and Variance
Approximation

o Due to the binomial — normal approximation

U = €gstimation (M) l

52 ~ €estimation (M) * [1 — €estimation(N)]
) S|

eestimation () * |1 — €estimation ()]

N
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Why are we interested in the
Normal distribution?

o Confidence Intervals

o Given a probability sl iy
a, we are interested o=y AN 1
in finding an intferval s} m ! |
[a, b] such that ons | [ii '
l
> I
Pra<X<b)=y o= m
o In the normal case
Pr(lu—z,o<X<u+z,0)=y
Yy |50% |68% |80% | 90% | 95% | 98% | 99%
zy |0.67 [1.00|1.28 |1.64|1.96|2.33|2.58
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Why are we interested in the
Normal distribution?

o This means that the true error is in the interval

eestimation(N) * [1 — €estimation(N)]

errue(h) € {eestimation(h) T Zn \/ S|

o With probability y

Y | 50% |68% |80% |920% | 95% | 98% | 99%
zy |0.67 | 1.00]1.28 |1.641.96 |2.33|2.58

}
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How to compare modelse

o Consider two hypothesis h and ...

o ... and the random variable
d=-e(h) —e(j)

o It's governed by a binomial distribution

o Choose z,, and consequently y




Department of Mathematics
University of Calabria
[ ]
4

4
How to compare modelse

o Three cases: d =e(h) —e(j)

o Zero is in the confidence interval of d

o There is no statistical difference between h and j, with
significance ¥

o The confidence interval of d is under Zero
o e(h) is staftistically lower than e(j), with significance y

o The confidence interval of d is above Zero
o e(h) is staftistically higher than e(j), with significance y

Prlu—zyo<X<u+z,0)=y
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How to compare modelse

o Where:

U = |eestimation(N) — €estimation U)I

o And, since the hypothesis are independent:

ot = Varleestimation(h)] + Var[eestimation(j)]
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Evaluation Example

o Lef
oe(h)=0.15 with |§S;]| =30
o e(j) =0.25, with | S,| = 5000

o Then;
od=|e(h)-¢e())|
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Evaluation Example

o The expected value:

1 = |leestimation(h) — €estimation()| = 10.15 — 0.25] = 0.1

o The standard deviation:

2 €estimation (h) ) [1 — €estimation (h)] €estimation (]) ) [1 — €estimation (])]
i o * 521
1 2

= 0,0655 ...

jo.15(1 —~0.15) 0.25(1 — 0.25)
g =

30 * 5000
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Evaluation Example

o With probability 0.95, the confidence interval is:

d;rpe € {0.1 — 0,0655; 0.1 + 0,0655}

o The confidence interval does not contain O:
o The difference is statistically significant
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Methods for model evaluation

o Hold-out
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Methods for model evaluation

o Hold-out

o Pros:

o Fast evaluation

o Cons:

o Only one experiment =» low stafistical relevance
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Methods for model evaluation

o Repeated Hold-out with random sub-sampling

o Choose n
o ResulfList ={}
oforl<i<n

o Random Sampling of (with or without replacement):

o Training set
o Validation set
o lest set

o Model = buildModel(Training set, Validation set)
o ResultList.add(evaluateModel(Model, Test set))

o Return avg(ResultList )
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Methods for model evaluation

o Repeated Hold-out with random sub-sampling

o Pros:
o More statistical significance

o Cons:

o Slow evaluation

o Not all the tuples are involved in the fraining and
evaluation phase
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Methods for model evaluation

o k-fold Cross Validation
o Choose k
o Divide the whole dataset D in k folds (portion)
o ResulfList ={}
oforl<i<k
o Build Training set = D \ fold,
o Random sample the Validation Set from the Training Set
o Training set = Training set \ Validation Set
o Test set = fold,
o Model = buildModel(Training set, Validation set)
o ResultList.add(evaluateModel(Model, Test set))
o Return avg(ResultList )
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Methods for model evaluation

o k-fold Cross Validation

o Pros:

o Good statistical significance

o the greateris k the better the significance
o Ifk=|D| Cross Validation is called leave-one-out evaluation

o Cons:

o Very slow evaluation
o The k-fold Cross Validation needs to be stratified:

o Each fold has to keep the same statistical properties of the
whole dataset
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Evaluation Meftrics

o The focus is on the predictive quality of a model
o instead of computational cost, scalability...

o Confusion Matrix

l .
’ Predicted class
Class = Yes Class = No
Actual class | cjgss = Yes True Positive | False Negative B
(TP) (FN)
Class = No False Positive | True Negative
(FP) (TN)
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Global Accuracy

o Global Accuracy

TP+ TN
TP+ FN+FP+TN

accuracy =

o The number of all the well-predicted observation
over the cardinality of the data set
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o Example:

Global Accuracy Limits

o Is a global accuracy of 99.9% good?

o Binary Classification
o #records of class 0 = 9990
o #recordsofclass 1 =10

o A classifier that predicts always O:

o Global Accuracy = 99.9%
o But the model is useless!
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§ Cost Matrix

o Similar to the confusion matrix

Predicted class

C(ilj) Class = Yes Class = No
’l Actual class | cjgss = Yes C(Yes|Yes) C(No | Yes) .
Class = No C(Yes|No) C(No|No)

o C(i|j) i1s the cost of predicting a record as class i
when the actual class is |
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Cost Evaluation of 2 Models
(M1, M2)

| Accuracy: 0.8
Cost: 3910

— 1 .

Accuracy: 0.9

Cost: 4255

Cost Predicted class
Matrix
C(i|j) | Yes No
Yes -1 100
Actual No 1 0
class
Confusion Predicted class Confusion Predicted class
Matrix M1 Matrix M2
C(i|j) | Yes | No C(i|j) | Yes | No
Yes 150 40 Yes 250 45
Actual - 702 60 | 250 Actual = 702 5 | 200
= Class Class
]

/N AN
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Cost-sensitive Measures

o For each class

o Precision: the confidence of model

o How much can | trust a prediction?
TP

TP + FP

o Recall: the coverage of a model

o How many records of a specific class can my model
correctly predicte

precision =

TP

TP + FN
o F1-Measure: harmonic mean of precision and recall

recall =

2 - precision - recall

F; — Measure =

precision + recall
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The Previous Example

4

o Binary Classification
o #records of class 0 = 9990
o # records of class 1 =10

o A classifier that predicts always O:
o Global Accuracy = 0.999
o Precision of class 1: NaN (0 / 0)
o Recallof class 1: 0
o Precision of class 0: 0.999
o Recall of class O: 1
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ROC (Receiver Operating
Characteristic)

o The ROC curve is a graphical plot that illustrates
the performance of a binary classifier system as its
discrimination threshold is varied

TP

TPR = =
recall TP T FN

FPR =

TN + FP

0O 01 02 03 04 05 06 0,7 08 09 1
False Positive Rate
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Threshold

o Given a binary classifier the following rule holds:

Pr(C = yes|t) = Pr(C = nol|t) > C = yes
Pr(C = yes|t) = 1 — Pr(C = yes|t) = C = yes
2-Pr(C =vyes|t) >21=C = yes

Pr(C = yes|t) = 0.5 = C = yes

\ Standard threshold

[ T/
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Threshold

o What happens if we vary the threshold value?
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§ Threshold

o What happens if we vary the threshold value?

o For each threshold we have a different classification
rule
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o What happens if we vary the threshold value?

o For each threshold we have a different classification
rule

o For each rule we have a prediction
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§ Threshold

o What happens if we vary the threshold value?

o For each threshold we have a different classification
rule

o For each rule we have a prediction
o For each prediction we have a confusion maftrix
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§ Threshold

o What happens if we vary the threshold value?

o For each threshold we have a different classification
rule

o For each rule we have a prediction
o For each prediction we have a confusion maftrix
o For each confusion matrix we have a FPR and a TPR
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§ Threshold

o What happens if we vary the threshold value?

o For each threshold we have a different classification
rule

o For each rule we have a prediction
o For each prediction we have a confusion maftrix
o For each confusion matrix we have a FPR and a TPR

o For each FPR and TPR we have a point in the ROC
space
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§ Threshold

o What happens if we vary the threshold value?

o For each threshold we have a different classification
rule

o For each rule we have a prediction
o For each prediction we have a confusion maftrix
o For each confusion matrix we have a FPR and a TPR

o For each FPR and TPR we have a point in the ROC
space

o Examples:

Pr(C = yes|t) =2 0.3 = C = yes
Pr(C = yes|t) =2 0.75 = C = yes
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How to builld a ROC curve

Instance

P(+|x)

True
Class

0.95

0.93

0.87

0.85

0.85

0.85

0.76

0.53

QN |hh|IWIN =

0.43

-
o

0.25

o Sort the records
according to P(+ | x)
[Descendent]

o Each P(+ | x) will be a
threshold

o For each threshold,
compute the confusion
Martrix

o Compute FPR and TPR

[ T/
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ROC curve:

Thresho
FP 5 5 4 4 3 2 1 1 0 0
TN 0 0 1 1 2 3 4 4 5 5
FN 0 1 1 2 2 2 2 3 3 4
TPR 1 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2
FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0
1 T T T
09 —
0s
07 -
0B i




Department of Mathematics
University of Calabria

=

b |

How to evaluate a ROC curve

True Positive Rate
o o o o o o o
w N &, ] o~ N o O —_

o
)

o

o

0 01 02 03 04 05 06 0,7 08 09 1
False Positive Rate
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How to evaluate a ROC curve

)

0O 01 02

—_

e 9
c© O

e
N

(@)
[e 8

True Positive Rate
o o
N [6,]

o
w

o
)

o

o

03 04 05 06 07 08 09 1
False Positive Rate

High-precision zone
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How to evaluate a ROC curve

7

/ High-recall zone

j—

o
N

e
0%

e
N

o
o

True Positive Rate
o o
N [6,]

©
w

o 9
o = N

0 01 02 03 04 05 06 0,7 08 09 1
False Positive Rate

High-precision zone
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Best Pom
1

How to evaluate a ROC curve

/ High-recall zone

e
0%

e
N

o
o

True Positive Rate
o o
N [6,]

©
w

o 9
o = N

0 01 02 03 04 05 06 0,7 08 09 1
False Positive Rate

High-precision zone

|
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How to evaluate a ROC curve

—Best curve
- Another best curve (why?)

==\ Orst curve

0.1 0.2 03 04 05 0.6 07 08 09 1
FPR
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ROC comparison

o The greater the area under the curve the better
the gquality of the model

-
09 -
08 -
07 -

Which is
—MI better?

0,6 -
0,5 -
04 -
03 -
02 -

0.1

O 1 T T T T T T T T T 1
0 O01 02 03 04 05 06 07 08 09 1
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ROC comparison

' -7~ oWhichis
"l M, - =71 Dbetter?

True Positive Rate
o
(]
-
1

1 1 1
0 0.1 02 0.3 0.4 05 06 07 0.8 0s 1
False Positive Rate
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ROC comparison

T -~ -] oWhichis

"l M, - =71 Dbetter?

08t /,” — i

v

0.7 / Ve .
2 ol 7 s | olfwe are
2ol M S pd _ interested in
3 o A |  precision?
E / pd

03 p S -

02 /'// i

0.1 ,/’;/ -

U 1 1 1 1 1 1

1 1 1
0 o1 02 03 04 05 06 07 08 08 1

False Positive Rate
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ROC comparison

1 == -] o Whichis

N My - 271 better?

08 l/, //

0.7 '/ -

E ol 7 s o If we are

Sl M, S pd interested in

g : / .

2 04l / s precisione

I:- / //

0.3 /’ P

0.2} /// o If we are

o1 L7 interested in
ST o7 o or o5 o5 or s s 1 recalle

False Positive Rate
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Total population

M

Confusion Matrix Glossary

confusion matrix

Condition
(as determined by "Gold standard")

Condition positive

Condition negative

Prevalence =
Z Condition positive

% Total population

Test
outcome

positive
Test

outcome
Test

outcome
negative

True positive

False negative
(Type Il error)

False positive
(Type | error)

True negative

Positive predictive value (PPYV,
Precision) =
T True positive

False discovery rate (FDR) =
% False positive

Z Test outcome positive

False omission rate (FOR) =
Z False negative

< Test outcome negative

Z Test outcome positive

Negative predictive value
(NPV) =
Z True negative

Z Test outcome negative

Positive likelihood
ratio (LR+) =
TPR/IFPR

Negative likelihood
ratio (LR=) =
FNR/TNR

True positive rate (TPR,
Sensitivity, Recall) =
% True positive

False positive rate (FPR,
Fall-out) =
£ False positive

Accuracy (ACC) =
< True positive + £ True negative

Z Condition positive

False negative rate (FNR) =
Z False negative

Z Caondition positive

I Condition negative
True negative rate (TNR,
Specificity, SPC) =
Z True negative

Z Condition negative

Diagnostit odds ratio
(DOR) =
LR+LR-

% Total population

Terminology and derivations
from a confusion matrix

true positive (TP)

eqy. with hit
true negative (TN)

eqy. with correct rejection
false positive (FP)

eqv. with false alarm, Type | error
false negative (FN)

eqv. with miss, Type Il errar

sensitivity or true positive rate (TPR)
eqv. with hit rate, recall
TPR = TP/P = TP/(TP + FN)
specificity (SPC) or true negative rate (TNR)
SPC = TN/N = TN/(FP + TN)
precision or positive predictive value (PPV)
PPV = TP/(TP + FP)
negative predictive value (NPV)
NPV = TN/(TN + FN)
fall-out or false positive rate (FPR)
FPR = FP/N = FP/(FP + TN)
false discovery rate (FDR)
FDR = FP/(FP+ TP)=1— PPV
Miss Rate or False Negative Rate (FNR)
FNR = FN/P = FN/(FN + TP)

accuracy (ACC)
ACC = (TP + TN)/(P+ N)
F1 score
is the harmonic mean of precision and sensitivity
F1 =2TP/(2TP+ FP + FN)
Matthews correlation coefficient (MCC)

TPxTN —FP x FN

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Informedness = Sensitivity + Specificity - 1
Markedness = Precision + NPV - 1

Sources: Fawcett (2008) and Powers (2011) 1]




