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How to evaluate a model?

� Select a training set

� Build a mining model

� Choose a quality measure

� Select a test set

� Apply the model on the test set

� Compute the value of the quality measure
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A simple evaluation schema

Data sources Test set

Training set
Inference
algorithm

Mining model

Evaluator
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The fitting problem

� Beyond the data analysis issues, there are 
challenges even in the modeling and evaluate 
phases in the CRISP-DM Methodology

� Namely
� Underfitting

� The model is too simple: the evaluation will be poor on 
both the training and the evaluation set

� Overfitting
� The model is too complex, fitting as close as it can the 

training data, the evaluation will be good on the 
training set, but poor on the evaluation set
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Overfitting (due to noise)
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Overfitting (due to lack of
information)
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Overfitting
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How to mitigate the overfittig?

� Prevention
� A good data preparation

� Avoiding
� Feed the building phase with further data for 

improving the model’s generality (e.g. online 
pruning)

� Recovery
� Manipulate the model after its creation (e.g. post 

pruning)
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How to mitigate the overfittig?

Data sources Test set

Training set
Inference
algorithm

Mining model

Evaluation

Validation
set



Department of Mathematics
University of Calabria

How to evaluate a model?

� Is a model that achieves 70% of global accuracy 
a “good” model?
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How to evaluate a model?

� Is a model that achieves 70% of global accuracy 
a “good” model?
� It depends…

� Is a model that achieves 95% of global accuracy 
a “good” model?
� It depends…
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How to evaluate a model?

� We can perform only comparative evaluations.

� A “null hypothesis” (in other words, a baseline) is 
needed.

� We can only say, given a statistic, if a model is 
better then another one, in terms of the chosen 
statistic.
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True and estimated error

� The “true” error of a hypothesis h in the domain D

� The estimated (observed) error on a data set S

� Where:

𝑒"#$% ℎ = Pr
*∈,

𝑐 𝑥 ≠ ℎ 𝑥

𝑒%0"123"145 ℎ =
1
𝑆
8
9∈:

𝑒 𝑥

𝑒 𝑥 = ;1 𝑖𝑓 𝑐 𝑥 ≠ ℎ 𝑥
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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True Error

� The probability of (exactly) r misclassifications in n 
evaluations is governed by a binomial distribution:

Pr 𝑟 = 𝑛
𝑟 𝑒"#$% ℎ # 1 − 𝑒"#$% ℎ

5F#
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True Error – Binomial Distribution

� Probability Mass Distribution

� Cumulative Distribution Function

� Expected Value

� Variance & Standard Deviation

Pr 𝑟 =
𝑛!

𝑟! 𝑛 − 𝑟 ! 𝑒"#$% ℎ
# 1 − 𝑒"#$% ℎ

5F#

Pr 𝑎 ≤ 𝑟 ≤ 𝑏 = 8
#K3

L
𝑛!

𝑟! 𝑛 − 𝑟 ! 𝑒"#$% ℎ
# 1 − 𝑒"#$% ℎ

5F#

𝐸 𝑅 = 𝑛 ⋅ 𝑒"#$% ℎ

𝑉𝑎𝑟 𝑅 = 𝑛 ⋅ 𝑒"#$% ℎ ⋅ 1 − 𝑒"#$% ℎ 𝑠𝑑 𝑅 = 𝑉𝑎𝑟 𝑅
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Estimated Error

� Given a set of data S

� Where e(x) are independent and identically 
distributed (i.i.d.) Bernoullian random variables:

𝑒%0"123"145 ℎ =
1
𝑆
8
9∈:

𝑒 𝑥

𝑒 𝑥 = ;1 𝑖𝑓 𝑐 𝑥 ≠ ℎ 𝑥
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑒 𝑥 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑒"#$% ℎ
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Bernoulli Distribution

� Probability Mass Distribution

� Expected Value

� Variance & Standard Deviation

Pr 𝑒 𝑥 ; 𝑒"#$%(ℎ) = 𝑒"#$% ℎ % 9 1 − 𝑒"#$% ℎ
YF% 9

𝐸 𝑒 𝑋 = 𝑒"#$%

𝑉𝑎𝑟 𝑒 𝑋 = 𝑒"#$% ℎ ⋅ 1 − 𝑒"#$% ℎ 𝑠𝑑 𝑒 𝑋 = 𝑉𝑎𝑟 𝑒 𝑋
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Estimated Error Distribution

� From the probability theory, the sum of i.i.d. 
Bernoulli variables is governed by a binomial 
distribution
� Proof by induction: 

http://www.statlect.com/uddbin1.htm

� eestimation(h) is also a binomial distribution

𝑒%0"123"145 ℎ =
1
𝑆
8
9∈:

𝑒 𝑥

𝑒%0"123"145 ℎ ~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑆 , 𝑒"#$% ℎ

http://www.statlect.com/uddbin1.htm
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Estimated Error Expected 
Value & Variance

� Expected Value:

� Variance:

𝐸 𝑒%0"123"145 ℎ = 𝐸
1
𝑆
8
9∈:

𝑒 𝑥 =
1
𝑆
8
9∈:

𝐸 𝑒 𝑥

= 𝐸 𝑒 𝑥 = 𝑒"#$% 𝐻

𝑉𝑎𝑟 𝑒%0"123"145 ℎ = 𝑉𝑎𝑟
1
𝑆
8
9∈:

𝑒 𝑥 =
1
𝑆 ^8

9∈:

𝑉𝑎𝑟 𝑒 𝑥

=
1
𝑆
𝑉𝑎𝑟 𝑒 𝑥 =

1
𝑆
𝑒"#$% ℎ ⋅ 1 − 𝑒"#$% ℎ
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Summary 1/2

� There exists a link between the true error and the 
estimated error, if the data set S is representative 
of its domain

� The strong law of large numbers

Pr lim
: →c

1
𝑆
8
9∈:

𝑒 𝑥 = 𝑒"#$% ℎ = 1

lim
: →c

𝑒%0"123"145 ℎ = 𝑒"#$% ℎ 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒𝑙𝑦
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Summary 2/2

� The estimated error is a binomial distribution, if |S| 
is great “enough”:

𝐸 𝑒%0"123"145 ℎ = 𝑒"#$% ℎ ≈ 𝑒%0"123"145 ℎ

𝑠𝑑 𝑒%0"123"145 ℎ = 𝑉𝑎𝑟 𝑒%0"123"145 ℎ ≈
𝑒%0"123"145 ℎ ⋅ 1 − 𝑒%0"123"145 ℎ

𝑆

𝑉𝑎𝑟 𝑒%0"123"145 ℎ =
𝑒"#$% ℎ ⋅ 1 − 𝑒"#$% ℎ

𝑆 ≈
𝑒%0"123"145 ℎ ⋅ 1 − 𝑒%0"123"145 ℎ

𝑆
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Binomial – Normal Approximation

� If |S| is sufficient great (typically |S| > 30) the 
binomial distribution can be approximated by a 
normal distribution

� Central limit theorem

� “states that the distribution of the sum (or average) of a 
large number of independent, identically distributed 
variables will be approximately normal, regardless of 
the underlying distribution.”



Department of Mathematics
University of Calabria

Normal Distribution

� Normal distribution
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Normal Distribution

� Normal distribution

� Density

� Cumulative

� Expected Value

� Variance

𝑓 𝑥 =
1
2𝜋𝜎

exp −
𝑥 − 𝜇 ^

2𝜎^

Pr 𝑎 ≤ 𝑋 ≤ 𝑏 = m
3

L
𝑓 𝑥 𝑑𝑥

𝐸 𝑋 = 𝜇

𝑉𝑎𝑟 𝑋 = σ
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Mean and Variance 
Approximation

� Due to the binomial – normal approximation

𝜇 ≈ 𝑒%0"123"145 ℎ

𝜎^ ≈
𝑒%0"123"145 ℎ ⋅ 1 − 𝑒%0"123"145 ℎ

𝑆

𝜎 ≈
𝑒%0"123"145 ℎ ⋅ 1 − 𝑒%0"123"145 ℎ

𝑆
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Why are we interested in the 
Normal distribution?

� Confidence Intervals
� Given a probability 
α, we are interested 
in finding an interval 
[a, b] such that

� In the normal case

50% 68% 80% 90% 95% 98% 99%
zN 0.67 1.00 1.28 1.64 1.96 2.33 2.58

Pr 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝛾

Pr 𝜇 − 𝑧5𝜎 ≤ 𝑋 ≤ 𝜇 + 𝑧5𝜎 = 𝛾

𝛾
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Why are we interested in the 
Normal distribution?

� This means that the true error is in the interval

� With probability 𝛾

50% 68% 80% 90% 95% 98% 99%
zN 0.67 1.00 1.28 1.64 1.96 2.33 2.58

𝑒"#$% ℎ ∈ 𝑒%0"123"145 ℎ ± 𝑧5
𝑒%0"123"145 ℎ ⋅ 1 − 𝑒%0"123"145 ℎ

𝑆

𝛾
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How to compare models?

� Consider two hypothesis h and j…

� … and the random variable

� It’s governed by a binomial distribution

� Choose zn and consequently 𝛾

𝑑 = 𝑒 ℎ − 𝑒 𝑗
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How to compare models?

� Three cases:

� Zero is in the confidence interval of d
� There is no statistical difference between h and j, with 

significance 𝛾

� The confidence interval of d is under Zero
� e(h) is statistically lower than e(j), with significance 𝛾

� The confidence interval of d is above Zero
� e(h) is statistically higher than e(j), with significance 𝛾

g

𝑑 = 𝑒 ℎ − 𝑒 𝑗

Pr 𝜇 − 𝑧5𝜎 ≤ 𝑋 ≤ 𝜇 + 𝑧5𝜎 = 𝛾
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How to compare models?

� Where:

� And, since the hypothesis are independent:

𝜇 = 𝑒%0"123"145 ℎ − 𝑒%0"123"145 𝑗

𝜎^ = 𝑉𝑎𝑟 𝑒%0"123"145 ℎ + 𝑉𝑎𝑟 𝑒%0"123"145 𝑗
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Evaluation Example

� Let
� e(h) = 0.15, with |S1| = 30
� e(j) = 0.25, with |S2| = 5000

� Then:
� d = |e(h) – e(j)|
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Evaluation Example

� The expected value:

� The standard deviation:

𝜇 = 𝑒%0"123"145 ℎ − 𝑒%0"123"145 𝑗 = 0.15 − 0.25 = 0.1

𝜎^ =
𝑒%0"123"145 ℎ ⋅ 1 − 𝑒%0"123"145 ℎ

𝑆Y
+
𝑒%0"123"145 𝑗 ⋅ 1 − 𝑒%0"123"145 𝑗

𝑆^

𝜎 =
0.15 1 − 0.15

30 +
0.25 1 − 0.25

5000 = 0,0655…
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Evaluation Example

� With probability 0.95, the confidence interval is:

� The confidence interval does not contain 0:
� The difference is statistically significant

𝑑"#$% ∈ 0.1 − 0,0655; 0.1 + 0,0655



Department of Mathematics
University of Calabria

Methods for model evaluation

� Hold-out
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Methods for model evaluation

� Hold-out

� Pros:

� Fast evaluation

� Cons:

� Only one experiment è low statistical relevance
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Methods for model evaluation

� Repeated Hold-out with random sub-sampling
� Choose n
� ResultList = { }
� For 1 < i < n

� Random Sampling of (with or without replacement):
� Training set
� Validation set
� Test set

� Model = buildModel(Training set, Validation set)
� ResultList.add(evaluateModel(Model, Test set))

� Return avg(ResultList )
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Methods for model evaluation

� Repeated Hold-out with random sub-sampling

� Pros:
� More statistical significance

� Cons:
� Slow evaluation
� Not all the tuples are involved in the training and 

evaluation phase
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Methods for model evaluation

� k-fold Cross Validation
� Choose k
� Divide the whole dataset D in k folds (portion)
� ResultList = { }
� For 1 < i < k

� Build Training set = D \ foldi
� Random sample the Validation Set from the Training Set
� Training set = Training set \ Validation Set
� Test set = foldi

� Model = buildModel(Training set, Validation set)
� ResultList.add(evaluateModel(Model, Test set))

� Return avg(ResultList )



Department of Mathematics
University of Calabria

Methods for model evaluation

� k-fold Cross Validation

� Pros:
� Good statistical significance

� the greater is k the better the significance
� If k = |D| Cross Validation is called leave-one-out evaluation

� Cons:
� Very slow evaluation
� The k-fold Cross Validation needs to be stratified:

� Each fold has to keep the same statistical properties of the 
whole dataset
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Evaluation Metrics

� The focus is on the predictive quality of a model
� instead of computational cost, scalability…

� Confusion Matrix

Predicted class

Actual class

Class = Yes Class = No

Class = Yes True Positive 
(TP)

False Negative 
(FN)

Class = No False Positive 
(FP)

True Negative 
(TN)



Department of Mathematics
University of Calabria

Global Accuracy

� Global Accuracy

� The number of all the well-predicted observation 
over the cardinality of the data set

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
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Global Accuracy Limits

� Is a global accuracy of 99.9% good?

� Example:
� Binary Classification
� #records of class 0 = 9990
� # records of class 1 = 10

� A classifier that predicts always 0:
� Global Accuracy = 99.9%
� But the model is useless!
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Cost Matrix

� Similar to the confusion matrix

� C(i|j) is the cost of predicting a record as class i
when the actual class is j

Predicted class

Actual class

C(i|j) Class = Yes Class = No

Class = Yes C(Yes|Yes) C(No|Yes)

Class = No C(Yes|No) C(No|No)
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Cost Evaluation of 2 Models 
(M1, M2)

Accuracy: 0.8 Accuracy: 0.9
Cost: 3910 Cost: 4255

Cost
Matrix

Predicted class

Actual
class

C(i|j) Yes No
Yes -1 100
No 1 0

Confusion
Matrix M1

Predicted class

Actual
Class

C(i|j) Yes No
Yes 150 40
No 60 250

Confusion
Matrix M2

Predicted class

Actual
Class

C(i|j) Yes No
Yes 250 45
No 5 200
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Cost-sensitive Measures

� For each class
� Precision: the confidence of model

� How much can I trust a prediction?

� Recall: the coverage of a model
� How many records of a specific class can my model 

correctly predict?

� F1-Measure: harmonic mean of precision and recall

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹Y − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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The Previous Example

� Binary Classification
� #records of class 0 = 9990
� # records of class 1 = 10

� A classifier that predicts always 0:
� Global Accuracy = 0.999
� Precision of class 1: NaN (0 / 0)
� Recall of class 1: 0
� Precision of class 0: 0.999
� Recall of class 0: 1
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ROC (Receiver Operating
Characteristic)

� The ROC curve is a graphical plot that illustrates 
the performance of a binary classifier system as its 
discrimination threshold is varied

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

𝑇𝑃𝑅 = 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
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Threshold

� Given a binary classifier the following rule holds:

Standard threshold

Pr 𝐶 = 𝑦𝑒𝑠| ̅𝑡 ≥ Pr 𝐶 = 𝑛𝑜| ̅𝑡 ⇒ 𝐶 = 𝑦𝑒𝑠
Pr 𝐶 = 𝑦𝑒𝑠| ̅𝑡 ≥ 1 − Pr 𝐶 = 𝑦𝑒𝑠| ̅𝑡 ⇒ 𝐶 = 𝑦𝑒𝑠
2 ⋅ Pr 𝐶 = 𝑦𝑒𝑠| ̅𝑡 ≥ 1 ⇒ 𝐶 = 𝑦𝑒𝑠
Pr 𝐶 = 𝑦𝑒𝑠| ̅𝑡 ≥ 0.5 ⇒ 𝐶 = 𝑦𝑒𝑠
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Threshold

� What happens if we vary the threshold value?
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Threshold
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� For each threshold we have a different classification 

rule
� For each rule we have a prediction
� For each prediction we have a confusion matrix
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Threshold

� What happens if we vary the threshold value?
� For each threshold we have a different classification 

rule
� For each rule we have a prediction
� For each prediction we have a confusion matrix
� For each confusion matrix we have a FPR and a TPR
� For each FPR and TPR we have a point in the ROC 

space
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Threshold

� What happens if we vary the threshold value?
� For each threshold we have a different classification 

rule
� For each rule we have a prediction
� For each prediction we have a confusion matrix
� For each confusion matrix we have a FPR and a TPR
� For each FPR and TPR we have a point in the ROC 

space
� Examples: Pr 𝐶 = 𝑦𝑒𝑠| ̅𝑡 ≥ 0.3 ⇒ 𝐶 = 𝑦𝑒𝑠

Pr 𝐶 = 𝑦𝑒𝑠| ̅𝑡 ≥ 0.75 ⇒ 𝐶 = 𝑦𝑒𝑠
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How to build a ROC curve

� Sort the records 
according to P(+|x) 
[Descendent]

� Each P(+|x) will be a 
threshold

� For each threshold, 
compute the confusion 
matrix

� Compute FPR and TPR

Instance P(+|x) True 
Class

1 0.95 +
2 0.93 +
3 0.87 -
4 0.85 -
5 0.85 -
6 0.85 +
7 0.76 -
8 0.53 +
9 0.43 -
10 0.25 +
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Class + - + - - - + - + +  
P 0.25 0.43 0.53 0.76 0.85 0.85 0.85 0.87 0.93 0.95 1.00 

TP 5 4 4 3 3 3 3 2 2 1 0 

FP 5 5 4 4 3 2 1 1 0 0 0 

TN 0 0 1 1 2 3 4 4 5 5 5 

FN 0 1 1 2 2 2 2 3 3 4 5 

TPR 1 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2 0 

FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0 
 

Threshold >=

ROC curve:
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How to evaluate a ROC curve
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How to evaluate a ROC curve
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How to evaluate a ROC curve
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How to evaluate a ROC curve
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How to evaluate a ROC curve
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ROC comparison

� The greater the area under the curve the better
the quality of the model
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ROC comparison

� Which is
better?
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ROC comparison

� Which is
better?

� If we are 
interested in 
precision?
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ROC comparison

� Which is
better?

� If we are 
interested in 
precision?

� If we are 
interested in 
recall?



Department of Mathematics
University of Calabria

Confusion Matrix Glossary


