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Abstract We tackle the mixed capacitated general routing problem (MCGRP) which
generalizes many other routing problems. We propose an integer programming model
for the MCGRP and extend some inequalities originally introduced for the capacitated
arc routing problem (CARP). Identification procedures for these inequalities and for
some relaxed constraints are also discussed. Finally, we describe a branch and cut algo-
rithm including the identification procedures and present computational experiments
over instances derived from the CARP.

Keywords Routing problem · Mixed graph · Relaxation · Separation algorithm

1 Introduction

The paper deals with the problem of routing of vehicles along the streets of residential
areas to ensure a service. Each vehicle starts from the depot and comes back to it
after a service trip. Street segments are modeled by edges or arcs of a network where
vertices represent the intersection points of the segments. Required entities located
within analyzed areas and the depot are also represented as vertices of the network.
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The literature traditionally devoted to vehicle routing problems considers two classes
of problems: node routing problems (NRPs ) and arc routing problems (ARPs ). In NRPs

[16] the service activity occurs at all (or at some subsets of) the vertices, whereas in
ARPs [9,12] a single vehicle or a fleet of vehicles service all (or some subsets of)
the edges and/or arcs. Although NRPs have been studied more extensively, ARPs

have aroused a growing interest in the last two decades, prevalently among them the
problem known as capacitated arc routing problem (CARP). Theoretically an ARP can
be converted into an equivalent NRP [25]. However, the transformation increases the
size of the instances to be solved. Consequently, most researchers prefer to study ARPs

directly. Despite the success of exact and heuristic methods for NRPs and ARPs , many
models proposed in the literature do not give a suitable representation of real scenarios.
A more general and effective class of problems is the class where the service activity
occurs both at all (or at some subsets of) the vertices and at all (or at some subsets of)
the edges and/or arcs. Such problems are denoted as general routing problems (GRPs).
Moreover, defining solution approaches for GRPs is helpful because such approaches
represent valid tools for solving NRPs and ARPs .

Orloff [22] and Lenstra and Rinnooy Kan [19] described several applications emerg-
ing in the vehicle routing field that may be modeled naturally by using GRPs . For
example, in designing routes in an urban waste collection context, the collection along
a street may be modeled by means of required arcs or edges, whereas the collection
occurring at specific points (e.g., hospitals, schools, and supermarkets) may be mod-
eled by means of required vertices. In many cases, there are some restrictions for
the vehicles to traverse the streets in a specified way, and the use of mixed graphs is
needed. As a rule, a one-way street is represented by one arc, a two-way street in which
the waste on the two sides must be collected separately is represented by two opposite
arcs, and a two-way street in which the waste on the two sides can be collected in
parallel and in any direction (narrow road, or very low traffic in a residential area)
corresponds to one edge.

Many authors focused on the uncapacitated GRP. For example, Letchford [20,21]
and Corberán and Sanchis [11] proposed a large class of valid inequalities for the
GRP defined over an undirected graph. Then Corberán, Letchford and Sanchis [5]
described a cutting plane algorithm based on facet-inducing inequalities. The first
remarkable contribution focused on the GRP defined over a mixed graph was proposed
by Corberán, Romero and Sanchis [10]. They presented a cutting-plane algorithm,
subsequently improved by Corberán, Mejía and Sanchis [6]. Corberán, Plana and
Sanchis [7,8] referred to windy graphs. In particular, they presented a windy general
routing polyhedron description and designed a branch and cut algorithm able to solve
optimally a quite large number of instances.

This paper refers to the capacitated case. Specifically, we deal with the mixed
capacitated general routing problem (MCGRP), i.e., the problem of finding a set of
vehicle routes over a mixed graph such that each route starts and ends at the depot,
with each required vertex/arc/edge serviced by exactly one vehicle, while the total
demand serviced by each vehicle does not exceed its capacity, and the total travel-
ing cost is minimized. Many routing problems are special cases of the MCGRP, like
the CARP and the uncapacitated GRP defined over directed, undirected and mixed
graphs. Since the MCGRP includes a large element of NP-hard problems, it is also an
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NP-hard problem. To our knowledge, the MCGRP has been exclusively tackled by
means of heuristic and metaheuristic approaches. Pandit and Muralidharan [24] pro-
posed a heuristic procedure named ROUTE1 that starts with a condensed sub-graph
obtained from the original network by considering only the required arcs, edges and
vertices. Since the sub-graph is generally disconnected, the connection is reached by
adding to it the shortest paths linking two vertices of disjoint connected components.
The sub-graph is then converted into an Eulerian graph which admits a giant tour.
A feasible solution is obtained by cutting the giant tour into smaller tours satisfying
the capacity constraints. Gutiérrez, Soler and Hervás [18] introduced an alternative
constructive procedure, based on the partition-first-route-next paradigm, improving
previous results. Finally, Prins and Bouchenoua [27] described a memetic algorithm
for the MCGRP. Three suitable procedures, named nearest neighbor heuristic, merge
heuristic and tour splitting heuristic, were defined to initialize their metaheuristic
algorithm.

The main contribution of this work consists in studying the MCGRP through an
integer linear programming model. The remainder of the paper is organized as follows:
in Sect. 2 we introduce a mathematical formulation for the MCGRP; in Sect. 3 we
discuss relaxations of the formulation and valid inequalities for the problem and report
exact and/or heuristic procedures for their identification; a branch and cut (B&C)
algorithm is illustrated in Sect. 4; Sect. 5 shows computational results and provides
final remarks.

2 Mathematical model

Let G = (V, A, E) be a mixed graph defined by a set of vertices V = {1, . . . , n}, a
set of arcs A = {(i, j) ⊆ V × V } and a set of edges E = {(i, j) ⊆ V × V : i < j}.
Vertex 1 ∈ V represents the depot at which m identical vehicles of capacity Q are
based. Each element of A ∪ E will be referred in the following as link, while the set
of vertices different from the depot will be denoted by C = V \{1}. Some subsets
of arcs and edges, denoted respectively by AR ⊆ A and ER ⊆ E , are required, i.e.,
they must be serviced by one vehicle, but any link of A ∪ E can be deadheaded any
number of times. Similarly, a subset VR ⊆ C of required vertices needs to be serviced
by one vehicle. Required links and vertices cannot be split. Each link (i, j) ∈ A ∪ E
has a non-negative cost ci j . In addition, each required link (i, j) ∈ AR ∪ ER has a
non-negative demand di j , and each required vertex i ∈ VR has a non-negative demand
qi . In order to ensure feasibility, we assume that the demand of each required link
and vertex does not exceed Q. Note that there is a graph G R induced on G by all the
required links and vertices. Generally, this graph is non-connected. The vertex sets
corresponding to connected components of G R are called R-sets. The subgraphs of
G induced by the R-sets define the so-called R-connected components of G. Observe
that every isolated required vertex represents an R-connected component of G.

In the following, further notation used throughout the paper is introduced. Given a
subset S ⊂ V of vertices, then S denotes its complementary set (S̄=V \ S). Let δ+
(S) = {(i, j) ∈ A : i ∈ S ∧ j ∈ S} be the set of arcs leaving S, δ−(S) = {(i, j) ∈ A :
i ∈ S∧ j ∈ S} the set of arcs entering S, δ+

R (S) = {(i, j) ∈ AR : i ∈ S∧ j ∈ S} the set
of required arcs leaving S, δ−

R (S) = {(i, j) ∈ AR : i ∈ S ∧ j ∈ S} the set of required
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arcs entering S, δ(S) = {(i, j) ∈ E : i ∈ S ∧ j ∈ S, or i ∈ S ∧ j ∈ S} the set of edges
incident to S, and δR(S) = {(i, j) ∈ ER : i ∈ S ∧ j ∈ S, or i ∈ S ∧ j ∈ S} the set of
required edges incident to S. Whenever S = {v} the previous notation remains valid
as long as S is replaced by v, and S by v, or V \{v}. Moreover, let SR = S ∩ VR be the
set of required vertices belonging to S, AR(S) = {(i, j) ∈ AR : i ∈ S ∧ j ∈ S} the set
of required arcs with both endpoints in S, and ER(S) = {(i, j) ∈ ER : i ∈ S ∧ j ∈ S}
the set of required edges with both endpoints in S.

We propose an integer linear programming formulation based on three-index link
variables and two-index vertex variables. For a required link (i, j) and a vehicle k,
let xk

i j be a binary variable equal to 1 if and only if (i, j) is serviced by vehicle k

which travels from vertex i to vertex j . For a link (i, j) and a vehicle k, let yk
i j be a

non-negative variable representing the number of deadheading from vertex i to vertex
j by k. Finally, for a required vertex i and a vehicle k, let zk

i be a binary variable
equal to 1 if and only if i is serviced by k. Using these variables, the MCGRP can be
formulated as follows.

Min λ =
∑

k∈K

∑

(i, j)∈ER

ci j (xk
i j + xk

ji ) +
∑

k∈K

∑

(i, j)∈AR

ci j xk
i j

+
∑

k∈K

∑

(i, j)∈E

ci j (yk
i j + yk

ji ) +
∑

k∈K

∑

(i, j)∈A

ci j yk
i j (1a)

∑

k∈K

(xk
i j + xk

ji ) = 1, ∀ (i, j) ∈ ER (1b)

∑

k∈K

xk
i j = 1, ∀ (i, j) ∈ AR (1c)

∑

k∈K

zk
i = 1, ∀ i ∈ VR (1d)

∑

(i, j)∈ER

di j (xk
i j + xk

ji ) +
∑

(i, j)∈AR

di j xk
i j +

∑

i∈VR

qi z
k
i ≤ Q, ∀ k ∈ K (1e)

∑

j :(i, j)∈δ+
R (i)

xk
i j +

∑

j :(i, j)∈δ+(i)

yk
i j −

∑

j :( j,i)∈δ−
R (i)

xk
ji −

∑

j :( j,i)∈δ−(i)

yk
ji =

∑

j :(i, j)∈δR(i)

xk
ji +

∑

j :(i, j)∈δ(i)

yk
ji −

∑

j :(i, j)∈δR(i)

xk
i j −

∑

j :(i, j)∈δ(i)

yk
i j , ∀ k ∈ K , i ∈ V

(1f)∑

(i, j)∈δ+
R (S)

xk
i j +

∑

( j,i)∈δ−
R (S)

xk
ji +

∑

(i, j)∈δR(S)

(xk
i j + xk

ji ) +
∑

(i, j)∈δ+(S)

yk
i j

+
∑

( j,i)∈δ−(S)

yk
ji +

∑

(i, j)∈δ(S)

(yk
i j + yk

ji )

≥

⎧
⎪⎪⎨

⎪⎪⎩

2(xk
uv + xk

vu), ∀ (u, v) ∈ ER(S),

2xk
uv, ∀ (u, v) ∈ AR(S),

2zk
h, ∀ h ∈ SR,

k ∈ K , S ⊆ C

(1g)
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xk
i j ∈ {0, 1}, ∀ k ∈ K , (i, j) ∈ AR ∪ ER (1h)

xk
ji ∈ {0, 1}, ∀ k ∈ K , (i, j) ∈ ER (1i)

yk
i j ∈ Z+, ∀ k ∈ K , (i, j) ∈ A ∪ E (1j)

yk
ji ∈ Z+, ∀ k ∈ K , (i, j) ∈ E (1k)

zk
i ∈ {0, 1}, ∀ k ∈ K , i ∈ VR . (1l)

The objective function (1a) minimizes the total routing cost. Constraints (1b)–(1d)
ensure that each request is serviced exactly once by exactly one vehicle (assignment
constraints). Constraints (1e) model the demand limitations imposed by the capacity
Q of each vehicle (knapsack constraints). They provide the connection between the
scheduling and routing structure of the MCGRP polyhedron. Inequalities (1f) repre-
sent flow constraints. They model the symmetry conditions at each vertex. Note that,
together with the integrality conditions, constraints (1f) also imply parity conditions at
each vertex. Constraints (1g) are connectivity constraints. They impose that for each
subset of vertices (excluding the depot) containing a required link or vertex serviced
by a vehicle, at least two links incident to the subset must be used to visit it (dead-
headed or serviced); they also eliminate subtours disjointed from the depot. Finally,
constraints (1h)–(1l) define variable domains. Model (1) is quite complex and can be
optimally solved only for instances with a small number of vehicles. Anyway, this is
not a limitation for many transport operators, whose fleet has a limited size. Note that
our formulation can be easily adapted in order to consider windy graphs.

3 Relaxations and valid inequalities

Owing to the exponential number of connectivity constraints that involve a very large
number of subsets, only a limited number of such constraints is considered into an
initial relaxation of the model. We use the separation routines described in Section
3.1 to find violations. Moreover, we extend some well-known inequalities already
introduced in [1] and [2] for a surrogate CARP formulation to the MCGRP polyhedron.
More details are given in Sect. 3.2.

3.1 Connectivity constraints: separation algorithms

Firstly, connectivity constraint violations are checked through a heuristic algorithm,
although the separation problem is solvable in polynomial time. We use a modification
of the heuristic procedure proposed in [14]. Given a solution of the relaxed MCGRP
model, three vectors of variables are defined for a vehicle index k. Specifically, xk is
a (|AR | + 2|ER |)-dimensional vector only including variables xk

i j associated with k,

yk is a (|A| + 2|E |)-dimensional vector only including variables yk
i j associated with

k, and zk is a (|VR |)-dimensional vector defined by variables zk
i associated with k.

Let (x̄ k, ȳk, z̄k) be the optimal solution of the linear programming relaxation referring
to the k-th route. For each k, let Ck

1 , . . . , Ck
ρ be the connected components induced
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on G by the links (i, j) ∈ A ∪ E such that x̄ k
i j > 0 and ȳk

i j > 0, and the vertices

h ∈ V such that z̄k
h > 0. Moreover, let V k

1 , . . . , V k
ρ be the vertex sets corresponding

to these connected components of G, and Gk the auxiliary graph where each vertex
is associated to Ck

i = G(V k
i ), i = 1, . . . , ρ. Each pair of vertices of Gk is linked

by an edge (s, r) whose cost is the sum of variables x̄ k
i j and ȳk

i j corresponding to

edges (i, j) ∈ A ∪ E such that i ∈ V k
s and j ∈ V k

r , for each s = 1, . . . , ρ and
r = 1, . . . , ρ with s �= r . We use Prim’s algorithm [26] to construct a maximum
spanning tree on Gk . At any stage of its construction, let Sk be the set of connected
components corresponding to the vertices of the partial tree. If Sk yields a violated
connectivity constraint, it is generated. Once the spanning tree is complete, another
check for violations is made by removing in turn each edge of the tree.

An exact algorithm comes into play whenever the heuristic algorithm fails. Our
exact separation algorithm follows the outline provided in [4] for the CARP. Specif-
ically, for each vehicle index k, let Gk(w) be an undirected graph including the
depot and induced by the edges (i, j) ∈ E with a capacity defined by wk

i j =
x̄ k

i j + x̄ k
j i + ȳk

i j + ȳk
j i > 0 and the edges corresponding to the arcs (i, j) ∈ A with a

capacity defined by wk
i j = x̄ k

i j + ȳk
i j > 0. Constraints (1g) can be separated in poly-

nomial time by solving a min-cut separating the depot from each vertex of Gk(w).

3.2 Surrogate inequalities: definition and identification

Belenguer and Benavent [1,2] observed a considerable improvement in the lower
bound for the CARP by aggregating three-index variables with respect to the indices
of the vehicles. In accordance with their works, we defined valid inequalities for our
problem. Let Gw = (V w, Ew) be a windy graph obtained from G by replacing each
arc (i, j) with an edge. This transformation helps to make our problem closer to the
original one by Belenguer and Benavent. The cost on a new edge of Gw is the same as
the cost of the correspondent arc (i, j) in the original graph if the edge is traversed from
i to j , it is ∞ otherwise. Note that V w = V and Cw = C . The notation introduced in
Sect. 2 can be transposed to Gw. Therefore, Ew

R denotes the set of required edges, V w
R

denotes the set of required vertices, δw(S) and δw
R (S) denote, respectively, the (cut)sets

of edges and required edges with one endpoint in S and the other one not in S, Sw
R

denotes the set of required vertices in S, and Ew
R (S) denotes the set of required edges

with both endpoints in S. Let θi j be an integer variable representing the total number
of times that (i, j) ∈ Ew is deadheaded by the vehicles. We say that a vehicle crosses
a cutset δw(S) whenever it traverses an edge (i, j) ∈ δw(S). The so-called capacity
constraints are valid inequalities that may be expressed in terms of the aggregated
variables θi j :

∑

(i, j)∈δw(S)

θi j ≥ 2η(S) − |δw
R (S)| ∀S ⊆ Cw, (2)

where η(S) = (∑(i, j)∈Ew
R (S)∪δw

R (S) di j + ∑
i∈Sw

R
qi )/Q� = D(S)/Q�. Note that at

least η(S) vehicles are needed to service all the required edges in the cutset δw
R (S)
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and inside S, as well as the required vertices in S. In fact, a vehicle which services
some required edges in Ew

R (S) ∪ δw
R (S) and/or some required vertices in Sw

R crosses
δw(S) at least twice, so the number of deadheaded crossings of the cutset δw(S) is
at least 2η(S) − |δw

R (S)|. The solution graph associated with the feasible solutions of
the MCGRP must be an even graph, i.e., all its vertices must have an even degree.
It can be easily shown that a cutset must contain an even number of edges. For each
cutset containing an odd number of required edges, at least one edge in the cut must
be deadheaded. This fact is expressed by the so-called odd edge cutset constraints:

∑

(i, j)∈δw(S)

θi j ≥ 1 ∀S ⊆ Cw, with |δw
R (S)| odd. (3)

Constraints (2) and (3) can be rewritten in the following unified way:

∑

(i, j)∈δw(S)

θi j ≥ α(S) ∀S ⊆ Cw, (4)

where α(S) is equal to max{2η(S)−|δw
R (S)|, 1} if |δw

R (S)| is odd, and to max{2η(S)−
|δw

R (S)|, 0} if |δw
R (S)| is even.

In order to express (4) in terms of the original variables of the MCGRP model, we
observe that θi j is equal to

∑
k∈K (yk

i j + yk
ji ) if (i, j) is an edge in G (i.e., c ji = ci j in

Gw), and to
∑

k∈K yk
i j if (i, j) is an arc in G (i.e., c ji = ∞ in Gw).

The sets in the formulas, e.g. δw
R (S), can be easily transformed with respect to

the original graph G. We denote by θ̄i j the current optimal value for the aggregated
variable θi j . It is not known whether the separation problem of the capacity constraints
(2) is N P−hard or not. However, the so-called fractional capacity constraints can be
separated in polynomial time. They are as follows:

∑

(i, j)∈δw(S)

θi j ≥ 2

(
D(S)

Q

)
− |δw

R (S)| ∀S ⊆ Cw. (5)

Since η(S) ≥ D(S)/Q, inequalities (2) dominate inequalities (5). The fractional
capacity constraints can be effectively identified by using a procedure similar to the
one described in [2]. It consists of solving a maximum flow problem on a graph Ḡw

obtained from Gw by adding an artificial vertex σ and edges connecting σ to the other
vertices in Gw. The capacity of each edge (i, j) in Ḡw is denoted by bi j . Particularly,

bi j is equal to θ̄i j if (i, j) ∈ Ew\Ew
R , to

(
θ̄i j + 1 − di j

Q

)
if (i, j) ∈ Ew

R , and to
(

2
Q qi + 1

Q

∑
(i,h)∈δw

R (i) dih

)
if i ∈ V w and j = σ . Observe that in the last expression,

bi j drops to
(

1
Q

∑
(i,h)∈δw

R (i) dih

)
whenever i /∈ V w

R . Let υ be the minimum capacity

of the cut defined by S ∪ {σ } and obtained by solving a maximum flow problem
on Ḡw between vertices 1 and σ . Note that S represents the set of original vertices
defining this optimal cut. Let us define P as 2

Q (
∑

(i, j)∈Ew
R

di j +∑
i∈V w

R
qi ). The slack

of constraint (5) for S is obtained by subtracting P to υ. It can be easily shown that
the operation υ − P provides the following result:
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∑

(i, j)∈δw
R (S)

bi j +
∑

(i, j)∈δw(S)\δw
R (S)

bi j +
∑

i∈V w\S

biσ − 2

Q

∑

(i, j)∈Ew
R

di j − 2

Q

∑

i∈V w
R

qi

=
∑

(i, j)∈δw(S)

θ̄i j + |δw
R (S)| − 2

D(S)

Q
.

Therefore, if υ − P < 0 then constraints (5) and (2) are violated for S. If υ − P ≥ 0
then no constraint of type (5) is violated, but (2) could be violated for S.

Odd edge cutset constraints can be separated exactly in polynomial time by adapt-
ing the procedure of Padberg and Rao [23], or heuristically through the procedure
described in [5]. Nevertheless, in our algorithm odd edge cutset constraints are gen-
erated only for some subsets of vertices and added to the initial linear relaxation to
strengthen lower bounds. In effect, during the experimental phase, their contribution
appeared negligible.

4 The overall algorithm

Five procedures were used in order to obtain an initial MCGRP feasible solution. Three
procedures are based on the partition-first-route-next methodology. In particular, the
first procedure follows the outline provided in [18]. The fourth procedure is based
on the path scanning methodology [15]. Specifically, the method described in [28] is
adapted to the MCGRP. The latter procedure implements the feasibility pump scheme
[13]. For all tested instances, described in Sect. 5, the feasibility pump-based procedure
outperforms the other heuristics. For this reason, our B&C always starts from the
solution provided by this procedure whose value represents an upper bound on the
optimal value.

The efficiency of the B&C algorithm also depends on the strategy used to strengthen
the relaxation at the root-node and obtain a good lower bound. The initial relaxation
includes: the objective function (1a), the constraints (1b), (1c), (1d), (1e), (1f), and the
connectivity constraints (1g) associated with the R-sets. It is reinforced through the
procedure briefly described in the following.

Root-node procedure. It includes odd edge cutset inequalities (3) generated for the
sets S = {i}, where i is an odd vertex, i.e., a vertex incident with an odd number
of required edges. It also includes other constraints (1g), other inequalities (3) and
inequalities (2) generated by the following scheme:

Another key aspect in the B&C algorithm is the so-called cut pool manage-
ment. Specifically, an iteration of the B&C algorithm involves the selection of a
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subproblem from the list of active subproblems and the addition of violated constraints
and valid inequalities to this subproblem. The set containing violated constraints and
valid inequalities is called cut pool. It is cleaned every 50 iterations by eliminating
inequalities with slack variables more than ε or dual variables less than ε, where
ε = 10−6 is a tolerance.

An outline of the B&C algorithm is provided in the following (the cut pool cleaning
is not included in order to simplify the scheme).

Step 1. Obtain an upper bound λ̄ on the optimal solution value λ∗.
Step 2. Define a relaxed MCGRP formulation by considering constraints (1g) only

for the R-sets and eliminating integrality constraints.
Step 3. Reinforce the previous linear program by calling the root-node procedure.

Insert the resulting subproblem in a list L .
Step 4. If L is empty, STOP. Otherwise extract from L a subproblem.
Step 5. Solve the subproblem. Let λ be the solution value. If λ ≥ λ̄, go back to step

4.
Step 6. Identify constraints (1g). If the heuristic algorithm for the identification of

the connectivity constraints fails, i.e., it finds no violation, apply the exact
separation algorithm.

Step 7. Identify heuristically inequalities of type (2). If no inequalities of type (1g)
and (2) has been identified in steps 6 and 7, set λ̄ = λ and go back to step
4 if the current solution is feasible, otherwise go to step 8. If some violated
inequalities (1g) and (2) have been identified in steps 6 and 7, add these
inequalities to the cut pool and go back to step 5.

Step 8. Generate two subproblems by branching on a fractional variable. Select the
branching variable by considering the following order: xk

i j , zk
i , yk

i j . Insert the
subproblems in L and go back to step 4.

5 Results and discussion

Computational experiments were carried out on a PC equipped with 2 Intel Xeon Quad
Core CPUs @3.0 GHz, with 6 Gbyte RAM. The B&C algorithm was coded in java,
by using ILOG CPLEX library, release 12.2 and activating all the standard CPLEX
cuts. Note that the feasibility pump scheme to obtain an initial solution is already
implemented in this version of CPLEX.

We tested our B&C algorithm on different datasets derived from existing datasets.
The first class is derived from the gdb instances introduced for the undirected CARP
[15]. With the aim of generating mixed and general problems from the gdb tests, we
modified them in the following way. Firstly, we replaced 0.75|E |� edges with pairs of
opposite arcs and moved the demand of each required edge to one (randomly chosen)
of the two arcs as soon as that edge is replaced. Then, we designed six different
datasets from each modified problem by shifting the demands of βπ� randomly
selected required links to βπ� randomly selected adjacent vertices, where π is the
number of required links in our mixed graphs, and assigned to β the values in the
set {0.25, 0.30, 0.35, 0.40, 0.45, 0.50}. Observe that the shifting was performed by
checking that the demand of each required link and vertex does not exceed the capacity
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of the vehicle. The resulting set is composed of 114 instances called mggdb, where
we extend the original acronym gdb with m, which means mixed, and g, which means
general. The second class of datasets is derived from the mval dataset designed for the
mixed CARP [3]. Similarly to gdb instances, we transformed the mval problems to
get general problems, by shifting the demand from the required links to the vertices.
The resulting set is composed of 150 instances, each of them referred to as mgval
(g means, as usual, general). Note that we limit the computational investigation to
those problems with a number of vehicles m ≤ 7 because of the complexity of the
three-index formulation. Anyway, instances with up to seven vehicles represent a
benchmark with an intermediate difficulty level in the context of the capacitated routing
problems. A time limit of 6 h was imposed to the computations, so that valid lower
and upper bounds for the MCGRP were obtained whenever the algorithm stopped
without satisfying the termination criterion (the optimality gap provided by CPLEX
is equal to 0). Numerical results are reported in Tables 1–3. The column headings
are defined as follows: FILE denotes the instance name; m denotes the number of
vehicles; |V | denotes the number of vertices; |A| denotes the number of arcs; |E |
denotes the number of edges; |VR | denotes the number of required vertices; |AR |
denotes the number of required arcs; |ER | denotes the number of required edges; LB
denotes the lower bound at the root of the search tree; CON denotes the number of
added connectivity constraints; SUR denotes the number of added surrogate capacity
inequalities; λ denotes the best solution value reached within the time limit (an optimal
value is marked by an asterisk); GAP denotes the percentage gap provided by CPLEX
(if the model is solved to optimality, it is equal to 0); NODES denotes the number of
nodes explored in the search tree; TIME denotes the computational time in seconds
(the time limit is represented by –).

With respect to the mggdb datasets, the number of instances solved to optimality is
equal to 12 with β = 0.25, 13 with β ∈ {0.30, 0.45}, 16 with β = 0.35, and 15 with
β ∈ {0.40, 0.50}; the average percentage gaps are equal to 1.39 with β = 0.25, 1.33
with β = 0.30, 0.59 with β = 0.35, 0.98 with β = 0.40, 1.87 with β = 0.45, and 1.37
with β = 0.50. With respect to the mgval datasets, the number of instances solved to
optimality is equal to 12 with β ∈ {0.25, 0.35}, 9 with β = 0.30, 14 with β = 0.40,
10 with β = 0.45, and 13 with β = 0.50; the average percentage gaps are equal to
1.75 with β = 0.25, 2.04 with β = 0.30, 2.11 with β = 0.35, 2.01 with β = 0.40,
2.56 with β = 0.45, and 2.29 with β = 0.50. In general, the average gaps for the
mgval instances are slightly higher than the average gaps for the mggdb instances.
These results can depend on the different structure of the graphs. The tables show that
the possibility of finding the optimal solution decreases with the increase of m. In fact,
instances with a large number of vehicles are difficult to solve, especially owing to the
increase in the number of feasible and equivalent solutions relating to the assignment
of the vehicles to the required links and vertices. Moreover, we note that the increase in
the number of required vertices with respect to the number of required links, obtained
by changing β, does not affect the solvability of the instances. This may be explained
by observing that the number of isolated required vertices can increase with respect to
the total number of required vertices, by leading to the creation of more R-connected
components and connectivity cuts. Finally, we observe that the contribution of the
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Table 4 Computational results for the mval instances

FILE m |V | |A| |E | |VR | |AR | |ER | UB LB CON SUR λ GAP NODES TIME

mval1A 2 24 35 20 0 35 20 230 226 2,811 0 230 0 113 5.53

mval2A 2 24 28 16 0 28 16 324 319 1,812 0 324 0 3 0.45

mval3A 2 24 33 15 0 33 15 115 115 63 1 115 0 1 0.14

mval10A 3 50 106 32 0 106 32 634 634 18 0 634 0 1 5.97

mval1B 3 24 38 13 0 38 13 261 261 193 0 261 0 1 1.55

mval2B 3 24 40 12 0 40 12 395 384 16,529 1,644 395 0 36,724 1,813.66

mval3B 3 24 29 16 0 29 16 142 140 1,260 1,285 142 0 1,856 72.75

mval4A 3 41 69 26 0 69 26 580 576 67,713 1,204 580 0 1,423 591.60

mval5A 3 34 74 22 0 74 22 597 597 3,966 35 597 0 1 0.07

mval6A 3 31 47 22 0 47 22 326 326 2,777 0 326 0 1 0.06

mval7A 3 40 50 36 0 50 36 364 363 163,153 0 364 0 23,012 8,551.50

mval8A 3 30 76 20 0 76 20 581 581 1,742 0 581 0 1 3.10

mval9A 3 50 100 32 0 100 32 458 458 32,101 0 458 0 1 65.69

mval10B 4 50 101 33 0 101 33 661 658 221,856 0 661 0 1,719 5,763.42

mval4B 4 41 83 19 0 83 19 650 619.5 284,976 19,184 650 4.34 18,300 −
mval5B 4 34 56 35 0 56 35 613 599 206,158 6,251 613 2.28 21,965 −
mval6B 4 31 44 22 0 44 22 317 314 27,959 67 317 0 37,421 6,927.85

mval7B 4 40 66 25 0 66 25 412 411 24,630 0 412 0 27 60.11

mval8B 4 30 64 27 0 64 27 531 528 116,485 603 531 0 4,328 1,945.07

mval9B 4 50 76 44 0 76 44 453 453 49,192 122 453 0 1 108.82

mval10C 5 50 100 36 0 100 36 623 621 194,730 1,612 623 0 718 19,190.38

mval4C 5 41 82 21 0 82 21 630 616.5 206,072 12,823 630 2.14 10,848 −
mval5C 5 34 81 17 0 81 17 697 681 211,405 6,472 697 2.30 18,301 −
mval9C 5 50 83 42 0 83 42 429 428 118,825 401 428 0 1 1,552.23

mval3C 7 24 25 18 0 25 18 166 146 19,048 87,424 166 6.62 103,424 −

surrogate constraints is effective especially for the instances with a large number of
vehicles.
Further experiments and final remarks. The performance of the B&C algorithm pro-
posed in this paper has been evaluated by carrying out computational experiments on
12 datasets derived from classical datasets for the undirected and mixed CARP (our
datasets for the MCGRP are available at ftp://160.97.54.1). The algorithm reaches the
optimal solution in 154 of the 264 instances. In the instances that are not optimally
solved, the average percentage gaps remain below a satisfactory threshold equal to
2.56, and bounds on the optimal solution value are provided. The study has confirmed
that the complexity of the problem considerably increases whenever the number of
vehicles rises. More effort is required to solve all the instances to optimality. Nev-
ertheless, this work represents a first step to tackle the MCGRP directly by using
formulation-based approaches.
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Further experiments were carried out by considering nearp instances designed
for the MCGRP [27] and limiting the computational investigation to those problems
that require a small number of vehicles (4 problems). Specifically, we solve nearp23
and nearp12 to optimality. The optimal cost is equal to 780 and 3,138, respectively
(780 and 3,235 are the upper bounds reported in [27], respectively). Our algorithm
provides good upper bounds for instances nearp22 and nearp1. Their costs are equal
to 1,941 and 2,587, respectively (1,941 and 2,589 are the upper bounds reported in
[27], respectively).

Obviously, our approach can be used to tackle pure NRPs and ARPs . For this reason,
experiments were carried out also on mval instances, designed for the mixed CARP
(instances with up to 7 vehicles). Bounds for such instances are provided in [3,17]. The
results obtained with our algorithm are shown in Table 4. The column headings have
the same meaning as the headings in Tables 1–3, except for column UB that reports the
upper bound values from [3]. The B&C algorithm always reaches the optimal value.
More precisely, we observe that, for the instances where the GAP is more than 0, the
objective value λ is equal to the best known lower bound. Finally, we underline the
improvement on instance mval9C.

References

1. Belenguer, J.M., Benavent, E.: The capacitated arc routing problem: valid inequalities and facets.
Comput. Optim. Appl. 10(2), 165–187 (1998)

2. Belenguer, J.M., Benavent, E.: A cutting plane algorithm for the capacitated arc routing problem.
Comput. Oper. Res. 30(5), 705–728 (2003)

3. Belenguer, J.M., Benavent, E., Lacomme, P., Prins, C.: Lower and upper bounds for the mixed capac-
itated arc routing problem. Comput. Oper. Res. 33(12), 3363–3383 (2006)

4. Benavent, E., Corberán, A., Sanchis, J.M.: Linear programming based methods for solving arc routing
problems. In: Dror, M. (ed.) Arc Routing: Theory, Solutions and Applications, pp. 231–275. Kluwer
Academic Publishers, Dordrecht (2000)

5. Corberán, A., Letchford, A.N., Sanchis, J.M.: A cutting plane algorithm for the general routing problem.
Math. Program. Ser. A 90(2), 291–316 (2001)

6. Corberán, A., Mejía, G., Sanchis, J.M.: New results on the mixed general routing problem. Oper. Res.
53(2), 363–376 (2005)

7. Corberán, A., Plana, I., Sanchis, J.M.: A branch & cut algorithm for the windy general routing problem
and special cases. Networks 49(4), 245–257 (2007)

8. Corberán, A., Plana, I., Sanchis, J.M.: The windy general routing polyhedron: a global view of many
known arc routing polyhedra. SIAM J. Discret. Math. 22(2), 606–628 (2008)

9. Corberán, A., Prins, C.: Recent results on arc routing problems: an annotated bibliography. Networks
56(1), 50–69 (2010)

10. Corberán, A., Romero, A., Sanchis, J.M.: The mixed general routing polyhedron. Math. Program. Ser.
A 96(1), 103–137 (2003)

11. Corberán, A., Sanchis, J.M.: The general routing problem polyhedron: facets from the RPP and GTSP
polyhedra. Eur. J. Oper. Res. 108(3), 538–550 (1998)

12. Dror, M. (ed.) Arc Routing: Theory, Solutions and Applications. Kluwer Academic Publishers,
Dordrecht (2000)

13. Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. 104(1), 91–104 (2005)
14. Fischetti, M., Salazar, J.J., Toth, P.: A branch-and-cut algorithm for the symmetric generalized traveling

salesman problem. Oper. Res. 45(3), 378–394 (1997)
15. Golden, B.L., Dearmon, J.S., Baker, E.K.: Computational experiments with algorithms for a class of

routing problems. Comput. Oper. Res. 10(1), 47–59 (1983)
16. Golden B.L., Raghavan, S., Wasil, E.A. (eds.) The Vehicle Routing Problem: Latest Advances and

New Challenges (Operations Research/Computer Science Interfaces Series). Springer, Berlin (2008)

123



Modeling and solving the mixed apacitated general routing problem

17. Gouveia, L., Mourão, M.C., Pinto, L.S.: Lower bounds for the mixed capacitated arc routing problem.
Comput. Oper. Res. 37(4), 692–699 (2010)

18. Gutiérrez, J.C.A., Soler, D., Hervás, A.: The capacitated general routing problem on mixed graphs.
Revista Investigacion Operacional 23(1), 15–26 (2002)

19. Lenstra, J.K., Rinnooy Kan, A.H.G.: On general routing problems. Networks 6(3), 273–280 (1976)
20. Letchford, A.N.: New inequalities for the general routing problem. Eur. J. Oper. Res. 96(2), 317–322

(1997)
21. Letchford, A.N.: The general routing polyhedron: a unifying framework. Eur. J. Oper. Res. 112(1),

122–133 (1999)
22. Orloff, C.S.: A fundamental problem in vehicle routing. Networks 4(1), 35–64 (1974)
23. Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Math. Oper. Res. 7(1), 67–80

(1982)
24. Pandit, R., Muralidharan, B.: A capacitated general routing problem on mixed networks. Comput.

Oper. Res. 22(5), 465–478 (1995)
25. Pearn, W.L., Assad, A., Golden, B.L.: Transforming arc routing into node routing problems. Comput.

Oper. Res. 14(4), 285–288 (1987)
26. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389–1401

(1957)
27. Prins, C., Bouchenoua, S.: A memetic algorithm solving the VRP, the CARP and general routing

problems with nodes, edges and arcs. In: Hart, W.E., Krasnogor, N., Smith, J.E. (eds.) Recent Advances
in Memetic Algorithms, pp. 65–85. Springer, Berlin (2005)

28. Santos, L., Coutinho-Rodrigues, J., Current, J.R.: An improved heuristic for the capacitated arc routing
problem. Comput. Oper. Res. 36(9), 2632–2637 (2009)

123


	Modeling and solving the mixed capacitated general routing problem
	Abstract
	1 Introduction
	2 Mathematical model
	3 Relaxations and valid inequalities
	3.1 Connectivity constraints: separation algorithms
	3.2 Surrogate inequalities: definition and identification

	4 The overall algorithm
	5 Results and discussion
	References


