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How to evaluate a model@¢

o Select a training set

o Build a mining model
o Choose a quality measure
o Select a test set

o Apply the model on the test set

o Compute the value of the quality measure
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The fittfing problem

o Beyond the data analysis issues, there are
challenges even in the modeling and evaluate
phases in the CRISP-DM Methodology

o Namely

o Underfitting

o The model is too simple: the evaluation will be poor on
both the training and the evaluation set

o Overfitting

o The model is too complex, fitting as close as it can the
training data, the evaluation will be good on the
training set, but poor on the evaluation set
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Overfitting (due 1o noise)
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Overfitting (due to a too little
dimension of the data sef)
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Overfitting
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How to mitigate the overtfittige

o Prevention
o A good data preparation
o Avoiding

o Feed the building phase with further data for
Improving the model’s generality (e.g. online

pruning)

o Recovery

o Manipulate the model after its creation (e.g. post
pruning)
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How to evaluate a model@¢

o Is a model that achives 70% of global accuracy a
Ygood" modele
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How to evaluate a model@¢

o Is a model that achives 70% of global accuracy a
Ygood" modele

o It dipends...
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How to evaluate a model@¢

o Is a model that achives 70% of global accuracy a
Ygood" modele

o It dipends...

o Is a model that achives 25% of global accuracy a
“good" modele
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How to evaluate a model@¢

o Is a model that achives 70% of global accuracy a
Ygood" modele

o It dipends...

o Is a model that achives 25% of global accuracy a
“good" modele

o It dipends...




 —1— _
——1 4

How to evaluate a model@¢

o We can perform only comparative evaluations.

o A “null hypothesis” (in other words, a baseline) is
needed.

o We can only say, given a statistic, it a model is
better then another one, in terms of the chosen
statistic.
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How to evaluate a model?¢

o The “true” error of a hypothesis h

e(h)= P €& _#h&_ l

o The error on our sample

e(h):%25¢«:¢ he

XeS
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How to evaluate a model?¢

o The probabillity of r misclassifications is governed
by a binomial distribution: l

Binomial distribution forn =40, p =0.3
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How to evaluate a model@¢

olf |S] issufficient great (typically |S|>30) the
binomial distribution can be approximated by @
normal distribution

o Central limit theorem
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How to evaluate a model?¢

o Normall distribution

MNorral distribution with mean Q, standard deviation 1
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How to evaluate a model@¢

o Normall distribution

: 1 «-u°
o Density p(x) = no exp[— 25" J
o Cumulative Pla<X <b)= f p(x)dx
o Expected Value E[X]=u

o Variance Var[X]=o"*
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[a, b] such that

o In the normal case

o Confidence Intervals

o Given a probability
a, we are interested
in finding an interval

P@<X<b)=«

Plu-z,0<X<u+z0)=y

How to evaluate a model?¢
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How to evaluate a model@¢

o Consider two hypothesis h and ...

0 ... and the random variable

d =e(h)-e(J)

o Choose z, and consequently ¥
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How to evaluate a model?¢

o Three cases: d =e(h)—e())

o Zero is in the confidence interval of d

o There is no stafistical difference between h andj, with
significance ¥

o The confidence interval of d is under Zero
o e(h) is statistically lower than e(j), with significance ¥

o The confidence interval of d is above Zero
o e(h) is statistically higher than e(j), with significance ¥

Plu-z,0<X<u+z0)=y
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Methods for model evaluation

o Hold-out
I
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Methods for model evaluation

o Hold-out

o Pros:

o Fast evaluation

o Cons:

o Only one experiment =» low stafistical relevance
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Methods for model evaluation

o Repeated Hold-out with random sub-sampling

o Choose n
o ResulfList ={}
oforl<i<n
o Random Sampling of (with or without replacement):
o Training set

o Validation set
o Test sef

o Model = buildModel(Training set, Validation set)
o ResultList.add(evaluateModel(Model, Test sef))

o Return avg(ResultList)
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Methods for model evaluation

o Repeated Hold-out with random sub-sampling

o Pros:
o More statistical significance

o Cons:
o Slow evaluation

o Not all the tuples are involved in the training and
evaluation phase
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Methods for model evaluation

o k-fold Cross Validation
o Choose k
o Divide the whole dafaset D in k folds (portion)
o Resultlist ={}
oforl<i<k
o Build Training set =D \ fold,
o Random sample the Validation Set from the Training Set
o Training set = Training set \ Validation Set
o Test set = fold,
o Model = buildModel(Training set, Validation set)
o ResultList.add(evaluateModel(Model, Test sef))
o Return avg(ResultList)
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Methods for model evaluation

o k-fold Cross Validation

o Pros:

o Good statistical significance

o the greater is k the better the significance
o Ifk=|D| Cross Validation is called leave-one-out evaluation

o Cons:
o Very slow evaluation

o The k-fold Cross Validation needs to be stratified:

o Each fold has to keep the same statistical properties of the
whole dataset
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Evaluation Meftrics

o The focus is on the predictive quality of a model
o instead of computational cost, scalability...

o Confusion Matrix

’ Predicted class Z
Class = Yes Class = No
Actual class | cgss = Yes True Positive | False Negative B
(TP) (FN)
Class = No False Positive | True Negative

(FP) (TN)




o Global Accuracy

accuracy =

Evaluation Meftrics

TP+TN
TP+FN+FP+TN

o Is a classifier, with a global accuracy equals to
99.9%, goode
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o To be continued...
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confusion matrix

Condition
(as determined by "Gold standard")

Confusion Mafrix

Tatal population

Candition positive Candition negative

Frevalence =
£ Condition positive

Z Total population

Terminology and derivations
from a confusion matrix

Test
outcome

Paositive predictive value (PPY,

Test . o False discovery rate (FOR) =
. False positive Precision) = X
outcorme True positive X Z False positive
: (Type | error) Z True positive =
positive = I Test outcome positive
¥ Test autcome positive
Negative predictive value
Test ) False omission rate (FOR) =
False negative . (MPY) =
outcome True negative Z False negative
(Type Il error) I True negative
negative Z Test outcome negative

I Test outcome negative

Positive likelihood
ratio (LR+) =
TPR/FPR

True positive rate (TPR,
Sensitivity, Recall) =
Z True positive

Fall-out) =
z False positive

False positive rate (FPR,

Accuracy (ACC) =
= True positive + X True negative

Z Condition positive Z Condition negative

I Total population

Megative likelihood
ratio (LR=) =
FMR/TNRE

False negative rate (FNR) =

Specificity, SPC) =
= False negative P B )

Z True negative

Trug negative rate (TNR,

Z Condition positive

I Condition negative

Diagnostic odds ratio
(DOR) =
LR+LR-

true positive (TP}
eqy. with hit
true negative {TN)
eqy. with carrect rejection
false positive (FP)
eqy. with false alarm, Type | error
false negative (FN}
eqy. with miss, Type Il errar

sensitivity or true positive rate (TPR)
e, with hit rate, recall
TPR = TP/P = TP/(TP + FN)
specificity {SPC) or true negative rate (TNR}
SPC = TN /N = TN /(FP + TN)
precision or positive predictive value (PPV)
PPV = TP/(TP + FP)
negative predictive value (NPV)
NPV = TN /(TN + FN)
fall-out or false positive rate (FPR}
FPR = FP/N = FP/(FP + TN)
false discovery rate (FDR)
FDR=FP/(FP+ TP)=1- PPV
Miss Rate or False Negative Rate {FNR)
FNR = FN/P = FN/(FN + TP)

accuracy (ACC)
ACC = (TP + TN)/(P+ N)
F1 score
is the harmonic mean of precision and sensitivity
F1=2TP/(2TP+ FP + FN)
Matthews correlation coefficient (MCC)

TPxTN —FP x FN

V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Informedness = Sensitivity + Specificity - 1
Markedness = Precision + NPV - 1

Sowrces: Fawcett (2006) and Powers (201 1) 21




