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The Knowledge Discovery Process
(CRISP-DM)




o Main Source:
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About the Lecture

o Tan, Steinbach, Kumar “Introduction to Data Mining”
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Data discretization

Data Preparation

: ¢ Fill in missing values, smooth noisy data, identify or remove
Da‘['_a C|ea NI ng outliers, remove redundant values or values with too high (or too
low) variability, resolve inconsistencies

Data integration « Integration of multiple databases, data cubes, or files

Data
transformation

* Normalization and aggregation

* Obtain a reduced representation in volume (which produces
similar statistical results)

Data reduction

*Sometimes required by the classification algorithms or
computational cost issues
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Data Quality

Data in the real world are dirty

| e incomplete: lacking attribute values, lacking certain attributes
’ of interest, or containing only aggregate data

* NOisy: containing errors or outliers
* jnconsistent. containing discrepancies in codes or names

No quality in data? The no quality in mining results!
BAD INPUT = WORSE OUTPUT
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|dentify
outliers and
smooth out
noisy data

Correct
inconsistent
data
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Data Cleaning

Fill in
missing,
values

Remove
irrelevant
data
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Data Cleaning — Noisy Data
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o Noise: random error or variance in a measured variable

faulty data collection

instruments

mm data entry problems

data transmission
problems

mm technology limitation

inconsistency in
naming convention
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Data Cleaning - Missing Data

Data is not always available

e E.g., many tuples have no recorded value for several
attributes, such as customer income in sales data

Missing data may be due to

* Instrument malfunction
* Inconsistency with other recorded data and thus deleted
* Data not entered due to misunderstanding

e Information without importance at the time of entry
* Not register history or changes of the data

Missing data may need to be inferred.
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How to Handle Missing Data?

o Ignore the Missing Value During Analysis

o Ignore the tuple (usually done when class label is missing)

o0 Use a global constant to fill in the missing value (e.g.

“unknown”, a new class value)

o Estimate Missing Values

o Use the attribute mean/mode to fill in the missing value

o Use the most probable value to fill in the missing value: inference-
based such as Bayesian formula or decision tree

O Replace with all possible values (weighted by their probabilities)
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o Aggregation

o Sampling

o Dimensionality Reduction

0 Feature subset selection

O Feature creation
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Data Preparation

o Discretization and Binarization

o Attribute Transformation
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Aggregation

o Combining two or more

attributes (or objects)

into a single attribute (or

object)

Disadvantages:
Potential loss of
interesting details
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Data Aggregation —
Example
Transaction 1D Item Store Location Date Price
101123 Watch Cllilesss 09/06/04 | $25.99
101123 Battery Chicago 09/06/04 | $5.99 N
101124 Shoes Minneapolis | 09/06/04 | $75.00

o Transactions of a single store can be replaced by a single

storewide transaction

o Aggregation operation depends on the type of the attribute

(i.g. price can be averaged, summed...)
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Data Preparation

O Aggregation

o Sampling I

o Dimensionality Reduction

0 Feature subset selection

O Feature creation

o Discretization and Binarization

o Attribute Transformation
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Data Sampling

o Horizontal selection: instances removal.

o To process all the data is often too expensive or time consuming

o Often used for both the preliminary investigation of the data

and the final data analysis

o Representative Sample

o Asample is representative if it holds (“almost”) the same statistical
properties of the original set.

O Using a representative sample will work almost as well as using the
entire data sets
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Sampling Tecniques

=

Sim ple Random * There is an equal probability of selecting any
Sampli ng particular item

Sam pl | ng without & As each item is selected, it is removed from the
replacement population

Sam p| i ng with * Objects are not removed from the population as they
are selected for the sample.

replacement » The same object can be picked up more than once

Stratified * Split the data into several partitions; then draw
random samples from each partition

sampli ng » Fixed size/percentage for ech class
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Sampling —

Loss of information

o Which is the most appropriate sample size?

8. el

At e

;
St

MM.“.:

500 Points

2000 Points

8000 points
o If the sample is too big, there is no advantage of sampling

o If the sample is small, erroneus patterns can be detected!
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Progressive Sampling

o Start with a small sample size

O Increase the sample size until a sufficient sample size is I

reached

o Example:

o Extimate the increase of the accuracy of a predictive model when
increasing sample size.

o Stop when the increase in the accuray levels off.
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Data Preparation

O Aggregation

o Sampling I

o Dimensionality Reduction

0 Feature subset selection

O Feature creation

o Discretization and Binarization

o Attribute Transformation
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Dimensionality Reduction

Dimensionality
(e As the dimensionality ) ¢ Reduction:

Increases, data become

sparse e Obtaining a reduced
l e Risk: to produce low representation of the I
quality results with high data set that is much N
’ dimensional data smaller in volume but

yet produce the good

analytical results
The curse of 4 ) B
-5 - dimensionality N
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Dimensionality Reduction

o Avoid curse of dimensionality

7

[ T/

o Reduce amount of time and memory required by data

mining algorithms

o Produce more understandable models

o Allow data to be more easily visualized

o Eliminate irrelevant features or reduce noise
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Dimensionality Reduction

o Feature Subset Selection

o0 Embedded approaches

o Filter approaches

o Wrapper approaches

O Linear Algebra Techniques

o Principle Component Analysis

o Singular Value Decomposition
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Irrelevant and redundant features
can be removed

Some features can be immediately

removed by using common sense >
or domain knowledge.
\

I

A more sistematic approach Is =
required to select the best subset AN
of features (Note that the possibile

subsets are 2").
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Features Subset Selection

Em bedded * Features selection if often performed as a
apprOaCheS part of tha data mining algorithm

F| |ter  Features selection can be performed before
the data mining algorithm is applied

app qorz10lal=lsl " - Using a specific and indepedent approach

Wra pper « A data mining algorithm is used as a black
box to select th evant f
a pprOaCheS ox to select the most relevant features
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Features Selection —
The process

o It consists of 4 main components:

o A quality measure (to evaluate the features subsets) I

O A search strategy (tha approach to be used)

O A stopping criterion

o A validation procedure

o Filter methods and wrapper ones differ only in the way

they evaluate the subset.
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Features Selection —
The process

Selected / Evaluation
Attributes /

Validation
Procedure

/ Attributes / Search Strategy if:ﬁ)cjfeds /




nivers; ria
E— E— 26 04-04-2014
L '
y =

Data Preparation

O Aggregation

o Sampling I

o Dimensionality Reduction

0 Feature subset selection

o Feature creation

o Discretization and Binarization

o Attribute Transformation
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Features Creation

=

o Create new attributes that can capture the important
information in a data set much more efficiently than the

original attributes

O Three general methodologies:

o Feature Extraction (domain-specific)
o Mapping Data to New Space

o Feature Construction, by combining features

(e.g. density=mass/volume)
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Data Preparation

O Aggregation

o Sampling I

o Dimensionality Reduction

0 Feature subset selection

O Feature creation

o0 Discretization and Binarization

o Attribute Transformation
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* Many classification algorithms require A
categorical attributes
e Algorithms that find patterns often require
eolo]l[s1gafsH  binary attributes )
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Discretization and Binarization

~

 Discretization: Transforming a continous
attribute into categorical attribute

 Binarization: Transforming continous or discrete
attributes into one or more binary attributes
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o cat_attr={awful, poor, OK, good, great}

o Conversion to 3 binary attributes

Binarization —

© B O B~ O

Type 1

Cat_attr Integer
value

awful 0] 0]
poor 1 0 0
OK 2 0 1
good 3 0] 1
great 4 1 0
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Binarization —
Type 1

o Tecnigue:

o Uniquely assign each original value to an integer in
[0, m-1]

o Convert each integer value to a binary number

o Create n = [In(m)] binary aftribute to replace the
original one.

o Disadvantage:

o Creation of n atftributes with an unintended
relationships
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Binarization —
Type 2

o cat_attr={awful, poor, OK, good, great}

o Introduction to 5 binary attributes:
o awful={0,1}

o poor={0,1}
o OK={0,1}

o good={0,1}
o great={0,1}
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Binarization —
Type 2

© Tecnique:

o Create m binary attribute to replace the original one.

O Assign a value=1to the binary attribute corresponding to the
original value

0 Assign O to the other attributes

o0 Disadvantage:

o The number of new attributes may be very large

O The best discretization depends on the algorithm being

used
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Discretization

Decisions

to take: Tecnique:

How many

categories? sort the values

\_ ) 9 )

4 N - N

divide them into n
intervals (using n-1
split points)

\_ ) L )

How to realize
the mapping?

: Map all the values\
in one interval to
the same
_ categorical value |
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Unsupervised Discretization

o Class information is not used

* Divide the range into n intervals with the
same width

* Can be badly affected by outliers

@)
q L:::J >
= | &E) Eq ual * Tries to put the same number of objects
@) into each interval
2 frequency
% =

B, Clustering
aprroach

* Based on the use of any clustering method
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Clustering based

Unsupervised Tecniques —
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Supervised Discretization

o Problem: An interval constructed without knowledge about

the class distribution often contains a mixture of classes.

o Using class information may produce better results

o A simple approach is that of choosing the split points in

order to maximize the purity of the intervals

Data Warehouse and Data Mining -module |l
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Data Preparation

O Aggregation

o Sampling I

o Dimensionality Reduction

0 Feature subset selection

O Feature creation

o Discretization and Binarization

o Attribute Transformation
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Attribute Transformation

o Transformation of the values of an attribute

o Two main types:

o Simple functional transformations

o Normalization
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Attribute Transformation —
Simple functions

o Application of a function to all the values of an attributes

o Examples of trasformation:

o logarithm function: used to reduce the range of values;

o |x|function (Absolute value)

o i function: reduces the magnitude of values.

Note: the order is reverted for valuesin (0,1) !
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Attribute Transformation —
Normalization

o0 Goal: to make an entire set of values to have a specific

property.

o Example:
; X—X So =1
O X =s_ >
* x'=0

o Since mean and st.dev. are affected by outliers, their

are replaced by be median and the aboslute st.dev.




