
Decision Trees

Pasquale Rullo

rullo@mat.unical.it

History

Concept learning systems

1966: Hunt, conceptual learning

1977: Friedman/Breiman, CART (classification and regression trees)

1979: Quinlan, ID3 (interactive dichotomizer 3)

today’s most popular algorithm: C4.5 (Quinlan)

 J.R.Quinlan, C4.5: Programs for Machine Learning,
Morgan Kaufmann, 1993

 http://www.cse.unsw.edu.au/~quinlan/

Decision Trees CS446 Fall 10 3

 What is the DT for the training data below?

 Two attributes: color and shape

Decision Trees – an example

A

C

B

Decision Trees – an example

A B
C

Color

Shape

Blue red Green

Shape

square

triangle circle circle square

A B
C A

B

B

Color Shape Class

red circle B

blue square A

… … …

Decision Tree - Definition

• Decision tree:

• interior nodes are labeled by attribute names ai

• arcs leaving an interior node labeled ai are labelled by
the values of ai

• leaf nodes labeled by class names

• A decision tree can be transformed into an
equivalent set of symbolic rules, disjunction of
conjunctions.

Decision Tree as Rules

Color

Shape

Blue red Green

Shape

square

triangle circle circle square

A B
C A

B

B

• Color = blue and Shape = square  A

• Color= green and Shape = circle  A

• Color = red  B

• Color = green and Shape = square  B

• Color= blue and Shape = triangle  B

• Color= blue and Shape = circle C

Decision Trees as DNFs

Color

Shape

Blue red Green

Shape

square

triangle circle circle square

A B
C A

B

B

• Class A: (Color = blue and Shape = square) OR (Color= green and Shape =

circle)

• Class B: (Color= blue and Shape = triangle) OR (Color = red) OR (Color =

green and Shape = square)

• Class C: Color= blue and Shape = circle

A DT for PlayTennis

(Mitchell)

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

A DT for PlayTennis

The vertebrate example

Name Body

temp

Aqua

tic

Aeri

al

Legs Hibern

ates

Gives

birth

class

human Warm No No Yes No Yes mammals

Python Cool No No No Yes No Reptiles

salmon Cool Yes No No No No Fishes

Whale Cool Yes No No No Yes mammals

The vertebrate data set

More decision trees may represent the training data

Body temperature

warm cool

mammals Gives birth

yes no

reptiles fishes

mammals hibernates

yes no

DTs for the vertebrate example

Name Body

temp

Aqu

atic

Aeri

al

Leg

s

Hibern

ates

Gives

birth

class

human Warm No No Yes No Yes mammal

Python Cool No No No Yes No Reptile

salmon Cool Yes No No No No Fish

Whale Cool Yes No No No Yes mammal

DTs for the vertebrate example

Aquatic

NO SI

Gives Birth

Gives birth

yes no

reptiles fishes

mammals fishes
yes

Name Body

temp

Aqu

atic

Aeri

al

Leg

s

Hibern

ates

Gives

birth

class

human Warm No No Yes No Yes mammal

Python Cool No No No Yes No Reptile

salmon Cool Yes No No No No Fishe

Whale Cool Yes No No No Yes mammal

Properties of DT’s

• The space of decision trees is
complete, i.e., there is at least one
decision tree compatible with the
training data (DTs are DNFs!)

• We might build a DT simply by
representing each example –
useless like DNF generated by
CE!!

The Concept Learning System

(CLS) Algorithm
CLS(Examples, Attributes):

{ create a Root node

 If S contains only one class C /* EXIT CONDITION 1

 return the single-node tree Root labeled C

 If A empty /* EXIT CONDITION 2 – the generated DT may not be a model

 return the single-node tree Root with label= most common class in Examples

Select an attribute a A; label Root by a; /* a is non-deterministically chosen

 for each value v of a for which there is an example in S:

 1- S:= set of examples in Examples with value v of a; A := Attributes \ {a};

 2 - create an arc labeled by v and

 - if S is empty attach a leaf node with label= most common class in Examples

 - else attach subtree given by CLS (S,A);

Student example

Id
Avg

grade Age Italian Sex
Passed

DM Exam

1 A D SI F SI

2 B D SI M SI

3 A E NO F SI

4 C E SI M SI

5 C E NO M NO

6 C E NO F NO

• A: Avg grade >27; B: 22 Avg grade 27; C: Avg grade < 22

• D: age 22; E: age > 22

• Target function: the student has passed the data mining exam

CLS - A DT for the student

example

SI

Id
Avg

grade Age Italian Sex Passed

1 A D SI F SI

2 B D SI M SI

4 C E SI M SI

Create a root node
…. Exit conditions fail
Select an attribute a A; label Root by a;
 /* Select a= italian
for each value v of a for which there is an example in S
 /* Select v= SI
 1- S:= set of examples in S with v = a;
 2- A := A \ {a};
 /* A={Avg grade, age, sex}
 3- create arc labeled v and subtree CLS (S,A);

subtree

Set of examples with

Italian = SI

CLS - A DT for the student

example

SI

Id
Avg

grade Age Italian Sex Passed

1 A D SI F SI

2 B D SI M SI

4 C E SI M SI

create a Root node;

If S contains only one class /* Exit condition 1 occurs

 return the single-node tree Root labeled C

Set of examples with

Italian = SI

CLS - A DT for the student

example

SI

NO

subtree

Select an attribute a A; label Root by a;
 /* a= Italian selected
for each value v of a for which there is an example
in S:
 /* Select v= NO
 1- S:= set of examples in S with v = a;
 2- A := A \ {a};
 /* A={Avg grade, age, sex}
 3- create arc labeled v and subtree CLS (S,A);

Id
Avg

grade Age Italian Sex Passed

3 A E NO F SI

5 C E NO M NO

6 C E NO F NO
Set of examples with

Italian = NO

CLS - A DT for the student

example

SI

NO

subtree

Id
Avg

grade Age Italian Sex Passed

3 A E NO F SI

5 C E NO M NO

6 C E NO F NO
Set of examples with

Italian = NO

Exit conditions fail

CLS - A DT for the student

example

SI

NO

Id
Avg

grade Age Italian Sex Passed

3 A E NO F SI

5 C E NO M NO

6 C E NO F NO
Set of examples with

Italian = NO

Exit conditions fail

Select an attribute a A; label Root by a;
 /* select a= avg grade

CLS - A DT for the student

example

SI

NO

Exit conditions fail

Select an attribute a A; label Root by a;
 /* select a= avg grade
for each value v of a for which there is an example
in S: /* v= A
 1- S:= set of examples in S with v = a;
 2- A := A \ {a}; /* A={age, sex}
 3- create arc labeled v and subtree CLS (S,A);

A

Id
Avg

grade Age Italian Sex Passed

3 A E NO F SI

subtree

CLS - A DT for the student

example

SI

NO

A

Id
Avg

grade Age Italian Sex Passed

3 A E NO F SI

create a Root node;

If S contains only one class /* Exit condition 1 occurs

 return the single-node tree Root labeled C

CLS - A DT for the student

example

NO SI

A C
DT compatible with

the training data

Student example

Id
Avg

grade Age Italian Sex
Passed

DM Exam

1 A D SI F SI

2 B D SI M SI

3 A E NO F SI

4 C E SI M SI

5 C E SI M NO

6 C E NO F NO

• A: Avg grade >27; B: 22 Avg grade 27; C: Avg grade < 22

• D: age 22; E: age > 22

• Target function: the student has passed the data mining exam

CLS - Another DT for the

student example

C
 A

M

 E

Id
Avg

grade Age Italian Sex
Passed

DM Exam

4 C E SI M SI

5 C E SI M NO

CLS - Another DT for the

student example

C
 A

M

 E

• Not compatible

with the samples

• Different choices

of attributes

generate different

DTs

SI Id
Avg

grade Age Italian Sex
Passed

DM Exam

4 C E SI M SI

5 C E SI M NO

EXIT condition 2 occurs

The Concept Learning System

(CLS) Algorithm
CLS(Examples, Attributes):

{ create a Root node

 If S contains only one class C /* EXIT CONDITION 1

 return the single-node tree Root labeled C

 If A empty /* EXIT CONDITION 2 – the generated DT may not be a model

 return the single-node tree Root with label= most common class in Examples

Select an attribute a A; label Root by a; /* a is non-deterministically chosen

 for each value v of a for which there is an example in S:

 1- S:= set of examples in Examples with value v of a; A := Attributes \ {a};

 2 - create an arc labeled by v and

 - if S is empty attach a leaf node with label= most common class in Examples

 - else attach subtree given by CLS (S,A);

Stopping Conditions

• Stopping condition for a leaf node N:

1. The examples associated with N have all
the same target class

2. There is no more attribute whereby
splitting the samples

• NOTE: if condition 2 happens, then the
DT may not be a model of the training
data

Algorithm CLS

• CLS searches through the attributes of the training

instances and non-deterministically extracts one

attribute.

• The algorithm never looks back to reconsider earlier

choices (no backtracking).

The ID3 Algorithm

ID3(Examples, Attributes):

{ create a Root node

 If S contains only one class C /* EXIT CONDITION 1

 return the single-node tree Root labeled C

 If A empty /* EXIT CONDITION 2 – the generated DT may not be a model

 return the single-node tree Root with label= most common class in Examples

Select the best a A; label Root by a /* what is the best attribute? Use Information Gain

 for each value v of a for which there is an example in S:

 1- S:= set of examples in Examples with value v of a; A := Attributes \ {a};

 2 - create an arc labeled by v and

 - if S is empty attach a leaf node with label= most common class in Examples

 - else attach subtree given by ID3(S,A);

Algorithm ID3

• ID3 searches through the attributes of the training

instances and extracts the attribute that best

separates the given examples.

• Greedy, general-to-specific, recursive partitioning

strategy which tends to provide the “smallest” DT;

the output is not necessarily consistent with the

training data

• We are interested in “small” DT’s (why? Overfitting

– Occam’s razor) that well fit the training data

Some properties of ID3

• Efficient: worst case O(dn2) for training, ≈ O(log n)

for classification (d=number of attributes, n=number

of examples)

• However, learned tree is rarely complete (number of

leaves is n). In practice, complexity is linear in both

number of features (m) and number of training

examples (n).

How does ID3 choose the best

attribute?

• Entropy

• A concept from thermodynamics and information

theory

• Initially used to compress signals

• But more recently used for Data Mining

Entropy

• It can be used as a measure of the degree of disorder

of the training data

• Thus, if all examples are in the same class

(maximum order), the entropy is zero

• On the contrary, if the examples are evenly

distributed across the classes, the entropy is

maximum

Entropy

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Entropy

• S consists of 14 examples, 9 positive and 5 negative

(S = [9+,5-])

• E(S) = - p+ log p+ - p- log p- = -9/14 log 9/14 – 5/14 log

5/14 = 0.94

• If S=[7+,7-]

• E(S) = ½ log ½ - ½ log ½ = 1

• If S=[14+,0-]

• E(S) = 1 log 1 – 0 log 0 = 0 (0 log 0 is set to 0)

Entropy

• More generally, if there are more c classes

E(S) = Σi=1,c – pi log pi

• where pi is the proportion of S belonging to class i

Information Gain

• Information Gain IG(S,A) is the expected reduction

in entropy caused by partitioning the examples of S

according to attribute A

 |Sv|

• IG(S,A) = E(S) – Σv in values(A) ------- E(Sv)

 |S|

• where Sv is the subset of S where A=v

Information Gain - Example

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

• S = [9+,5-]

• E(S) = - 9/14 log 9/14 - 5/14 log 5/14 = 0.94

wind

D1 Sunny Hot High Weak No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D13 Overcast Hot Normal Weak Yes

D2 Sunny Hot High Strong No

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D14 Rain Mild High Strong No

A = wind, Values(A) = {weak, strong}

Information Gain - Example

• A = wind, Values(A) = {weak, strong}

• Sweak = [6+,2-], Sstrong = [3+,3-]

• E(Sweak) = - 6/8 log 6/8 – 2/8 log 2/8 = 0.81

• E(Sstrong) = -3/6 log 3/6 – 3/6 log 3/6 = 1.00

IG(S,wind) = E(S) – 8/14 E(Sweak) – 6/14 E(Sstrong)

IG(S,wind) = 0.94 -8/14 *0.81– 6/14 *1= 0.048

• Information Gain IG(S,A) is the expected reduction in entropy caused by

partitioning the examples of S according to attribute A

• The more discriminating A the higher IG

Wind

D1 Sunny Hot High Weak Yes

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D8 Sunny Mild High Weak Yes

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D13 Overcast Hot Normal Weak Yes

D2 Sunny Hot High Strong No

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong No

D11 Sunny Mild Normal Strong No

D12 Overcast Mild High Strong No

D14 Rain Mild High Strong No

A = wind, Values(A) = {weak, strong}

Information Gain - Example

• A = wind, Values(A) = {weak, strong}

• Sweak = [8+,0-], Sstrong = [0+,6-]

• E(Sweak) = 0

• E(Sstrong) = 0

IG(S,wind) = E(S) – 0 – 0

IG(S,wind) = 0.94

• IG is a measure of the discriminating power of an attribute

• The higher its discriminating power the higher IG

Information Gain - Example

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

• S = [9+,5-]

• E(S) = - 9/14 log 9/14 - 5/14 log 5/14 = 0.94

Information Gain - Example

• A=Humidity, Values(A) = {high, normal}

• Shigh= [3+,4-], Snormal=[6+,1-]

• E(Shigh) = 0.985, E(Snormal) = 0.592

IG(S,Hum) = 0.94 – 7/14 E(Shigh) – 7/14 E(Snormal)

=0.151

Information Gain - example

• IG(S,humidity) > IG(S,wind)

• The attribute Humidity induces a larger reduction in
entropy than the attribute Wind

• The IG values for all attributes of the PlayTennis
training set id

• IG(PlayTennis,Outlook) = 0.246

• IG(PlayTennis, Humidity) = 0.151

• IG(PlayTennis, Wind) = 0.048

• IG(PlayTennis,Temperature) = 0.029

Information Gain - example

• Algorithm ID3 selects as the best node the one

having the highest IG

• Outlook is chosen by ID3 as the best node

ID3 and IG

sunny

overcast

rain

S = {D1,D2,D8,D9,D11}

[2+,3-]

S = {D3,D7,D12,D13}

[4+,0-]

S = {D4,D5,D6,D10,D14}

[3+,2-]

Information Gain - Example

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

• Ssunny = {D1, D2, D8, D9, D11}

• S = [2+,3-]

• E(Ssunny) = - 2/5 log 2/5 – 3/5 log 3/5 = 0.97

ID3 and IG

• The next question is "what attribute should be tested at

the Sunny branch node?" Since we have used Outlook at

the root, we only decide on the remaining three

attributes: Humidity, Temperature, or Wind.

• Ssunny = {D1, D2, D8, D9, D11}

• IG(Ssunny, Humidity) = 0.970

• IG(Ssunny, Temperature) = 0.570

• IG(Ssunny, Wind) = 0.019

ID3 and IG

sunny

overcast

rain

S = {D3,D7,D12,D13}

[4+,0-]

S = {D4,D5,D6,D10,D14}

[3+,2-]

ID3 and IG

sunny

overcast

rain

S = {D3,D7,D12,D13}

[4+,0-]

S = {D4,D5,D6,D10,D14}

[3+,2-]

high normal

NO YES

ID3 and IG

sunny

overcast

rain

S = {D3,D7,D12,D13}

[4+,0-]

S = {D4,D5,D6,D10,D14}

[3+,2-]

high normal

NO YES

Information Gain - Example

Day Outlook Temperature Humidity Wind PlayTennis

D3 Overcast Hot High Weak Yes

D7 Overcast Cool Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

ID3 and IG

sunny

overcast

rain

S = {D3,D7,D12,D13}

[4+,0-]

S={D4,D5,D6,D10,D14}

[3+,2-]

high

NO YES

normal

ID3 and IG

sunny

overcast

rain

S = {D3,D7,D12,D13}

[4+,0-]

S={D4,D5,D6,D10,D14}

[3+,2-]

high

NO YES

Information Gain - Example

Day Outlook Temperature Humidity Wind PlayTennis

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D10 Rain Mild Normal Weak Yes

D14 Rain Mild High Strong No

• S = [3+,2-]

• E(Srain) = - 3/5 log 3/5 – 2/5 log 2/5 = 0.97

• Compute the IG for Srain w.r.t. Temperature, Humidity

and Wind

• Select Wind as the best attribute

A DT for PlayTennis

The ID3 Algorithm

ID3(Examples, Attributes):

{ create a Root node

 If S contains only one class C /* EXIT CONDITION 1

 return the single-node tree Root labeled C

 If A empty /* EXIT CONDITION 2 – the generated DT may not be a model

 return the single-node tree Root with label= most common class in Examples

Select a A which maximizes IG; label Root by a

 for each value v of a for which there is an example in S:

 1- S:= set of examples in Examples with value v of a; A := Attributes \ {a};

 2 - create an arc labeled by v and

 - if S is empty attach a leaf node with label= most common class in Examples

 - else attach subtree given by ID3(S,A);

More on ID3

• The DT generated by ID3 is not in general

compatible with the training data

• ID3 incompletely searches a complete HS

• CE completely searches an incomplete HS

(conjunctions)

ID3 vs CE

• Inductive Bias:

• Smaller DT’s are preferred as a consequence of the IG-
based strategy (at each step the attribute which best
separates the examples is chosen). The IG metric
provides support for balanced splitting. Smaller DT’s
encode more general DNF

• DTs with attributes with highest IG closest to the root
are generated

• Why smaller DT’s should be preferable to larger
ones? Overfitting

Overfitting (sovradattamento)

• When a model is to “hardwired” over the training
data it tends to generalize poorly

• That is, learning a tree that classifies the training
data perfectly may not lead to the tree with the best
generalization to unseen data.

• Definition (Mitchell): a hypothesis h is said to
overfit the training data if there is another
hypothesis h’ such that h has a smaller error over the
training examples, but h’ has a smaller error over the
test examples

DT and overfitting

accuracy

Number of nodes

• That is why smaller DT’s aree preferable to larger ones

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 10 20 30 40 50 60 70 80 90 100

training

test

ID3 is robust to noise

• ID3 uses all training examples at each step to make

statistical-based decisions (IG) on how to refine the

current hypothesis

• This contrasts with Find-S or Candidate-Elimination

which makes decisions based on single instances

• As a result, the search of ID3 is much less sensitive

to errors in individual examples (noise)

Reducing the complexity of

DT’s

• Pre-pruning: the tree-growing algorithm is stopped

before generating the full tree. To this end, new

stopping conditions are used, e.g., stop if the IG of a

leaf node is smaller than a given threshold

• Post-pruning: Grow the full tree and then remove

nodes that seem not to have sufficient evidence

Post-pruning

Reduced-error Pruning

• Partition training data in “grow” and “validation”
sets.

• Build a complete tree DT from the “grow” data.

• For each non-leaf node N in the tree do:

• Temporarily prune the subtree below N and replace it with a

leaf labeled with the current majority class at that node.

• Measure the accuracy of the pruned tree DT’ on the

validation set

• If acc(DT) <= acc(DT’) then DT=DT’

Dealing with continuous-

valued attributes

• Initial definition of ID3 is restricted in dealing with
discrete sets of values. It handles symbolic attribute
effectively.

• However, we have to extend its sphere to continuous-
valued attributes (numeric attribute) to fit the real world
scenario.

• One way to do that is to define new discrete valued
attributes that partition the continuous-valued attribute
into multiple intervals, each treated as a symbolic
attribute.

Conclusions

• ID3 induces “small” DT’s (that may not be fully compatible
with the training data) by using a greedy, top-down recursive
strategy based on the IG for selecting the best attribute at each
step

• The tree –growing procedure can be seen as the process of
partitioning the attribute space into disjoint regions until each
region contains examples of the same class

• Small DT’s generalize better and are less prone to overfitting

• DT’s are a easy to interpret model representation

• ID3 is robust to the presence of noise in the training set

Exercise

Instance A1 A2 class

1 T T +

2 T T +

3 T F -

4 F F +

5 F T -

6 F T -

• Entropy

• IG of A2

• DT

