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History 

Concept learning systems 

1966: Hunt, conceptual learning 

1977: Friedman/Breiman, CART (classification and regression trees) 

1979: Quinlan, ID3 (interactive dichotomizer 3) 

today’s most popular algorithm: C4.5 (Quinlan) 

 J.R.Quinlan, C4.5: Programs for Machine Learning, 
Morgan Kaufmann, 1993 

 http://www.cse.unsw.edu.au/~quinlan/ 

 



Decision Trees CS446  Fall 10 3 

  What is the DT for the training data below? 

  Two attributes: color and shape 

Decision Trees – an example 

A 

C 

B 



Decision Trees – an example 

A B 
C 

Color  

Shape 

Blue red Green 

Shape 

square 

triangle circle circle square 

A B 
C A 

B 

B 

Color Shape Class 

red circle B 

blue square A 

… … … 



Decision Tree - Definition 

• Decision tree:  

• interior nodes are labeled by attribute names ai 

• arcs leaving an interior node labeled ai are labelled by 
the values of  ai 

• leaf  nodes labeled by class names 

• A decision tree can be transformed into an 
equivalent set of  symbolic rules, disjunction of  
conjunctions. 

 

 



Decision Tree as Rules 

 

 

 

Color  

Shape 

Blue red Green 

Shape 

square 

triangle circle circle square 

A B 
C A 

B 

B 

• Color = blue and Shape = square  A 

• Color= green and Shape = circle  A 

• Color = red  B 

• Color = green and Shape = square  B 

• Color= blue and Shape = triangle  B 

• Color= blue and Shape = circle C 

 

 

  



Decision Trees as DNFs 

 

 

 

Color  

Shape 

Blue red Green 

Shape 

square 

triangle circle circle square 

A B 
C A 

B 

B 

• Class A: (Color = blue and Shape = square) OR (Color= green and Shape = 

circle )  

• Class B: (Color= blue and Shape = triangle) OR (Color = red)  OR (Color = 

green and Shape = square ) 

• Class C: Color= blue and Shape = circle 

 

 

  



A DT for PlayTennis 

(Mitchell) 

Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 



A DT for PlayTennis 



The vertebrate example 

Name Body 

temp 

Aqua

tic 

Aeri

al 

Legs Hibern

ates 

Gives 

birth 

class 

human Warm No No Yes No Yes mammals 

Python Cool No No No Yes No Reptiles 

salmon Cool Yes No No No No Fishes 

Whale Cool Yes No No No Yes mammals 

The vertebrate data set 

More decision trees may represent the training data   



Body temperature 

warm cool 

mammals Gives birth 

yes no 

reptiles fishes 

mammals hibernates 

yes no 

DTs for the vertebrate example 

Name Body 

temp 

Aqu

atic 

Aeri

al 

Leg

s 

Hibern

ates 

Gives 

birth 

class 

human Warm No No Yes No Yes mammal 

Python Cool No No No Yes No Reptile 

salmon Cool Yes No No No No Fish 

Whale Cool Yes No No No Yes mammal 



DTs for the vertebrate example 

Aquatic 

NO SI 

Gives Birth 

Gives birth 

yes no 

reptiles fishes 

mammals fishes 
yes 

Name Body 

temp 

Aqu

atic 

Aeri

al 

Leg

s 

Hibern

ates 

Gives 

birth 

class 

human Warm No No Yes No Yes mammal 

Python Cool No No No Yes No Reptile 

salmon Cool Yes No No No No Fishe 

Whale Cool Yes No No No Yes mammal 



Properties of  DT’s 

• The space of  decision trees is 
complete, i.e., there is at least one 
decision tree compatible with the 
training data (DTs are DNFs!) 

• We might build a DT simply by 
representing each example – 
useless like DNF generated by 
CE!! 

 

 



The Concept Learning System 

(CLS) Algorithm 
CLS( Examples, Attributes): 

{ create a Root node  

  If S contains only one class C    /* EXIT CONDITION 1 

 return the single-node tree Root labeled C 

  If A empty   /* EXIT CONDITION 2 – the generated DT may not be a model  

 return the single-node tree Root with label= most common class in Examples 

Select an attribute a  A; label Root by a;   /* a is non-deterministically chosen 

      for each value v of  a for which there is an example in S: 

         1-  S:= set of  examples in Examples with value v of  a;  A := Attributes \ {a}; 

         2 -  create an arc labeled by v and  

  - if  S is empty attach a leaf  node with label= most common class in Examples 

  - else attach subtree given by CLS (S,A); 

 

 



Student example 

Id 
Avg 

grade Age Italian Sex 
Passed 

DM Exam 

1 A D SI F SI 

2 B D SI M SI 

3 A E NO F SI 

4 C E SI M SI 

5 C E NO M NO 

6 C E NO F NO 

• A: Avg grade >27; B: 22   Avg grade  27;  C: Avg grade < 22 

• D: age  22; E: age > 22 

• Target function: the student has passed the data mining exam 
 



CLS - A DT for the student 

example 

SI 

Id 
Avg 

grade Age Italian Sex Passed 

1 A D SI F SI 

2 B D SI M SI 

4 C E SI M SI 

Create a root node 
…. Exit conditions fail 
Select an attribute a  A; label Root by a;   
       /* Select a= italian 
for each value v of  a for which there is an example in S 
      /* Select v= SI  
 1-  S:= set of  examples in S with v = a;    
 2-  A := A \ {a};  
       /* A={Avg grade, age, sex} 
 3-  create arc labeled v and subtree CLS (S,A); 

subtree 

Set of  examples with  

Italian = SI 



CLS - A DT for the student 

example 

SI 

Id 
Avg 

grade Age Italian Sex Passed 

1 A D SI F SI 

2 B D SI M SI 

4 C E SI M SI 

create a Root node; 
 
If S contains only one class  /* Exit condition 1 occurs 
 
  return the single-node tree Root labeled C 

Set of  examples with  

Italian = SI 



CLS - A DT for the student 

example 

SI 

NO 

subtree 

Select an attribute a  A; label Root by a;  
 /* a= Italian selected 
for each value v of  a for which there is an example 
in S: 
     /* Select v= NO  
 1-  S:= set of  examples in S with v = a;    
 2-  A := A \ {a}; 
    /* A={Avg grade, age, sex} 
 3-  create arc labeled v and subtree CLS (S,A); 

Id 
Avg 

grade Age Italian Sex Passed 

3 A E NO F SI 

5 C E NO M NO 

6 C E NO F NO 
Set of  examples with  

Italian = NO 



CLS - A DT for the student 

example 

SI 

NO 

subtree 

Id 
Avg 

grade Age Italian Sex Passed 

3 A E NO F SI 

5 C E NO M NO 

6 C E NO F NO 
Set of  examples with  

Italian = NO 

Exit conditions fail 



CLS - A DT for the student 

example 

SI 

NO 

Id 
Avg 

grade Age Italian Sex Passed 

3 A E NO F SI 

5 C E NO M NO 

6 C E NO F NO 
Set of  examples with  

Italian = NO 

Exit conditions fail 

Select an attribute a  A; label Root by a;  
 /* select a= avg grade 
 
 



CLS - A DT for the student 

example 

SI 

NO 

Exit conditions fail 

Select an attribute a  A; label Root by a;  
 /* select a= avg grade 
for each value v of  a for which there is an example 
in S: /* v= A 
 1-  S:= set of  examples in S with v = a;    
 2-  A := A \ {a}; /* A={age, sex} 
 3-  create arc labeled v and subtree CLS (S,A); 
 
 

A 

Id 
Avg 

grade Age Italian Sex Passed 

3 A E NO F SI 

subtree 



CLS - A DT for the student 

example 

SI 

NO 

A 

Id 
Avg 

grade Age Italian Sex Passed 

3 A E NO F SI 

create a Root node;  
 
If S contains only one class  /* Exit condition 1  occurs 
 
  return the single-node tree Root labeled C 



CLS - A DT for the student 

example 

NO SI 

A C 
DT compatible with 

the training data 



Student example 

Id 
Avg 

grade Age Italian Sex 
Passed 

DM Exam 

1 A D SI F SI 

2 B D SI M SI 

3 A E NO F SI 

4 C E SI M SI 

5 C E SI M NO 

6 C E NO F NO 

• A: Avg grade >27; B: 22   Avg grade  27;  C: Avg grade < 22 

• D: age  22; E: age > 22 

• Target function: the student has passed the data mining exam 
 



CLS - Another DT for the 

student example 

C 
      A 

M 

     E 

Id 
Avg 

grade Age Italian Sex 
Passed 

DM Exam 

4 C E SI M SI 

5 C E SI M NO 



CLS - Another DT for the 

student example 

C 
      A 

M 

     E 

 

• Not compatible 

with the samples 

 

• Different choices 

of  attributes 

generate different 

DTs 

 

SI Id 
Avg 

grade Age Italian Sex 
Passed 

DM Exam 

4 C E SI M SI 

5 C E SI M NO 

EXIT condition 2 occurs 



The Concept Learning System 

(CLS) Algorithm 
CLS( Examples, Attributes): 

{ create a Root node  

  If S contains only one class C    /* EXIT CONDITION 1 

 return the single-node tree Root labeled C 

  If A empty   /* EXIT CONDITION 2 – the generated DT may not be a model  

 return the single-node tree Root with label= most common class in Examples 

Select an attribute a  A; label Root by a;   /* a is non-deterministically chosen 

      for each value v of  a for which there is an example in S: 

         1-  S:= set of  examples in Examples with value v of  a;  A := Attributes \ {a}; 

         2 -  create an arc labeled by v and  

  - if  S is empty attach a leaf  node with label= most common class in Examples 

  - else attach subtree given by CLS (S,A); 

 

 



Stopping Conditions 

• Stopping condition for a leaf  node N: 

1. The examples associated with N have all 
the same target class 

2. There is no more attribute whereby 
splitting the samples 

• NOTE: if  condition 2 happens, then the 
DT may not be a model of  the training 
data 

 



Algorithm CLS 

• CLS searches through the attributes of  the training 

instances and non-deterministically extracts one 

attribute.  

• The algorithm never looks back to reconsider earlier 

choices (no backtracking). 

 



The ID3 Algorithm 

ID3( Examples, Attributes): 

{ create a Root node  

  If S contains only one class C    /* EXIT CONDITION 1 

 return the single-node tree Root labeled C 

  If A empty   /* EXIT CONDITION 2 – the generated DT may not be a model  

 return the single-node tree Root with label= most common class in Examples 

Select the best a  A; label Root by a  /* what is the best attribute? Use Information Gain 

      for each value v of  a for which there is an example in S: 

         1-  S:= set of  examples in Examples with value v of  a;  A := Attributes \ {a}; 

         2 -  create an arc labeled by v and  

  - if  S is empty attach a leaf  node with label= most common class in Examples 

  - else attach subtree given by ID3(S,A); 

 

 



Algorithm ID3 

• ID3 searches through the attributes of  the training 

instances and extracts the attribute that best 

separates the given examples.  

• Greedy, general-to-specific, recursive partitioning 

strategy which tends to provide the “smallest” DT; 

the output is not necessarily consistent with the 

training data 

• We are interested in “small” DT’s (why?  Overfitting 

– Occam’s razor) that well fit the training data 

 

 



Some properties of  ID3 

• Efficient: worst case O(dn2) for training, ≈ O(log n) 

for classification (d=number of  attributes, n=number 

of examples) 

• However, learned tree is rarely complete (number of  

leaves is  n). In practice, complexity is linear in both 

number of  features (m) and number of  training 

examples (n). 

 

 



How does ID3 choose the best 

attribute? 

• Entropy 

• A concept from thermodynamics and  information 

theory 

• Initially used to compress signals 

• But more recently used for Data Mining 

 

 



Entropy 

• It can be used as a measure of  the degree of  disorder 

of  the training data 

• Thus, if  all examples are in the same class 

(maximum order), the entropy is zero 

• On the contrary, if  the examples are evenly 

distributed across the classes, the entropy is 

maximum 



Entropy 

Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 



Entropy 

• S consists of  14 examples, 9 positive and 5 negative 

(S = [9+,5-]) 

• E(S) = - p+ log p+ - p- log p- = -9/14 log 9/14 – 5/14 log 

5/14 = 0.94 

• If  S=[7+,7-] 

• E(S) = ½ log ½ - ½ log ½ = 1 

• If  S=[14+,0-] 

• E(S) = 1 log 1 – 0 log 0 = 0 (0 log 0 is set to 0) 



Entropy 

• More generally, if  there are more c classes 

 

E(S) = Σi=1,c – pi log pi 

• where pi is the proportion of  S belonging to class i 



Information Gain 

• Information Gain IG(S,A) is the expected reduction 

in entropy caused by partitioning the examples of  S 

according to attribute A 

                        |Sv| 

• IG(S,A) = E(S) – Σv in values(A)  -------  E(Sv) 

                                                       |S| 

                                                             

• where Sv is the subset of  S where A=v 



Information Gain - Example 

Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 

• S = [9+,5-] 

• E(S) = - 9/14 log 9/14 - 5/14 log 5/14 = 0.94  

 



wind 

D1 Sunny Hot High Weak No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D13 Overcast Hot Normal Weak Yes 

D2 Sunny Hot High Strong No 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D14 Rain Mild High Strong No 

A = wind, Values(A) = {weak, strong} 



Information Gain - Example 

• A = wind, Values(A) = {weak, strong} 

• Sweak = [6+,2-], Sstrong = [3+,3-] 

• E(Sweak) = - 6/8 log 6/8 – 2/8 log 2/8 = 0.81 

• E(Sstrong) = -3/6 log 3/6 – 3/6 log 3/6 = 1.00 

IG(S,wind) = E(S) – 8/14 E(Sweak) – 6/14 E(Sstrong)  

IG(S,wind) = 0.94 -8/14 *0.81– 6/14 *1= 0.048 

• Information Gain IG(S,A) is the expected reduction in entropy caused by 

partitioning the examples of  S according to attribute A 

• The more discriminating A the higher IG 



Wind 

D1 Sunny Hot High Weak Yes 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D8 Sunny Mild High Weak Yes 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D13 Overcast Hot Normal Weak Yes 

D2 Sunny Hot High Strong No 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong No 

D11 Sunny Mild Normal Strong No 

D12 Overcast Mild High Strong No 

D14 Rain Mild High Strong No 

A = wind, Values(A) = {weak, strong} 



Information Gain - Example 

• A = wind, Values(A) = {weak, strong} 

• Sweak = [8+,0-], Sstrong = [0+,6-] 

• E(Sweak) = 0 

• E(Sstrong) = 0 

IG(S,wind) = E(S) – 0 – 0 

IG(S,wind) = 0.94 

• IG is a measure of  the discriminating power of  an attribute 

• The higher its discriminating power the higher IG 



Information Gain - Example 

Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 

• S = [9+,5-] 

• E(S) = - 9/14 log 9/14 - 5/14 log 5/14 = 0.94  

 



Information Gain - Example 

• A=Humidity, Values(A) = {high, normal} 

• Shigh= [3+,4-], Snormal=[6+,1-] 

• E(Shigh) = 0.985, E(Snormal) = 0.592 

IG(S,Hum) = 0.94 – 7/14 E(Shigh) – 7/14 E(Snormal) 

=0.151 

 



Information Gain - example 

• IG(S,humidity) > IG(S,wind) 

• The attribute Humidity induces a larger reduction in 
entropy than the attribute Wind 

• The IG values for all attributes of  the PlayTennis 
training set id 

• IG(PlayTennis,Outlook) = 0.246 

• IG(PlayTennis, Humidity) = 0.151 

• IG(PlayTennis, Wind) = 0.048 

• IG(PlayTennis,Temperature) = 0.029 

 



Information Gain - example 

• Algorithm ID3 selects as the best node the one 

having the highest IG 

• Outlook is chosen by ID3 as the best node   

 



ID3 and IG 

sunny 

overcast 

rain 

S = {D1,D2,D8,D9,D11} 

[2+,3-] 

S = {D3,D7,D12,D13} 

[4+,0-] 

S = {D4,D5,D6,D10,D14} 

[3+,2-] 



Information Gain - Example 

Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

• Ssunny = {D1, D2, D8, D9, D11}  

• S = [2+,3-] 

• E(Ssunny) = - 2/5 log 2/5 – 3/5 log 3/5 = 0.97  

 



ID3 and IG 

• The next question is "what attribute should be tested at 

the Sunny branch node?" Since we have used Outlook at 

the root, we only decide on the remaining three 

attributes: Humidity, Temperature, or Wind. 

• Ssunny = {D1, D2, D8, D9, D11}  

• IG(Ssunny, Humidity) = 0.970 

• IG(Ssunny, Temperature) = 0.570 

• IG(Ssunny, Wind) = 0.019 



ID3 and IG 

sunny 

overcast 

rain 

S = {D3,D7,D12,D13} 

[4+,0-] 

S = {D4,D5,D6,D10,D14} 

[3+,2-] 



ID3 and IG 

sunny 

overcast 

rain 

S = {D3,D7,D12,D13} 

[4+,0-] 

S = {D4,D5,D6,D10,D14} 

[3+,2-] 

high normal 

NO YES 



ID3 and IG 

sunny 

overcast 

rain 

S = {D3,D7,D12,D13} 

[4+,0-] 

S = {D4,D5,D6,D10,D14} 

[3+,2-] 

high normal 

NO YES 



Information Gain - Example 

Day Outlook Temperature Humidity Wind PlayTennis 

D3 Overcast Hot High Weak Yes 

D7 Overcast Cool Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 



ID3 and IG 

sunny 

overcast 

rain 

S = {D3,D7,D12,D13} 

[4+,0-] 

S={D4,D5,D6,D10,D14} 

[3+,2-] 

high 

NO YES 

normal 



ID3 and IG 

sunny 

overcast 

rain 

S = {D3,D7,D12,D13} 

[4+,0-] 

S={D4,D5,D6,D10,D14} 

[3+,2-] 

high 

NO YES 



Information Gain - Example 

Day Outlook Temperature Humidity Wind PlayTennis 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D10 Rain Mild Normal Weak Yes 

D14 Rain Mild High Strong No 

• S = [3+,2-] 

• E(Srain) = - 3/5 log 3/5 – 2/5 log 2/5 = 0.97  

 
• Compute the IG for Srain w.r.t. Temperature, Humidity 

and Wind  

• Select Wind as the best attribute 



A DT for PlayTennis 



The ID3 Algorithm 

ID3( Examples, Attributes): 

{ create a Root node  

  If S contains only one class C    /* EXIT CONDITION 1 

 return the single-node tree Root labeled C 

  If A empty   /* EXIT CONDITION 2 – the generated DT may not be a model  

 return the single-node tree Root with label= most common class in Examples 

Select a  A which maximizes IG; label Root by a 

      for each value v of  a for which there is an example in S: 

         1-  S:= set of  examples in Examples with value v of  a;  A := Attributes \ {a}; 

         2 -  create an arc labeled by v and  

  - if  S is empty attach a leaf  node with label= most common class in Examples 

  - else attach subtree given by ID3(S,A); 

 

 



More on ID3 

• The DT generated by ID3 is not in general 

compatible with the training data 

• ID3 incompletely searches a complete HS 

• CE completely searches an incomplete HS 

(conjunctions) 

 



ID3 vs CE 

• Inductive Bias: 

• Smaller DT’s are preferred as a consequence of  the IG-
based strategy (at each step the attribute which best 
separates the examples is chosen). The IG metric  
provides support for balanced splitting. Smaller DT’s 
encode more general DNF 

• DTs with attributes with highest IG closest to the root 
are generated 

• Why smaller DT’s should be preferable to larger 
ones? Overfitting 

 



Overfitting (sovradattamento) 

• When a model is to “hardwired” over the training 
data it tends to generalize poorly 

• That is, learning a tree that classifies the training 
data perfectly may not lead to the tree with the best 
generalization to unseen data. 

• Definition (Mitchell): a hypothesis  h is said to 
overfit the training data if  there is another 
hypothesis h’ such that h has a smaller error over the 
training examples, but h’ has a smaller error over the 
test examples 



DT and overfitting 

accuracy 

Number of  nodes 

 

• That is why smaller DT’s aree preferable to larger ones 

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

0 10 20 30 40 50 60 70 80 90 100 

training 

test 



 

ID3 is robust to noise 

 

• ID3 uses all training examples at each step to make 

statistical-based decisions (IG) on how to refine the 

current hypothesis 

• This contrasts with Find-S or Candidate-Elimination 

which makes decisions based on single instances 

• As a result, the search of  ID3 is much less sensitive 

to errors in individual examples (noise) 



Reducing the complexity of  

DT’s 

• Pre-pruning: the tree-growing algorithm is stopped 

before generating the full tree. To this end, new 

stopping conditions are used, e.g., stop if  the IG of  a 

leaf  node is smaller than a given threshold 

• Post-pruning: Grow the full tree and then remove 

nodes  that seem not to have sufficient evidence 



Post-pruning 

Reduced-error Pruning 

• Partition training data in “grow” and “validation” 
sets. 

• Build a complete tree DT from the “grow” data. 

• For each non-leaf  node N in the tree do: 

• Temporarily prune the subtree below N and replace it with a 

leaf  labeled with the current majority class at that node. 

• Measure the accuracy of  the pruned tree DT’ on the 

validation set 

 
• If  acc(DT) <= acc(DT’) then DT=DT’ 



Dealing with continuous-

valued attributes 

• Initial definition of  ID3 is restricted in dealing with 
discrete sets of  values. It handles symbolic attribute 
effectively.  

• However, we have to extend its sphere to continuous-
valued attributes (numeric attribute) to fit the real world 
scenario.  

• One way to do that is to define new discrete valued 
attributes that partition the continuous-valued attribute 
into multiple intervals, each treated as a symbolic 
attribute. 



Conclusions 

• ID3 induces “small” DT’s (that may not be fully compatible 
with the training data) by using a greedy, top-down recursive 
strategy based on the IG for selecting the best attribute at each 
step 

• The tree –growing procedure can be seen as the process of  
partitioning the attribute space into disjoint regions until each 
region contains examples of  the same class 

• Small DT’s generalize better and are less prone to overfitting 

• DT’s are a easy to interpret model representation 

• ID3 is robust to the presence of  noise in the training set 

 

 



Exercise 

Instance A1 A2 class 

1 T T + 

2 T T + 

3 T F - 

4 F F + 

5 F T - 

6 F T - 

• Entropy 

• IG of  A2 

• DT 


