
RULE-BASED
CLASSIFIERS

Pasquale Rullo

rullo@mat.unical.it

Classification Rules
• A rule-based classifier is a set of propositional rules of the

form
•  IF outlook=sunny and Humidity=normal

 THEN PlayTennis=yes
•  IF Humidity=normal and wind=strong

 THEN PlayTennis=yes

Classification Rules
Alternative notation
•  outlook=sunny and Humidity=normal à yes
•  Humidity=normal and wind=strong à yes

• Equivalent to DNF
•  (Outlook=sunny and Humidity=normal) OR

(Humidity=normal and wind=strong)

Classification Rules

• Rules can be generated
•  straight from training data (direct)
•  indirectly from a decision tree (indirect)

• RIPPER is the most well known direct rule learner

Sequential Covering

• Greedy approach which reduces the problem of learning a
set of rules to a sequence of simpler problems, each
requiring that a single rule is learned

• Once a rule r is learned, all covered examples (both
positive and negative) are removed from the training set,
so that the next generated rule is different from r

•  It learns rules until it can no longer learn a rule whose
performance is above the given Threshold

Sequential Covering

(i) Original Data (ii) Step 1

Sequential covering

(iii) Step 2

R1

(iv) Step 3

R1

R2

Sequential covering
•  Seq-Cov(Attributes,Examples,Threshold)

•  for each class c in {c1, …, ck}
•  Classifierc = {};
•  PosExamc is the set of Examples with label = c;
•  NegExamc is the set of Examples with label <> c
•  Examc = PosExamc ∪ NegExamc;
•  Rule = Learn-One-Rule(Attributes,Examples)
•  while performance(Rule,Examples) > Threshold do

•  Classifierc = Classifierc ∪ { Rule}
•  Examc= Examc – {examples covered by Rule}
•  Rule = Learn-One-Rule(Attributes,Examples)

•  endWhile
•  endFor
•  Sort classifiers according to their performance on Examples
•  Add default rule {} -> default class (with minimum priority)

•  return

Sequential covering
•  Seq-Cov(Attributes,Examples,Threshold)

•  for each class c in {c1, …, ck}
•  Classifierc = {}
•  PosExamc is the set of Examples with label = c;
•  NegExamc is the set of Examples with label <> c
•  Examc= PosExamc ∪ NegExamc;
•  Rule = Learn-One-Rule(Attributes,Examples)
•  while performance(Rule,Examples) > Threshold do

•  Classifierc = Classifierc ∪ { Rule}
•  Examc= Examc– {examples covered by Rule}
•  Rule = Learn-One-Rule(Attributes,Examples)

•  endWhile
•  endFor
•  Sort classifiers according to their performance on Examples
•  Add default rule {} -> default class (with minimum priority)

•  return

Learn-One-Rule
• Objective: learning a rule that covers many positive

examples and few negative ones (possibly none)
• Method: Grows the rules in a greedy fashion based on a

general-to-specific approach
•  It starts with the most general rule, i.e., one with the empty

antecedent (it covers all the examples of the training set – poor
performance)

•  Then greedily adds the attribute that most improves rule
performance (e.g., accuracy) over the training set

•  The process is repeated by adding a second attribute, and so on
and so forth

•  The process is repeated until the rule reaches an acceptable level
of performance

Selecting an attribute
• Select the attribute that most increases rule performance

(accuracy, or other measures, e.g., Laplace rank, FOIL’s
Information Gain) of the current rule

Example
•  r0: a ! c
•  r1: a, b ! c

• Select attribute b if
•  performance(r1) > performance (r0) and
•  performance (r1) > performance (rj)

•  for each rule rj obtainable by adding in the antecedent of
r0 any attribute other than b

Name Give Birth Lay Eggs Can Fly Live in Water Have Legs Class
human yes no no no yes mammals
python no yes no no no reptiles
salmon no yes no yes no fishes
whale yes no no yes no mammals
frog no yes no sometimes yes amphibians
komodo no yes no no yes reptiles
bat yes no yes no yes mammals
pigeon no yes yes no yes birds
cat yes no no no yes mammals
leopard shark yes no no yes no fishes
turtle no yes no sometimes yes reptiles
penguin no yes no sometimes yes birds
porcupine yes no no no yes mammals
eel no yes no yes no fishes
salamander no yes no sometimes yes amphibians
gila monster no yes no no yes reptiles
platypus no yes no no yes mammals
owl no yes yes no yes birds
dolphin yes no no yes no mammals
eagle no yes yes no yes birds

Learn-One-Rule
{} à mammals

givesBirth=noà
mammals

haveLegs=no à
mammals

givesBirth =yes
àmammals

canFly = no à
mammals

givesBirth =yes,
haveLegs= yes
àmammals

…
… givesBirth =yes,

haveLegs= no
àmammals

Rules Performance
•  rule r: A1=a1, …, An=an à c

•  r covers an example x if x= <a1, …, an>, i.e., the attributes
of x satisfy the condition of the rule (antecedent)

Rules Performance
Name Blood Type Give Birth Can Fly Live in Water Class

human warm yes no no mammals
python cold no no no reptiles
salmon cold no no yes fishes
whale warm yes no yes mammals
frog cold no no sometimes amphibians
komodo cold no no no reptiles
bat warm yes yes no mammals
pigeon warm no yes no birds
cat warm yes no no mammals
leopard shark cold yes no yes fishes
turtle cold no no sometimes reptiles
penguin warm no no sometimes birds
porcupine warm yes no no mammals
eel cold no no yes fishes
salamander cold no no sometimes amphibians
gila monster cold no no no reptiles
platypus warm no no no mammals
owl warm no yes no birds
dolphin warm yes no yes mammals
eagle warm no yes no birds

Gives Birth = yes → Mammals

Rules Performance
•  rule r: A1=a1, …, An=an à c

• An example x satisfies r if r covers x and the class of x is c

Rules Performance
Name Blood Type Give Birth Can Fly Live in Water Class

human warm yes no no mammals
python cold no no no reptiles
salmon cold no no yes fishes
whale warm yes no yes mammals
frog cold no no sometimes amphibians
komodo cold no no no reptiles
bat warm yes yes no mammals
pigeon warm no yes no birds
cat warm yes no no mammals
leopard shark cold yes no yes fishes
turtle cold no no sometimes reptiles
penguin warm no no sometimes birds
porcupine warm yes no no mammals
eel cold no no yes fishes
salamander cold no no sometimes amphibians
gila monster cold no no no reptiles
platypus warm no no no mammals
owl warm no yes no birds
dolphin warm yes no yes mammals
eagle warm no yes no birds

Gives Birth = yes → Mammals

Rules Performance

• Coverage(r) = cov(r)/D, where

•  D is the number of training examples
•  cov(r) is the number of examples covered by r

• Accuracy(r) = sat(r)/cov(r), where
•  Sat(r) is the number of examples satisfying r

Classification Rules Performance
Name Blood Type Give Birth Can Fly Live in Water Class

human warm yes no no mammals
python cold no no no reptiles
salmon cold no no yes fishes
whale warm yes no yes mammals
frog cold no no sometimes amphibians
komodo cold no no no reptiles
bat warm yes yes no mammals
pigeon warm no yes no birds
cat warm yes no no mammals
leopard shark cold yes no yes fishes
turtle cold no no sometimes reptiles
penguin warm no no sometimes birds
porcupine warm yes no no mammals
eel cold no no yes fishes
salamander cold no no sometimes amphibians
gila monster cold no no no reptiles
platypus warm no no no mammals
owl warm no yes no birds
dolphin warm yes no yes mammals
eagle warm no yes no birds

Gives Birth = yes → Mammals
Coverage = 7/20
Accuracy = 6/7

Rules Performance
•  Rule accuracy may not be a meaningful criterion

•  r1: covers 50 positive examples and 5 negative examples
Acc(r1) = 50/55 = 90.9%

•  r2: covers 2 positive examples and no negative examples
Acc(r2)= 2/2 = 100%

•  However, r1 is intuitively “more reliable” than r2

•  Other performance measures, e.g., Laplace rank, FOIL’s Information
Gain, etc.

Sequential covering
•  Seq-Cov(Attributes,Examples,Threshold)

•  for each class c in {c1, …, ck}
•  Classifierc = {}
•  PosExamc is the set of examples with label = c;
•  NegExamc is the set of examples with label <> c
•  Examc= PosExamc ∪ NegExamc;
•  Rule = Learn-One-Rule(Attributes,Examples)
•  while performance(Rule,Examples) > Threshold do

•  Classifierc = Classifierc ∪ { Rule}
•  Examc= Examc– {examples covered by Rule}
•  Rule = Learn-One-Rule(Attributes,Examples)

•  endWhile
•  endFor
•  Sort classifiers according to their performance on Examples
•  Add default rule {} -> default class (with minimum priority)

•  return

Sequential covering
•  Seq-Cov(Attributes,Examples,Threshold)

•  for each class c in {c1, …, ck}
•  Classifierc = {};
•  PosExamc is the set of examples with label = c;
•  NegExamc is the set of examples with label <> c
•  Examc= PosExamc∪ NegExamc;
•  Rule = Learn-One-Rule(Attributes,Examples)
•  while performance(Rule,Examples) > Threshold do

•  Classifierc = Classifierc ∪ { Rule}
•  Examc = Examc – {examples covered by Rule}
•  Rule = Learn-One-Rule(Attributes,Examples)

•  endWhile
•  endFor
•  Sort classifiers according to their performance on Examples
•  Add default rule {} -> default class (with minimum priority)

•  return

Why do we need to
eliminate instances?

Otherwise, the
next rule is
identical to
previous rule

How a classifier works
•  cbird: (Gives Birth = no) ∧ (Can Fly = yes) → Bird
•  cfish: (Gives Birth = no) ∧ (Lives in Water = yes) → Fish
•  cmammal: (Gives Birth = yes) ∧ (Blood Type = warm) → Mammal
•  camphibian: (Lives in Water = sometimes) → Amphibian
•  creptile: (Gives Birth = no) ∧ (Can Fly = no) → Reptile

Name Gives
birth

Can fly Live in
water

Blood
type

class

hawk no yes no warm ?
Grizzly bear yes no no warm ?
turtle no no sometimes cold ?

How a classifier works
•  cbird: (Gives Birth = no) ∧ (Can Fly = yes) → Bird
•  cfish: (Gives Birth = no) ∧ (Lives in Water = yes) → Fish
•  cmammal: (Gives Birth = yes) ∧ (Blood Type = warm) → Mammal
•  camphibian: (Lives in Water = sometimes) → Amphibian
•  creptile: (Gives Birth = no) ∧ (Can Fly = no) → Reptile

Name Gives
birth

Can fly Live in
water

Blood
type

class

hawk no yes no warm bird
Grizzly bear yes no no warm ?
turtle no no sometimes cold ?

How a classifier works
•  cbird: (Gives Birth = no) ∧ (Can Fly = yes) → Bird
•  cfish: (Gives Birth = no) ∧ (Lives in Water = yes) → Fish
•  cmammal: (Gives Birth = yes) ∧ (Blood Type = warm) → Mammal
•  camphibian: (Lives in Water = sometimes) → Amphibian
•  creptile: (Gives Birth = no) ∧ (Can Fly = no) → Reptile

Name Gives
birth

Can fly Live in
water

Blood
type

class

hawk no yes no warm bird
Grizzly bear yes no no warm mammal
turtle no no sometimes cold ?

How a classifier works
•  cbird: (Gives Birth = no) ∧ (Can Fly = yes) → Bird
•  cfish: (Gives Birth = no) ∧ (Lives in Water = yes) → Fish
•  cmammal: (Gives Birth = yes) ∧ (Blood Type = warm) → Mammal
•  camphibian: (Lives in Water = sometimes) → Amphibian
•  creptile: (Gives Birth = no) ∧ (Can Fly = no) → Reptile

Name Gives
birth

Can fly Lives in
water

Blood
type

class

hawk no yes no warm bird
Grizzly bear yes no no warm mammal
turtle no no sometimes cold ?????

Ambiguity!!

Rules are not mutually exclusive
Ordered Rule Sets

•  To solve the ambiguity, we order classifiers according to
their reliability

•  The less mistakes over the training data a classifier
makes, the more reliable it is

Rules are not mutually exclusive
Ordered Rule Sets

• Assume cbird>cfish>cmammal>camphibian>creptile

• Classifiers are ordered in decreasing order of reliability

• When a new instance is presented, it is classified by the
highest-ranked classifier triggered by the instance

Rules are not mutually exclusive
Ordered Rule Sets
• Classifiers are ordered

•  cbird: (Gives Birth = no) ∧ (Can Fly = yes) → Bird
•  cfish: (Gives Birth = no) ∧ (Lives in Water = yes) → Fish
•  cmammal: (Gives Birth = yes) ∧ (Blood Type = warm) → Mammal
•  camphibian: (Lives in Water = sometimes) → Amphibian
•  creptile: (Gives Birth = no) ∧ (Can Fly = no) → Reptile

Turtle is NOT a reptile according to the above model, as camphibian is more
reliable than creptile

Name Gives
birth

Can fly Live in
water

Blood
type

class

hawk no yes no warm bird
Grizzly bear yes no no warm mammal
turtle no no sometimes cold Amphib

Sequential covering
•  Seq-Cov(Attributes,Examples,Threshold)

•  for each class c in {c1, …, ck}
•  Classifierc = {}
•  PosExam is the set of examples with label = c;
•  NegExam is the set of examples with label <> c
•  Examc= PosExam ∪ NegExam;
•  Rule = Learn-One-Rule(Attributes,Examples)
•  while performance(Rule,Examples) > Threshold do

•  Classifierc = Classifierc ∪ { Rule}
•  Examc = Examc– {examples covered by Rule}
•  Rule = Learn-One-Rule(Attributes,Examples)

•  endWhile
•  endFor
•  Sort classifiers according to their performance on Examples
•  Add default rule {} -> default class (with minimum priority)

•  return

Rules are not exhaustive
Default rule
• Rules are not exhaustive: an instance may not
trigger any rule
•  cbird: (Gives Birth = no) ∧ (Can Fly = yes) → Bird
•  cfish: (Gives Birth = no) ∧ (Lives in Water = yes) → Fish
•  cmammal: (Gives Birth = yes) ∧ (Blood Type = warm) → Mammal
•  camphibian: (Lives in Water = sometimes) → Amphibian
•  creptile: (Gives Birth = no) ∧ (Can Fly = no) → Reptile

Name Gives
birth

Can fly Lives in
water

Blood
type

class

dogfish shark yes no yes cold ?

•  Dogfish shark does not trigger any rule

Rules are not exhaustive
Default rule

• The instance is assigned to a default class, i.e.,
the class assigned by the default rule
•  {} à default class

•  this is triggered when all other rules have failed
• Default class: majority class of training examples
not covered by any rule

Rules are not exhaustive
Default rule

•  cbird: (Gives Birth = no) ∧ (Can Fly = yes) → Bird
•  cfish: (Gives Birth = no) ∧ (Lives in Water = yes) → Fish
•  cmammal: (Gives Birth = yes) ∧ (Blood Type = warm) → Mammal
•  camphibian: (Lives in Water = sometimes) → Amphibian
•  creptile: (Gives Birth = no) ∧ (Can Fly = no) → Reptile
•  Default rule: {} → Mammal

Name Gives
birth

Can fly Lives in
water

Blood
type

class

dogfish shark yes no yes cold mammal

Sequential covering – rule-based ordering
•  Seq-Cov(Attributes,Examples,Threshold)
•  for each class c in {c1, …, ck}

•  Classifier = {}
•  PosExamc is the set of examples with label = c;
•  NegExamc is the set of examples with label <> c
•  Examc= PosExamc∪ NegExamc;
•  Rule = Learn-One-Rule(Attributes,Examples)
•  while performance(Rule,Examples) > Threshold do

•  Classifier = Classifier + Rule
•  Examc= Examc– {examples covered by Rule}
•  Rule = Learn-One-Rule(Attributes,Examples)

•  endWhile
•  endFor
•  sort Classifier according to their performance on Examples
•  Add default rule {} -> default class (with minimum priority)

•  return

How a rule-based classifier works
Summary

• When a new instance is presented to the classifier
•  It is assigned to the class label of the highest ranked

rule it has triggered
•  If none of the rules is fired, it is assigned to the default

class

C4.5 rules versus RIPPER
Give
Birth?

Live In
Water?

Can
Fly?

Mammals

Fishes Amphibians

Birds Reptiles

Yes No

Yes

Sometimes

No

Yes No

(Give Birth=Yes) → Mammals

(Give Birth=No, Lives In Water = no, Can Fly=Yes)
→ Birds

(Give Birth=No, Live in Water=Yes) → Fishes

(Give Birth=No, Live in Water=No, Can Fly=No) →
Reptiles

(Give Birth=No, Live in Water=sometimes) →
Amphibian

C4.5 rules versus RIPPER
C4.5:

(Give Birth=Yes) → Mammals

(Give Birth=No, Lives In Water = no, Can Fly=Yes) → Birds

(Give Birth=No, Live in Water=Yes) → Fishes

(Give Birth=No, Live in Water=No, Can Fly=No) → Reptiles

(Give Birth=No, Live in Water=sometimes) → Amphibian
 RIPPER:

(Live in Water=Yes) → Fishes

(Have Legs=No) → Reptiles

(Give Birth=No, Can Fly=No, Live In Water=No) → Reptiles

(Can Fly=Yes,Give Birth=No) → Birds

() → Mammals

C4.5 rules versus RIPPER

PREDICTED CLASS
 Amphibians Fishes Reptiles Birds Mammals
ACTUAL Amphibians 0 0 0 0 2
CLASS Fishes 0 3 0 0 0

Reptiles 0 0 3 0 1
Birds 0 0 1 2 1
Mammals 0 2 1 0 4

PREDICTED CLASS
 Amphibians Fishes Reptiles Birds Mammals
ACTUAL Amphibians 2 0 0 0 0
CLASS Fishes 0 2 0 0 1

Reptiles 1 0 3 0 0
Birds 1 0 0 3 0
Mammals 0 0 1 0 6

C4.5rules:

RIPPER:

Advantages of Rule-Based Classifiers

• As highly expressive as decision trees
• Easy to interpret
• Can classify new instances rapidly
• Performance comparable to decision trees

