PROBABILISTIC LEARNING NAÏVE BAYES CLASSIFIERS

pasquale Rullo
rullo@mat.unical.it

Probabilistic classifiers

- Let an instance X and a set of classes $\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{n}\right\}$ be given
- A probabilistic classifier determines a probability distribution function
- $p\left(c_{1} \mid X\right)$
- $p\left(c_{i} \mid X\right)$
-...
- $p\left(c_{n} \mid X\right)$
- where $p\left(c_{i} \mid X\right)$ is the conditional probability that X belongs to c_{i}
- Then, outputs class c_{j} with the highest probability

Conditional probability

$p(X \mid Y)$: probability of X given Y

A	B	C
a	b	c
a	b	d
e	b	c
d	h	c

What is the probability of having $B=b$, given $C=c$?

Notation: $\mathrm{p}(\mathrm{B}=\mathrm{b} \mid \mathrm{C}=\mathrm{c})$ or $\mathrm{p}(\mathrm{b} \mid \mathrm{c})$

Conditional probability

By definition of conditional probability:

A	B	C
a	b	c
a	b	d
e	b	c
d	h	c

$$
\begin{aligned}
& p(b \mid c)=\frac{p(b, c)}{p(c)} \\
& p(b \mid c)=-------\quad=2 / 4^{*} 4 / 3=2 / 3 \\
& p(c)
\end{aligned}
$$

Product rule - Joint probability

- From the definition of conditional probability, the joint probability is

$$
p(X, Y)=p(X \mid Y) p(Y)=p(Y \mid X) p(X)
$$

- X and Y are independent if $p(X \mid Y)=p(X)$

$$
=>p(X, Y)=p(X) p(Y)
$$

- X and Y are incompatible (mutually exclusive) if $p(X \mid Y)=0$

$$
\Rightarrow p(X, Y)=0
$$

Sum rule

- $p(X \vee Y)=p(X)+p(Y)-p(X, Y)=$

$$
\begin{aligned}
& p(X)+p(Y)-p(X \mid Y) p(Y)= \\
& p(X)+p(Y)-p(Y \mid X) p(X)
\end{aligned}
$$

- If X and Y are independent
- $p(X \vee Y)=p(X)+p(Y)-p(X) p(Y)$
- If X and Y are incompatible
- $p(X \vee Y)=p(X)+p(Y)$

Sum rule

$$
p(A \vee B)=p(A)+p(B)-p(A \wedge B)
$$

Events A,B

independent

dependent

$p(A \wedge B)=p(A) p(B)$

$$
p(A \vee B)=p(A)+p(B)-p(A) p(B)
$$

incompatible

compatible

$$
\begin{aligned}
& p(A \wedge B)=0 \\
& p(A \vee B)=p(A)+p(B)
\end{aligned}
$$

$$
\begin{gathered}
p(A \wedge B)=p(A \mid B) p(B) \\
p(A \vee B)=p(A)+p(B)-p(A \mid B) p(B)
\end{gathered}
$$

Sum rule - Example

- What is the probability of getting $A=\{1,2\}$ from the first die or $B=\{2,3\}$ from the second one in the throw of two dice?
- A and B are independent on each other
- $p(A \vee B)=p(A)+p(B)-p(A) p(B)$
- $A=\{1,2\}: 1$ and 2 are incompatible
- $p(A)=p(1)+p(2)=1 / 6+1 / 6=1 / 3$
- $B=\{2,3\}: 2$ and 3 are incompatible
- $p(B)=p(2)+p(3)=1 / 6+1 / 6=1 / 3$
- $p(A \vee B)=p(A)+p(B)-p(A) p(B)=1 / 3+1 / 3-1 / 9=5 / 9$

Sum rule - Example (cont'ed)

- There are 24 configurations favorable to event $A \vee B$
- $A=1$ with any $B-6$ configurations: <1, 1>, ..., <1, 6>
- $\mathrm{A}=2$ with any $\mathrm{B}-6$ configurations: <2, 1>, ..., <2, 6>
- $B=2$ with any $A-6$ configurations: $<1,2>, \ldots,<6,2>$
- $B=3$ with any $A-6$ configurations: $<1,3>, \ldots,<6,3>$

Sum rule - Example (cont'ed)

- There are 24 configurations favorable to event $\mathrm{A} \vee \mathrm{B}$
- $A=1$ with any $B-6$ configurations: $\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,3\rangle \ldots,<1,6>$
- $A=2$ with any $B-6$ configurations: <2, 1>,<2,2>, <2,3>, .., <2, 6>
- $\mathrm{B}=2$ with any $\mathrm{A}-6$ configurations: $<1,2>,<2,2>, \ldots,<6,2>$
- $\mathrm{B}=3$ with any $\mathrm{A}-6$ configurations: $<1,3>,<2,3>, \ldots,<6,3>$

4 of which are duplicated: <1,2>, <1,3>, <2,2>,<2,3>

- So the number of favorable configurations without repetitions is 20 (over 36)
- $p(A \vee B)=20 / 36=5 / 9$
- This explains the need of the joint probability for computing the total probability

$$
p(A \vee B)=p(A)+p(B)-p(A \wedge B)
$$

Sum rule - Examples

- What is the probability of getting $A=\{1,2\}$ or $B=\{3,4\}$ in the throw of one die?
- $\quad A$ and B are incompatible, so $p(A, B)=0$
- $p(A \vee B)=p(A)+p(B)=1 / 3+1 / 3=2 / 3$
- What is the probability of getting $A=\{1,2\}$ or $B=\{2,3\}$ in the throw of one die?
- A and B are compatible (when 2 occurs, both A and B occur)
- $p(A \vee B)=p(A)+p(B)-p(A \mid B) p(B)$
- $p(A)=p(B)=1 / 3$
- $p(A \mid B)=1 / 2$
- $p(A \vee B)=1 / 3+1 / 3-1 / 2^{*} 1 / 3=1 / 2$

Theorem of total probability

- If $\left\{X_{1}, \ldots, X_{n}\right\}$ are mutually exclusive events such that $p\left(X_{1}\right)+\ldots+p\left(X_{n}\right)=1$, then

$$
p(Y)=\Sigma_{i=1, n} p\left(Y \mid X_{i}\right) p\left(X_{i}\right)
$$

- Example: In a school, 60\% of students are female. The percentage of males who passed the final exam of Math is 0.5 , while that of females is 0.66 . What is the probability of event $\mathrm{Y}=$ "a student has passed the exam"?
- $p(Y)=p(Y \mid f) p(f)+p(Y \mid m) p(m)=0.66 * 0.6+0.5^{*} 0.4=0.55$

Summary of basic probability formulas

- Product rule: $p(X, Y)=p(X \mid Y) p(Y)=p(Y \mid X) p(X)$
- Sum rule: $p(X v Y)=p(X)+p(Y)-p(X, Y)$
- Total probability: $p(Y)=\Sigma_{i=1, n} p\left(Y \mid X_{i}\right) p\left(X_{i}\right)$, if $\left\{X_{1}, \ldots, X_{n}\right\}$ are mutually exclusive events such that $p\left(X_{1}\right)+\ldots+p\left(X_{n}\right)$ $=1$

Bayes' Theorem

- Bayes' theorem may be derived from the definition of conditional probability:
- $p(X \mid Y)=p(X, Y) / p(Y)$
- $p(Y \mid X)=p(X, Y) / p(X)$
- $=>p(X, Y)=p(X \mid Y) p(Y)=p(Y \mid X) p(X)=>$

$$
p(X \mid Y)=\frac{p(Y \mid X) p(X)}{p(Y)}
$$

Terminology:

- $\mathrm{p}(\mathrm{X} \mid \mathrm{Y})$: posterior probability
- $p(X)$: prior probability - initial degree of belief in X
- $p(X \mid Y) / p(Y)$: support Y provides for X

Bayes theorem: an example

- In a school, 60% of students are female. The percentage of males passing the final exam of Math is 0.5 , while that of females is 0.66 .
- Event $\mathrm{Y}=$ " a student has passed the Math exam"
- What is the probability that the student is a female?
- $\quad \mathrm{p}(\mathrm{f} \mid \mathrm{Y})$?

Passed Math	Sex
y	f
n	f
n	f
y	m
y	m
n	m
n	m

Bayes theorem: an example

- Question: $\mathrm{p}(\mathrm{f} \mid \mathrm{Y})$?
- Input data
- $p(m)=0.4, p(f)=0.6$
- $p(Y \mid m)=0.5, p(Y \mid f)=0.66$
- Bayes theorem
- $p(f \mid Y)=p(Y \mid f)$ * $p(f) / p(Y)$
where
- $p(Y)=p(Y \mid m)^{*} p(m)+p(Y \mid f)^{*} p(f)=0.57$ (total probability)

Answer: $p(f \mid Y)=0.66^{*} 0.6 / 0.57=0.69$

Bayes theorem: an example

- In a Formula 1 Gran prix, the rain probability is 30%. The probability that Vettel wins when it's raining is 4%, and 1%, otherwise. Now, assuming that Vettel won the race, what is the probability that it has rained?

Bayes theorem: an example

- The entire output of a car factory is produced on three plants. The three plants account for $10 \%, 40 \%$, and 50% of the output, respectively. The fraction of red cars produced by each plant is: 8% for the first plant; 5% for the second plant; 1% for the third plant. If a car is chosen at random from the total output and is found to be red, what is the probability that it was produced by the second plant?

Summary of basic probability formulas

- Product rule: $p(X, Y)=p(X \mid Y) p(Y)=p(Y \mid X) p(X)$
- Sum rule: $p(X v Y)=p(X)+p(Y)-p(X, Y)$
- Total probability: $p(Y)=\Sigma_{i=1, n} p\left(Y \mid X_{i}\right) p\left(X_{i}\right)$, if $\left\{X_{1}, \ldots, X_{n}\right\}$ are mutually exclusive events such that $p\left(X_{1}\right)+\ldots+p\left(X_{n}\right)=1$

$$
p(Y \mid X) p(X)
$$

- Bayes Theorem: $p(X \mid Y)=$

$$
p(Y)
$$

Naïve Bayes (NB) classifier

- Question: Given a new instance $\left\langle x_{1}, \ldots, x_{n}\right\rangle$, what is the probability that the class is c ?

$$
\mathrm{p}\left(\mathrm{c} \mid<\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}>\right) ?
$$

- By the Bayes theorem

$$
p\left(<x_{1}, \ldots, x_{n}>\mid c\right) p(c)
$$

- $p\left(c \mid<x_{1}, \ldots, x_{n}>\right)=$

$$
\mathrm{p}\left(<\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}>\right)
$$

- $\mathrm{p}\left(\mathrm{c} \mid<\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}>\right)$ is the posterior probability for c
- $p(c)$ is the prior probability for c

NB classifier

- Given the set of classes $C=\left\{c_{1}, \ldots, c_{m}\right\}$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{NB}}=\operatorname{argmax} \mathrm{p}\left(\mathrm{c}_{\mathrm{j}} \mid<\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}>\right)= \\
& c_{j} \in C \\
& p\left(<x_{1}, \ldots, x_{n}>\mid c_{j}\right) p\left(c_{j}\right) \\
& \text { = argmax } \\
& c_{j} \in C \quad p\left(<x_{1}, \ldots, x_{n}>\right)
\end{aligned}
$$

- the denominator is equal for all classes \rightarrow

$$
c_{N B}=\underset{c_{j} \in C}{\operatorname{argmax}} p\left(<x_{1}, \ldots, x_{n}>\mid c_{j}\right) p\left(c_{j}\right)
$$

Evaluating prior probabilities

$$
\begin{gathered}
c_{N B}=\operatorname{argmax} p\left(<x_{1}, \ldots, x_{n}>\mid c_{j}\right) p\left(c_{j}\right) \\
c_{j} \in C
\end{gathered}
$$

- where
- $p\left(c_{j}\right)$ and $p\left(<x_{1}, \ldots, x_{n}>\mid c_{j}\right)$ are called prior probabilities
- $p\left(c_{j}\right)$ is the fraction of examples with class label c_{j}
$\cdot p\left(<x_{1}, \ldots, x_{n}>\mid c_{j}\right)$ is the number of examples of type $<x_{1}, \ldots, x_{n}>$ over the total number of examples with label c_{j}
- Evaluating $p\left(<x_{1}, \ldots, x_{n}>\mid c_{j}\right)$ would require a very, very large set of training data

The Conditional Independence Assumption (CIA)

The NB classifier is based on the simplifying assumption that the attribute values are conditionally independent, i.e., the probability of observing the conjunction $<\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}>$ is given by the product of the probabilities of the single attributes, i.e.,

$$
p\left(<x_{1}, \ldots, x_{n}>\mid c_{j}\right)=p\left(x_{1} \mid c_{j}\right) \ldots p\left(x_{n} \mid c_{j}\right)
$$

\rightarrow

$$
c_{N B}=\underset{c_{j} \in C}{\operatorname{argmax}} p\left(c_{j}\right) p\left(x_{1} \mid c_{j}\right) \ldots p\left(x_{n} \mid c_{j}\right)
$$

The conditional independence assumption (CIA)

- The CIA states the following

$$
p(X, Y \mid C)=p(X \mid C) p(Y \mid C)
$$

- Indeed

$$
\begin{gathered}
p(X, Y \mid C)=p(X, Y, C) / p(C)= \\
p(X, Y, C) / p(Y, C) * p(Y, C) / p(C)= \\
p(X \mid Y, C) * p(Y \mid C)
\end{gathered}
$$

- Since $p(X \mid Y, C)=p(X \mid C)$ (i.e., X is conditionally independent of Y), it turns out that

$$
p(X, Y \mid C)=p(X \mid C)^{*} p(Y \mid C)
$$

NB classifier - independent attributes

- For instance, in the mammal data set, the attributes gives birth and \#legs are independent
- On the contrary, if the examples represent persons, then the attributes Height and Shoe Size are NOT independent

Evaluating prior probabilities

$$
\mathrm{c}_{\mathrm{NB}}=\underset{\mathrm{c}_{\mathrm{j}} \in \mathrm{C}}{\operatorname{argmax}} \mathrm{p}\left(\mathrm{c}_{\mathrm{j}}\right) \mathrm{p}\left(\mathrm{x}_{1} \mid \mathrm{c}_{\mathrm{j}}\right) \ldots \mathrm{p}\left(\mathrm{x}_{\mathrm{n}} \mid \mathrm{c}_{\mathrm{j}}\right)
$$

- where
- $p\left(c_{j}\right)$ and $p\left(x_{1} \mid c_{j}\right) \ldots p\left(x_{n} \mid c_{j}\right)$ are called prior probabilities
- $p\left(c_{j}\right)$ is the probability that class c_{j} is the label of some instance of the training set
- $p\left(x_{i} \mid c_{j}\right)$ is the probability that the value x_{i} appears in some instance of c_{j}
- They can be estimated over the training data
- $\mathrm{p}\left(\mathrm{c}_{\mathrm{j}}\right)=\mathrm{Nc}_{\mathrm{j}} / \mathrm{N}$
- $\mathrm{Nc}_{\mathrm{j}}=$ number of instances labeled c_{j}
- $\mathrm{N}=$ total number of instances
- $p\left(x_{i} \mid c_{j}\right)=$ fraction of instances with label c_{j} where x_{i} appears
- Evaluating prior probabilities is all a NB classifier has to do during the training phase

Classifying by NB - An Example

- $p($ Yes $)=9 / 14=0.64$
- $p($ No $)=5 / 14=0.36$
- $p($ Outlook=sunny | Yes) $=2 / 9=0.22$
- $p($ Temp $=$ cool \mid Yes $)=3 / 9=0.33$
- $p($ Hum=high \mid Yes $)=3 / 9=0.33$
- $p($ Wind=strong \mid Yes $)=3 / 9=0.33$
- $p($ Wind=strong \mid No $)=3 / 5=0.60$

Day	Outlook	Temperature	Humidity	Wind	playTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Classifying by NB - An Example (cont'ed)

Classify the following instance:
X = <Outlook=sunny, Temp=cool, Hum=high, Wind= strong>
$c_{N B}=\operatorname{argmax} p(c \mid X)=p(c) p\left(x_{1} \mid c\right) \ldots p\left(x_{n} \mid c\right)$

$$
c \in\{\mathrm{Yes}, \mathrm{No}\}
$$

- $p($ Yes $\mid X)=p($ Yes $) p($ sunnylyes $) p($ cool|yes $) p($ high|yes $)$ p (stronglyes)
- $p($ no|X $)=p($ no $) p($ sunny $\mid n o) ~ p($ cool|no) $p($ high $\mid n o)$ p (strong|no)

Classifying by NB - An Example (cont'ed)

- $p($ Yes $)=0.64$
- $p(\mathrm{No})=0.36$
- p (sunny | Yes) $=2 / 9=0.22$
- p (cool | Yes) $=3 / 9=0.33$
- p (high | Yes) $=3 / 9=0.33$
- $p($ strong \mid Yes $)=3 / 9=0.33$
- $p($ strong $\mid \mathrm{No})=3 / 5=0.60$
- $p($ Yes $\mid X)=p($ Yes $) p($ sunnylyes $) p($ cool|yes $) p($ high|yes $) p($ strong|yes $)=$ 0.0053
- $p($ No|X $)=p($ No $) p($ sunny $\mid N o) p($ cool|No) $p($ high $\mid N o) p($ strong $\mid N o)=0.026$
- $\rightarrow \mathrm{C}_{\mathrm{NB}}=\mathrm{No}$

On the conditional independence assumption (CIA) - Example

- On the training set, the following holds:
- $p(X=0 \mid N o)=0.4, p(X=1 \mid N o)=0.6$
- $p(X=0 \mid Y e s)=0.6, p(X=1 \mid Y e s)=0.4$
- $p(Y=0 \mid \mathrm{No})=0.4, \mathrm{p}(\mathrm{Y}=1 \mid \mathrm{No})=0.6$
- $p(Y=0 \mid Y e s)=0.6, p(Y=1 \mid Y e s)=0.4$
- $p(\mathrm{No})=p(\mathrm{Yes})=0.5$

X	Y	C
0	0	No
0	0	No
1	1	No
1	1	No
1	1	No
0	1	Yes
0	0	Yes
0	1	Yes
1	0	Yes
1	0	Yes

On the conditional independence assumption (CIA) - Example (cont'ed)

- Classify E = <X=0, Y=0>
- By using NB (with the CIA)

$$
\begin{gathered}
P(\text { No|E })=p(E \mid \text { No }) p(\text { No })=p(<X=0, Y=0>\mid \text { No }) p(\text { No })= \\
p(X=0 \mid \text { No }) p(Y=0 \mid \text { No }) p(\text { No })=0.08 \\
P(\text { Yes } \mid E)=p(E \mid Y e s) p(\text { Yes })=p(<X=0, Y=0>\mid \text { Yes }) p(\text { Yes })= \\
p(X=0 \mid Y e s) p(Y=0 \mid Y e s) p(\text { Yes })=0.18
\end{gathered}
$$

- $P($ Yes $\mid E)>P(N o \mid E) \rightarrow E$ is assigned to class Yes

On the conditional independence assumption (CIA) - Example

- On the training set, the following holds:
- $p(X=0 \mid N o)=0.4, p(X=1 \mid N o)=0.6$
- $p(X=0 \mid Y e s)=0.6, p(X=1 \mid Y e s)=0.4$
- $p(Y=0 \mid \mathrm{No})=0.4, \mathrm{p}(\mathrm{Y}=1 \mid \mathrm{No})=0.6$
- $p(Y=0 \mid Y e s)=0.6, p(Y=1 \mid Y e s)=0.4$
- $p(\mathrm{No})=p($ Yes $)=0.5$

Note: X and Y are perfectly correlated when $\mathrm{C}=$ No, so

- $p(X=v, Y=v \mid$ No $)=p(X=v \mid N o)=p(Y=v \mid N o)$

X	Y	C
0	0	No
0	0	No
1	1	No
1	1	No
1	1	No
0	1	Yes
0	0	Yes
0	1	Yes
1	0	Yes
1	0	Yes

On the conditional independence assumption (CIA) - Example (cont'ed)

- Since X and Y are perfectly correlated when $C=N o$

$$
p(<X=0, Y=0>\mid \mathrm{No})=p(X=0 \mid \mathrm{No})=p(Y=0 \mid \mathrm{No})=0.4
$$

- Thus

$$
\begin{aligned}
p(\text { No|E })= & p(E \mid N o) p(N o)=p(<X=0, Y=0>\mid N o) p(N o)= \\
& p(X=0 \mid N o) p(N o)=0.4^{*} 0.5=0.2
\end{aligned}
$$

- Since $p($ No|E $)>p($ Yes $\mid E)=0.18$, E should correctly be assigned to No (instead of Yes, to which is assigned based on the CIA)

Attribute Values with zero probability

- Classify the following instance:
E = <Outlook=sunny, Temp=cool, Hum=high, Wind= strong>
- Assume that there is no example with Hum=high in the training set, so that

$$
p(\text { Hum }=\text { high } \mid \text { Yes })=p(\text { Hum=high } \mid \text { No })=0
$$

and, thus,

$$
p(\text { Yes } \mid E)=p(N o \mid E)=0
$$

An Example (cont'ed)

Day	Outlook	Temperature	Humidity	Wind	playTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Attribute Values with zero probability

- REMEDY: recall that

$$
\mathrm{p}(\mathrm{x} \mid \mathrm{c})=\mathrm{n}_{\mathrm{x}} / \mathrm{N}_{\mathrm{c}}
$$

- i.e., $p(x \mid c)$ is the fraction of instances under c where attribute A has value x
- Now, we set

$$
p(x \mid c)=\frac{n_{x}+k q}{N_{c}+k}
$$

where

- k is a constant between 0 and 1 (usually 1)
- $q=1 / n$, where n is the number of possible values for attribute A

Attribute Values with zero probability

- Thus, to classify the instance

E = <Outlook=sunny, Temp=cool, Hum=high, Wind= strong>

- we evaluate

$$
\mathrm{p}(\text { Hum }=\text { high } \mid \text { Yes })=\frac{\mathrm{n}_{\text {high }}+\mathrm{kq}}{\mathrm{~N}_{\mathrm{yes}}+\mathrm{k}}
$$

where

- $\mathrm{n}_{\text {high }}=3$ is the number of Yes examples with Hum=high
- $q=1 / 3$, since Hum takes on 3 possible values
- $\mathrm{N}_{\text {yes }}=9$ is the number of Yes examples
- By setting $k=1(0 \leq k \leq 1)$

$$
p(\text { Hum=high } \mid \text { YES })=3.33 /(9+1)=0.33
$$

NB - Exercise

Id	Home owner	Marital status	Annual income	Defaulted borrower
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Married	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

Classify E = <No, Married, 120K>

NB - Exercise (cont'ed)

- Classify E = <No, Married, 120K>

$$
\left.\begin{array}{c}
p(\text { Yes } \mid E)=p(\text { Yes }) * p(\text { HomeOw }=\text { no|Yes })^{*} p(\text { status=married } \mid \text { Yes }) ~ * ~ \\
p(\text { Income }=120 \mid \text { Yes })
\end{array}\right] \begin{gathered}
p(\text { No } \mid E)=p(\text { No }) ~ * p(\text { HomeOw }=\text { no } \mid \text { No }) ~ * p(\text { status=married } \mid \text { No }) ~ * ~ \\
p(\text { Income }=120 \mid \text { No })
\end{gathered}
$$

- where
- $p($ yes $)=0.3, p($ No $)=0.7$

NB - Exercise (cont'ed)

- $p($ HomeOw=no|No) $=4 / 7$
- $p($ HomeOw $=$ no|Yes $)=1$
- p(status=Married|No) = 4/7
- p(status=Married|Yes) $=1 / 3$

Classify E = <No, Married, 120K>
Annual income:
Class=No

- Mean=110
- Standard deviation=54,54
- $p(120 \mid \mathrm{No})=0.0072$

Class=Yes

- Mean=90
- Standard deviation $=5$
- $p(120 \mid y e s)=0$
- $p($ Yes $\mid E)=0$
- $p($ No|E $)=0.7^{*} 4 / 7^{*} 4 / 77^{*} 0.0072>p($ Yes $\mid E)$

Conclusions

- The classification function of an instance $X=<x_{1}, \ldots, x_{n}>$ is

$$
c_{N B}=\underset{c_{j} \in C}{\operatorname{argmax}} p\left(c_{j}\right) p\left(x_{1} \mid c_{j}\right) \ldots p\left(x_{n} \mid c_{j}\right)
$$

- The instance X is classified under the class c which maximizes the conditional probability $\mathrm{p}(\mathrm{c} \mid \mathrm{X})$
- There is no explicit search of the hypothesis space.
- Correlated attributes may degrade performance because of the CIA
- Very efficient

