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Probabilistic classifiers 
•  Let an instance X and a set of classes {c1, …, cn} be given 
• A probabilistic classifier determines a probability distribution 

function 
•  p(c1|X) 
• … 
•  p(ci|X) 
• … 
•  p(cn|X) 

• where p(ci|X) is the conditional probability that X belongs to ci 

•  Then, outputs class cj with the highest probability 



Conditional probability 

A B C 
a b c 
a b d 
e b c 
d h c 

p(X|Y): probability of X given Y 
 
What is the probability of having 
B=b, given C=c? 
 
Notation: p(B=b|C=c) or  p(b|c)  
 
 



Conditional probability 

A B C 
a b c 
a b d 
e b c 
d h c 

 
 
By definition of conditional probability: 
 
 
              p(b,c) 
p(b|c) = --------- 
                p(c) 
 
 
               p(b,c)  
p(b|c) = -------- = 2/4*4/3= 2/3 
                p(c) 
 
 
 



Product rule - Joint probability  

•  From the definition of conditional probability, the joint 
probability is 

p(X,Y) = p(X|Y) p(Y) = p(Y|X) p(X) 

• X and Y are independent if p(X|Y) = p(X) 
 => p(X,Y) = p(X) p(Y) 

 
• X and Y are incompatible (mutually exclusive) if p(X|Y) = 0  

=> p(X,Y) = 0 



Sum rule 

•  p(X v Y) = p(X) + p(Y) – p(X,Y) =  
                     p(X) + p(Y) – p(X|Y) p(Y) = 
                     p(X) + p(Y) –p(Y|X) p(X)  

•  If X and Y are independent 

•  p(X v Y) = p(X) + p(Y) – p(X) p(Y) 

•  If X and Y are incompatible 
•  p(X v Y) = p(X) + p(Y) 



Sum rule 

independent 
 

dependent 
 

incompatible 
 

compatible 
 

 

  Events A,B 
 

  
 

p(A ∧ B) = 0 p(A ∧ B) = p(A|B)p(B) 

p(A ∨ B) = p(A) + p(B) – p(A ∧ B) 
 

p(A ∨ B) = p(A) + p(B) 
 p(A ∨ B) = p(A) + p(B) – p(A|B)p(B) 

 

p(A ∧ B) = p(A)p(B) 
p(A ∨ B) = p(A) + p(B) – p(A)p(B) 
 



Sum rule - Example 
•  What is the probability of getting A={1,2} from the first die 

or B={2,3} from the second one in the throw of two dice? 
•  A and B are independent on each other 

•  p(A ∨ B) = p(A) + p(B) – p(A)p(B)  
•  A={1,2}: 1 and 2 are incompatible 

•  p(A) = p(1)+p(2) = 1/6+1/6 = 1/3  

•  B={2,3}: 2 and 3 are incompatible 
•  p(B) = p(2)+p(3) = 1/6+1/6 = 1/3  

•  p(A ∨ B) = p(A) + p(B) – p(A)p(B) = 1/3+1/3-1/9= 5/9 



Sum rule – Example (cont’ed) 

•  There are 24 configurations favorable to event A ∨ B 
•  A=1 with any B – 6 configurations: <1, 1>, …, <1, 6>  
•  A=2 with any B – 6 configurations: <2, 1>, …, <2, 6>   
•  B=2 with any A  – 6 configurations: <1, 2>, …, <6, 2>  
•  B=3 with any A  – 6 configurations: <1, 3>, …, <6, 3>   

     



Sum rule – Example (cont’ed) 

•  There are 24 configurations favorable to event A ∨ B 
•  A=1 with any B – 6 configurations: <1, 1>, <1,2>, <1,3>…, <1, 6>  
•  A=2 with any B – 6 configurations: <2, 1>,<2,2>, <2,3>, …, <2, 6>   
•  B=2 with any A  – 6 configurations: <1, 2>, <2,2>, …, <6, 2>  
•  B=3 with any A  – 6 configurations: <1, 3>, <2,3>, …, <6, 3>   

    4 of which are duplicated: <1,2>, <1,3>, <2,2>,<2,3> 
•  So the number of favorable configurations without 

repetitions is 20 (over 36) 
•  p(A ∨ B) = 20/36 = 5/9 

•  This explains the need of the joint probability for 
computing the total probability 

    p(A ∨ B) = p(A) + p(B) – p(A ∧ B) 



Sum rule - Examples 
•  What is the probability of getting A={1,2} or B={3,4} in the 

throw of one die? 
•  A and B are incompatible, so p(A,B)=0 
•  p(A ∨ B) = p(A) + p(B) = 1/3+1/3 = 2/3 

•  What is the probability of getting A={1,2} or B={2,3} in the 
throw of one die? 
•  A and B are compatible (when 2 occurs, both A and B 

occur) 
•  p(A ∨ B) = p(A) + p(B) – p(A|B)p(B)  
•  p(A) = p(B) = 1/3 
•  p(A|B) = 1/2 
•  p(A ∨ B) = 1/3+1/3-1/2*1/3= 1/2 



Theorem of total probability 
•  If {X1, …, Xn} are mutually exclusive events such that 

p(X1) + … + p(Xn) = 1, then 

p(Y) =   Σi=1,n p(Y|Xi) p(Xi) 
 
• Example: In a school, 60% of students are female. The 

percentage of males who passed the final exam of Math is 
0.5, while that of females is 0.66. What is the probability of 
event Y = “a student has passed the exam”? 

•  p(Y) = p(Y|f) p(f) + p(Y|m) p(m) = 0.66*0.6+0.5*0.4 = 0.55 



Summary of basic probability formulas 

• Product rule: p(X,Y) = p(X|Y) p(Y) = p(Y|X) p(X) 

• Sum rule: p(XvY) = p(X)+p(Y)-p(X,Y) 

•  Total probability: p(Y) =   Σi=1,n p(Y|Xi) p(Xi), if {X1, …, Xn} 
are mutually exclusive events such that p(X1) + … + p(Xn) 
= 1 



Bayes’ Theorem 
•  Bayes' theorem may be derived from the definition of conditional 

probability: 

•  p(X|Y) = p(X,Y) / p(Y) 
•  p(Y|X) = p(X,Y) / p(X) 
•  => p(X,Y) = p(X|Y) p(Y) = p(Y|X) p(X) =>  

 
                   p(Y|X) p(X)         

  p(X|Y) =  –––––––––––  
                  p(Y)              

 
 
Terminology: 

•  p(X|Y): posterior probability 
•  p(X): prior probability –  initial degree of belief in X 
•  p(X|Y)/p(Y): support Y provides for X 



Bayes theorem: an example 
•  In a school, 60% of students are female. The percentage 

of males passing the final exam of Math is 0.5, while that 
of females is 0.66.  

Passed Math Sex 
y f 
y f 
y f 
y f 
n f 
n f 
y m 
y m 
n m 
n m 

•  Event Y = “a student has 
passed the Math exam” 

•  What is the probability that 
the student is a female? 

•  p(f |Y) ? 
 



Bayes theorem: an example 
• Question: p(f |Y)? 
•  Input data 

•  p(m)=0.4, p(f)=0.6 
•  p(Y|m)=0.5, p(Y|f)=0.66 

• Bayes theorem 
•  p(f|Y) = p(Y|f) * p(f)/p(Y)  

   where 
•  p(Y) = p(Y|m)*p(m) + p(Y|f)*p(f) = 0.57 (total probability) 
 

Answer: p(f|Y) = 0.66*0.6/0.57 = 0.69 

 



Bayes theorem: an example 
•  In a Formula 1 Gran prix, the rain probability is 30%. 

The probability that Vettel wins when it’s raining is 4%, 
and 1%, otherwise.  Now, assuming that Vettel won the 
race, what is the probability that it has rained?  

r=rain  s=Vettel won 
 
   0.3  r  0.04  s 
     

 rc  0.01  s 
    0.7 
 
p(r|s)=0.3*0.04/(0.3*0.04+0.7*0.01) =0,94488 



Bayes theorem: an example 
•  The entire output of a car factory is produced on three 

plants. The three plants account for 10%, 40%, and 50% 
of the output, respectively. The fraction of red cars 
produced by each plant is: 8% for the first plant; 5% for 
the second plant; 1% for the third plant. If a car is chosen 
at random from the total output and is found to be red, 
what is the probability that it was produced by the second 
plant? 



Summary of basic probability formulas 

• Product rule: p(X,Y) = p(X|Y) p(Y) = p(Y|X) p(X) 

• Sum rule: p(XvY) = p(X)+p(Y)-p(X,Y) 

•  Total probability: p(Y) =   Σi=1,n p(Y|Xi) p(Xi), if {X1, …, Xn} 
are mutually exclusive events such that p(X1)+…+p(Xn) = 1 

              p(Y|X) p(X)         
• Bayes Theorem:   p(X|Y) =  –––––––––––  

                  p(Y)  



Naïve Bayes (NB) classifier 
• Question: Given a new instance <x1, …, xn>, what is the 

probability that the class is c? 
p(c|<x1, …, xn>) ? 

• By the Bayes theorem 
                                  p(<x1, …, xn>|c) p(c)  
•   p(c|<x1, …, xn>) = ------------------------------- 

         p(<x1, …, xn>) 
 
•  p(c|<x1, …, xn>)  is the posterior probability for c 
•  p(c) is the prior probability for c 



NB classifier 

•  Given the set of classes C={c1, …, cm} 

cNB = argmax p(cj|<x1, …, xn>) =  
                                cj ∈ C 
 

•                                           p(<x1, …, xn>|cj) p(cj) 
             = argmax --------------------------------- 

                         cj ∈ C         p(<x1, …, xn>) 
                             
•  the denominator is equal for all classes è 

 
cNB = argmax p(<x1, …, xn>|cj) p(cj)      

                                             cj ∈ C 



Evaluating prior probabilities 

cNB = argmax p(<x1, …, xn>|cj)  p(cj)  
                                                  cj ∈ C 
• where 

•  p(cj) and p(<x1, …, xn>|cj) are called prior probabilities 
•  p(cj) is the fraction of examples with class label cj 
•  p(<x1, …, xn>|cj) is the number of examples of type  
  <x1, …, xn> over the total number of examples with label cj 

• Evaluating p(<x1, …, xn>|cj) would require a very, 
very large set of training data 



The Conditional Independence 
Assumption (CIA) 
 
The NB classifier is based on the simplifying assumption 
that the attribute values are conditionally independent, i.e., 
the probability of observing the conjunction <x1, …, xn> is 
given by the product of the probabilities of the single 
attributes, i.e., 

p(<x1, …, xn>|cj) = p(x1|cj) … p(xn|cj) 
    è 

cNB = argmax p(cj) p(x1|cj) … p(xn|cj) 
                    cj ∈ C 



The conditional independence 
assumption (CIA) 
•  The CIA states the following 

p(X,Y|C) = p(X|C) p(Y|C) 
•  Indeed 

p(X,Y|C) = p(X,Y,C)/p(C) = 
p(X,Y,C)/p(Y,C) * p(Y,C)/p(C) = 

p(X|Y,C) * p(Y|C) 
• Since p(X|Y,C) = p(X|C) (i.e., X is conditionally 

independent of Y), it turns out that 
 

p(X,Y|C) = p(X|C)*p(Y|C) 



NB classifier – independent attributes  

•  For instance, in the mammal data set, the attributes gives 
birth and #legs are independent 

• On the contrary, if the examples represent persons, then 
the attributes Height and Shoe Size are NOT independent 



Evaluating prior probabilities 
cNB = argmax p(cj) p(x1|cj) … p(xn|cj) 

                                         cj ∈ C 
•  where 

•  p(cj) and p(x1|cj) … p(xn|cj) are called prior probabilities 
•  p(cj) is the probability that class cj is the label of some instance of the training set 
•  p(xi|cj) is the probability that the value xi appears in some instance of cj 

•  They can be estimated over the training data 

•  p(cj)  = Ncj / N 
•  Ncj = number of instances labeled cj 
•  N = total number of instances 

•  p(xi|cj) = fraction of instances with label cj where xi appears 

•  Evaluating prior probabilities is all a NB classifier has to do during the 
training phase 



Classifying by NB - An Example 
•  p(Yes) = 9/14=0.64 
•  p(No) = 5/14 = 0.36 
•  p(Outlook=sunny | Yes) = 2/9 = 0.22 
•  p(Temp=cool | Yes) = 3/9 = 0.33 
•  p(Hum=high | Yes) = 3/9 = 0.33 
•  p(Wind=strong | Yes) = 3/9 = 0.33 
•  … 
•  p(Wind=strong | No) = 3/5 = 0.60 

 

Day	   Outlook	   Temperature	   Humidity	   Wind	   playTennis	  
D1	   Sunny	   Hot	   High	   Weak	   No	  
D2	   Sunny	   Hot	   High	   Strong	   No	  
D3	   Overcast	   Hot	   High	   Weak	   Yes	  
D4	   Rain	   Mild	   High	   Weak	   Yes	  
D5	   Rain	   Cool	   Normal	   Weak	   Yes	  
D6	   Rain	   Cool	   Normal	   Strong	   No	  
D7	   Overcast	   Cool	   Normal	   Strong	   Yes	  
D8	   Sunny	   Mild	   High	   Weak	   No	  
D9	   Sunny	   Cool	   Normal	   Weak	   Yes	  
D10	   Rain	   Mild	   Normal	   Weak	   Yes	  
D11	   Sunny	   Mild	   Normal	   Strong	   Yes	  
D12	   Overcast	   Mild	   High	   Strong	   Yes	  
D13	   Overcast	   Hot	   Normal	   Weak	   Yes	  
D14	   Rain	   Mild	   High	   Strong	   No	  



Classifying by NB - An Example (cont’ed) 
Classify the following instance: 
 

X = <Outlook=sunny, Temp=cool, Hum=high, Wind= strong>  
 
cNB =    argmax  p(c|X) = p(c) p(x1|c) … p(xn|c)  
           c ∈ {Yes,No} 

•  p(Yes|X) = p(Yes) p(sunny|yes) p(cool|yes) p(high|yes)  
 p(strong|yes) 

 
•  p(no|X) = p(no) p(sunny|no) p(cool|no) p(high|no)  

 p(strong|no) 
 

 



Classifying by NB - An Example (cont’ed) 

•  p(Yes) = 0.64 
•  p(No) = 0.36 
•  p(sunny | Yes) = 2/9 = 0.22 
•  p(cool | Yes) = 3/9 = 0.33 
•  p(high | Yes) = 3/9 = 0.33 
•  p(strong | Yes) = 3/9 = 0.33 
•  … 
•  p(strong | No) = 3/5 = 0.60 
 
•  p(Yes|X) = p(Yes) p(sunny|yes) p(cool|yes) p(high|yes) p(strong|yes) = 

0.0053 

•  p(No|X) = p(No) p(sunny|No) p(cool|No) p(high|No) p(strong|No) = 0.026 

•  è cNB = No 



On the conditional independence 
assumption (CIA) - Example 
• On the training set, the following holds: 

•  p(X=0|No) = 0.4, p(X=1|No) = 0.6 
•  p(X=0|Yes) = 0.6, p(X=1|Yes) = 0.4 
•  p(Y=0|No) = 0.4, p(Y=1|No) = 0.6 
•  p(Y=0|Yes) = 0.6, p(Y=1|Yes) = 0.4 
•  p(No) = p(Yes) = 0.5 

X Y C 
0 0 No 

0 0 No 

1 1 No 

1 1 No 

1 1 No 

0 1 Yes 

0 0 Yes 

0 1 Yes 

1 0 Yes 

1 0 Yes 



On the conditional independence 
assumption (CIA) – Example (cont’ed) 

• Classify E = <X=0, Y=0> 

• By using NB (with the CIA) 
P(No|E) =p(E|No) p(No)= p(<X=0,Y=0>|No)p(No) = 

p(X=0|No) p(Y=0|No) p(No)= 0.08 
P(Yes|E) =p(E|Yes) p(Yes)= p(<X=0,Y=0>|Yes) p(Yes)= 

 p(X=0|Yes) p(Y=0|Yes) p(Yes) = 0.18 

• P(Yes|E) > P(No|E) è E is assigned to class Yes 



On the conditional independence 
assumption (CIA) - Example 
• On the training set, the following holds: 

•  p(X=0|No) = 0.4, p(X=1|No) = 0.6 
•  p(X=0|Yes) = 0.6, p(X=1|Yes) = 0.4 
•  p(Y=0|No) = 0.4, p(Y=1|No) = 0.6 
•  p(Y=0|Yes) = 0.6, p(Y=1|Yes) = 0.4 
•  p(No) = p(Yes) = 0.5 

X Y C 
0 0 No 

0 0 No 

1 1 No 

1 1 No 

1 1 No 

0 1 Yes 

0 0 Yes 

0 1 Yes 

1 0 Yes 

1 0 Yes 

Note: X and Y are perfectly correlated 
when C=No, so 
 
•  p(X=v,Y=v|No) = p(X=v|No) = p(Y=v|No)  



On the conditional independence 
assumption (CIA) – Example (cont’ed) 

• Since X and Y are perfectly correlated when C=No 
p(<X=0,Y=0>|No) = p(X=0|No)=p(Y=0|No) = 0.4 

•  Thus 
p(No|E) = p(E|No) p(No)= p(<X=0,Y=0>|No) p(No) =  

p(X=0|No) p(No) = 0.4*0.5 = 0.2 

• Since p(No|E) > p(Yes|E)=0.18, E should correctly be 
assigned to No (instead of Yes, to which is assigned based 
on the CIA) 



Attribute Values with zero probability 
• Classify the following instance: 

E = <Outlook=sunny, Temp=cool, Hum=high, Wind= strong>  

• Assume that there is no example with Hum=high in the 
training set, so that 

p(Hum=high|Yes) = p(Hum=high|No) = 0 
 

 

 and, thus,  
p(Yes|E) = p(No|E) = 0 

 



An Example (cont’ed) 
Day	   Outlook	   Temperature	   Humidity	   Wind	   playTennis	  
D1	   Sunny	   Hot	   High	   Weak	   No	  
D2	   Sunny	   Hot	   High	   Strong	   No	  
D3	   Overcast	   Hot	   High	   Weak	   Yes	  
D4	   Rain	   Mild	   High	   Weak	   Yes	  
D5	   Rain	   Cool	   Normal	   Weak	   Yes	  
D6	   Rain	   Cool	   Normal	   Strong	   No	  
D7	   Overcast	   Cool	   Normal	   Strong	   Yes	  
D8	   Sunny	   Mild	   High	   Weak	   No	  
D9	   Sunny	   Cool	   Normal	   Weak	   Yes	  
D10	   Rain	   Mild	   Normal	   Weak	   Yes	  
D11	   Sunny	   Mild	   Normal	   Strong	   Yes	  
D12	   Overcast	   Mild	   High	   Strong	   Yes	  
D13	   Overcast	   Hot	   Normal	   Weak	   Yes	  
D14	   Rain	   Mild	   High	   Strong	   No	  



Attribute Values with zero probability 
•  REMEDY: recall that 

p(x|c) = nx/Nc 

•  i.e., p(x|c) is the fraction of instances under c where attribute A 
has value x 

•  Now, we set 
              nx + kq 

  p(x|c) =  –––––––– 
               Nc + k 

  where 
•  k is a constant between 0 and 1 (usually 1) 
•  q = 1/n, where n is the number of possible values for attribute A 

     



Attribute Values with zero probability 
•  Thus, to classify the instance 

E = <Outlook=sunny, Temp=cool, Hum=high, Wind= strong>  

•  we evaluate 
                                nhigh + kq 

 p(Hum=high|Yes) = –––––––– 
                                  Nyes + k 

  where  
•  nhigh = 3 is the number of Yes examples with Hum=high 
•  q=1/3, since Hum takes on 3 possible values 
•  Nyes = 9 is the number of Yes examples 

•  By setting k=1 (0 ≤ k ≤ 1) 
 

p(Hum=high|YES) = 3.33/(9+1) = 0.33 



NB - Exercise 
Id Home owner Marital 

status 
Annual 
income 

Defaulted 
borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Married 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 

Classify E = <No, Married, 120K> 



NB – Exercise (cont’ed) 

• Classify E = <No, Married, 120K> 
 

p(Yes|E) = p(Yes) * p(HomeOw=no|Yes) * p(status=married|Yes) *  
p(Income=120|Yes) 

p(No|E) = p(No) * p(HomeOw=no|No) * p(status=married|No) *  
p(Income=120|No) 

• where  
•  p(yes) = 0.3, p(No) = 0.7 



NB – Exercise (cont’ed) 
•  p(HomeOw=no|No)  = 4/7 
•  p(HomeOw=no|Yes) = 1 
 
•  p(status=Married|No) = 4/7 
•  p(status=Married|Yes) = 1/3 

Annual income: 
Class=No 
•  Mean=110 
•  Standard deviation= 54,54 
•  p(120|No) = 0.0072 
 
Class=Yes 
•  Mean=90 
•  Standard deviation = 5  
•  p(120|yes) = 0 

Classify E = <No, Married, 120K> 

•  p(Yes|E) = 0 
•  p(No|E) = 0.7* 4/7 * 4/7 * 0.0072 > p(Yes|E)  



Conclusions 
•  The classification function of an instance X=<x1, …, xn> is  

cNB =    argmax  p(cj) p(x1|cj) … p(xn|cj) 
                              cj ∈ C 
•  The instance X is classified under the class c which 

maximizes the conditional probability p(c|X) 
•  There is no explicit search of the hypothesis space.  
• Correlated attributes may degrade performance because 

of the CIA 
• Very efficient 


