Instance Based Classifiers

Pasquale Rullo rullo@mat.unical.it

Instance Based Classifiers

- Instance-based classifiers do not induce a model from training data
- On the contrary, they use a set of preclassified instances to predict "on the fly" the class label of unseen cases
- K-Nearest Neighbors (KNN)

• Basic idea:

If it walks like a duck, quacks like a duck, then it's

probably a duck Compute Distance -New similarity instance Choose k of the **Training** "nearest" records Records

Lazy classifiers

Eager classifiers

- Decision trees
- Classification rules
- Naïve Bayes
- Rule-based classifiers

h(x) – predicted label

K-Nearest Neighbors (kNN)

- K-Nearest Neighbors (kNN)
 - Uses k "closest" examples (nearest neighbors) in the training set for performing classification
 - -"Closeness" is computed by using a Similarity function (or Distance function)

- Requires three things
 - The set of pre-classified instances
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unseen instance X:
 - Compute distance of X to other instances
 - Identify k nearest neighbors (smallest distance, highest similarity)
 - Use class labels of k nearest neighbors to determine the class label of unseen instance(e.g., by taking majority vote)

- Requires three things
 - The set of pre-classified instances
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unseen instance X:
 - Compute distance of X to other instances
 - Identify k nearest neighbors (smallest distance, highest similarity)
 - Use class labels of k nearest neighbors to determine the class label of unseen instance(e.g., by taking majority vote)

Compute distance of X to other instances - Euclidean distance

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i}^{n} (p_i - q_i)^2}$$

– where p and q are two instances, n is the number of their attributes, and p_i and q_i the values of the ith attributes of p and q. Euclidean distances apply only to numerical attributes

Compute distance of X to other instances - Euclidean distance

2-distanza =
$$\sqrt{\sum_{i=1}^{n} |x_i - y_i|^2}$$

Compute distance of X to other instances - SMC

Simple Matching Coefficient:

Given

$$X_1$$
= <15,rome,yellow>
 X_2 = <20,paris,yellow>
SMC(X_1,X_2) = 1/3= 0.33

• Other metrics: Jaccard coefficient, Cosine similarity (for documents), etc.

- Requires three things
 - The set of pre-classified instances
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unseen instance X:
 - Compute distance of X to other instances
 - Identify k nearest neighbors (smallest distance, highest similarity)
 - Use class labels of k nearest neighbors to determine the class label of unseen instance(e.g., by taking majority vote)

- Requires three things
 - The set of pre-classified instances
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unseen instance X:
 - Compute distance of X to other instances
 - Identify k nearest neighbors (smallest distance, highest similarity)
 - Use class labels of k nearest neighbors to determine the class label of unseen instance(e.g., by taking majority vote)

Determining the class of a new instance X

- K-nearest neighbors of an instance X are data points (instances in the training set) that have the k smallest distances from X (the k most similar instances)
- What if the K-nearest neighbors have different class labels?

- K=3
- 1 positive and 2 negative examples
- What is the class of X?

Determining the class of a new instance X

- Determining the class of a new instance X from the k nearest neighbors :
 - Each neighbor Y has associated a weight w(Y) = 1/d², where d is the distance of Y from X
 - take the majority weighted vote of class labels among the k-nearest neighbors

- Example: k=3; 1 positive example with distance d_1 =2, and 2 negative ones, with distances d_2 =3 and d_3 =5.
 - w+ = 1/4 = 0.25
 - w = 1/9 + 1/25 = 0.15
 - Vote = 0.25-0.15 >0
- The new instance is classified positive

K-nearest neighbors of a record x are data points (instances) that have the k smallest distance to x

- Choosing the value of k:
 - If k is too small, sensitive to noise points

If k is too large, neighborhood may include points from

other classes

Conclusions

k-NN classifiers are lazy learners that

- do not build models explicitly (unlike eager learners such as decision tree induction and rulebased systems)
- use a set of pre-classified instances along with similarity metrics for classifying unseen data