TEXT CLASSIFICATION

PASQUALE RULLO

TEXT CLASSIFICATION

- Text Classification the task of assigning documents to predefined thematic classes (topics) on the basis of the words occurring in them
- Text Classification is also called
 - Text Categorization
 - Document Classification
 - Document Categorization

TEXT CATEGORIZATION

- You want to classify documents into 4 classes: economics, sport, science, life
- There are two approaches that you can take:
 - Manually write a set of rules that classify documents
 - ball \in d and goal \in d \rightarrow sport
 - Automatically create a classifier (machine learning-based approach) using a set of sample documents that are pre-classified into the classes (training data)

TEXT CATEGORIZATION IS A DIFFICULT TASK

- TC is a difficult task essentially because it has to do with the complexity and richness of the natural language, which allows a concept to be expressed by a variety of constructs and words
- Natural languages are ambiguous
 - Synonymy: two phonemes, the same meaning, e.g., ball and dance (if the context is that of dance)
 - Polisemy: one phoneme, more meanings (ball as dance and ball as the round object used to play soccer)
 - "I have seen a man with the the binoculars" What is the meaning?
- Even manual classification is difficult high degree of subjectivity

MACHINE LEARNING APPROACH PROBLEM DEFINITION

- Given a training set S={<d, {c₁, ..., c_n})>}, where
 - d is a document
 - c₁, .., c_n are the topics of d also called classes or categories (e.g., sport, gossip, politics, etc.)

induce from S a model whereby the topics of a new document are determined

Multi-label classification

TEXT CLASSIFICATION PROCESS

- Bag-of-word representation: a document is regarded as a bag of words regardless of the word order and grammar
- Binary representation: 0/1 as absence/presence
- Frequency: number of times a word/n-gram appears in a document

- A document is a bag of words
- Assume that
 - d1 and d3 are about sport
 - d2 is about both gossip and sport
 - d4 is about politics

- Documents are the examples
- Words are the features (attributes)

	w1	w2	w3	w4	w5	Class
d1	0	1	1	1	0	sport
d2	0	0	1	1	1	gossip, sport
d3	1	0	0	1	0	sport
d4	1	1	1	0	0	politics

 Each attribute values represents presence/absence of a word

- Documents are the examples
- Words are the features (attributes)

	w1	w2	w3	w4	w5	Class
d1	0	1	1	1	0	sport
d2	0	0	1	1	1	gossip, sport
d3	2	0	0	1	0	sport
d4	1	1	1	0	0	politics

Each attribute values represents the frequency of a word

TEXT CLASSIFICATION vs **DATA CLASSIFICATION**

- Unlike data classification, TC is
 - Multi-label: one document may belong to different categories
 - High dimensional: thousands of attributes

TEXT CLASSIFICATION

	w ₁	w ₂	W ₃	w ₄	w ₅	 W _{100.000}	Class
d1	0	1	1	1	0	 1	Sport, politics
d2	0	0	1	1	1	 0	gossip
d3	1	0	0	1	0	 0	Sport, gossip
d4	1	1	1	0	0	 1	politics

- A training set may be multi-label
- $W_1 \dots W_{100.000}$ are all words occurring in the docs of the training set

TEXT CLASSIFICATION PROCESS

	w ₁	w ₂	w ₃	w ₄	w ₅	 W _{100.000}	Class
d1	0	1	1	1	0	 1	Sport, politics
d2	0	0	1	1	1	 0	gossip
d3	1	0	0	1	0	 0	Sport, gossip
d4	1	1	1	0	0	 1	politics

TEXT CLASSIFICATION PROCESS

- Question: which words should be selected as representative features?
- Pre-processing main steps
 - N-gram extraction
 - Stop-words removal
 - Lemmatization
 - Feature selection

 n-gram: sequence of n consecutive words, e.g., in a medical domain, a 3-gram is

"immunologic deficiency syndromes"

- This 3-gram is more meaningful than each single word – its meaning is very different from that of "deficiency" alone
- A document is in general a bag on n-grams

- Lemma is the canonical form, dictionary form, or citation form of a set of words
- Lemmatization: reduction to basic forms, e.g., jumps => jump, working => work
- Stop-word removal
 - Ignore common words, e.g., the, a, to, that, and, at, (high entropy words)

Features Selection

- Select features with high discriminative power, i.e., features inducing a high information gain (reduction of entropy)
- Example: if the word "house" is evenly distributed across the various classes (high entropy) it is not useful for the purpose of discriminating the documents of a class w.r.t. those of the other classes
- FS is beneficial in that it
 - Reduces noise, thus improving the learning effectiveness
 - Reduces the high-dimensionality problem, thus increasing efficiency
- FS functions: Information Gain, CHI square, IG, Odds Ratio, etc.

- w1 is an article, e.g., the
- w2 is uniformly distributed over all classes, so it has no discriminating power (high entropy)
- w3 occurs only within documents under sport
- w5 occurs only within documents about gossip

d4 - politics w4

After feature selection

	ng₁	ng ₂	ng₃	ng₄	 ng _{1.000}	Class
d1	0	1	1	1	 1	Sport, politics
d2	0	0	1	1	 0	gossip
d3	1	0	0	1	 0	Sport, gossip
d4	1	1	1	0	 1	politics

MODEL INDUCTION

- Given the above representation of a training set, either traditional classifiers like Ripper, C4.5, Naïve Bayes, SVMs, etc., or textspecific classifiers, like MaxEntropy, CNB, etc., can be used for the purpose of TC
- RIPPER: soccer team=1 and goal = 1 → sport if "soccer team" and "goal" occur in a document d then classify d under sport
- Naïve Bayes: p(sport|d), p(politics|d), ...,

where *d* = <*ng*₁,...,*ng*_{*n*}>

TEXT CATEGORIZATION APPLICATIONS

- E-mail spam filtering
- Categorize newspaper articles and newswires into Topics
- Organize Web pages into hierarchical categories
- Sort journals and abstracts by subject categories (e.g., MEDLINE, etc.)