UNICAL - A.A. 2006-2007

Gestione della Conoscenza

Prof. Massimo Ruffolo Ing. Marco Manna

Capitolo 2

-
- Elementi di Logica Descrittiva
 - □ Termini, equivalenze e sussunzioni
 - □ Ruoli
 - Nominali, termini enumerativi e domini concreti
 - □ TBox e ABox

Elementi di Logica Descrittiva

Termini, equivalenze e sussunzioni

Operatori Logici

- Diverse Logiche Descrittive (DL)
 - □ SHIQ (alla base del linguaggio **DAML+OIL**)
 - \square SHOIM(D_n) (alla base del linguaggio **OWL**, lo standard attualmente sostenuto dal W3C)
- Ogni DL si caratterizza per l'utilizzo di un certo numero di operatori logici scelti da un repertorio di operatori possibili

v

Termini

- **Atomici** (indicati spesso con le lettere A e B)
 - □ DONNA
 - ☐ intuitivamente significa "DONNA"
- Complessi (indicati spesso con le lettere c e D)
 - ☐ PERSONA ☐ FEMMINA
 - □ si legge "PERSONA e FEMMINA" o "PERSONA intersezione FEMMINA"
 - □ intuitivamente significa *"persona di genere femminile"*
- Spesso chiamati
 - concetti (poiché descrivono concetti)
 - classi (poiché denotano insiemi di oggetti della realtà)

×

Equivalenze

- Equivalenza Terminologica
 - \square DONNA = PERSONA \sqcap FEMMINA
 - □ intuitivamente significa "DONNA equivale a PERSONA FEMMINA"
- In generale
 - \square $C \equiv D$
 - ☐ si legge "C equivale a D"
 - □ esprime l'equivalenza fra i 2 termini "C" e "D"
- Definizione Terminologica
 - \square **A** \equiv **C** (con "A" è atomico)
 - \square DONNA = PERSONA \sqcap FEMMINA
 - □ definizione del termine "DONNA" a partire dai termini "PERSONA" e "FFMMINA"

2

Sussunzioni

- Sussunzione Terminologica
 - □ RAGAZZA ⊑ DONNA
 - □ si legge "RAGAZZA è sussunto da DONNA" o "DONNA sussume RAGAZZA"
 - □ intuitivamente significa "una ragazza è una donna"
- In generale
 - \Box $C \sqsubseteq D$
 - □ ogni individuo descritto da "C" è anche descritto da "D"
- Simmetria
 - \square C \equiv D coincide con la doppia sussunzione C \sqsubseteq D e D \sqsubseteq C

Enunciati Terminologici

- **Espressioni** che esprimono
 - equivalenze fra termini
 - sussunzioni fra termini
- Assioma Terminologico
 - □ Enunciato Terminologico assunto come vero
- Terminologia o Ontologia
 - insieme finito di Assiomi Terminologici
 - □ una teoria del primo ordine esprimibile in una *DL*

Funzione di una Ontologia

- Definire relazioni di equivalenza e sussunzione fra un certo numero di termini
- Assegnare un significato non ambiguo a un certo numero di termini atomici in base al significato di altri termini
- Termini atomici primitivi
 - privi di una definizione

Traduzione di termini

- Ogni termine atomico o complesso esprime un predicato monàdico
 - una proprietà che ciascun individuo (di un certo universo) può possedere o meno
- Termini atomici predefiniti
 - \Box \top (top = termine universale = tutti gli individui esistenti nell'universo)
 - \square \bot (bottom = insieme vuoto di individui)
- In FOL i predicati sono rappresentati da formule con esattamente una variabile libera. Esempi di traduzione da DL a FOL
 - \square DONNA diventa [DONNA] $_{x}$ = DONNA (x)
 - □ PERSONA □ FEMMINA diventa [PERSONA □ FEMMINA]_x = [PERSONA]_x ∧ [FEMMINA]_x = PERSONA(x) ∧ FEMMINA(x)
 - \Box \top diventa $[\top]_x = (x = x)$
 - \square \bot diventa $[\bot]_r = (x \neq x)$

Traduzione di enunciati terminologici

 In FOL avremo formule chiuse (prive di variabili libere) quantificate universalmente

```
□ C \sqsubseteq D \text{ diventa } [C \sqsubseteq D] = 

= \forall x ([C]_x \to [D]_x)

□ C \equiv D \text{ diventa } [C \equiv D] = 

= \forall x ([C]_x \leftrightarrow [D]_x)
```

Esempi

```
□ RAGAZZA □ DONNA diventa

[RAGAZZA □ DONNA] = \forall x ([RAGAZZA]<sub>x</sub> → [DONNA]<sub>x</sub>) =

= \forall x (RAGAZZA(x) → DONNA(x))

□ DONNA □ PERSONA □ FEMMINA diventa

[DONNA □ PERSONA □ FEMMINA] =

= \forall x ([DONNA]<sub>x</sub> ↔ [PERSONA □ FEMMINA]<sub>x</sub>) =

= \forall x (DONNA(x) ↔ PERSONA(x) ∧ FEMMINA(x))
```

Negazione e disgiunzione

■ Gli "uomini" sono il **complemento** delle "donne" rispetto alla totalità delle "persone". Utilizzando l'operatore ¬ di **complemento** (negazione) è quindi possibile definire:

```
□ UOMO = PERSONA \sqcap \neg \text{FEMMINA} diventa

[UOMO = PERSONA \sqcap \neg \text{FEMMINA}] =

= \forall x ([UOMO]<sub>x</sub> \leftrightarrow [PERSONA \sqcap \neg \text{FEMMINA}]<sub>x</sub>) =

= \forall x (UOMO (x) \leftrightarrow PERSONA (x) \land \sim \text{FEMMINA} (x))
```

Un altro operatore utile è l'operatore di unione (disgiunzione, or non esclusivo), che ci permette ad esempio di definire gli "esseri viventi" come unione di "vegetali" e "animali":

```
□ VIVENTE = VEGETALE □ ANIMALE diventa
[VIVENTA = VEGETALE □ ANIMALE] =
= ∀ x ([VIVENTE]<sub>x</sub> ↔ [VEGETALE □ ANIMALE]<sub>x</sub>) =
= ∀ x (VIVENTE (x) ↔ VEGETALE (x) ∨ ANIMALE (x))
```

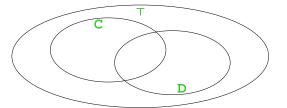
M

DL vs. Algebra Booleana

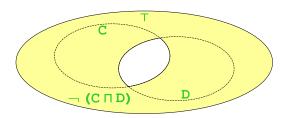
Si noti che gli operatori ¬, □, □, ⊤, ⊥ formano un'algebra booleana:

```
□ ¬ ⊤ equivale a ⊥
```

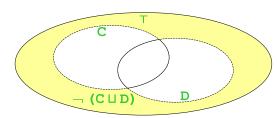
□ ¬¬ C equivale a C



 $\square \neg (C \sqcap D)$ equivale a $\neg C \sqcup \neg D$



 $\square \neg (C \sqcup D)$ equivale a $\neg C \sqcap \neg D$



Sintesi

Termine	Semantica	→ FOL
A / B	Insieme di Individui di tipo A (OB)	$[A]_x$ OVV. $A(x)$
C/D	termini arbitrari	[C] _x
СПД	C e D OVV. C intersezione D	$[C]_x \wedge [D]_x$
СПД	C O D OVV. C unito D	$[C]_x \vee [D]_x$
C⊑D	c è sussunto da D	$\forall x ([C]_x \rightarrow [D]_x)$
$\mathbf{A} \equiv \mathbf{C}$	A è definito da C	$\forall x \ (\mathbf{A}(x) \ \leftrightarrow [\mathbf{D}]_x)$
$C \equiv D$	C equivale a D ovv. C ⊑ D ∪ D ⊑ C	$\forall x ([C]_x \leftrightarrow [D]_x)$
¬C	c complementato	~[C] _x
Т	Insieme di <i>Tutti</i> gli Individui	(x = x)
Τ	Insieme <i>Vuoto</i> di Individui	$(x \neq x)$

Elementi di Logica Descrittiva

Ruoli

м

I Ruoli

- Oltre ai termini corrispondenti a predicati con un argomento (detti, come abbiamo visto, concetti o classi), le DL utilizzano termini corrispondenti a predicati a due argomenti
- I predicati a due argomenti esprimono relazioni binarie fra individui della realtà
- Tali termini vengono detti ruoli
 - □ ruoli ≡ proprietà ≡ attributi ≡ relazioni

×

Quantificatore Esistenziale

- Esempio di enunciato terminologico con un *ruolo*
 - □ MADRE ⊑∃GenDi
 - □ intuitivamente significa "ogni madre è genitore di almeno un individuo"
 - □ si legge "MADRE è sussunto dall'INSIEME DEGLI INDIVIDUI che sono GENITORI di QUALCUNO"
 - ☐ ∃GenDi = termine complesso formato dal *quantificatore esistenziale* ∃ ed il *ruolo* GenDi
- Traduzione in FOL (una formula dotata di un'unica variabile libera
 x, mentre y è vincolata da ∃)

Quantificatore Esistenziale Qualificato

Esempio

- □ ∃GenDi.FEMMINA
- □ denota l'insieme di *"tutti gli individui"* dell'universo che sono *"genitori"* di almeno un *"individuo"* di sesso *"femminile"*
- □ si legge "l'INSIEME DEGLI INDIVIDUI che sono GENITORI di almeno una FEMMINA"

Traduzione

```
 \exists R.C \text{ diventa} 
 [\exists R.C]_x = \exists y (R(x, y) \land [C]_y)
```

□ ∃GenDi.FEMMINA diventa $[∃GenDi.FEMMINA]_x = ∃y(GenDi(x, y) \land [FEMMINA]_y) = ∃y(GenDi(x, y) \land FEMMINA(y))$

Quantificatore Universale

- Esempio
 - □ ∀GenDi.FEMMINA
 - □ si legge "l'insieme degli INDIVIDUI dell'universo che sono GENITORI di sole FEMMINE"
- Traduzione
 - $\square \forall \mathbf{R.C} \text{ diventa}$

```
[\forall R.C]_x = \forall y (R(x, y) \rightarrow [C]_y)
```

□ **∀GenDi** . **FEMMINA** diventa

```
[\forallGenDi.FEMMINA]<sub>x</sub> = \forall y (GenDi (x, y) \rightarrow [FEMMINA]<sub>y</sub>) = = \forall y (GenDi (x, y) \rightarrow FEMMINA(y))
```

Identità tra Quantificatori

- $\blacksquare \neg \exists R.C$ diventa $\forall R.\neg C$
- $\blacksquare \neg \exists R$ diventa $\forall R. \bot$
- $\blacksquare \neg \forall R.C$ diventa $\exists R.\neg C$
- $\blacksquare \forall R$ diventa $\forall R. \top$

Il ruolo inverso

Esprimiamo il ruolo "FiglioDi" partendo dal ruolo "GenDi" attraverso la notazione "GenDi -"

```
☐ FiglioDi = GenDi<sup>-</sup>
```

Esempio

```
    □ ∃ GenDi⁻.FEMMINA diventa
    [∃ GenDi⁻.FEMMINA]<sub>x</sub> = ∃ y (GenDi (y, x) ∧ [FEMMINA]<sub>y</sub>)
    □ ∀ GenDi⁻.FEMMINA diventa
    [∀ GenDi⁻.FEMMINA]<sub>x</sub> = ∀ y (GenDi (y, x) → [FEMMINA]<sub>y</sub>)
```

In generale

- \square R esprime la relazione binaria $\mathbb{R}(x, y)$
- \square R esprime la relazione binaria R (y, x)
- $\exists R^-.C \text{ diventa } [\exists R^-.C]_x = \exists y (R(y, x) \land [C]_y)$
- $\square \forall R^-.C \text{ diventa } [\forall R^-.C]_x = \forall y (R(y, x) \rightarrow [C]_y)$

м

Dominio e Codominio (1)

- I ruoli, in generale, hanno senso solo limitatamente a certi sottoinsiemi dell'universo
- Esempio
 - □ GenDi mette in relazione fra loro due persone, mentre non ha senso se applicato, poniamo, alle pietre o alle nuvole.
- Ad un ruolo R si associano quindi due insiemi di individui, detti il dominio e il codominio del ruolo, che rappresentano gli insiemi di individui sui cui pensiamo variare le variabili x e y nell'espressione R (x,y)

Dominio e Codominio (2)

- Definizione di dominio D e il codominio C di un ruolo R
 - \Box $\top \sqsubseteq \forall R.C (definizione del dominio D) in FOL <math>\forall x \forall y (R(x, y) \rightarrow [C]_y)$
 - \Box $\top \sqsubseteq \forall R^-.D$ (definizione del codominio C) in FOL $\forall x \forall y \ (R(y, x) \rightarrow [D]_y)$
- Esempio
 - ☐ T ☐ ∀ ProprietarioDi.BENE
 - "definizione di dominio dato dall'insieme degli INDIVIDUI (PERSONE) che sono PROPRIETARI di soli BENI"
 - ☐ T ☐ ∀ ProprietarioDi⁻. PERSONA
 - "definizione di codominio dato l'insieme degli INDIVIDUI (BENI) che sono POSSEDUTI da sole PERSONE"
- Notazione abbreviata
 - \square R : D \rightarrow C
 - \square ProprietarioDi : PERSONA \rightarrow BENE

м

Vincoli di cardinalità (1)

- È possibile esprimere sui *ruoli*
 - □ vincoli di *cardinalità* semplice
 - \leq nR \geq nR
 - □ oppure vincoli di *cardinalità qualificata*
 - \leq nR.C \geq nR.C
- Il simbolo n rappresenta un intero senza segno
- Esempio
 - □ GEN3F = ≥3GenDi.FEMMINA
 - "definizione di GEN3F dall'insieme degli individui che sono genitori di almeno tre figlie"

Vincoli di cardinalità (2)

- Traduzioni in FOL
 - □≤nR diventa

$$[\leq nR]_x = \exists_{\leq n} y R(x, y)$$

□≥nR diventa

$$[\geq nR]_x = \exists_{\geq n} y R(x, y)$$

□≤nR.C diventa

$$[\leq nR.C]_x = \exists_{\leq n} y (R(x, y) \land [C]_y)$$

□≥nR.C diventa

$$[\geq nR.C]_x = \exists_{\geq n} y (R(x, y) \land [C]_y)$$

7

Cardinalità Esatta

Definizioni

```
\square = nR \triangleq \leq nR \sqcap \geq nR
```

- $\square = nR.C \triangleq \leq nR.C \sqcap \geq nR.C$
- Osservazioni
 - □ ≥1R.C equivale a ∃R.C
 - $\square \leq 0R.C$ equivale a $\neg \exists R.C$
 - □ ≥0R.C equivale a ⊤
 - "l'insieme di tutti gli individui che hanno una relazione di tipo R con zero o più individui"
 - indipendentemente dal ruolo R, tutti gli individui del dominio soddisfano questa condizione

м.

Ruoli Funzionali (1)

- Una relazione funzionale è una relazione binaria t.c. ogni elemento del dominio è in relazione con al più un elemento del codominio.
- Un tale ruolo è detto ruolo funzionale
- Esempio
 - \square MoglieDi : DONNA \rightarrow UOMO
 - T ⊑ ∀ MoglieDi.UOMO
 - T ⊆ ∀ MoglieDi⁻.DONNA
 - □ Nel nostro ordinamento legale, il **ruolo MoglieDi** è **funzionale** perché ogni donna può avere al più un marito (per volta, s'intende)
 - DONNA = ≤1MoglieDi
 - è sufficiente affermare che la classe delle donne coincide con la classe degli individui che hanno al più un marito.

Ruoli Funzionali (2)

Si noti che DONNA ⊑ ≤1MoglieDi non elimina la necessità di definire comunque il dominio di MoglieDi attraverso ⊤ ⊑ ∀ MoglieDi. UOMO

■ Da sola DONNA ⊑ ≤1MoglieDi non esclude la possibilità che il dominio di MoglieDi sia più ampio dell'insieme delle donne

2

Funzioni

- Una funzione è una relazione funzionale in cui ogni elemento del dominio è in relazione con almeno un elemento del codominio: la relazione è totale sul dominio.
- Ogni funzione mette in relazione
 - ciascun elemento del dominio (argomento della funzione)
 - con esattamente un elemento del codominio (valore della funzione corrispondente all'argomento)
- Esempio
 - \square MadreDi : DONNA \rightarrow PERSONA
 - dove il ruolo MadreDi⁻ associa ad ogni persona la propria madre (che esiste ed è unica)
 - ☐ PERSONA ☐ =1MadreDi⁻
 - MadreDi⁻ deve essere una funzione poiché ad ogni figlio deve essere obbligatoriamente associata una ed una sola madre

Sussunzione fra Ruoli

In molte DL è consentito esprimere sussunzioni ed equivalenze fra ruoli con espressioni della forma:

```
\square R \sqsubseteq S diventa in FOL \forall x \ \forall y \ (R(x, y) \rightarrow S(x, y))
```

- \square R = S diventa in FOL $\forall x \ \forall y \ (R(x, y) \leftrightarrow S(x, y))$
- Esempio
 - □ GenitoreDi ⊑ ParenteDi
 - un genitore è una specie di parente
 - □ FilgioDi = GenitoreDi⁻
 - FiglioDi è l'inverso di GenitoreDi
- Proprietà Simmetrica
 - \square R \sqsubseteq R⁻ diventa in FOL $\forall x \ \forall y \ (R(x, y) \rightarrow R(y, x))$
 - ☐ FratelloDi ☐ FratelloDi⁻

Composizione di Ruoli

- In alcune DL è possibile costruire ruoli complessi utilizzando l'operatore • di composizione.
- Dati due ruoli R ed S:
 - \square R \circ S diventa in FOL $\exists z$ (R $(x, z) \land S(z, y)$)
- La composizione di ruoli è molto utile, ma spesso non viene ammessa perché è problematica per la decidibilità della logica.

Proprietà Transitiva

Definizione

```
□ (R • R) ⊑ R diventa in FOL

\forall x \ \forall y \ (\exists z \ (R(x, z) \land R(z, y)) \rightarrow R(x, y))
```

Molte *DL* (tra cui *SHOIM*(D_n) per OWL) pur non consentendo la composizione di ruoli, prevedono un assioma terminologico per *dichiarare* un ruolo come transitivo

```
\Box Tr(R)
```

Equivalenza

```
\square \ \forall (R \circ S) . C equivale a \forall (R. (\forall S.C))
```

$$\square \exists (R \circ S) . C$$
 equivale a $\exists (R. (\exists S.C))$

Sintesi sui Ruoli

Termine	Semantica	→ FOL
∃R	Insieme di Individui con ruolo R su <i>qualche</i> Individuo	$[\exists R]_x \text{ ovv. } \exists y R(x, y)$
∃R.C	Insieme di Individui con ruolo R su <i>almeno</i> un individuo di tipo C	$\exists y (\mathbf{R}(x, y) \land [\mathbf{C}]_y)$
∀R.C	Insieme di Individui con ruolo R su soli individui di tipo C	$\forall y (R(x,y) \rightarrow [C]_y)$

Elementi di Logica Descrittiva

Nominali, termini enumerativi e domini concreti

v

Nominali e termini enumerativi

- Nelle ontologie è possibile fare riferimento ad individui specifici utilizzando simboli a, b, c, ... detti comunemente *nominali* e corrispondenti alle *costanti* individuali di FOL
- Dati n nominali a₁, ..., a_n è possibile definire il termine enumerativo

Esempio

```
□ COLORE-RGB ≡ {red, green, blue} diventa in FOL

\forall x (COLORE-RGB(x) \leftrightarrow x = red \lor x = green \lor x = blue)
```

M

Unicità dei nomi

- Nelle DL (contrariamente a quanto avviene in FOL, ma analogamente a quanto avviene nelle basi di dati) si assume a volte (ma non sempre) l'unicità dei nomi
 - □ UNA = unique name assumption
 - due nominali distinti non possono fare riferimento allo stesso individuo dell'universo
- Ciò è considerato irrealistica nell'ambito del web, che costituisce uno dei contesti applicativi più interessanti per le DL
- In termini logici, se si utilizzano n nominali a_1 , ..., a_n l'assunzione di unicità del nome equivale alle n (n-1) / 2 asserzioni:
 - \square $\mathbf{a}_1 \neq \mathbf{a}_2$, $\mathbf{a}_1 \neq \mathbf{a}_3$, ..., $\mathbf{a}_{n-1} \neq \mathbf{a}_n$
 - \Box o più concisamente \neq (a₁, ..., a₂)

.

Domain Closure Assumption

- L'assunzione di chiusura del dominio/universo (DCA, domain closure assumption) consiste nell'ipotesi che
 - ☐ l'universo di tutti gli individui contenga soltanto gli individui cui si fa riferimento con un nominale presente nel sistema
 - esistono soltanto gli individui che hanno un nome
- Questa assunzione non viene mai adottata nel campo delle DL
- L'assunzione del mondo chiuso (CWA, closed world assumption), anch'essa estranea alle DL, verrà trattata in seguito

Domini concreti

- Nelle applicazioni delle *DL* è spesso importante rappresentare insiemi di valori costanti chiamati domini concreti
- Consideriamo tali valori alla stregua di nominali appartenenti a insiemi denotati da termini atomici come
 - NATURAL / INTEGER / FLOAT
 - CHARACTER / STRING
- Nelle *DL* non sono, in genere, disponibili le operazioni tipicamente associate a tali insiemi
- Esempio
 - \square Eta : PERSONA ightarrow NATURAL
 - □ PERSONA = =1Età

Elementi di Logica Descrittiva

TBox e ABox

Introduzione

- Un sistema di rappresentazione della conoscenza è costituito di una TBox e di una ABox
 - □ La **TBox** contiene *assiomi terminologici* e definisce un'ontologia
 - □ La ABox contiene invece *conoscenze fattuali* espresse sotto forma di asserzioni

ABox

- Nelle *DL* si possono esprimere diversi tipi di conoscenze fattuali
 - \square C (a) (C = termine arbitrario, a = nominale)
 - \square R(a,b) (R = ruolo, a,b = nominali)
- Esempio
 - MADRE (elisa) diventa in FOL MADRE (elisa)
 - □ DONNA \sqcap ∃GenDi (elisa) diventa in FOL DONNA (laura) \land ∃y GenDi (laura, y)
 - ☐ GenDi (elisa, gino) diventa in FOL GenDi (elisa, gino)

.

Closed World Assumption

- Tale assunzione è tipica delle basi di dati e di molti sistemi d'intelligenza artificiale
- Questa assunzione non viene adottata nelle DL. Essa suonerebbe
 - □ tutto ciò che è esplicitamente asserito nell'ABox è vero
 - □ tutto ciò che non è esplicitamente asserito nell'ABox è falso
- Essa presuppone la conoscenza completa del mondo dell'applicazione
 - □ non è possibile assumere rispetto a un fatto una posizione neutrale
- La semantica dell'ABox delle DL è invece compatibile con una situazione di conoscenza parziale
 - di alcune asserzioni si sa che sono vere
 - □ di altre che sono false
 - di altre ancora non si sa nulla