
Idee di McCarthy sull’IA
 1958, «Programs with Commonsense»

 In questo lavoro si riconosce che lo sviluppo di un artefatto 
intelligente richiede di formalizzare il ragionamento di senso 
comune

 Il ragionamento di senso comune è non monotono 

 Anni 80-90 del secolo scorso:  definizione di 
formalismi logici adatti a rappresentare questo tipo 
di ragionamento

 Agli inizi degli anni 80 nasce la DLP (Jack Minker)
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Topics

 Context and Motivation
 Datalog
 Theoretical Foundations of DLP
 Knowledge Representation and Applications
 Computational Issues
 DLP Systems
 ASP Development tools
 Exercises
 AI implementation: project (mandatory)



MAIN FOCUS:
 Knowledge Representation and Applications
 Examples, lot of Examples
 Lab (help of Francesco Calimeri and Simona Perri)

GOAL:
 Getting a Powerful Tool for Solving Problems 

in a Fast and Declarative way



Roots − declarative programming

 First-order logic as a programming language
 Expectations, hopes
easy programming, fast prototyping
handle on program verification
advancement of software engineering



Disjunctive Logic Programming (DLP)

 Simple, yet powerful KR formalism
 Widely used in AI
 Incomplete Knowledge

 Able to represent complex problems not 
(polynomially) translatable to SAT
 A declarative problem specification is 

executable



DLP Advantages

 Sound theoretical foundation (Model Theory)

 Nice formal properties (clear semantics)
 Real Declarativeness
Rules Ordering, and Goal Orderings is 

Immaterial!!!
Termination is always guaranteed

 High expressive power (       )ΣP
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DLP Revolution

INTELLIGENT PROBLEM SOLVING

COMPLEX DATA/KNOWLEDGE MANIPULATION



Why is DLP approach “revolutionary” ? :

DLP Declarative Programming 
vs Traditional Procedural Programming
 Traditional PROGRAMMING (OLD):

 Implement an Algorithm to solve the problem
 List commands or steps that need to be carried out 

In order to achieve the results 
 Tell the computer “HOW TO” solve the problem

 DLP DECLARATIVE PROGRAMMING
 Specify the features of the desidered solution
 NO ALGORITHMS
 Simply Provide a “Problem Specification”

DLP Revolution



Drawbacks

 Computing Answer Sets is rather hard  (      ) 

 Very few solid and efficient implementations
...but this has started to change:
 DLV, Clasp, …
 Cmodels, IDP, …

ΣP
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What is DLP Good for? (Applications)

Artificial Intelligence, Knowledge Representation 
& Reasoning 

 Information Integration, Data cleaning, 
Bioinformatics, ...

Employed for developing industrial applications



Applications
 Planning 
 Theory update/revision 
 Preferences
 Diagnosis 
 Learning 
 Description logics and semantic web 
 Probabilistic reasoning 
 Data integration and question answering 
 Multi-agent systems 
 Multi-context systems 
 Natural language processing/understanding 



Applications
 Argumentation 
 Product configuration 
 Linux package configuration 
 Wire routing 
 Combinatorial auctions 
 Game theory 
 Decision support systems 
 Logic puzzles 
 Bioinformatics 
 Phylogenetics
 Haplotype inference 



Applications
 System biology 
 Automatic music composition 
 Assisted living 
 Robotics 
 Software engineering 
 Boundend model checking 
 Verification of cryptographic protocols 
 E-tourism 
 Team building 
 Data Cleaning 
 Business Games



TEAM BUILDING 
at Seaport of Gioia Tauro

The Problem: producing an optimal allocation of the 
available personnel at the Seaport of Gioia Tauro

•A Computationally Complex Problem (NP-HARD)
•The complexity is due the presence of several constraints

 the size and the slots occupied by cargo boats,
 the allocation of each employee (e.g. each employee might 
be employed in several roles of different responsibility, roles 
have to be played by the available units by possibly applying a 
round-robin policy, etc.)
The choice of the suitable skills
Contractual/ labour union constraints

DLP Revolution



TEAM BUILDING 
at Seaport of Gioia Tauro

DLP Solution: 
• Informations and constraints of the domain are modeled in DLP. 
• The  pure declarative nature of DLP language allows to define
reasoning modules for finding the desired allocation
• In a few seconds, the system can build new teams or complete the 
allocation automatically when the roles of some key employees are 
fixed manually.
• The port authority of Gioia Tauro is employing the system with 
great satisfaction
• The system has been implemented in two months with only one
resource
• It is very flexible: can be modified in a few minutes, by 
addind/editing logic rules

DLP Revolution



TEAM BUILDING 
at Seaport of Gioia Tauro

DLP Revolution



Automatic Itinerary Search

The Problem: automatic construction of a complete itinerary from a given place to 
another in the region Calabria.

DLP Solution: 
• Implemented by exploiting an ONTOLOGY that models all the available  
transportation means, their timetables, and a map with all the streets, bus stops, railways 
and train stations
•A set of specifically devised DLP programs are used to build the required itineraries. 
•The system allows the selection of some options:

Departure and Arrival
Preferred mean
Preferred transportation company
Minimization of travel distances
Travel times

•The application provides a web portal integrating the whole transportation system of 
the Italian region Calabria, including both public and private companies.

DLP Revolution



Automatic Itinerary Search

DLP Revolution



Datalog



Datalog Syntax: Terms

 Terms are either constants or variables 
 Constants can be either symbolic constants (strings starting 

with some lowercase letter), string constants (quoted strings) 
or integers. 
 Ex.: pippo, “this is a string constant”, 123, … 

 Variables are denoted by strings starting with some uppercase 
letter. 
 Ex.: X, Pippo, THIS_IS_A_VARIABLE, White, …



Datalog Syntax: Atoms and Literals

 A predicate atom has form p(t1,…, tn), where p is a predicate 
name,   t1,…, tn are terms,  and n≥0 is the arity of the 
predicate atom. A predicate atom p() of arity 0 is likewise 
represented by its predicate name p without parentheses. 
 Ex.: p(X,Y)  - next(1,2)  - q  - i_am_an_atom(1,2,a,B,X)

 An atom can be negated by means of “not”. 
 Ex: not a, not p(X), …

 A literal is an atom or a negated atom. In the first case it is 
said to be positive, while in the second it is said to be 
negative.



What is Datalog (I)
Datalog is the non-disjunctive fragment of DLP.

A (general) Datalog program is a set of rules of the form
positive body            negative body

Rule:    a :- b1, …, bk , not bk+1, …, not bm (1)

head body

where “a” and each “bi” are atoms. 

Given a rule r of the form (1) above, we denote by:
 H(r): (head of r), the atom “a”
 B(r): (body of r), the set  b1, …, bk , not bk+1, …, not bm of all body 

literals
 B+(r): (positive body),  the set b1, …, bk of positive body literals
 B-(r): (negative body),  the set not bk+1, …, not bm of negative body 

literals



Positive Datalog

A positive (pure) Datalog rule has the following form:

head  :- atom1, atom2, …., atom,…

where all the atoms are positive (non-negated).

Ex.: britishProduct(X) :- product(X,Y,P), company(P,“UK”,SP).



Facts
 A ground rule with an empty body is called a fact.
 A fact is therefore a rule with a True body (an empty conjunction 

is true by definition).
 The implication symbol is omitted for facts

parent(eugenio, peppe) :- true.
parent(mario, ciccio) :- true.
equivalently written by

parent(eugenio, peppe).
parent(mario, ciccio).

 Facts must always be true in the program answer!



What is Datalog (II)

We usually distinguish  EDB predicates and IDB 
predicates
• EDB: predicates appearing only in bodies or in facts. 
EDB’s can be thought of as stored in a database.
• IDB: predicates defined (also) by rules. IDB’s are 
intensionally defined, appear in both bodies and 
heads.

Intuitive meaning of a Datalog program:
• Start with the facts in the EDB and iteratively derive 
facts for IDBs.



Datalog as a Query Language

Datalog has been originally conceived as a query 
language, in order to overcome some expressive 
limits of SQL and other languages.

Exercise: write an SQL query retrieving all the cities 
reachable by flight from Lamezia Terme, through a 
direct or undirect connection.
Input: A set of direct connections between some 
cities represented by facts for connected(_,_).



Datalog as a Query Language

Exercise (2): write an SQL query retrieving all 
the cities indirectly reachable by flight from 
Lamezia Terme, with a stop/coincidence in a 
single city.

Exercise (3): write an SQL query retrieving all 
the cities indirectly reachable by flight from 
Lamezia Terme, with exactly 2 
stops/coincidences in other cities.



Datalog and RECURSION

(original) Exercise: write a query retrieving all the cities 
reachable by flight from Lamezia Terme, through a direct 
or undirect connection. 

A possible Datalog solution.
Input: A set of direct connections between some cities 
represented by facts for connected(_,_).

reaches(lamezia,B) :- connected(lamezia,B).
reaches(lamezia,C) :- reaches(lamezia,B), connected(B,C).



Suppose we are representing a graph by a 
relation edge(X,Y).

I want to express the query:  Find all nodes 
reachable from the others.

path(X,Y) :- edge(X,Y).
path(X,Y) :- path(X,Z), path(Z,Y).

Transitive Closure



Recursion (ancestor)

If we want to define the relation of arbitrary ancestors rather 
than grandparents, we make use of recursion:

ancestor(A,B) :- parent(A,B). 
ancestor(A,C) :- ancestor(A,B), ancestor(B,C).

An equivalent representation is

ancestor(A,B) :- parent(A,B).
ancestor(A,C) :- ancestor(A,B), parent(B,C).



Note the Full Declarativeness
The order of rules and of goals is immaterial:
ancestor(A,B) :- parent(A,B). 
ancestor(A,C) :- ancestor(A,B), ancestor(B,C).

is fully equivalent to 
ancestor(A,C) :- ancestor(A,B), ancestor(B,C).
ancestor(A,B) :- parent(A,B). 

and also to
ancestor(A,C) :- ancestor(B,C), ancestor(A,B).
ancestor(A,B) :- parent(A,B).
NO LOOP!



Datalog Semantics

Later on, we will give the model-theoretic 
semantics for DLP, and obtain model-theoretic 
semantics of Datalog as a special case.

We next provide the operational semantics of 
Datalog, i.e., we specify the semantics by giving 
a procedural method for its computation.



Semantics: Interpretations and Models

Given a Datalog program P, an interpretation I for P is a set 
of ground atoms.

An atom “a” is true w.r.t. I if a ∈ I; it is false otherwise.
A negative literal “not a” is true w.r.t. I if a ∉ I; it is false 
otherwise.

Thus, an interpretation I assigns a meaning to every atom: 
the atoms in I are true, while all the others are false.

An interpretation I is a MODEL for a ground program P if, 
for every rule r in P, the H(r) is True w.r.t. I, whenever B(r) is 
true w.r.t. I



Example: Interpretations

Given the program
a :- b, c.
c :- d.
d.

and the interpretation
I = {c,d}

the atoms c and d are true w.r.t. I, while the atoms a and b
are false w.r.t. I.



Example: Models

Given the program
r1: a :- b, c.
r2: c :- d.
r3: d.

and the interpretations
I1 = {b,c,d} I2={a,b,c,d} I3={c,d}

we have that I2 and I3 are models, while I1 is not, since the 
body of r1 is true w.r.t. to I1 and the head is false w.r.t. I1.



Operational Semantics: ground programs
Given a ground positive Datalog program P and an interpretation I, the 
immediate consequences of I are the set of all atoms “a” such that there
exists a rule “r” in P s.t. (1) “a” is the head of “r”, and (2) the body of “r” 
is true w.r.t. I. 

Tp(I) = { a | ∃ r ∈ P s.t. a = H(r) and B(r) ⊆ I }

where H(r) is the head atom, and B(r) is the set of body literals.

Example:
a :- b.     c :- d.     e :- a. I = {b}  Tp(I) = {a}.

THEOREM: On a positive Datalog program P, Tp always has a least
fixpoint coinciding with the least model of P.

Thus: Start with I={facts in the EDB} and iteratively derive facts for IDBs, 
applying Tp operator.
Repeat until the least fixpoint is reached.



Operational Semantics: general case (non-ground)

What to do when dealing with a non-ground 
program?

Start with the EDB predicates, i.e.: “whatever the 
program dictates”, and with all IDB predicates 
empty. 

Repeatedly examine the bodies of the rules, and 
see what new IDB facts can be discovered taking 
into account the EDB plus all IDB facts derived 
until the previous step.



Operational Semantics: Seminaive Evaluation

Since the EDB never changes, on each round we get 
new IDB tuples only if we use at least one IDB tuple 
that was obtained on the previous round.

Saves work; lets us avoid rediscovering most known 
facts (a fact could still be derived in a second way…).

Resuming: a new fact can be inferred by a rule in a 
given round only if it uses in the body some fact
discovered on the previous (last) round. But while
evaluating a rule, remember to take into account also
the rest (EDB + all derived IDB).



Operational Semantics: Derivation
Relation can be expressed intentionally through logical rules.

grandParent(X,Y) :- parent (X,Z), parent(Z,Y).
parent(a,b). parent(b,c).

Semantics: evaluate the rules until the fixpoint is reached:

M= { grandParent(a,c), parent(a,b), parent(b,c) }

Iteration #0: { parent(a,b), parent(b,c) }
Iteration #1: the body of the rule can be instantiated with 

“parent(a,b)”, “parent(b,c)”
thus deriving { grandParent(a,c) }

Iteration #2: nothing new can be derived (it is easy to see that we 
derived only “grandParent(a,c)”, and no rule having “grandParent” 
in the body is present). Nothing changes  we stop.



Operational Semantics: Ancestor
(i) ancestor(X,Y) :- parent (X,Z), parent(Z,Y).
(ii) ancestor(X,Y) :- parent (X,Z), ancestor(Z,Y).
parent(a,b). parent(b,c). parent(c,d).

M= { parent(a,b), parent(b,c), parent(c,d), ancestor (a,c), 
ancestor(b,d), ancestor(a,d) }

Iteration #0: { parent(a,b), parent(b,c), parent(c,d) }
Iteration #1: { ancestor(a,c), ancestor(b,d) } (from rule (i)) 

- useless to evaluate rule (ii): no facts for “ancestor” are true.
Iteration #2: - useless to evaluate rule (i): body contains only “parent” facts,

and no new were derived at last stage;
- some “ancestor” facts were just derived, and “ancestor” appears 

in the body of rule (ii). 
Thus we derive: { ancestor(a,d) } - Note: this is derived 

exploiting “ancestor(b,d)” but also “parent(a,b)”, which was
derived before last stage.

Iteration #3: nothing changes  we stop.



Operational Semantics: Transitive Closure 

a

b

c

d e
( i)  path(X,Y) :- edge(X,Y).
(ii)  path(X,Y) :- path(X,Z), path(Z,Y).

edge(a,b). edge (a,c). edge(b,d).
edge(c,d). edge(d,e).

Iteration #0: Edge: { (a,b), (a,c), (b,d), (c,d), (d,e) }
Path:  { }

Iteration #1: Path:  { (a,b), (a,c), (b,d), (c,d), (d,e) }
Iteration #2: Path:  { (a,d), (b,e), (c,e) }
Iteration #3: Path:  { (a,e) }
Iteration #4: Nothing changes We stop.

Note: number of iterations depends on the data. Cannot be 
anticipated by only looking at the rules!



Negated Atoms
We may put “not” in front of an atom, to negate its meaning. 

Of course, programs having at least one rule in which negation 
appears aren’t said to be positive anymore.

Example: Think of arc(X,Y) as arcs in a graph. 
s(X,Y) singles out the pairs of nodes <a,b> which are not 
symmetric, i.e., there is an arc from a to b, but no arc from b 
to a.

s(X,Y) :- arc(X,Y), not arc(Y,X).



Safety
A rule r is safe if  

 each variable in the head, and
 each variable in a negative literal, and
 each variable in a comparison operator (<,<=, etc.)

also appears in a standard positive literal. In other words, all 
variables must appear at least once in the positive body.

Only safe rules are allowed.

Ex.: The following rules are unsafe:
 s(X) :- a.
 s(Y) :- b(Y), not r(X).
 s(X) :- not r(X).
 s(Y) :- b(Y), X<Y.

In each case, an infinity of x’s can satisfy the rule, even if “r” is a 
finite relation.



Problems with Negation and Recursion

Example: 
IDB: p(X) :- q(X), not p(X).
EDB: q(1). q(2).

Iteration #0: q = {(1), (2)}, p = { }
Iteration #1: q = {(1), (2)}, p = {(1), (2)}
Iteration #2: q = {(1), (2)}, p = { }
Iteration #3: q = {(1), (2)}, p = {(1), (2)} 
etc., etc. …



Recursion + Negation

“Naïve” evaluation doesn’t work when 
there are negative literals.

In fact, negation wrapped in a recursion 
makes no sense in general.

Even when recursion and negation are 
separate, we can have ambiguity about 
the correct IDB relations.



Stratified Negation

Stratification is a constraint usually placed 
on Datalog with recursion and negation.

It rules out negation wrapped inside 
recursion.

Gives the sensible IDB relations when 
negation and recursion are separate.



To formalize strata use the labeled dependency 
graph:
 Nodes = IDB predicates.
 Arc b -> a if predicate a depends on b (i.e., b

appears in the body of a rule where a appears in 
the head), but label this arc “–” if the occurrence 
of b is negated.

A Datalog program is stratified if NO CYCLE of the 
labeled dependency graph contains an arc labeled 
“-”.

Stratified Negation: Definition



Example: unstratified program

p(X) :- q(X), not p(X).

- p

Unstratified: there is a cycle with a “-” arc.



Example: stratified program
EDB = source(X), target(X), arc(X,Y).
Define “targets not reached from any source”:

reach(X) :- source(X).
reach(X) :- reach(Y), arc(Y,X).
noReach(X) :- target(X), not reach(X).

NoReach

Reach

-
Stratum 0:
No “–” arcs on
any path in

Stratum 1:
some “-” arc 
incoming from 
Stratum 0



Minimal Models

As already said, when there is no 
negation, a Datalog program has a 
unique minimal (thus minimum) model 
(one that does not contain any other 
model).

But with negation, there can be several 
minimal models.



a :- not b.

Models: {a} {b}

Both are minimals. But stratification allows us to 
single out model {a}, which is indeed the 
(unique) answer set.

Example: Multiple Models (1)



DEFINITION: Given a strongly-connected 
component C of the dependency graph of a 
given program P, the subprogram subP(C) is 
the set of rules with an head predicate 
belonging to C.

Subprograms



Evaluation of Stratified Programs 1

When the Datalog program is stratified, we can 
evaluate IDB predicates of the lowest-stratum-first. 

Once evaluated, treat them as EDB for higher strata.

METHOD: Evaluate bottom-up the subprograms of 
the components of the dependency graph.

NOTE: The evaluation of a single subprogram is 
carried out by the (semi)NAÏVE method.



Evaluation of Stratified Programs 2

INPUT: EDB F, IDB P
 Compute the labeled dependency graph DG of P;
 Build a topological ordering C1,...,Cn of the 

components of DG;
 M= F;
 For i=1 To n Do

M = SemiNaive( M U subP(Ci) )
% compute the least fixpoint of Tp on 

( M U subP(Ci) )
 OUTPUT M; 



Stratified Model: example
a :- not b.
b :- d.

Two components: {a} and {b}. 
subP({b}) = {b :- d.} subP({a}) = {a :- not b.}

- {b} is at the lowest stratum -> start evaluating subP({b}).
- The answer set of subP({b}) is AS(subP({b})) = {}.  

 “{}” is the input for subP({a}). 
- The answer set of subP({a}) U {} is AS(subP({a})) = {a}, 

which is the (unique) answer set of the original program.

a

b
-



Example: Stratified Evaluation (2-1)
IDB: reach(X) :- source(X).

reach(X) :- reach(Y), arc(Y,X).
noReach(X) :- target(X), not reach(X).

EDB: node(1). node(2). node(3). node(4). 
arc(1,2), arc(3,4). arc(4,3)
source(1), target(2), target(3).

-
reach

noReach

Stratum 0

Stratum 1

We have two components: 
C1 = {reach}  C2 = {noReach}

And the related subprograms are:
subP({reach}) = {  reach(X) :- source(X).

reach(X) :- reach(Y), arc(Y,X). }
subP({noReach}) = {  noReach(X) :- target(X), not reach(X). }

C1 is at a lower stratum w.r.t. C2, thus the subprogram of C1 has to 
be computed first.



Example: Stratified Evaluation (2-2)
IDB: reach(X) :- source(X).

reach(X) :- reach(Y), arc(Y,X).
noReach(X) :- target(X), not reach(X).

EDB: node(1). node(2). node(3). node(4). 
arc(1,2), arc(3,4). arc(4,3)
source(1), target(2), target(3).

Answer Set of subP(C1) U EDB
Iteration #0: facts = { source(1), target(2), target(3),... }
Iteration #1: { reach(1) }
Iteration #2: { reach(2) }
Iteration #3: { }  we stop.

Evaluating through strata 
Answer Set: { reach(1), reach(2), noReach(3), + facts }.

-
reach

noReach

Stratum 0

Stratum 1

M(subP(C1)) = 
{ reach(1), reach(2) + facts }

Answer Set of subP(C2) U M(subP(C1))
Iteration #0: M(subP(C1) = { reach(1), reach(2) + facts }
Iteration #1: { noReach(3) }
Iteration #2: { }  we stop.

M(subP(C2)) = 
{ noReach(3), reach(1), reach(2) + facts }



Disjunctive logic programming

Disjunctive Datalog

Answer Set Programming



Foundations of DLP: 
Syntax and Semantics

a bit boring, but needed....

getFunTomorrow :- resistToday.



(Extended) Disjunctive Logic Programming
Datalog extended with
 full negation (even unstratified)
 disjunction
 integrity constraints
 weak constraints
 aggregate functions
 function symbols, sets, and lists



Disjunctive Logic Programming
SYNTAX
Rule: a1 | … | an :- b1, …, bk , not bk+1 , …, not bm
Constraints: :- b1 , …, bk , not bk+1 , …, not bm
Program: A finite Set P of  rules and constraints.

- ai bi are atoms
- variables are allowed in atoms’ arguments

mother(P,S) | father(P,S) :- parent(P,S).



Example Disjunction

In a blood group knowledge base one may express that the genotype 
of a parent P of a person C is either T1 or T2, if C is heterozygot with 
types T1 and T2:

genotype(P,T1) | genotype(P,T2) :-
parent(P,C), heterozygot(C,T1,T2).

In general, similar to programs with unstratified negation, programs 
which contain disjunction can have more than one minimal model.



Arithmetic Built-ins
Fibonacci

fib0(1,1).
fib0(2,1).
fib(N,X) :- fib0(N,X).
fib(N,X) :- fib(N1,Y1), fib(N2,Y2), 

+(N2,2,N), +(N1,1,N), +(Y1,Y2,X).

Unbound builtins
less(X,Y) :- #int(X), #int(Y), X < Y.
num(X) :- *(X,1,X), #int(X).

Note that an upper bound for integers has to be specified.



Informal Semantics

Rule:    a1 | … | an :- b1, …, bk , not bk+1 , …, not bm
If all the b1 …bk are true and all the bk+1 … bm are false, then at least one among a1 

…an is true.

isInterestedinDLP(john) | isCurious(john) :- attendsDLP(john).
attendsDLP(john).

Two (minimal) models, encoding two plausible scenarios:

M1: {attendsDLP(john), isInterestedinDLP(john) }

M2: {attendsDLP(john), isCurious(john) }



Disjunction

is minimal
a | b | c ⇒ { a }, { b }, { c }

actually subset minimal
a | b.
a | c. ⇒ {a}, {b,c}

but not exclusive

a | b.
a | c.
b | c.

⇒ {a,b}, {a,c}, {b,c}



Informal Semantics

Constraints:    :- b1 , …, bk , not bk+1 , …, not bm
Discard interpretations which verify the condition

:- hatesDLP(john), isInterestedinDLP(john).
hatesDLP(john).
isInterestedinDLP(john) | isCurious(john) :- attendsDLP(john).
attendsDLP(john).

first scenario ({attendsDLP(john), isInterested(john) }) is discarded.

only one plausible scenario:
M: { attendsDLP(john), hatesDLP(john), isCurious(john) }



Integrity Constraints
When encoding a problem, its solutions are given by the models of the 
resulting program. Rules usually construct these models. Integrity 
constraints can be used to discard models.

:- L1, … , Ln.
means: discard models in which L1, … , Ln are simultaneously true. 

a | b.
a | c.
b | c.

:- a. ⇒ {b, c}

⇒ {a,b}, {a,c}, {b,c}



(Formal) Semantics: Program Instantiation
Herbrand Universe, UP= Set of constants occurring in program P
Herbrand Base, BP= Set of ground atoms constructible from UP and Pred.
Ground instance of a Rule R:  Replace each variable in R by a constant in UP

Instantiation ground(P) of a program P: Set of the ground instances of its rules.

Example: isInterestedinDLP(X) | isCurious(X) :- attendsDLP(X).
attendsDLP(john).
attendsDLP(mary).

UP={ john, mary }

isInterestedinDLP(john) | isCurious(john) :- attendsDLP(john).
isInterestedinDLP(mary) | isCurious(mary) :- attendsDLP(mary).
attendsDLP(john).
attendsDLP(mary).

A program with variables is just a shorthand for its ground instantiation!



Interpretations and Models
Interpretation I of a program P:

set of ground atoms of P.

Atom q is true in I if q belongs to I; otherwise it is false.

Literal not q is true in I if q is false in I; otherwise it is false.

Interpretation I is a MODEL for a ground program P if, for every 
R in P, the head of R is True in I, whenever the body of R is 
true in I



Semantics for Positive Programs
We assume now that Programs are ground
(just replace P by ground(P)) and Positive (not -

free)

I is an answer set for a positive program P if it is 
a minimal model (w.r.t. set inclusion) for P

-> Bodies of constraint must be false.



Example (Answer set for a positive program)
isInterestedinDLP(john) | isCurious(john) :- attendsDLP(john).
isInterestedinDLP(mary) | isCurious(mary) :- attendsDLP(mary).
attendsDLP(john).
attendsDLP(mary).

I1 = { attendsDLP(john) } (not a model)
I2 = { isCurious(john), attendsDLP(john), isInterestedinDLP(mary), 

isCurious(mary), attendsDLP(mary) } (model, non minimal)
I3 = { isCurious(john),  attendsDLP(john), isInterestedinDLP(mary), 

attendsDLP(mary) } (answer set)
I4={ isInterestedinDLP(john), attendsDLP(john), isInterestedinDLP(mary), 

attendsDLP(mary) } (answer set)
I5 = { isCurious(john),  attendsDLP(john), isCurious(mary), attendsDLP(mary) } 

(answer set)
I6={ isInterestedinDLP(john), attendsDLP(john), isCurious(mary), 

attendsDLP(mary) } (answer set)



Example (Answer set for a positive program)
Let us ADD:
:- hatesDLP(john), isInterestedinDLP(john).
hatesDLP(john).

( same interpretations as before + hatesDLP(john) ) 
I1 = { attendsDLP(john), hatesDLP(john) } (not a model)
I2 = { isCurious(john), attendsDLP(john), isInterestedinDLP(mary), isCurious(mary), 

attendsDLP(mary), hatesDLP(john) } (model, non minimal)
I3 = { isCurious(john),  attendsDLP(john), isInterestedinDLP(mary), attendsDLP(mary) , 

hatesDLP(john) } (answer set)
I4={ isInterestedinDLP(john), attendsDLP(john), isInterestedinDLP(mary), attendsDLP(mary), 

hatesDLP(john) } (not a model)!!!
I5 = { isCurious(john),  attendsDLP(john), isCurious(mary), attendsDLP(mary), 

hatesDLP(john) } (answer set)
I6={ isInterestedinDLP(john), attendsDLP(john), isCurious(mary), attendsDLP(mary),  

hatesDLP(john) } (not a model)!!!



Semantics for Programs with Negation

Consider general programs (with NOT)

The reduct or of a program P w.r.t. an interpretation I is the 
positive program PI, obtained from P by

 deleting all rules with a negative literal false in I;
 deleting the negative literals from the bodies of the remaining 

rules.

An answer set of a program P is an interpretation I such that I is 
an answer set of PI.

Answer Sets are also called Stable Models.



Example (Answer set for a general program)

P: a :- d, not b.
b :- not d.
d.

I = { a, d }

PI : a :- d.
d.

I is an answer set of PI and therefore it is an answer set of P.



Answer sets and minimality
An answer set is always a minimal model (also with negation).
In presence of negation minimal models are not necessarily answer sets
P: a :- not b.

Minimal Models: I1 = { a }
I2 = { b }

Reducts:
PI1 :    a.
PI2 : {}

I1 is an answer set of PI1 while I2 is not an answer set of PI2 (it is not minimal, 
since empty set is a model of PI2). 

PI1 is the only answer set of P.



Some Useful Theorems



Datalog Semantics: a special case

The semantics of Datalog is the same as for DLP (Datalog 
programs are DLP programs).
Since Datalog programs have a simpler form, we can have for 
Datalog the following characterization: 

 the answer  set of a positive datalog program is the least 
model of P 

(i.e. the unique minimal model of P).

Why does this work?

THEOREM: A positive Datalog program has always a (unique) 
minimal model.
PROOF: The intersection of two models is guaranteed to be 
still a model; thus, only one minimal model exists.



Theorem 1

Example: 
The logic program 

a :- b.
has {} as unique answer set.

Let P be a logic program. 
If the empty set ‘{}’ is an answer set for P, it is
unique.



Theorem 2

Example: 
The logic program

a | b :- c.
c.
d.

has {a,c,d} and {b,c,d} as answer sets, and both
contain the facts {c,d}.

Let P be a logic program, and facts(P) be the set 
containing all and only the facts in P.
If S is an answer set for P, then facts(P)⊆S.



Theorem 3

Example: 
The logic program P 

a | b :- c.
d. 
e.

has {d,e} = facts(P) as unique answer set.

Let P be a logic program, and facts(P) the set 
containing all and only the facts in P.
If facts(P) is an answer set, it is unique.



Definition 
Let P be a logic program, and I an interpretation
for P. An atom a∈ I is supported in I if there
exists a rule r∈ P such that body(r) is true w.r.t. 
I and head(r)∩ I = a (i.e., a is the only true
atom appearing in the head of r).

Example: 
P: d. c:-d. k :- not d. a | b :- c. e | c.
I = { d, c, k, a, e }
d, c, and a are supported w.r.t. I
k and e  are not supported w.r.t. I



Theorem 4

Example: 
For the logic program P 

a | b :- c.
d. 
e.

I={a,d,e} is a model, but a is not supported -> I is not
an answer set.

Let P be a logic program, and I a model for P.    
I is an answer set for P only if for each atom a∈
I, a is supported w.r.t. I.



Question

The answer is NO!

Example: 
P: a :- a.
I={a} is a supported model
I is not an answer set. {} is a model, I is not minimal.

Is supportedness sufficient to guarantee that a 
model is an answer set?
That is, is every supported model an answer set?

Supportedness is not sufficient only in presence of CYCLES



Positive dependency graph:
 Nodes = IDB predicates.
 Arc b -> a if predicate a depends on predicate b 

positively (i.e., b appears in the positive body of a 
rule featuring a in the head).

Note that negative literals do not produce any arc. 

Positive Dependency Graph



Example (DG) (1)

For the logic program P1 :
a | b.
c :- a.

c :- b, not d. 
the dependency graph is the following:

a b               d 

c



Example (DG) (2)

For the logic program P2 : 
a | b. c :- a. c :- b. 
d | e :- a. d :- e. e :- d, not b.

the dependency graph is the following:

a b

c
e d



Definition (acyclic program)
Let P be a logic program. The program is 
acyclic iff its (positive) Dependency Graph is 
acyclic; it is cyclic otherwise.

Example
Consider the programs P1 and P2 from the previous 

examples. 
P1 is acyclic, while P2 is not.



Theorem 5

Example: 
For the logic program P 

a :- b.
b :- a.

I={a,b} is a model, and both atoms are supported, but since P 
is not acyclic this is not sufficient to guarantee that I is an 
answer set. Indeed, it is easy to see that I is not an answer 
set. 

For the reader: Which are the answer sets for P?

Let P be an acyclic (i.e., non-recursive) logic 
program, and I a model for P. I is an answer set 
for P if and only if for each atom a∈ I, a is 
supported w.r.t. I.



Part II

A (Declarative) Methodology for Programming 
in DLP



DLP – How To Program?
Idea: encode a search problem P by a DLP program LP. 
The answer sets of LP correspond  one-to-one to the 
solutions of  P .

Rudiments of methodology
• Generate-and-test programming:

- Generate (possible structures)
- Weed out (unwanted ones) 

by adding constraints (“Killing” clauses)
• Separate data from program



“Guess and Check” Programming 
Answer Set Programming (ASP)

• A disjunctive rule “guesses” a solution candidate.

• Integrity constraints check its admissibility.

From another perspective:

• The disjunctive rule defines the search space.

• Integrity constraints prune illegal branches.



Given a graph, select a subset S of the vertices so that all edges are 
covered (i.e., every edge has at least one of the two vertices in S)

Example: node(1). node(2). node(3). edge(1,2). edge(1,3).

Guess: inS(X) ∨ outS(X) :- node(X).  

Eight answer sets, encoding the eight plausible scenarios:
inS = {1,2,3}, outS =  ∅ AS1={inS(1), inS(2), inS(3)}
inS= {1,2}, outS = {3} AS2={inS(1), inS(2), outS(3)}
…                                               …
inS= {1}, outS = {2,3} AS7={inS(1), outS(2), outS(3)}
inS = ∅ , outS = {1,2,3} AS8={outS(1), outS(2), outS(3)}

Check: :- edge(X,Y), not inS(X), not inS(Y).  
Discards:
{outS(1), outS(2),outS(3)}
{inS(2), outS(1), outS(3)}, 
{inS(3), outS(1), outS(2)}

1 2

3

Vertex Cover



3-colorability
Input: a Map represented by state(_) and border(_,_).
Problem: assign one color out of 3 colors to each state 

such that two neighbouring states have always different
colors.

Solution:
col(X,red) | col(X,green) | col(X,blue) :-state(X). } Guess

:- border(X,Y), col(X,C), col(Y,C). } Check



3-colorability
state(a).   state(b). state(c). state(d).

border(a,b).   border(b,a). border(a,c).   border(c,a). border(c,d).   border(d,c).

col(X,red) | col(X,green) | col(X,blue) :- state(X).

Instantiation:
col(a,red) | col(a,green) | col(a,blue) :- state(a).
col(b,red) | col(b,green) | col(b,blue) :- state(b).
col(c,red) | col(c,green) | col(c,blue) :- state(c).
col(d,red) | col(d,green) | col(d,blue) :- state(d).

Answer Sets:
{ col(a,red), col(b,red), col(c,red), col(d,red) }
{ col(a,red), col(b,red), col(c,red), col(d,blue) }

……..
{ col(a,red), col(b,blue), col(c,blue), col(d,red) }

……..
{ col(a,green), col(b,green), col(c,green), col(d,green) }



3-colorability
state(a).   state(b). state(c). state(d).

border(a,b).   border(b,a). border(a,c).   border(c,a). border(c,d).   border(d,c).

col(X,red) | col(X,green) | col(X,blue) :- state(X).

Instantiation:
col(a,red) | col(a,green) | col(a,blue) :- state(a).
col(b,red) | col(b,green) | col(b,blue) :- state(b).
col(c,red) | col(c,green) | col(c,blue) :- state(c).
col(d,red) | col(d,green) | col(d,blue) :- state(d).

:- border(X,Y), col(X,C), col(Y,C).

Instantiation:
:- border(a,b), col(a,red), col(b,red). :- border(c,d), col(c,red), col(d,red).
:- border(a,b), col(a,green), col(b,green).        :- border(c,d), col(c,green), col(d,green).
:- border(a,b), col(a,blue), col(b,blue). :- border(c,d), col(c,blue), col(d,blue).

………….                                                         …………..



3-colorability
Instantiation:
col(a,red) | col(a,green) | col(a,blue) :- state(a).
col(b,red) | col(b,green) | col(b,blue) :- state(b).
col(c,red) | col(c,green) | col(c,blue) :- state(c).
col(d,red) | col(d,green) | col(d,blue) :- state(d).

:- border(a,b), col(a,red), col(b,red). :- border(c,d), col(c,red), col(d,red).
:- border(a,b), col(a,green), col(b,green).        :- border(c,d), col(c,green), col(d,green).
:- border(a,b), col(a,blue), col(c,blue). :- border(c,d), col(c,blue), col(d,blue).

Answer Sets:
{ col(a,red), col(b,red), col(c,red), col(d,red) } NO
{ col(a,red), col(b,red), col(c,red), col(d,blue) }                    NO

……..
{ col(a,red), col(b,blue), col(c,blue), col(d,red) }                  YES

……..
{ col(a,green), col(b,green), col(c,green), col(d,green) }   NO



Hamiltonian Path (HP) (1)

Input: A directed graph represented by node(_) and arc(_,_),        
and a starting node start(_).

Problem: Find a path beginning at the starting node which     
contains all nodes of  the graph. 



Hamiltonian Path (HP) (2)

inPath(X,Y) | outPath(X,Y) :- arc(X,Y). Guess

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1.          Check
:- node(X), not reached(X).
:- inPath(X,Y), start(Y). % a path, not a cycle

reached(X) :- start(X). Auxiliary Predicate
reached(X) :- reached(Y), inPath(Y,X).



Strategic Companies(1)

Input: There are various products, each one is produced
by several companies.

Problem: We now have to sell some companies.
What are the minimal sets of strategic companies,
such that all products can still be produced? 
A company also belong to the set, if all its
controlling companies belong to it.

strategic(Y) |  strategic(Z) :- produced_by(X, Y, Z). Guess

strategic(W) :- controlled_by(W, X, Y, Z), Constraints
strategic(X), strategic(Y), strategic(Z).



Strategic Companies - Example

pasta

wine

tomatoes

barilla

frutto

saiwa

budweiser

heineken

panino bread

beer

barilla

frutto

saiwa

budweiser

heineken



Complexity Remark

The complexity is in NP, if the checking part does 
not “interfere” with the guess.

“Interference” is needed to represent        problems.P
2Σ



Testing and Debugging with GC
Develop DLP programs incrementally:
 Design the Data Model

 The way the data are represented (i.e., design predicates 
and facts representing the input)

 Design the Guess module G first
 test that the answer sets of G (+the input facts) correctly 

define the search space
 Then the Check module C

 verify that the answer sets of G U C are the admissible 
problem solutions

Use small but meaningful problem test-instances!



Satisfiability
 Boolean, or propositional, satisfiability (abbreviated 

SAT) is the problem of determining if there exists an 
interpretation that satisfies a given Boolean formula.

 Conjunctive Normal form (CNF): a formula is a 
conjunction of clauses, where a clause is a disjunction 
of  boolean variables.

 3-SAT: only 3-CNF formulas (i.e. exactly three 
variables for each clause)

 Problem: Find satisfying truth assignments of Φ (if any). 

)...( 1
1

iici

n

i
dd ∨∨=Φ ∧

=

)( 321
1

iii

n

i
ddd ∨∨=Φ ∧

=



SAT: example
(d1 v -d2 v -d3) ∧ (-d1 v d2 v d3)

 Satisfying assignments:
{ d1, d2,  d3} 
{ d1, -d2,  d3} 
{ d1, d2, -d3} 
{-d1, -d2, d3} 
{-d1, -d2, -d3}  
{-d1, d2, -d3} 

 Non Satisfying assignments:
{ d1, -d2, -d3} 
{-d1, d2, d3} 



Exercise
Design a uniform (non-ground) encoding for SAT.

Input: a fact for each propositional clause

Example:    (d1 v -d2 v -d3) ∧ (-d1 v d2 v d3)
 clause(d1,nd2 , nd3).      clause(nd1,d2 ,nd3).

Design a program such that the answer sets of the 
program are in a one-to-one correspondence with the 
satisfying assignements of the input formula.



SAT: ASP encoding
Add a guessing rule for each propositional variable

∀ di  di | ndi.
Add a constraint for each clause, complementing the 
variables

∀ di1 v di2 v di3  :- Li1, Li2, Li3

where Lij = a if dij = -a, and Lij = not a if dij = a



Example: SAT  ASP
Formula

(d1 v -d2 v -d3) ∧ (-d1 v d2 v d3)
ASP encoding:
 d1 | nd1.         :- not d1, d2, d3.

 d2 | nd2.         :- d1, not d2, not d3.

 d3 | nd3. 
Answer Sets
{  d1, d2, nd3}      {nd1, nd2, nd3}
{nd1, d2, nd3}      {nd1, nd2, d3}
{  d1, nd2, d3}      {  d1, d2, d3}



Planning - Blocksworld

 Objects: Some blocks and a table.
 Fluent: on(B, L, T): Exactly one block may be on 

another block, and arbitrary many block may be on the 
table. Every block must be on something.

 Action: move(B, L, T): A block is moved from one 
location to another one. The moved block must be 
clear and the goal location must be clear, if it is a 
block.

 Time: There is a finite number of timeslots. An action 
is carried out between two timeslots. Only one action 
can be carried out at a time.



Blocksworld(1)



Blocksworld(2)

Describe the move action and its effects:

move(B,L,T) | no_move(B,L,T) :- block(B), location(L), time(T).
on(B,L,T1) :- move(B, L, T), next(T,T1).

Enforce the preconditions for the move:

:- move(B,L,T), on(B1,B,T). 
:- block(B1), move(B,B1,T), on(B2,B1,T).          
:- move(B,L,T), lasttime(T).

No concurrency:

:- move(B,L,T), move(B1,L1,T), B<>B1.                          
:- move(B,L,T), move(B1,L1,T), L<>L1.



Blocksworld(3)
Inertia:
on(B,L,T1) :- on(B,L,T), next(T,T1), not no_on(B,L,T1).
no_on(B,L,T1) :- no_on(B,L,T), next(T,T1), not on(B,L,T1).

A block cannot be and not be on a location at the same time:
:- on(B,L,T), no_on(B,L,T). 

A block cannot be at two locations or on itself:
:- on(B,L1,T), on(B,L,T), L<>L1. 
:- on(B,B,T). 

Specification of time and objects:
time(T) :- #int(T).     lasttime(#maxint).                          
next(T,T1) :- #succ(T,T1). 
location(table).       location(L) :- block(L).



Blocksworld Instance - Sussman anomaly

c
ab

b
a

cinitial: goal:

Define the involved blocks and the initial and goal situations:
block(a). block(b). block(c). 

on(a,table,0). on(b,table,0). on(c,a,0).

on(a,table,#maxint), on(b,a,#maxint), on(c,b,#maxint) ? 

The number of available timeslots is given when invoking DLV:
$ dlv blocksworld sussman -N=3 -pfilter=move

{move(c,table,0), move(b,a,1), move(c,b,2)}



Some programming tricks
(efficiency)



Example: Clique
Given an indirected Graph compute a clique: a subset of the 

nodes such that no pair of nodes in the clique are not
connected by an arc.

Input: node(_) and edge(_; _) (symmetric).
Natural Encoding:
inClique(X) | outClique(X) :- node(X). 
:- inClique(X) | inClique(Y), not edge(X, Y), X <> Y. 

Optimized Encoding:
inClique(X) | outClique(X) :- node(X).
:- inClique(X), inClique(Y), not edge(X, Y), X < Y.   

Avoid redundant constraints



Example: 3-col – encoding 1
Encoding 1:
R1 col(X, red) | col(X, blue) | col(X, green) :- node(X).
R2 :- edge(X, Y), col(X,C), col(Y,C).

Example instance:
node(1). node(2). node(3). 
edge(1,2). edge(1,3).

Grounding produces (in addition to facts) : 
col(1,red) v col(1,blue) v col(1,green).
col(2,red) v col(2,blue) v col(2,green).
col(3,red) v col(3,blue) v col(3,green).
:- col(1,red), col(2,red).           :- col(1,green), col(2,green).  
:- col(1,blue), col(2,blue).        :- col(1,red), col(3,red).
:- col(1,green), col(3,green).   :- col(1,blue), col(3,blue).

Keep the guess as small as possible

R1  3 ground rules
R2  6 ground rules



Example: 3-col - encoding 2
% given a node X and a color C, color X with C or not
R1 col(X, C) | ncol(X, C) :- node(X), color(C).
% no adjacent nodes with the same color 
R2 :- edge(X, Y), col(X,C), col(Y,C).
% all nodes must be colored
R3     colored(X):- col(X,_).
R4     :- node(X), not colored(X).
% only one color per node
R5     :- col(X, C1), col(X,C2), C1<>C2.

Grounding produces:
R1  9 ground rules
R2  6 ground rules
R3  9 ground rules
R4  3 ground rules
R5  18 ground rules

• Additional ground atoms (ncol)
• Additional ground rules
 Larger grounding, Larger Search space

Example instance:
node(1). node(2). node(3). 
edge(1,2). edge(1,3).
color(red). color(blue). color(green).



Example: 3-col - encoding 3
An alternative encoding can be obtained from encoding 2 by replacing the guessing rule
R1 with the three following rules:

R1A col(X, red) | ncol(X, red) :- node(X).
R1B col(X, yellow) | ncol(X, yellow) :- node(X).
R1C col(X, green) | ncol(X, green) :- node(X).

and leaving the remaining rules unchanged.

Grounding produces exactly the same results of  encoding 2 
R1A + R1B + R1C  9 ground rules



Aggregate Functions



Aggregate functions

emp(EmpId, Salary)

Compute the sum of salaries of the employees

• Easily expressed in SQL

• Representation in DLP rather unnatural 

– recursion needed to express Sum



Sum (DLP vs DLPA)
% Order employees by id

precedes(X,Y) :- emp(X,_), emp(Y,_), X<Y.

% Define successor, first and last
succ(X,Y) :- precedes(X,Y), not elementInMiddle(X,Y).
elementInMiddle(X,Y) :- precedes(X,Z), precedes(Z,Y).
first(X) :- emp(X,_), not hasPredecessor(X).
last(X) :- emp(X,_), not hasSuccessor(X).
hasPredecessor(X) :- succ(Y,X).
hasSuccessor(Y) :- succ(Y,X).

% sum salaries recursively
partialSum(X,Sx) :- first(X), emp(X,Sx).
partialSum(Y,S) :- succ(X,Y), partialSum(X,PSx), emp(Y,Sy), S=PSx+Sy.

% select the total
sum(S) :- last(L), partialSum(L,S).



DLPA = DLP + aggregates

Symbolic set:     { Vars : Conj }

{ EmpId : emp( EmpId, male, Skill, Salary ) }

The set of ids of male employees.

{ EmpId : emp( EmpId, Sex, Skill, Salary ) }

The set of ids of all employees.



Aggregate function
f{S}

S : symbolic set
f : function name among

{ #count, #sum, #times, #min, #max }

#count { EmpId : emp( EmpId, male, Skill, Salary ) }
The number of male employees

#count { EmpId : emp( EmpId, Sex, Skill, Salary ) }
The number of all employees



Aggregate atom

Lg <1 f{S} <2 Ug

5 < #count { EmpId : emp( EmpId, male, Skill, Salary ) } ≤ 10

The atom is true if the number of male employees
is greater than 5 and does not exceed 10.

Formal semantics: extension of the notion of answer set.



Aggregate atoms: example (pure sets)
Aggregate sets are PURE (mathematical) sets  NO 
duplicates

Ex.: Count the number of different skills among employees

differentSkills(S) :- S = #count{Skill: emp( _,_, Skill,_)}
 emp(1, male, s1, 1000) 
 emp(2, female, s3, 1000)
 emp(3, female, s2, 2000)
 emp(4, male, s3, 1500)

#count{<s1>, <s2>, <s3>}



Aggregate atoms: Dealing with Multisets
Sometimes we do want to consider duplicates.  

Ex.: sum the salaries of all employees

sum(S) :- S = #sum{Y : emp(Id,_,_,Y)}
 emp(1, male, s1, 1000) 
 emp(2, female, s3, 1000)
 emp(3, female, s2, 2000)
 emp(4, male, s3, 1500)

#sum{<1000>, <1000>, <2000>, <1500>}  4500 instead of 
the (intended) 5500!!!



Aggregate atoms: Dealing with Multisets
Duplicates can be simulated by using a key as aggregation 
variable

sum(S) :- S = #sum{Y,Id: emp(Id,_,_,Y)}
 emp(1, male, s1, 1000) 
 emp(2, female, s3, 1000)
 emp(3, female, s2, 2000)
 emp(4, male, s3, 1500)

#sum{<1000,1>, <1000,2>, <2000,3>, <1500,4>}  5500, as 
expected



Aggregate Semantics
The reduct or Gelfond-Lifschitz transform of a ground
program P w.r.t. a set X ⊆ BP is the positive ground
program PX obtained from P by

1. deleting all rules r ∈ P for which a negative literal in B(r) 
is false w.r.t. X or an aggregate literal is false w.r.t. X; 

2. deleting the aggregate literals and the negative literals
from the remaining rules.

An answer set of a program P  is a set X ⊆ BP such that X 
is an answer set of PX.



Team Building

An organization needs to create a proper team for an 
important task, according to the following requirements:

• A team consists of a certain number of employees
• At least a given number of different skills must be 

present in the team
• The sum of the salaries of the employees working in the 

team must not exceed the given budget
• The salary of each individual employee is within a 

specified limit
• The number of women working in the team must be 

greater than a given number



Example: Team Building
% An employee is either included in the team or not
inTeam(I) | outTeam(I) :- emp(I; Sx; Sk; Sa).
% The team consists of a certain number of employees
:- nEmp(N); not #countfI : inTeam(I)g = N.
% At least a given number of different skills must be present in the team
:- nSkill(M); not #countfSk : emp(I; Sx; Sk; Sa); inTeam(I)g  <= M.
% The sum of the salaries of the employees working in the team must not
exceed the given budget
:- budget(B); not #sumfSa; I : emp(I; Sx; Sk; Sa); inTeam(I)g  <= B.
% The salary of each individual employee is within a specified limit
:- maxSal(M); not #maxfSa : emp(I; Sx; Sk; Sa); inTeam(I)g  <= M.

% An employee is either included in the team or not
inTeam(I) | outTeam(I) :- emp(I, Sx, Sk, Sa).

% The team consists of a certain number of employees
:- nEmp(N), not #count{I: inTeam(I)} = N.

% At least a given number of different skills must be present in 
% the team
:- nSkiII(M), #count{Sk : emp(I, Sx, Sk, Sa), inTeam(I)} < M.

% The sum of the salaries of the employees working in the team 
% must not exceed the given budget
:- budget(B). not #sum{Sa, I: emp(I, Sx, Sk, Sa), inTeam(I)} ≤ B.

% The salary of each individual employee is within a specified limit
:- maxSal(M), not #max{Sa: emp(I, Sx, Sk, Sa), inTeam(I)} ≤ M. 



Team Building: Homework

% The salary of each individual employee is within a specified limit
:- maxSal(M), not #max{Sa: emp(I, Sx, Sk, Sa), inTeam(I)} ≤ M. 

Efficiency issue: Rule above, from previous example, might
actually be removed, by means of more sophisticated guess.

How?



Team Building: Homework
Solution

Imposing that the max salary is below a given threshold can be enforced by 
guessing only among salaries that are under that threshold “Push” the 
requirement on salary in the body of the guessing rule.

% An employee is either included in the team or not
inTeam(I) | outTeam(I) :- emp(I, Sx, Sk, Sa), maxSal(M), Sa ≤ M.

% The team consists of a certain number of employees
:- nEmp(N), not #count{I: inTeam(I)} = N.

% At least a given number of different skills must be present in 
% the team
:- nSkiII(M), #count{Sk : emp(I, Sx, Sk, Sa), inTeam(I)} < M.

% The sum of the salaries of the employees working in the team 
% must not exceed the given budget
:- budget(B). not #sum{Sa, I: emp(I, Sx, Sk, Sa), inTeam(I)} ≤ B.



Seating

A gala dinner has to be organized and table composition 
must satisfy a number of requirements:

• Each table T has a given number of chairs.
• Each guest must be assigned one and only one table.
• People liking each other should sit at the same table.
• People disliking each other should not sit at the same 

table.



Example: Seating

% INPUT facts
table(T,NC)   the set of available tables with corresponding seats
guest(P)  the set of guests to be accommodated
like(P1,P2)  couples of guests who are friends
dislike(P1,P2)  couples of guests disliking each other

% OUTPUT predicates
at(P,T)  guest P is accommodated to table T



Example: Seating

% Given some tables of nc chairs each, generate a sitting
% arrangement for a number of given guests. 
at(P,T) | not_at(P,T) :- guest(P), table(T,_).

% Each table must not host more than NC guests.
:- table(T,NC), not #count{P : at(P,T)} <= NC.

%Each guest must be assigned one and only one table.
:- guest(P), not #count {T : at(P,T) }=1.

% People liking each other should sit at the same table.
:- like(P1,P2), at(P1,T), not at(P2,T).

% People disliking each other should not sit at the same table.
:- dislike(P1,P2), at(P1,T), at(P2,T).



Products control (unstratification) 

bought(C,N)  |  notBought(C,N) :- company(C), forSale(C,N, Price).

% A product A is produced by us if it is produced by a company under our control.
produced(A) :- producedBy(A,C), controlled(C).

% A company C is under our direct control, if we bought more than 50% of its shares.
controlled(C) :- bought(C,N), N > 50.

% A company C is under our (indirect) control, if companies under our control 
% (together) own more than 50% of C.
controlled(C) :- company(C), #sum{ N, C1 : shares(C,C1,N), controlled(C1) } > 50.

% The majority of the shares of C can be reached by summing up the C shares we   
bought directly with the shares owned by the companies under our control.

controlled(C) :- bought(C,N), N  ≤ 50, 
#sum{ N, C1 : shares(C,C1,N), controlled(C1) } > K, 50 = K + N.

% Each desired product has to be produced.
:- desired(P), not produced(P).

% The budget must not be exceeded.
:- budget(B), #sum{ Price, C : forSale(C,N,Price), bought(C,N) } > B.



Weak Constraints: 
a Linguistic Extension 

to Encode Wishes



Weak Constraints (DLV syntax)
Express desiderata - constraints which should possibly 
be satisfied, like Soft Constraints in CSP

Syntax :~ B.  

Minimize the number of (instances of) violated weak 
constraints.



Weak Constraints (DLV syntax) (cont.)
Weak constraints can be weighted according to their 
importance (the higher the weight, the more important 
the constraint). 

Syntax :~ B.  [ W : ]

Minimize the sum of the weights of violated (instances 
of the) weak constraint.



Exams Scheduling
1.  Assign course exams to time slots avoiding overlapping of exams 
of courses with common students

r1: assign(X,s1) | assign(X,s2) | assign(X,s3) :- course(X).
s1: :- assign(X,S), assign(Y,S), commonStudents(X,Y,N), N>0.

2.  If overlapping is unavoidable, then reduce it “As Much As
Possible” – Find an approximate solution
r2: assign(X,s1) | assign(X,s2) | assign(X,s3) :- course(X).
w2: :~ assign(X,S), assign(Y,S), commonStudents(X,Y,N), N>0.   [N:]

Scenarios (models) that minimizes the total number of “lost” exams
are preferred.



Weak Constraints (DLV syntax) (cont.)
Weak constraints can also be prioritized. 

Syntax :~ B.  [ W : L ]

Minimize the sum of the weights of  the (instances of) 
violated weak constraints at the highest priority level 
first; then the lower priority levels are considered one 
after the other in descending order.



Team Building 
(Prioritized Constraints)

Divide employees in two project groups p1 and p2.
A.Skills of group members should be different.
B. Persons in the same group should not be married each other.
C. Members of a group should possibly know each other.
Requirement A) is more important than B) and C)

assign(X,p1) | assign(X,p2) :- employee(X).
:~ assign(X,P), assign(Y,P), same_skill(X,Y). [ 1:2 ]
:~ assign(X,P), assign(Y,P), married(X,Y). [ 1:1 ]
:~ assign(X,P), assign(Y,P), X<>Y, not know(X,Y). [ 1:1 ]



Weak Constraints: formal semantics
Rules(P): set of the rules (including facts and strong constraints) 
of P
WC(P): weak constraints of P

Semantcs of programs without Priorities (in weak constraints):
Answer sets of Rules(P) minimizing the sum of the weights of 
the violated constraints in WC(P)

Semantics of programs with Priorities:
 minimize the sum of the weights of the violated constraints in 

the highest priority level;
 then minimize the sum of the weights of the violated 

constraints in the next lower level, etc.



Weak Constraints: ASP-Core-2 syntax
(DLV2, I-DLV+wasp) 

Syntax :~ B  [W@P, T1…Tn].

Satisfy B if possible; if not, pay W at priority P for each 
distinct tuple of terms T1…Tn. 



:~ p(X,Y). [ 1:1 ]
is equivalent to
:~ p(X,Y). [ 1@1, X,Y]

while
:~ p(X,Y). [ 1@1, X]
is different, and corresponds to
:~ q(X). [1:1]
q(X) :- p(X,Y).

Weak Constraints: projecting 



Weak Constraints: projecting (cont.) 

(a) :~ p(X,Y). [ 1@1, X] (equivalent to :~ q(X). [1:1] 
q(X) :- p(X,Y). )

(b) :~ p(X,Y). [ 1@1, X,Y]  (equivalent to  :~ p(X,Y) [1:1] )

With facts: 
p(1,2).  p(1,3).

(a) costs 1@1, while (b) costs 2@1.



The GCO (Guess/Check/Optimize) 
Programming Technique

Generalization of the Guess and Check method 
to express optimization problems

A program is made of 3 Modules:
[Guessing Part] defines the search space
[Checking Part] checks solution admissibility
[Optimizing Part] specifies a preference criterion  

(by means of weak constraints)



Exams Scheduling (with GCO)

%Guess:

assign(X,s1) | assign(X,s2) | assign(X,s3) :- course(X).        

%Optimize:
:~ assign(X,S), assign(Y,S), 

commonStudents(X,Y,N), N>0. [N@1, X,Y]



% Guess
assign(X,p1) | assign(X,p2) :- employee(X).

% Optimize
:~ assign(X,P), assign(Y,P), same_skill(X,Y). [1@2, X,Y]
:~ assign(X,P),assign(Y,P), married(X,Y). [1@1, X,Y] 
:~ assign(X,P), assign(Y,P), X<>Y, not know(X,Y). [1@1, X,Y] 

Team Building (with GCO)



The Traveling Salesman Person (TSP)*

inPath(X,Y) | outPath(X,Y) :- arc(X,Y,_).       Guess

:- inPath(X,Y), inPath(X,Y1), Y <> Y1. |
:- inPath(X,Y), inPath(X1,Y), X <> X1. |  Check
:- node(X), not reached(X). |

reached(X) :- start(X). Auxiliary Predicate
reached(X) :- reached(Y), inPath(Y,X).

*  “Path version” of TSP.

:~ inPath(X,Y), arc(X,Y,C).    [C@1, X,Y,C] Optimize



Minimum Spanning Tree
Given a weighted graph by means of edge(Node1,Node2,Cost), 

and node(N), compute a tree that starts at a root node, spans 
that graph, and has minimum cost

%Guess the edges that are part of the tree:
inTree(X,Y) | outTree(X,Y) :- edge(X,Y,C).       Guess

%Check that we are really dealing with a tree!
:- root(X), inTree(_,X). |
:- inTree(X,Y), inTree(X1,Y), X <> X1. |  
%and the tree is connected |  Check
:- node(X), not reached(X). |

%Minimize the cost of the tree
:~ inTree(X,Y), edge(X,Y,C).    [C@1, X,Y,C] Optimize

reached(X) :- root(X). Auxiliary Predicate
reached(X) :- reached(Y), inTree(Y,X).



Testing and Debugging with GCO
Develop DLP programs incrementally:
 Design the Guess module G first

 test that the answer sets of G (+the input facts) correctly 
define the search space

 Then the Check module C
 verify that the answer sets of G U C are the admissible 

problem solutions
 Finally the Optimize module O

 test that G U C U O generates the optimal solutions of the 
problem at hand.

Use small but meaningful problem test-instances!



Part III

Computational Issues



Computational Issues

Tackle high complexity by isolating simpler sub-
tasks

Problem: The complexity of DLP is very high 
(ΣP

2 and even ∆P
3), how to deal with that?

Tool: An in-depth Complexity Analysis



Main Decision Problems

[Cautious Reasoning]
Given a DLP program P, and a ground atom A, 

is A true in ALL answer sets of P?

[Brave Reasoning]
Given a DLP program P, and a ground atom A, 

is A true in SOME answer sets of P?



A relevant subproblem

[Answer Set Checking]
Given a DLP program P and an interpretation M, 

is M an answer set of Rules(P)?



Syntactic restrictions 
on DLP programs

 Head-Cycle Free Property 
[Ben-Eliyahu, Dechter]

 Stratification
[Apt, Blair, Walker]

Level Mapping: a function || || from ground (classical) 
literals of the Herbrand Base BP of P to positive 
integers.



Stratified Programs

P is (locally) stratified if there is a level mapping  
|| ||s of P such that for every rule r of P

 For any l in Body+(r), and for any l' in Head(r),  
|| l ||s <= || l’ ||s ;

 For any not l in Body-(r), and for any l' in 
Head(r),  || l ||s < || l’ ||s

Forbid recursion through negation.



Example: A stratified program

P1: p(a) | p(c) :- not q(a).
p(b) :- not q(b).

P1 is stratified:
||p(a)||s = 2,  ||p(b)||s = 2, ||p(c)||s = 2
||q(a)||s = 1,  ||q(b)||s = 1



Example: An unstratified program

P2: p(a) | p(c) :- not q(b).
q(b) :- not p(a)

P2 is not stratified,
No stratified level mapping exists, 
as there is recursion through negation!



Stratification Theorem
 If a program P is stratified and V-free, then P has at 

most one answer set.

 If, in addition, P does not contain strong negation and 
integrity constraint, then P has precisely one answer 
set.

 Under the above conditions, the answer set of P is 
polynomial-time computable.



Head-Cycle Free Programs

P is head-cycle free if there is a level 
mapping  || ||h of P such that for every 
rule r of P:

 For any atom l in Body+(r), and for any l' 
in Head(r),  || l ||h <= || l’ ||h ;

 For any pair of atoms, l, l’ in Head(r),    
|| l ||h <> || l’ ||h



Example: an head-cycle free program

P3: a | b.
a :- b.

P3 is head-cycle free:

|| a ||h  = 2;       || b ||h =  1



Example: a non head-cycle free 
program

P4: a | b.
a :- b.
b :- a.

P4 is not head-cycle free
No head-cycle free level mapping exists, 
as there is recursion through disjunction!



Head-Cycle Free Theorem

Every head-cycle free program P is equivalent to 
an V-free program shift(P) where disjunction is 
“shifted” to the body.

P: a | b :- c. shift(P): a :- c, not b.
b :- c, not a.



Complexity of Answer-Set Checking

{} nots not

{} P P P

Vh P P P

V coNP coNP coNP



Complexity of Brave Reasoning

{} nots w w,nots not w, not

{} P P P P NP ∆P
2

Vh NP NP ∆P
2 ∆P

2 NP ∆P
2

V ΣP
2 ΣP

2 ∆P
3 ∆P

3 ΣP
2 ∆P

3

Completeness under Logspace reductions



Intuitive Explaination
Three main sources of complexity:
1. the exponential number of answer set 

“candidates”
2. the difficulty of checking whether a candidate 

M is an answer set of Rules(P) (the minimality
of M can be disproved by exponentially many 
subsets of M)

3. the difficulty of determining the optimality of 
the answer set w.r.t. the violation of the weak 
constraints

The absence of source 1 eliminates both source 2 and source 3



Complexity of Cautious Reasoning

{} nots w w,nots not w, not

{} P P P P coNP ∆P
2

Vh coNP coNP ∆P
2 ∆P

2 coNP ∆P
2

V coNP ΠP
2 ∆P

3 ∆P
3 ΠP

2 ∆P
3

Note that < V, {} > is “only” coNP-complete!



Complexity of aggregates

p

(Brave Reasoning) Given a DLPA program P  and a ground atom L, is
L true in SOME answer set of P ?

(Cautious Reasoning) Given a DLPA program P  and ground atom L, 
is L true in ALL answer sets of P ?

Theorem Brave Reasoning on ground DLPA programs is  ∑2-complete

Theorem Cautios Reasoning on ground DLPA programs is coNP-
complete



Part IV

DLV: 
The state-of-the-art implementation of DLP



DLV: a KR System based on DLP

 Advanced knowledge modelling features
 Extended DLP
 Declarative “Guess/Check/Optimize” Programming Paradigm 
 Front-ends for specific AI Applications  

 Solid Implementation
 Implementation of DDB optimization techniques
 Implementation of NMR optimization techniques

 Interfaced to Relational and Object-Oriented Databases



Frontends

 Diagnosis 
 Planning
 Inheritance
 Meta-Interpreter
 SQL3
 External Frontends



Diagnosis Frontend
The frontend can handle Abductive Diagnosis and 
Consistency - Based Diagnosis.

Example - Diagnosing a computer network:

We work at computer a and cannot reach computer e.



Diagnosis Frontend II
Theory

reaches(X,X) :- node(X), not offline(X).

reaches(X,Z) :- reaches(X,Y), connected(Y,Z), not offline(Z).

Hypotheses

offline(a). offline(b). offline(c).

offline(d). offline(e). offline(f).

Observations

not offline(a). not reaches(a,e).



Inheritance Frontend
Object: Set of  DLP rules.
Program: Hierarchy of Objects.

bird { flies }
penguin : bird { - flies.}
tweety : penguin { } 

Objects: bird, penguin, and tweety. tweety < penguin < bird.
Contradictions are solved according with the inheritance hierarchy:

-flies overrides flies.

The only model is { -flies}.



SQL3 Frontend - Bill of  materials
The forthcoming ANSI SQL3 will include support for computing 
transitive closures.
SCHEMA consists_of(major,minor);

WITH RECURSIVE listofmaterials(major,minor) AS
(
SELECT c.major, c.minor FROM consists_of AS c
UNION 
SELECT c1.major, c2.minor
FROM consists_of AS c1, listofmaterials AS c2
WHERE c1.minor = c2.major
)

SELECT major, minor FROM listofmaterials;



Planning Frontend
fluents :  on(B,L) requires block(B), location(L).

occupied(B) requires location(B).
actions : move(B,L) requires block(B), location(L).

always :  executable move(B,L) if not occupied (B),
not occupied(L), B<>L.

inertial on(B,L).
caused occupied(B) if on(B1,B), block(B).
caused on(B,L) after move(B,L).
caused -on(B,L1) after move(B,L), on(B,L1), L<>L1.

noConcurrency.



System Architecture

Diagnosis 
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Some Exemplary Benchmarks (june 2001) 

Problem instance   Time  

Strategic Companies (770 C; 770 P) 1.29 s 

2QBF (1000 ∀; 20 ∃; 10000 C) 25.94s 

3COL (3000 E; 2000 N) 22.15s 

Hamcycle (60 N) 2.09s 

Blocksworld ( 10 blocks, 11 steps) 8.56s 

Hanoi (3 stacks, 4 disks, 15 steps) 6.39s 

Ramsey(3,6) ≠ 17 13.87s 

Cristal 15.26s 

Timetabling 26.11s 
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Other DLP Systems
 Smodels/GnT
 ASSAT (V-free programs, rewriting to SAT)
 NoMoRe (V-free programs, graph-colorings)
 Dislop (Model elimination, hyper-tableau calculi)
 DeReS (Default Logic)
 CCALC (Acyclic V-free programs, rewriting to SAT)
 XSB (Well-Founded Semantics)
 ASPPS (logic of propositional schemes)
 QUIP (based on QBF evaluators)
 SLG (Meta-Interpreter over prolog systems)
 DCS
 DisLog

Most systems accept only the V-free fragment of DLP



Smodels/GnT
 Smodels is the most widely used system        

for V-free programs.
 Disjunction is not supported in Smodels.
 GnT extends Smodels by disjunction.

 Rewriting + Nested calls to Smodels for answer set 
checking.

 Smodels supports a powerful construct for 
representing cardinality and weight constraints



Summary of Benchmarks
maximum size where all out of 50 random instances where solved 

in 2 hours of cpu time and 256MB of memory - August 2002

Problem DLV Smodels Smodels2 ASSAT
REACH 8500 450 n/a 450

SAMEGEN 9025 676 n/a 676

STRATCOMP 170 115 n/a n/a

QBF 48 40 n/a n/a

HAMPATH 105 50 40 50

TSP 26 24 28 n/a

SOKOBAN 95% 47% 47% n/a

RAMSEY 100% 29% 29% 39%



Applications
 The CMS project at CERN: An advanced deductive 

Database ApplicationCheck and Automatic Repair of 
Census Data

 Timetabling
 Education: Courses on Databases AI in European and 

American Universities
 Authorization Database Model
 “Implementation Engine” for KR purposes, 

experiments with new semantics and KR languages.



CERN DLV Example(1)
Projection of product data (assembly tree and part characteristics 
provided by PDMS) onto matrix of detector readout channels

EDB: product data & part composition members (description of 
relative location of immediate constituent parts of a composite part)



CERN DLV Example(2)

 Depth of assembly trees: 5 to 15
 ∃ integrity constraints (assembly finished?, manually 
inserted data feasible?)
 85*20 (1700) readout channels out of totally 80000.
The goal of this projection is to assign product data to 
particle detector readout channels, which will collect 
observation data that will be used for the diagnosis of the 
correct functioning of the particle detector.



Timetabling
Structural constraints give rise to integrity constraints.
Weak Constraints express desiderata.

The teacher of Geometry doesn’t like teaching in the
afternoon.
:~  timetable(Day,Hour,geometry), 

Hour >12. [1@1, Day, Hour]

The teacher of  French doesn’t like teaching on Saturday.
:~  timetable(saturday,Hour,french). [1@1, Hour]



New Applications
(Under Investigation)

 Information Integration
 Complex (CONP-hard) reasoning tasks arise in this 

context
 Knowledge Management

 Powerful Tool to Represent Complex Knowledge
(Support for Decisions Taking, Planning)

 Ontologies Specification and Reasoning
 Advanced Querying/Reasoning on Top of the Result of 

Data/Text Mining
(Combination of Induction with Deduction)

 Maneuvers Generation for the Space Shuttle
 Weak Constraints improve the quality of plans



Ongoing EU Projects

 INFOMIX: Boosting Information Integration
IST-2001-33570
3 Years (start: April 2002)
Main Contractor: University of Calabria 

 ICONS: Intelligent CONtent Management System
IST 2001-32429
2 Years (start: January 2002)

 Enhancing Disjunctive Logic Programming
for Knowledge Management Applications
Marie Curie Grant
2 Years (start November 2002)



Conclusion

 Easy representation of hard problems
 Possibility to solve problems unsolvable by SAT 

Checker or by other LP System (e.g., subset-minimal 
diagnosis, planning under incomplete knowledge)

 Front-end for other non-monotonic formalisms
 Interface to relational and object-oriented databases
 Used by researchers around the world
 Fully operational prototype available from

http://www.dlvsystem.com/



Function Symbols
and Lists



Function Symbols in ASP
Function symbols can be used to introduce «structured» 
terms in ASP (like «records» or «structs» in programming
languages).
 A binary tree can be represented as bt(R,LT,RT):

 subtree(bt(R,LT,RT), T)
 An employee can be represented as emp(ID,Name,Salary):

 assign_employee(emp(ID,Name,Salary), Dept)

Function terms can be nested:
 bt(R,bt(TL,LTL,TRL),RT)
 bt(R,bt(TL,LTL,bt(RL,nil,nil)),RT)



Function Symbols in ASP (cont.)

Functions can be used also in recursive predicates, allowing for the definition of 
infinite domains:
 int(0).
 int(s(N)) :- int(N).     

{ int(0), int(s(0)), int(s(s(0))), int(s(s(s(0)))) […] }  (Answer Set)

Functions can be used to simulate existential quantification of classical logics via 
skolemization:
 parent(X,Y)  person(X)
 parent(X,Y)  person(Y) first-order logics
 person(X)  ∃ Y : parent(X,Y)

 person(X) :- parent(X,Y).
 person(Y) :- parent(X,Y). ASP with functions
 parent(X,f(X)) :- person(X).
 person(a).

{ person(a), parent(a,f(a)), person(f(a)), parent(f(a),f(f(a))) […] }  (Answer Set)



Thus, functional terms are explicitly allowed: 
a TERM can be «simple» or «functional»

 p(s(X)) :- a(X, h(c)).

 We still focus on programs with safe rules!
 equal(X,X).
 p(X,f(Y)) :- q(X).

Not allowed

Function Symbols in ASP (cont.)



Functions?

 Functional terms are intended in the «traditional» 
logic programming sense: no explicit semantics is
attached. A ground functional term represents a 
«value», just as a function-free ground term.

 Functional terms can represent values that are 
not originally present in the Herbrand Universe
 Ex.:  hasFather(ciccio) :- father(ciccio,f(ciccio)).

The name of ciccio’s father does not need to 
be known



Functions and finiteness

 As already pointed out, a program with recursive function 
symbols might have an infinite ground program, which 
makes the computation infeasible in practice
 Ex.: int(s(X)) :- int(X).  int(0).

TP0 = TP(∅) = {int(0)}
TP1 = TP0 ∪ {int(s(0))}
TP2 = TP1 ∪ {int(s(s(0)))}
TP3 = TP2 ∪ {int(s(s(s(0))))}
….

The immediate consequence operator TP does not converge finitely 
to a fixpoint, even on a simple positive program like this.



Ensure Computability

 In general: 
 Function symbols + recursion Undecidability

 Horn Logic Programming is R.E.-complete  (Tarnlünd 1977) 

 Even a Turing Machine can be simulated
 see e.g., an encoding in DLV syntax at https://www.mat.unical.it/dlv-

complex#Examples

 Some subclasses of programs with function symbols
can be identified, that ensure termination. 
 Ex.: Finite-Domain programs, omega-restricted programs, 

argument-restricted programs, etc.
 Program belonging to such classes must comply with some 

syntactical restrictions



Arguments

 A predicate p of arity n has n arguments.
 p[k] stands for the argument at position k

 Ex.: predicate «p» of arity 3
 p(X,f(ciccio),a) 
 in this case, p[1] = X, p[2] = f(ciccio), p[3] = a 



Argument Graph GA(P)
Given a program P, GA(P) is a directed graph containing
a node for each argument p[i] of an IDB predicate p of P;
there is an arc (q[j], p[i]) iff there is a rule r in P having an
atom p(t1…tn) in the head, an atom q(v1…vm) in B+(r) and
p(t1…tn) and q(v1…vm) are such that the same variable
appears within terms ti and vj, respectively.

q(g(3)). 
p(X,Y) :- q(g(X)), t(f(Y)).
s(X) | t(f(X)) :- a(X), not q(X).
q(X) :- s(X), p(Y,X).

p[1]

p[2] q[1]

s[1]t[1]



Recursive Arguments

Given a program P, an argument p[i] is said to be
recursive with q[j] if there exists a cycle in the Argument
Graph of P involving both p[i] and q[j].
 the Argument Graph keeps track of (body-head) dependencies

between the arguments of predicates sharing some variable.
 it is a more detailed version of the commonly used (predicate)

dependency graph.

t(X,Y):- a(X,Y), not q(X).
q(f(X)) :- q(X), t(Y, f(X)).

Argument q[1] is recursive.

q[1]

t[2]



FD-programs: definition

 FINITE-DOMAIN programs: a simple, decidable subclass 
of ASP programs 

 All the arguments of a program P must be finite-domain.

 An argument q[k] in the Argument Graph is FINITE-
DOMAIN if for all occurrences q(…,t,…) of it appearing in 
the head of a rule, one of the following conditions holds:

1. t is variable free (e.g.  q(…, f(a,g(b)),…) is OK. ), or
2. t is subterm of another fd-argument appearing in the body   (e.g. 

q(…, X,…) ) :- p(f(X), … ) is OK if p[1] is fd), or
3. t appears in some body arguments which is not recursive with 

q[k]  (e.g. q(…, X,…) ) :- p(f(X), … ) is OK if p[1] is not recursive 
with q[k]



FD-programs: examples
 FD-program (q[1] is a FD argument)

q(f(0)). (condition 1 holds)
q(X) :- q(f(X)). (condition 2 holds)
q(f(X)) :- q(X), t(f(X)). (condition 3 holds)

 Non FD-program (s([1]) is not a FD argument)
q(f(0)). (q[1]: condition 1 holds)
q(X) :- q(f(X)). (q[1]: condition 2 holds)
s(f(X)) :- s(X). (s[1]: no condition hold)
v(X) :- q(X),  s(X). (v[1]: condition 2 holds)



Finitely-ground (FG) Programs

INTUITION: The class of Finitely Ground 
Programs is the set of programs for which the 
«intelligent» instantiation is finite and 
computable, i.e., the TP operator converges
finitely to a fix-point.



Finitely-ground (FG) and 
Finite Domain (FD) Programs

THEOREM: Every FD program is Finitely
Ground.

Example: The following program is not FD, even if it
is Finitely Ground.

p(f(X)) :- q(X).
q(X) :- p(X), r(X).



Functions in DLV / DLV2 
Functions are Implemented in DLV: it fully supports both Finitely Ground
Programs and Finite Domain programs. Actually, DLV is able to recognize
Argument Restricted (AR) programs, which is a super-class of FD. AR
programs require a more involved and less intuitive syntactic check to be
recognized.

If a program P is finitely ground, then DLV instantiator terminates over P,
generating its correct instantiation. By default, DLV checks the input
program P: if it belongs to the class of AR programs, then DLV guarantees
termination. If not, DLV returns an error.

The user must take over the responsibility about the program being finitely
ground in order to run non-AR programs. With option –nofinitecheck, DLV
skips the finite domain check. The instantiation will then terminates if the
program is FG.

DLV2 & I-DLV+WASP currently do not apply any syntactical check, so the
responsibility is left to the user.



Lists in DLV-DLV2-IDLV
 Very common data structure
 Easily obtained via function symbols

However, due to the usefulness
 explicit syntax is supported
 Dedicated built-ins are available



Lists in DLV-DLV2-IDLV
A list is a binary function denoted with a special
syntax:

[ H | T ]

where the first argument «H» is a term, called the
head of the list, and the second argument «T» is a list.

In addition, a list can be represented by explicitly
listing its elements.

[ a, b, c ] = [ a | [ b, c ] ] = [ a | [ b | [ c ] ] ]
= [ a | [ b | [ c | [ ] ] ] ]



Lists in DLV / DLV2 / I-DLV
LIST TERMS
A list term can be of the two forms:
− [ t1, . . . , tn ], where t1, . . . , tn are terms;
− [ h | t ], where h (the head of the list) is a term, and t (the tail of the list) is a
list term.

Examples:
 The term [ a,d,a ] in the atom palindromic([a,d,a])
 [ jan,feb,mar ]
 [jan | [ feb,mar,apr,may,jun ] ]
 [ [jan,31] | [ [ feb,28 ], [ mar,31 ], [ apr,30 ], [ may,31], [ jun,30 ] ] ].



Built-in predicates for Lists
I-DLV (and DLV2) comes with a rich library of built-in predicates
for list manipulation.

A built-in atom is of the form
&p(t0,.., tn ; u0,…, um)

where n,m >= 0

 t0,.., tn are input terms, and are separated from the output
terms u0,…, um by a semicolon (“;”);

 an input/output term can be either a constant or a variable.
Intuitively, output terms are computed on the basis of the input
ones, according to a semantics which is defined “a priori” for
each predicate, as reported next.



Built-in predicates for Lists



Lists: example
Compute all simple (i.e. with no repeated vertices)  paths in a 
graph:
simplePath([X|[Y]]) :- edge(X,Y).
simplePath([X|[Y|W]]) :- edge(X,Y), simplePath([Y|W]), 

not &member(X,[Y|W];).

Compute all simple cycles in a graph:
simpleCycle([X]) :- edge(X,X).
simpleCycle([X|L]) :- simplePath([X|L]), &last(L;Y), edge(Y,X).
Compute simple paths of maximum length:
maxPath(P) :- simplePath(P), &length(P;L), 

L = #max { X : simplePath(Q), &length(Q;X) }.



LISTS: Applications
 Lists can easily represent trees:
 [root| List-of-subtrees]
 Leaf node: [a|[]] = [a]
 [a | [ [b], [c | [ d ] ] ] ] 

- the list rooted in a      
- b and c are the children of a
- d is a child of c
- b and d are leaves

List can therefore represent the HTML trees of 
web pages



DIADEM
ERC Advanced Grant @Oxford - G. Gottlob

Domain-centric, Intelligent, Automated Data Extraction
 fully automated extraction from domain-specific websites

 no per site training, no user input other than the domain model
 main target: websites with structured records
 based on extensive domain knowledge

 web form understanding
 result page analysis (records, attributes)
 navigation blocks classification (next page link, detail pages)

 Template language on Datalog¬,Agg rules compiled to DLV, plus  
Gazetteers, GATE annotation&regex, ML classifiers 



Web Form Understanding with OPAL
Ontology-based Pattern Analysis with Logic

group(Es) :- similarFieldSequence(Es), 
leastCommonAncestor(A,Es), 
not hasAdditionalField(A,Es).

leastCommonAncestor(A,Es) :- commonAncestor(A,Es),
not ( child(C,A), commonAncestor(C,Es) ).

partOf(E,A) :- group(Es),
member(E,Es), leastCommonAncestor(A,Es).

• Recognizes and labels groups of fields + classifies them w.r.t. 
the domain ontology

• Reasoning on structural & visual patterns + annotations



Result Page Analyses with AMBER

Adaptable Model Based Extraction of Result Pages

Reasoning on annotations and page structure to identify records & attributes

price

location

consistent_cluster_members(C, N1, N2, N3) :- pivot(N1), pivot(N2), ...
similar_depth(N1, N2), similar_depth(N2, N3), similar_depth(N1,N3),

similar_tree_distance(N1, N2, N3).
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Exercises and DLV Lab



Homework (1)

Consider program
a :- b.
b.
and Interpretations: 
I1 = { a },  I2 = { b },  I3 = { a, b } 
which interpretations are models?
which interpretations are answer sets?



Homework (2)

Consider program
a :- b.
b :- not c.
and Interpretations: 
I1 = { a },  I2 = { c },  I3 = { a, b } 
which interpretations are models?
which interpretations are answer sets?



Homework (3)

Consider program
a :- b.
a | b.
and Interpretations: 
I1 = { a },  I2 = { b },  I3 = { a, b } 
which interpretations are models?
which interpretations are answer sets?



Homework (4)

Consider program
a :- b.
a | b.
:- not a.
what are the answer sets?



Homework (5)

Consider program
a :- b.
a | b.
:- a.
is there any answer set?



Homework (6)

Consider program
a :- b.
b :- a.
a | b.
and Interpretations: 
I1 = { a },  I2 = { b },  I3 = { a, b } 
which interpretations are models?
which interpretations are answer sets?



Homework (7)

Compute the ground instantiation of
p(X) :- q(X), not r(X).
q(a).
q(b).
r(a).
and determine the answer sets of the 

program. 



Answer to Homework (7)

Instantiation:
p(a) :- q(a), not r(a).
p(b) :- q(b), not r(b).
q(a).
q(b).
r(a).
Answer sets:  I = { p(b), q(a), q(b), r(a) }



Homework (8)

inPath(X,Y) | outPath(X,Y) :- arc(X,Y).

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1. 
:- node(X), not reached(X).

reached(X) :- start(X).
reached(X) :- reached(Y), inPath(Y,X).

Transform the Hamiltonian Path program, to make sure 
that the start arc is not reached again (i.e., is not the 
endpoint of some arc in the path).



Answer to Homework (8)

inPath(X,Y) | outPath(X,Y) :- arc(X,Y).

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1. 
:- node(X), not reached(X).

reached(X) :- start(X).
reached(X) :- reached(Y), inPath(Y,X).

:- start(X), inPath(Y,X).



Homework (9)
inPath(X,Y) | outPath(X,Y) :- arc(X,Y).

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1. 
:- node(X), not reached(X).
reached(X) :- start(X).
reached(X) :- reached(Y), inPath(Y,X).

Transform the Hamiltonian Path program, in a program for 
Hamiltonian Cycle (make sure that the start arc is reached
again, i.e., it is the end point of some arc in the path).
- Use the program to get the “tour version” of TSP.



Answer to Homework (9)
(a safety problem)

WARNING:
:- start(X), not inPath(Y,X).
does not work.
It would require each node to be connected to the start!
Suppose that the graph has 3 nodes: a, b, c.
The above constraint then has 3 instances (disregarding 
those with start(b) or start(c)):

:- start(a), not inPath(b,a).
:- start(a), not inPath(c,a).
:- start(a), not inPath(a,a).



Answer to Homework (9)
(safety)

LESSON:To avoid any problem, always use safe negation!

p(X)     :- a(X,Y), not q(Y,Z).    (unsafe Z)
p(X,Y) :- not a(X).                     (unsafe X,Y)
p(X)     :- a(X,Y), not q(_).        (unsafe _)

DLP systems anyway require safety.

SAFETY: A rule R is safe if each variable appearing in R occurs 
also in a positive body literal of R.



Answer to Homework (9)
first solution

inPath(X,Y) | outPath(X,Y) :- arc(X,Y).
:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1. 
:- node(X), not reached(X).
reached(X) :- start(X).
reached(X) :- reached(Y), inPath(Y,X).

endPoint(X) :- inPath(_,X).
:- start(X), not endPoint(X).



Answer to Homework (9)
a better solution

inPath(X,Y) | outPath(X,Y) :- arc(X,Y).

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1. 
:- node(X), not reached(X).

reached(X) :- start(Y), inPath(Y,X).
reached(X) :- reached(Y), inPath(Y,X).



Homework (10)
(Node Cover)

Design a DLP program to represent the following 
problem.

Given a graph <V,E> by means of edge(Node1,Node2), 
and node(N), find a node cover, that is, a subset 
V' of | such that for each edge <u,v> in E at 
least one of u and | belongs to V'.



Answer to Homework (10)
(Node Cover)

%Guess a set of nodes
inCover(X) | outCover(X) :- node(X).

%Check that all arcs are covered.
:- edge(X,Y), not inCover(X), not inCover(Y) .



Homework (11)
(Minimum Node Cover)

Design a DLP program to represent the following 
problem.

Given a graph <V,E> by means of edge(Node1,Node2), 
and node(N), find a minimum node cover, that is, 
a subset V' of | of minimum cardinality such that 
for each edge <u,v> in E at least one of u and | 
belongs to V'.



Answer to Homework (11)
(Minimum Node Cover)

%Guess a set of nodes
inCover(X) | outCover(X) :- node(X).

%Check that all arcs are covered.
:- edge(X,Y), not inCover(X), not inCover(Y) .

% Prefer smaller covering
% Minimize the cardinality of the coverings
:~ inCover(X). [1@1, X]



Running DLV
 Copy DLV to a dir which is in your  PATH
 Or make “alias dlv  DLV-DIR/dlv” in your .cshrc (or 

equivalent file).
 edit two files 3col and graph:
3col:   col(X,green) | col(X,blue) | col(X,red) :- node(X).

:- edge(X,Y), col(X,C), col(Y,C), X<>Y.
graph: node(a).   node(b).  node(c).   node(d).

edge(a,b).
edge(b,c).
edge(c,a).
edge(a,d).
edge(d,c).



Running DLV

> dlv 3col graph -filter=col -n=1

DLV [build DEV/Aug  1 2002   gcc 2.95.2 1999 1024 (release)]

{col(a,green), col(b,blue), col(c,red), col(d,blue)}

>



Combinatorial Auctions
In combinatorial auctions, bidders can bid for portfolios of several 

goods at once. Each bidder can place as many bids as s/he 
wants. The goal is to maximize the auctioneers revenue.

The input can be represented as follows, where requires states 
that some item is part of a bid, and bid represents the price 
associated with a bid:

requires(bid1, item1).
requires(bid1, item2).
requires(bid2, item1).
requires(bid2, item3).

:
bid(bid1, 21).
bid(bid2, 37).

Write a GCO program for DLV that solves this problem and also 
develop two test cases, where you see that your program works 
correctly.



Hints

Hint 2: By means of weak constraints one can 
more easily perform minimization than 
maximization. However, if you minimize the 
cost of those items not accepted, then the cost 
of those that are accepted is maximized in 
consequence!

Hint 1: The output should list the bids which are 
accepted by the auctioneer with the respective 
prices. It should be of the form {accept(bid1,p1), 
accept(bid3,p3),... }.



More on Combinatorial Auctions

The auctioneer, while preserving the maximization of the 
revenue as the first criterion, wants to be 
parsimonious w.r.t. the given items, that is, (s)he 
wants to keep how many items as possible. 

Refine the previous program to prefer, if two solutions 
give the same revenue, the solution where a smaller 
number of items is given away by the auctioneer. 

Hint 1: use an auxiliary predicate defining the givenItems 
in a solution.

Hint 2: Priorities in weak constraints are needed.
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