
Idee di McCarthy sull’IA
 1958, «Programs with Commonsense»

 In questo lavoro si riconosce che lo sviluppo di un artefatto
intelligente richiede di formalizzare il ragionamento di senso
comune

 Il ragionamento di senso comune è non monotono

 Anni 80-90 del secolo scorso: definizione di
formalismi logici adatti a rappresentare questo tipo
di ragionamento

 Agli inizi degli anni 80 nasce la DLP (Jack Minker)

Disjunctive Logic Programming:
Knowledge Representation
Techniques, Systems, and

Applications

Nicola Leone
Department of Mathematics and Computer Science

University of Calabria
leone@unical.it

Topics

 Context and Motivation
 Datalog
 Theoretical Foundations of DLP
 Knowledge Representation and Applications
 Computational Issues
 DLP Systems
 ASP Development tools
 Exercises
 AI implementation: project (mandatory)

MAIN FOCUS:
 Knowledge Representation and Applications
 Examples, lot of Examples
 Lab (help of Francesco Calimeri and Simona Perri)

GOAL:
 Getting a Powerful Tool for Solving Problems

in a Fast and Declarative way

Roots − declarative programming

 First-order logic as a programming language
 Expectations, hopes
easy programming, fast prototyping
handle on program verification
advancement of software engineering

Disjunctive Logic Programming (DLP)

 Simple, yet powerful KR formalism
 Widely used in AI
 Incomplete Knowledge

 Able to represent complex problems not
(polynomially) translatable to SAT
 A declarative problem specification is

executable

DLP Advantages

 Sound theoretical foundation (Model Theory)

 Nice formal properties (clear semantics)
 Real Declarativeness
Rules Ordering, and Goal Orderings is

Immaterial!!!
Termination is always guaranteed

 High expressive power ()ΣP
2

DLP Revolution

INTELLIGENT PROBLEM SOLVING

COMPLEX DATA/KNOWLEDGE MANIPULATION

Why is DLP approach “revolutionary” ? :

DLP Declarative Programming
vs Traditional Procedural Programming
 Traditional PROGRAMMING (OLD):

 Implement an Algorithm to solve the problem
 List commands or steps that need to be carried out

In order to achieve the results
 Tell the computer “HOW TO” solve the problem

 DLP DECLARATIVE PROGRAMMING
 Specify the features of the desidered solution
 NO ALGORITHMS
 Simply Provide a “Problem Specification”

DLP Revolution

Drawbacks

 Computing Answer Sets is rather hard ()

 Very few solid and efficient implementations
...but this has started to change:
 DLV, Clasp, …
 Cmodels, IDP, …

ΣP
2

What is DLP Good for? (Applications)

Artificial Intelligence, Knowledge Representation
& Reasoning

 Information Integration, Data cleaning,
Bioinformatics, ...

Employed for developing industrial applications

Applications
 Planning
 Theory update/revision
 Preferences
 Diagnosis
 Learning
 Description logics and semantic web
 Probabilistic reasoning
 Data integration and question answering
 Multi-agent systems
 Multi-context systems
 Natural language processing/understanding

Applications
 Argumentation
 Product configuration
 Linux package configuration
 Wire routing
 Combinatorial auctions
 Game theory
 Decision support systems
 Logic puzzles
 Bioinformatics
 Phylogenetics
 Haplotype inference

Applications
 System biology
 Automatic music composition
 Assisted living
 Robotics
 Software engineering
 Boundend model checking
 Verification of cryptographic protocols
 E-tourism
 Team building
 Data Cleaning
 Business Games

TEAM BUILDING
at Seaport of Gioia Tauro

The Problem: producing an optimal allocation of the
available personnel at the Seaport of Gioia Tauro

•A Computationally Complex Problem (NP-HARD)
•The complexity is due the presence of several constraints

 the size and the slots occupied by cargo boats,
 the allocation of each employee (e.g. each employee might
be employed in several roles of different responsibility, roles
have to be played by the available units by possibly applying a
round-robin policy, etc.)
The choice of the suitable skills
Contractual/ labour union constraints

DLP Revolution

TEAM BUILDING
at Seaport of Gioia Tauro

DLP Solution:
• Informations and constraints of the domain are modeled in DLP.
• The pure declarative nature of DLP language allows to define
reasoning modules for finding the desired allocation
• In a few seconds, the system can build new teams or complete the
allocation automatically when the roles of some key employees are
fixed manually.
• The port authority of Gioia Tauro is employing the system with
great satisfaction
• The system has been implemented in two months with only one
resource
• It is very flexible: can be modified in a few minutes, by
addind/editing logic rules

DLP Revolution

TEAM BUILDING
at Seaport of Gioia Tauro

DLP Revolution

Automatic Itinerary Search

The Problem: automatic construction of a complete itinerary from a given place to
another in the region Calabria.

DLP Solution:
• Implemented by exploiting an ONTOLOGY that models all the available
transportation means, their timetables, and a map with all the streets, bus stops, railways
and train stations
•A set of specifically devised DLP programs are used to build the required itineraries.
•The system allows the selection of some options:

Departure and Arrival
Preferred mean
Preferred transportation company
Minimization of travel distances
Travel times

•The application provides a web portal integrating the whole transportation system of
the Italian region Calabria, including both public and private companies.

DLP Revolution

Automatic Itinerary Search

DLP Revolution

Datalog

Datalog Syntax: Terms

 Terms are either constants or variables
 Constants can be either symbolic constants (strings starting

with some lowercase letter), string constants (quoted strings)
or integers.
 Ex.: pippo, “this is a string constant”, 123, …

 Variables are denoted by strings starting with some uppercase
letter.
 Ex.: X, Pippo, THIS_IS_A_VARIABLE, White, …

Datalog Syntax: Atoms and Literals

 A predicate atom has form p(t1,…, tn), where p is a predicate
name, t1,…, tn are terms, and n≥0 is the arity of the
predicate atom. A predicate atom p() of arity 0 is likewise
represented by its predicate name p without parentheses.
 Ex.: p(X,Y) - next(1,2) - q - i_am_an_atom(1,2,a,B,X)

 An atom can be negated by means of “not”.
 Ex: not a, not p(X), …

 A literal is an atom or a negated atom. In the first case it is
said to be positive, while in the second it is said to be
negative.

What is Datalog (I)
Datalog is the non-disjunctive fragment of DLP.

A (general) Datalog program is a set of rules of the form
positive body negative body

Rule: a :- b1, …, bk , not bk+1, …, not bm (1)

head body

where “a” and each “bi” are atoms.

Given a rule r of the form (1) above, we denote by:
 H(r): (head of r), the atom “a”
 B(r): (body of r), the set b1, …, bk , not bk+1, …, not bm of all body

literals
 B+(r): (positive body), the set b1, …, bk of positive body literals
 B-(r): (negative body), the set not bk+1, …, not bm of negative body

literals

Positive Datalog

A positive (pure) Datalog rule has the following form:

head :- atom1, atom2, …., atom,…

where all the atoms are positive (non-negated).

Ex.: britishProduct(X) :- product(X,Y,P), company(P,“UK”,SP).

Facts
 A ground rule with an empty body is called a fact.
 A fact is therefore a rule with a True body (an empty conjunction

is true by definition).
 The implication symbol is omitted for facts

parent(eugenio, peppe) :- true.
parent(mario, ciccio) :- true.
equivalently written by

parent(eugenio, peppe).
parent(mario, ciccio).

 Facts must always be true in the program answer!

What is Datalog (II)

We usually distinguish EDB predicates and IDB
predicates
• EDB: predicates appearing only in bodies or in facts.
EDB’s can be thought of as stored in a database.
• IDB: predicates defined (also) by rules. IDB’s are
intensionally defined, appear in both bodies and
heads.

Intuitive meaning of a Datalog program:
• Start with the facts in the EDB and iteratively derive
facts for IDBs.

Datalog as a Query Language

Datalog has been originally conceived as a query
language, in order to overcome some expressive
limits of SQL and other languages.

Exercise: write an SQL query retrieving all the cities
reachable by flight from Lamezia Terme, through a
direct or undirect connection.
Input: A set of direct connections between some
cities represented by facts for connected(_,_).

Datalog as a Query Language

Exercise (2): write an SQL query retrieving all
the cities indirectly reachable by flight from
Lamezia Terme, with a stop/coincidence in a
single city.

Exercise (3): write an SQL query retrieving all
the cities indirectly reachable by flight from
Lamezia Terme, with exactly 2
stops/coincidences in other cities.

Datalog and RECURSION

(original) Exercise: write a query retrieving all the cities
reachable by flight from Lamezia Terme, through a direct
or undirect connection.

A possible Datalog solution.
Input: A set of direct connections between some cities
represented by facts for connected(_,_).

reaches(lamezia,B) :- connected(lamezia,B).
reaches(lamezia,C) :- reaches(lamezia,B), connected(B,C).

Suppose we are representing a graph by a
relation edge(X,Y).

I want to express the query: Find all nodes
reachable from the others.

path(X,Y) :- edge(X,Y).
path(X,Y) :- path(X,Z), path(Z,Y).

Transitive Closure

Recursion (ancestor)

If we want to define the relation of arbitrary ancestors rather
than grandparents, we make use of recursion:

ancestor(A,B) :- parent(A,B).
ancestor(A,C) :- ancestor(A,B), ancestor(B,C).

An equivalent representation is

ancestor(A,B) :- parent(A,B).
ancestor(A,C) :- ancestor(A,B), parent(B,C).

Note the Full Declarativeness
The order of rules and of goals is immaterial:
ancestor(A,B) :- parent(A,B).
ancestor(A,C) :- ancestor(A,B), ancestor(B,C).

is fully equivalent to
ancestor(A,C) :- ancestor(A,B), ancestor(B,C).
ancestor(A,B) :- parent(A,B).

and also to
ancestor(A,C) :- ancestor(B,C), ancestor(A,B).
ancestor(A,B) :- parent(A,B).
NO LOOP!

Datalog Semantics

Later on, we will give the model-theoretic
semantics for DLP, and obtain model-theoretic
semantics of Datalog as a special case.

We next provide the operational semantics of
Datalog, i.e., we specify the semantics by giving
a procedural method for its computation.

Semantics: Interpretations and Models

Given a Datalog program P, an interpretation I for P is a set
of ground atoms.

An atom “a” is true w.r.t. I if a ∈ I; it is false otherwise.
A negative literal “not a” is true w.r.t. I if a ∉ I; it is false
otherwise.

Thus, an interpretation I assigns a meaning to every atom:
the atoms in I are true, while all the others are false.

An interpretation I is a MODEL for a ground program P if,
for every rule r in P, the H(r) is True w.r.t. I, whenever B(r) is
true w.r.t. I

Example: Interpretations

Given the program
a :- b, c.
c :- d.
d.

and the interpretation
I = {c,d}

the atoms c and d are true w.r.t. I, while the atoms a and b
are false w.r.t. I.

Example: Models

Given the program
r1: a :- b, c.
r2: c :- d.
r3: d.

and the interpretations
I1 = {b,c,d} I2={a,b,c,d} I3={c,d}

we have that I2 and I3 are models, while I1 is not, since the
body of r1 is true w.r.t. to I1 and the head is false w.r.t. I1.

Operational Semantics: ground programs
Given a ground positive Datalog program P and an interpretation I, the
immediate consequences of I are the set of all atoms “a” such that there
exists a rule “r” in P s.t. (1) “a” is the head of “r”, and (2) the body of “r”
is true w.r.t. I.

Tp(I) = { a | ∃ r ∈ P s.t. a = H(r) and B(r) ⊆ I }

where H(r) is the head atom, and B(r) is the set of body literals.

Example:
a :- b. c :- d. e :- a. I = {b}  Tp(I) = {a}.

THEOREM: On a positive Datalog program P, Tp always has a least
fixpoint coinciding with the least model of P.

Thus: Start with I={facts in the EDB} and iteratively derive facts for IDBs,
applying Tp operator.
Repeat until the least fixpoint is reached.

Operational Semantics: general case (non-ground)

What to do when dealing with a non-ground
program?

Start with the EDB predicates, i.e.: “whatever the
program dictates”, and with all IDB predicates
empty.

Repeatedly examine the bodies of the rules, and
see what new IDB facts can be discovered taking
into account the EDB plus all IDB facts derived
until the previous step.

Operational Semantics: Seminaive Evaluation

Since the EDB never changes, on each round we get
new IDB tuples only if we use at least one IDB tuple
that was obtained on the previous round.

Saves work; lets us avoid rediscovering most known
facts (a fact could still be derived in a second way…).

Resuming: a new fact can be inferred by a rule in a
given round only if it uses in the body some fact
discovered on the previous (last) round. But while
evaluating a rule, remember to take into account also
the rest (EDB + all derived IDB).

Operational Semantics: Derivation
Relation can be expressed intentionally through logical rules.

grandParent(X,Y) :- parent (X,Z), parent(Z,Y).
parent(a,b). parent(b,c).

Semantics: evaluate the rules until the fixpoint is reached:

M= { grandParent(a,c), parent(a,b), parent(b,c) }

Iteration #0: { parent(a,b), parent(b,c) }
Iteration #1: the body of the rule can be instantiated with

“parent(a,b)”, “parent(b,c)”
thus deriving { grandParent(a,c) }

Iteration #2: nothing new can be derived (it is easy to see that we
derived only “grandParent(a,c)”, and no rule having “grandParent”
in the body is present). Nothing changes  we stop.

Operational Semantics: Ancestor
(i) ancestor(X,Y) :- parent (X,Z), parent(Z,Y).
(ii) ancestor(X,Y) :- parent (X,Z), ancestor(Z,Y).
parent(a,b). parent(b,c). parent(c,d).

M= { parent(a,b), parent(b,c), parent(c,d), ancestor (a,c),
ancestor(b,d), ancestor(a,d) }

Iteration #0: { parent(a,b), parent(b,c), parent(c,d) }
Iteration #1: { ancestor(a,c), ancestor(b,d) } (from rule (i))

- useless to evaluate rule (ii): no facts for “ancestor” are true.
Iteration #2: - useless to evaluate rule (i): body contains only “parent” facts,

and no new were derived at last stage;
- some “ancestor” facts were just derived, and “ancestor” appears

in the body of rule (ii).
Thus we derive: { ancestor(a,d) } - Note: this is derived

exploiting “ancestor(b,d)” but also “parent(a,b)”, which was
derived before last stage.

Iteration #3: nothing changes  we stop.

Operational Semantics: Transitive Closure

a

b

c

d e
(i) path(X,Y) :- edge(X,Y).
(ii) path(X,Y) :- path(X,Z), path(Z,Y).

edge(a,b). edge (a,c). edge(b,d).
edge(c,d). edge(d,e).

Iteration #0: Edge: { (a,b), (a,c), (b,d), (c,d), (d,e) }
Path: { }

Iteration #1: Path: { (a,b), (a,c), (b,d), (c,d), (d,e) }
Iteration #2: Path: { (a,d), (b,e), (c,e) }
Iteration #3: Path: { (a,e) }
Iteration #4: Nothing changes We stop.

Note: number of iterations depends on the data. Cannot be
anticipated by only looking at the rules!

Negated Atoms
We may put “not” in front of an atom, to negate its meaning.

Of course, programs having at least one rule in which negation
appears aren’t said to be positive anymore.

Example: Think of arc(X,Y) as arcs in a graph.
s(X,Y) singles out the pairs of nodes <a,b> which are not
symmetric, i.e., there is an arc from a to b, but no arc from b
to a.

s(X,Y) :- arc(X,Y), not arc(Y,X).

Safety
A rule r is safe if

 each variable in the head, and
 each variable in a negative literal, and
 each variable in a comparison operator (<,<=, etc.)

also appears in a standard positive literal. In other words, all
variables must appear at least once in the positive body.

Only safe rules are allowed.

Ex.: The following rules are unsafe:
 s(X) :- a.
 s(Y) :- b(Y), not r(X).
 s(X) :- not r(X).
 s(Y) :- b(Y), X<Y.

In each case, an infinity of x’s can satisfy the rule, even if “r” is a
finite relation.

Problems with Negation and Recursion

Example:
IDB: p(X) :- q(X), not p(X).
EDB: q(1). q(2).

Iteration #0: q = {(1), (2)}, p = { }
Iteration #1: q = {(1), (2)}, p = {(1), (2)}
Iteration #2: q = {(1), (2)}, p = { }
Iteration #3: q = {(1), (2)}, p = {(1), (2)}
etc., etc. …

Recursion + Negation

“Naïve” evaluation doesn’t work when
there are negative literals.

In fact, negation wrapped in a recursion
makes no sense in general.

Even when recursion and negation are
separate, we can have ambiguity about
the correct IDB relations.

Stratified Negation

Stratification is a constraint usually placed
on Datalog with recursion and negation.

It rules out negation wrapped inside
recursion.

Gives the sensible IDB relations when
negation and recursion are separate.

To formalize strata use the labeled dependency
graph:
 Nodes = IDB predicates.
 Arc b -> a if predicate a depends on b (i.e., b

appears in the body of a rule where a appears in
the head), but label this arc “–” if the occurrence
of b is negated.

A Datalog program is stratified if NO CYCLE of the
labeled dependency graph contains an arc labeled
“-”.

Stratified Negation: Definition

Example: unstratified program

p(X) :- q(X), not p(X).

- p

Unstratified: there is a cycle with a “-” arc.

Example: stratified program
EDB = source(X), target(X), arc(X,Y).
Define “targets not reached from any source”:

reach(X) :- source(X).
reach(X) :- reach(Y), arc(Y,X).
noReach(X) :- target(X), not reach(X).

NoReach

Reach

-
Stratum 0:
No “–” arcs on
any path in

Stratum 1:
some “-” arc
incoming from
Stratum 0

Minimal Models

As already said, when there is no
negation, a Datalog program has a
unique minimal (thus minimum) model
(one that does not contain any other
model).

But with negation, there can be several
minimal models.

a :- not b.

Models: {a} {b}

Both are minimals. But stratification allows us to
single out model {a}, which is indeed the
(unique) answer set.

Example: Multiple Models (1)

DEFINITION: Given a strongly-connected
component C of the dependency graph of a
given program P, the subprogram subP(C) is
the set of rules with an head predicate
belonging to C.

Subprograms

Evaluation of Stratified Programs 1

When the Datalog program is stratified, we can
evaluate IDB predicates of the lowest-stratum-first.

Once evaluated, treat them as EDB for higher strata.

METHOD: Evaluate bottom-up the subprograms of
the components of the dependency graph.

NOTE: The evaluation of a single subprogram is
carried out by the (semi)NAÏVE method.

Evaluation of Stratified Programs 2

INPUT: EDB F, IDB P
 Compute the labeled dependency graph DG of P;
 Build a topological ordering C1,...,Cn of the

components of DG;
 M= F;
 For i=1 To n Do

M = SemiNaive(M U subP(Ci))
% compute the least fixpoint of Tp on

(M U subP(Ci))
 OUTPUT M;

Stratified Model: example
a :- not b.
b :- d.

Two components: {a} and {b}.
subP({b}) = {b :- d.} subP({a}) = {a :- not b.}

- {b} is at the lowest stratum -> start evaluating subP({b}).
- The answer set of subP({b}) is AS(subP({b})) = {}.

 “{}” is the input for subP({a}).
- The answer set of subP({a}) U {} is AS(subP({a})) = {a},

which is the (unique) answer set of the original program.

a

b
-

Example: Stratified Evaluation (2-1)
IDB: reach(X) :- source(X).

reach(X) :- reach(Y), arc(Y,X).
noReach(X) :- target(X), not reach(X).

EDB: node(1). node(2). node(3). node(4).
arc(1,2), arc(3,4). arc(4,3)
source(1), target(2), target(3).

-
reach

noReach

Stratum 0

Stratum 1

We have two components:
C1 = {reach} C2 = {noReach}

And the related subprograms are:
subP({reach}) = { reach(X) :- source(X).

reach(X) :- reach(Y), arc(Y,X). }
subP({noReach}) = { noReach(X) :- target(X), not reach(X). }

C1 is at a lower stratum w.r.t. C2, thus the subprogram of C1 has to
be computed first.

Example: Stratified Evaluation (2-2)
IDB: reach(X) :- source(X).

reach(X) :- reach(Y), arc(Y,X).
noReach(X) :- target(X), not reach(X).

EDB: node(1). node(2). node(3). node(4).
arc(1,2), arc(3,4). arc(4,3)
source(1), target(2), target(3).

Answer Set of subP(C1) U EDB
Iteration #0: facts = { source(1), target(2), target(3),... }
Iteration #1: { reach(1) }
Iteration #2: { reach(2) }
Iteration #3: { }  we stop.

Evaluating through strata 
Answer Set: { reach(1), reach(2), noReach(3), + facts }.

-
reach

noReach

Stratum 0

Stratum 1

M(subP(C1)) =
{ reach(1), reach(2) + facts }

Answer Set of subP(C2) U M(subP(C1))
Iteration #0: M(subP(C1) = { reach(1), reach(2) + facts }
Iteration #1: { noReach(3) }
Iteration #2: { }  we stop.

M(subP(C2)) =
{ noReach(3), reach(1), reach(2) + facts }

Disjunctive logic programming

Disjunctive Datalog

Answer Set Programming

Foundations of DLP:
Syntax and Semantics

a bit boring, but needed....

getFunTomorrow :- resistToday.

(Extended) Disjunctive Logic Programming
Datalog extended with
 full negation (even unstratified)
 disjunction
 integrity constraints
 weak constraints
 aggregate functions
 function symbols, sets, and lists

Disjunctive Logic Programming
SYNTAX
Rule: a1 | … | an :- b1, …, bk , not bk+1 , …, not bm
Constraints: :- b1 , …, bk , not bk+1 , …, not bm
Program: A finite Set P of rules and constraints.

- ai bi are atoms
- variables are allowed in atoms’ arguments

mother(P,S) | father(P,S) :- parent(P,S).

Example Disjunction

In a blood group knowledge base one may express that the genotype
of a parent P of a person C is either T1 or T2, if C is heterozygot with
types T1 and T2:

genotype(P,T1) | genotype(P,T2) :-
parent(P,C), heterozygot(C,T1,T2).

In general, similar to programs with unstratified negation, programs
which contain disjunction can have more than one minimal model.

Arithmetic Built-ins
Fibonacci

fib0(1,1).
fib0(2,1).
fib(N,X) :- fib0(N,X).
fib(N,X) :- fib(N1,Y1), fib(N2,Y2),

+(N2,2,N), +(N1,1,N), +(Y1,Y2,X).

Unbound builtins
less(X,Y) :- #int(X), #int(Y), X < Y.
num(X) :- *(X,1,X), #int(X).

Note that an upper bound for integers has to be specified.

Informal Semantics

Rule: a1 | … | an :- b1, …, bk , not bk+1 , …, not bm
If all the b1 …bk are true and all the bk+1 … bm are false, then at least one among a1

…an is true.

isInterestedinDLP(john) | isCurious(john) :- attendsDLP(john).
attendsDLP(john).

Two (minimal) models, encoding two plausible scenarios:

M1: {attendsDLP(john), isInterestedinDLP(john) }

M2: {attendsDLP(john), isCurious(john) }

Disjunction

is minimal
a | b | c ⇒ { a }, { b }, { c }

actually subset minimal
a | b.
a | c. ⇒ {a}, {b,c}

but not exclusive

a | b.
a | c.
b | c.

⇒ {a,b}, {a,c}, {b,c}

Informal Semantics

Constraints: :- b1 , …, bk , not bk+1 , …, not bm
Discard interpretations which verify the condition

:- hatesDLP(john), isInterestedinDLP(john).
hatesDLP(john).
isInterestedinDLP(john) | isCurious(john) :- attendsDLP(john).
attendsDLP(john).

first scenario ({attendsDLP(john), isInterested(john) }) is discarded.

only one plausible scenario:
M: { attendsDLP(john), hatesDLP(john), isCurious(john) }

Integrity Constraints
When encoding a problem, its solutions are given by the models of the
resulting program. Rules usually construct these models. Integrity
constraints can be used to discard models.

:- L1, … , Ln.
means: discard models in which L1, … , Ln are simultaneously true.

a | b.
a | c.
b | c.

:- a. ⇒ {b, c}

⇒ {a,b}, {a,c}, {b,c}

(Formal) Semantics: Program Instantiation
Herbrand Universe, UP= Set of constants occurring in program P
Herbrand Base, BP= Set of ground atoms constructible from UP and Pred.
Ground instance of a Rule R: Replace each variable in R by a constant in UP

Instantiation ground(P) of a program P: Set of the ground instances of its rules.

Example: isInterestedinDLP(X) | isCurious(X) :- attendsDLP(X).
attendsDLP(john).
attendsDLP(mary).

UP={ john, mary }

isInterestedinDLP(john) | isCurious(john) :- attendsDLP(john).
isInterestedinDLP(mary) | isCurious(mary) :- attendsDLP(mary).
attendsDLP(john).
attendsDLP(mary).

A program with variables is just a shorthand for its ground instantiation!

Interpretations and Models
Interpretation I of a program P:

set of ground atoms of P.

Atom q is true in I if q belongs to I; otherwise it is false.

Literal not q is true in I if q is false in I; otherwise it is false.

Interpretation I is a MODEL for a ground program P if, for every
R in P, the head of R is True in I, whenever the body of R is
true in I

Semantics for Positive Programs
We assume now that Programs are ground
(just replace P by ground(P)) and Positive (not -

free)

I is an answer set for a positive program P if it is
a minimal model (w.r.t. set inclusion) for P

-> Bodies of constraint must be false.

Example (Answer set for a positive program)
isInterestedinDLP(john) | isCurious(john) :- attendsDLP(john).
isInterestedinDLP(mary) | isCurious(mary) :- attendsDLP(mary).
attendsDLP(john).
attendsDLP(mary).

I1 = { attendsDLP(john) } (not a model)
I2 = { isCurious(john), attendsDLP(john), isInterestedinDLP(mary),

isCurious(mary), attendsDLP(mary) } (model, non minimal)
I3 = { isCurious(john), attendsDLP(john), isInterestedinDLP(mary),

attendsDLP(mary) } (answer set)
I4={ isInterestedinDLP(john), attendsDLP(john), isInterestedinDLP(mary),

attendsDLP(mary) } (answer set)
I5 = { isCurious(john), attendsDLP(john), isCurious(mary), attendsDLP(mary) }

(answer set)
I6={ isInterestedinDLP(john), attendsDLP(john), isCurious(mary),

attendsDLP(mary) } (answer set)

Example (Answer set for a positive program)
Let us ADD:
:- hatesDLP(john), isInterestedinDLP(john).
hatesDLP(john).

(same interpretations as before + hatesDLP(john))
I1 = { attendsDLP(john), hatesDLP(john) } (not a model)
I2 = { isCurious(john), attendsDLP(john), isInterestedinDLP(mary), isCurious(mary),

attendsDLP(mary), hatesDLP(john) } (model, non minimal)
I3 = { isCurious(john), attendsDLP(john), isInterestedinDLP(mary), attendsDLP(mary) ,

hatesDLP(john) } (answer set)
I4={ isInterestedinDLP(john), attendsDLP(john), isInterestedinDLP(mary), attendsDLP(mary),

hatesDLP(john) } (not a model)!!!
I5 = { isCurious(john), attendsDLP(john), isCurious(mary), attendsDLP(mary),

hatesDLP(john) } (answer set)
I6={ isInterestedinDLP(john), attendsDLP(john), isCurious(mary), attendsDLP(mary),

hatesDLP(john) } (not a model)!!!

Semantics for Programs with Negation

Consider general programs (with NOT)

The reduct or of a program P w.r.t. an interpretation I is the
positive program PI, obtained from P by

 deleting all rules with a negative literal false in I;
 deleting the negative literals from the bodies of the remaining

rules.

An answer set of a program P is an interpretation I such that I is
an answer set of PI.

Answer Sets are also called Stable Models.

Example (Answer set for a general program)

P: a :- d, not b.
b :- not d.
d.

I = { a, d }

PI : a :- d.
d.

I is an answer set of PI and therefore it is an answer set of P.

Answer sets and minimality
An answer set is always a minimal model (also with negation).
In presence of negation minimal models are not necessarily answer sets
P: a :- not b.

Minimal Models: I1 = { a }
I2 = { b }

Reducts:
PI1 : a.
PI2 : {}

I1 is an answer set of PI1 while I2 is not an answer set of PI2 (it is not minimal,
since empty set is a model of PI2).

PI1 is the only answer set of P.

Some Useful Theorems

Datalog Semantics: a special case

The semantics of Datalog is the same as for DLP (Datalog
programs are DLP programs).
Since Datalog programs have a simpler form, we can have for
Datalog the following characterization:

 the answer set of a positive datalog program is the least
model of P

(i.e. the unique minimal model of P).

Why does this work?

THEOREM: A positive Datalog program has always a (unique)
minimal model.
PROOF: The intersection of two models is guaranteed to be
still a model; thus, only one minimal model exists.

Theorem 1

Example:
The logic program

a :- b.
has {} as unique answer set.

Let P be a logic program.
If the empty set ‘{}’ is an answer set for P, it is
unique.

Theorem 2

Example:
The logic program

a | b :- c.
c.
d.

has {a,c,d} and {b,c,d} as answer sets, and both
contain the facts {c,d}.

Let P be a logic program, and facts(P) be the set
containing all and only the facts in P.
If S is an answer set for P, then facts(P)⊆S.

Theorem 3

Example:
The logic program P

a | b :- c.
d.
e.

has {d,e} = facts(P) as unique answer set.

Let P be a logic program, and facts(P) the set
containing all and only the facts in P.
If facts(P) is an answer set, it is unique.

Definition
Let P be a logic program, and I an interpretation
for P. An atom a∈ I is supported in I if there
exists a rule r∈ P such that body(r) is true w.r.t.
I and head(r)∩ I = a (i.e., a is the only true
atom appearing in the head of r).

Example:
P: d. c:-d. k :- not d. a | b :- c. e | c.
I = { d, c, k, a, e }
d, c, and a are supported w.r.t. I
k and e are not supported w.r.t. I

Theorem 4

Example:
For the logic program P

a | b :- c.
d.
e.

I={a,d,e} is a model, but a is not supported -> I is not
an answer set.

Let P be a logic program, and I a model for P.
I is an answer set for P only if for each atom a∈
I, a is supported w.r.t. I.

Question

The answer is NO!

Example:
P: a :- a.
I={a} is a supported model
I is not an answer set. {} is a model, I is not minimal.

Is supportedness sufficient to guarantee that a
model is an answer set?
That is, is every supported model an answer set?

Supportedness is not sufficient only in presence of CYCLES

Positive dependency graph:
 Nodes = IDB predicates.
 Arc b -> a if predicate a depends on predicate b

positively (i.e., b appears in the positive body of a
rule featuring a in the head).

Note that negative literals do not produce any arc.

Positive Dependency Graph

Example (DG) (1)

For the logic program P1 :
a | b.
c :- a.

c :- b, not d.
the dependency graph is the following:

a b d

c

Example (DG) (2)

For the logic program P2 :
a | b. c :- a. c :- b.
d | e :- a. d :- e. e :- d, not b.

the dependency graph is the following:

a b

c
e d

Definition (acyclic program)
Let P be a logic program. The program is
acyclic iff its (positive) Dependency Graph is
acyclic; it is cyclic otherwise.

Example
Consider the programs P1 and P2 from the previous

examples.
P1 is acyclic, while P2 is not.

Theorem 5

Example:
For the logic program P

a :- b.
b :- a.

I={a,b} is a model, and both atoms are supported, but since P
is not acyclic this is not sufficient to guarantee that I is an
answer set. Indeed, it is easy to see that I is not an answer
set.

For the reader: Which are the answer sets for P?

Let P be an acyclic (i.e., non-recursive) logic
program, and I a model for P. I is an answer set
for P if and only if for each atom a∈ I, a is
supported w.r.t. I.

Part II

A (Declarative) Methodology for Programming
in DLP

DLP – How To Program?
Idea: encode a search problem P by a DLP program LP.
The answer sets of LP correspond one-to-one to the
solutions of P .

Rudiments of methodology
• Generate-and-test programming:

- Generate (possible structures)
- Weed out (unwanted ones)

by adding constraints (“Killing” clauses)
• Separate data from program

“Guess and Check” Programming
Answer Set Programming (ASP)

• A disjunctive rule “guesses” a solution candidate.

• Integrity constraints check its admissibility.

From another perspective:

• The disjunctive rule defines the search space.

• Integrity constraints prune illegal branches.

Given a graph, select a subset S of the vertices so that all edges are
covered (i.e., every edge has at least one of the two vertices in S)

Example: node(1). node(2). node(3). edge(1,2). edge(1,3).

Guess: inS(X) ∨ outS(X) :- node(X).

Eight answer sets, encoding the eight plausible scenarios:
inS = {1,2,3}, outS = ∅ AS1={inS(1), inS(2), inS(3)}
inS= {1,2}, outS = {3} AS2={inS(1), inS(2), outS(3)}
… …
inS= {1}, outS = {2,3} AS7={inS(1), outS(2), outS(3)}
inS = ∅ , outS = {1,2,3} AS8={outS(1), outS(2), outS(3)}

Check: :- edge(X,Y), not inS(X), not inS(Y).
Discards:
{outS(1), outS(2),outS(3)}
{inS(2), outS(1), outS(3)},
{inS(3), outS(1), outS(2)}

1 2

3

Vertex Cover

3-colorability
Input: a Map represented by state(_) and border(_,_).
Problem: assign one color out of 3 colors to each state

such that two neighbouring states have always different
colors.

Solution:
col(X,red) | col(X,green) | col(X,blue) :-state(X). } Guess

:- border(X,Y), col(X,C), col(Y,C). } Check

3-colorability
state(a). state(b). state(c). state(d).

border(a,b). border(b,a). border(a,c). border(c,a). border(c,d). border(d,c).

col(X,red) | col(X,green) | col(X,blue) :- state(X).

Instantiation:
col(a,red) | col(a,green) | col(a,blue) :- state(a).
col(b,red) | col(b,green) | col(b,blue) :- state(b).
col(c,red) | col(c,green) | col(c,blue) :- state(c).
col(d,red) | col(d,green) | col(d,blue) :- state(d).

Answer Sets:
{ col(a,red), col(b,red), col(c,red), col(d,red) }
{ col(a,red), col(b,red), col(c,red), col(d,blue) }

……..
{ col(a,red), col(b,blue), col(c,blue), col(d,red) }

……..
{ col(a,green), col(b,green), col(c,green), col(d,green) }

3-colorability
state(a). state(b). state(c). state(d).

border(a,b). border(b,a). border(a,c). border(c,a). border(c,d). border(d,c).

col(X,red) | col(X,green) | col(X,blue) :- state(X).

Instantiation:
col(a,red) | col(a,green) | col(a,blue) :- state(a).
col(b,red) | col(b,green) | col(b,blue) :- state(b).
col(c,red) | col(c,green) | col(c,blue) :- state(c).
col(d,red) | col(d,green) | col(d,blue) :- state(d).

:- border(X,Y), col(X,C), col(Y,C).

Instantiation:
:- border(a,b), col(a,red), col(b,red). :- border(c,d), col(c,red), col(d,red).
:- border(a,b), col(a,green), col(b,green). :- border(c,d), col(c,green), col(d,green).
:- border(a,b), col(a,blue), col(b,blue). :- border(c,d), col(c,blue), col(d,blue).

…………. …………..

3-colorability
Instantiation:
col(a,red) | col(a,green) | col(a,blue) :- state(a).
col(b,red) | col(b,green) | col(b,blue) :- state(b).
col(c,red) | col(c,green) | col(c,blue) :- state(c).
col(d,red) | col(d,green) | col(d,blue) :- state(d).

:- border(a,b), col(a,red), col(b,red). :- border(c,d), col(c,red), col(d,red).
:- border(a,b), col(a,green), col(b,green). :- border(c,d), col(c,green), col(d,green).
:- border(a,b), col(a,blue), col(c,blue). :- border(c,d), col(c,blue), col(d,blue).

Answer Sets:
{ col(a,red), col(b,red), col(c,red), col(d,red) } NO
{ col(a,red), col(b,red), col(c,red), col(d,blue) } NO

……..
{ col(a,red), col(b,blue), col(c,blue), col(d,red) } YES

……..
{ col(a,green), col(b,green), col(c,green), col(d,green) } NO

Hamiltonian Path (HP) (1)

Input: A directed graph represented by node(_) and arc(_,_),
and a starting node start(_).

Problem: Find a path beginning at the starting node which
contains all nodes of the graph.

Hamiltonian Path (HP) (2)

inPath(X,Y) | outPath(X,Y) :- arc(X,Y). Guess

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1. Check
:- node(X), not reached(X).
:- inPath(X,Y), start(Y). % a path, not a cycle

reached(X) :- start(X). Auxiliary Predicate
reached(X) :- reached(Y), inPath(Y,X).

Strategic Companies(1)

Input: There are various products, each one is produced
by several companies.

Problem: We now have to sell some companies.
What are the minimal sets of strategic companies,
such that all products can still be produced?
A company also belong to the set, if all its
controlling companies belong to it.

strategic(Y) | strategic(Z) :- produced_by(X, Y, Z). Guess

strategic(W) :- controlled_by(W, X, Y, Z), Constraints
strategic(X), strategic(Y), strategic(Z).

Strategic Companies - Example

pasta

wine

tomatoes

barilla

frutto

saiwa

budweiser

heineken

panino bread

beer

barilla

frutto

saiwa

budweiser

heineken

Complexity Remark

The complexity is in NP, if the checking part does
not “interfere” with the guess.

“Interference” is needed to represent problems.P
2Σ

Testing and Debugging with GC
Develop DLP programs incrementally:
 Design the Data Model

 The way the data are represented (i.e., design predicates
and facts representing the input)

 Design the Guess module G first
 test that the answer sets of G (+the input facts) correctly

define the search space
 Then the Check module C

 verify that the answer sets of G U C are the admissible
problem solutions

Use small but meaningful problem test-instances!

Satisfiability
 Boolean, or propositional, satisfiability (abbreviated

SAT) is the problem of determining if there exists an
interpretation that satisfies a given Boolean formula.

 Conjunctive Normal form (CNF): a formula is a
conjunction of clauses, where a clause is a disjunction
of boolean variables.

 3-SAT: only 3-CNF formulas (i.e. exactly three
variables for each clause)

 Problem: Find satisfying truth assignments of Φ (if any).

)...(1
1

iici

n

i
dd ∨∨=Φ ∧

=

)(321
1

iii

n

i
ddd ∨∨=Φ ∧

=

SAT: example
(d1 v -d2 v -d3) ∧ (-d1 v d2 v d3)

 Satisfying assignments:
{ d1, d2, d3}
{ d1, -d2, d3}
{ d1, d2, -d3}
{-d1, -d2, d3}
{-d1, -d2, -d3}
{-d1, d2, -d3}

 Non Satisfying assignments:
{ d1, -d2, -d3}
{-d1, d2, d3}

Exercise
Design a uniform (non-ground) encoding for SAT.

Input: a fact for each propositional clause

Example: (d1 v -d2 v -d3) ∧ (-d1 v d2 v d3)
 clause(d1,nd2 , nd3). clause(nd1,d2 ,nd3).

Design a program such that the answer sets of the
program are in a one-to-one correspondence with the
satisfying assignements of the input formula.

SAT: ASP encoding
Add a guessing rule for each propositional variable

∀ di  di | ndi.
Add a constraint for each clause, complementing the
variables

∀ di1 v di2 v di3  :- Li1, Li2, Li3

where Lij = a if dij = -a, and Lij = not a if dij = a

Example: SAT  ASP
Formula

(d1 v -d2 v -d3) ∧ (-d1 v d2 v d3)
ASP encoding:
 d1 | nd1. :- not d1, d2, d3.

 d2 | nd2. :- d1, not d2, not d3.

 d3 | nd3.
Answer Sets
{ d1, d2, nd3} {nd1, nd2, nd3}
{nd1, d2, nd3} {nd1, nd2, d3}
{ d1, nd2, d3} { d1, d2, d3}

Planning - Blocksworld

 Objects: Some blocks and a table.
 Fluent: on(B, L, T): Exactly one block may be on

another block, and arbitrary many block may be on the
table. Every block must be on something.

 Action: move(B, L, T): A block is moved from one
location to another one. The moved block must be
clear and the goal location must be clear, if it is a
block.

 Time: There is a finite number of timeslots. An action
is carried out between two timeslots. Only one action
can be carried out at a time.

Blocksworld(1)

Blocksworld(2)

Describe the move action and its effects:

move(B,L,T) | no_move(B,L,T) :- block(B), location(L), time(T).
on(B,L,T1) :- move(B, L, T), next(T,T1).

Enforce the preconditions for the move:

:- move(B,L,T), on(B1,B,T).
:- block(B1), move(B,B1,T), on(B2,B1,T).
:- move(B,L,T), lasttime(T).

No concurrency:

:- move(B,L,T), move(B1,L1,T), B<>B1.
:- move(B,L,T), move(B1,L1,T), L<>L1.

Blocksworld(3)
Inertia:
on(B,L,T1) :- on(B,L,T), next(T,T1), not no_on(B,L,T1).
no_on(B,L,T1) :- no_on(B,L,T), next(T,T1), not on(B,L,T1).

A block cannot be and not be on a location at the same time:
:- on(B,L,T), no_on(B,L,T).

A block cannot be at two locations or on itself:
:- on(B,L1,T), on(B,L,T), L<>L1.
:- on(B,B,T).

Specification of time and objects:
time(T) :- #int(T). lasttime(#maxint).
next(T,T1) :- #succ(T,T1).
location(table). location(L) :- block(L).

Blocksworld Instance - Sussman anomaly

c
ab

b
a

cinitial: goal:

Define the involved blocks and the initial and goal situations:
block(a). block(b). block(c).

on(a,table,0). on(b,table,0). on(c,a,0).

on(a,table,#maxint), on(b,a,#maxint), on(c,b,#maxint) ?

The number of available timeslots is given when invoking DLV:
$ dlv blocksworld sussman -N=3 -pfilter=move

{move(c,table,0), move(b,a,1), move(c,b,2)}

Some programming tricks
(efficiency)

Example: Clique
Given an indirected Graph compute a clique: a subset of the

nodes such that no pair of nodes in the clique are not
connected by an arc.

Input: node(_) and edge(_; _) (symmetric).
Natural Encoding:
inClique(X) | outClique(X) :- node(X).
:- inClique(X) | inClique(Y), not edge(X, Y), X <> Y.

Optimized Encoding:
inClique(X) | outClique(X) :- node(X).
:- inClique(X), inClique(Y), not edge(X, Y), X < Y.

Avoid redundant constraints

Example: 3-col – encoding 1
Encoding 1:
R1 col(X, red) | col(X, blue) | col(X, green) :- node(X).
R2 :- edge(X, Y), col(X,C), col(Y,C).

Example instance:
node(1). node(2). node(3).
edge(1,2). edge(1,3).

Grounding produces (in addition to facts) :
col(1,red) v col(1,blue) v col(1,green).
col(2,red) v col(2,blue) v col(2,green).
col(3,red) v col(3,blue) v col(3,green).
:- col(1,red), col(2,red). :- col(1,green), col(2,green).
:- col(1,blue), col(2,blue). :- col(1,red), col(3,red).
:- col(1,green), col(3,green). :- col(1,blue), col(3,blue).

Keep the guess as small as possible

R1  3 ground rules
R2  6 ground rules

Example: 3-col - encoding 2
% given a node X and a color C, color X with C or not
R1 col(X, C) | ncol(X, C) :- node(X), color(C).
% no adjacent nodes with the same color
R2 :- edge(X, Y), col(X,C), col(Y,C).
% all nodes must be colored
R3 colored(X):- col(X,_).
R4 :- node(X), not colored(X).
% only one color per node
R5 :- col(X, C1), col(X,C2), C1<>C2.

Grounding produces:
R1  9 ground rules
R2  6 ground rules
R3  9 ground rules
R4  3 ground rules
R5  18 ground rules

• Additional ground atoms (ncol)
• Additional ground rules
 Larger grounding, Larger Search space

Example instance:
node(1). node(2). node(3).
edge(1,2). edge(1,3).
color(red). color(blue). color(green).

Example: 3-col - encoding 3
An alternative encoding can be obtained from encoding 2 by replacing the guessing rule
R1 with the three following rules:

R1A col(X, red) | ncol(X, red) :- node(X).
R1B col(X, yellow) | ncol(X, yellow) :- node(X).
R1C col(X, green) | ncol(X, green) :- node(X).

and leaving the remaining rules unchanged.

Grounding produces exactly the same results of encoding 2
R1A + R1B + R1C  9 ground rules

Aggregate Functions

Aggregate functions

emp(EmpId, Salary)

Compute the sum of salaries of the employees

• Easily expressed in SQL

• Representation in DLP rather unnatural

– recursion needed to express Sum

Sum (DLP vs DLPA)
% Order employees by id

precedes(X,Y) :- emp(X,_), emp(Y,_), X<Y.

% Define successor, first and last
succ(X,Y) :- precedes(X,Y), not elementInMiddle(X,Y).
elementInMiddle(X,Y) :- precedes(X,Z), precedes(Z,Y).
first(X) :- emp(X,_), not hasPredecessor(X).
last(X) :- emp(X,_), not hasSuccessor(X).
hasPredecessor(X) :- succ(Y,X).
hasSuccessor(Y) :- succ(Y,X).

% sum salaries recursively
partialSum(X,Sx) :- first(X), emp(X,Sx).
partialSum(Y,S) :- succ(X,Y), partialSum(X,PSx), emp(Y,Sy), S=PSx+Sy.

% select the total
sum(S) :- last(L), partialSum(L,S).

DLPA = DLP + aggregates

Symbolic set: { Vars : Conj }

{ EmpId : emp(EmpId, male, Skill, Salary) }

The set of ids of male employees.

{ EmpId : emp(EmpId, Sex, Skill, Salary) }

The set of ids of all employees.

Aggregate function
f{S}

S : symbolic set
f : function name among

{ #count, #sum, #times, #min, #max }

#count { EmpId : emp(EmpId, male, Skill, Salary) }
The number of male employees

#count { EmpId : emp(EmpId, Sex, Skill, Salary) }
The number of all employees

Aggregate atom

Lg <1 f{S} <2 Ug

5 < #count { EmpId : emp(EmpId, male, Skill, Salary) } ≤ 10

The atom is true if the number of male employees
is greater than 5 and does not exceed 10.

Formal semantics: extension of the notion of answer set.

Aggregate atoms: example (pure sets)
Aggregate sets are PURE (mathematical) sets  NO
duplicates

Ex.: Count the number of different skills among employees

differentSkills(S) :- S = #count{Skill: emp(_,_, Skill,_)}
 emp(1, male, s1, 1000)
 emp(2, female, s3, 1000)
 emp(3, female, s2, 2000)
 emp(4, male, s3, 1500)

#count{<s1>, <s2>, <s3>}

Aggregate atoms: Dealing with Multisets
Sometimes we do want to consider duplicates.

Ex.: sum the salaries of all employees

sum(S) :- S = #sum{Y : emp(Id,_,_,Y)}
 emp(1, male, s1, 1000)
 emp(2, female, s3, 1000)
 emp(3, female, s2, 2000)
 emp(4, male, s3, 1500)

#sum{<1000>, <1000>, <2000>, <1500>}  4500 instead of
the (intended) 5500!!!

Aggregate atoms: Dealing with Multisets
Duplicates can be simulated by using a key as aggregation
variable

sum(S) :- S = #sum{Y,Id: emp(Id,_,_,Y)}
 emp(1, male, s1, 1000)
 emp(2, female, s3, 1000)
 emp(3, female, s2, 2000)
 emp(4, male, s3, 1500)

#sum{<1000,1>, <1000,2>, <2000,3>, <1500,4>}  5500, as
expected

Aggregate Semantics
The reduct or Gelfond-Lifschitz transform of a ground
program P w.r.t. a set X ⊆ BP is the positive ground
program PX obtained from P by

1. deleting all rules r ∈ P for which a negative literal in B(r)
is false w.r.t. X or an aggregate literal is false w.r.t. X;

2. deleting the aggregate literals and the negative literals
from the remaining rules.

An answer set of a program P is a set X ⊆ BP such that X
is an answer set of PX.

Team Building

An organization needs to create a proper team for an
important task, according to the following requirements:

• A team consists of a certain number of employees
• At least a given number of different skills must be

present in the team
• The sum of the salaries of the employees working in the

team must not exceed the given budget
• The salary of each individual employee is within a

specified limit
• The number of women working in the team must be

greater than a given number

Example: Team Building
% An employee is either included in the team or not
inTeam(I) | outTeam(I) :- emp(I; Sx; Sk; Sa).
% The team consists of a certain number of employees
:- nEmp(N); not #countfI : inTeam(I)g = N.
% At least a given number of different skills must be present in the team
:- nSkill(M); not #countfSk : emp(I; Sx; Sk; Sa); inTeam(I)g <= M.
% The sum of the salaries of the employees working in the team must not
exceed the given budget
:- budget(B); not #sumfSa; I : emp(I; Sx; Sk; Sa); inTeam(I)g <= B.
% The salary of each individual employee is within a specified limit
:- maxSal(M); not #maxfSa : emp(I; Sx; Sk; Sa); inTeam(I)g <= M.

% An employee is either included in the team or not
inTeam(I) | outTeam(I) :- emp(I, Sx, Sk, Sa).

% The team consists of a certain number of employees
:- nEmp(N), not #count{I: inTeam(I)} = N.

% At least a given number of different skills must be present in
% the team
:- nSkiII(M), #count{Sk : emp(I, Sx, Sk, Sa), inTeam(I)} < M.

% The sum of the salaries of the employees working in the team
% must not exceed the given budget
:- budget(B). not #sum{Sa, I: emp(I, Sx, Sk, Sa), inTeam(I)} ≤ B.

% The salary of each individual employee is within a specified limit
:- maxSal(M), not #max{Sa: emp(I, Sx, Sk, Sa), inTeam(I)} ≤ M.

Team Building: Homework

% The salary of each individual employee is within a specified limit
:- maxSal(M), not #max{Sa: emp(I, Sx, Sk, Sa), inTeam(I)} ≤ M.

Efficiency issue: Rule above, from previous example, might
actually be removed, by means of more sophisticated guess.

How?

Team Building: Homework
Solution

Imposing that the max salary is below a given threshold can be enforced by
guessing only among salaries that are under that threshold “Push” the
requirement on salary in the body of the guessing rule.

% An employee is either included in the team or not
inTeam(I) | outTeam(I) :- emp(I, Sx, Sk, Sa), maxSal(M), Sa ≤ M.

% The team consists of a certain number of employees
:- nEmp(N), not #count{I: inTeam(I)} = N.

% At least a given number of different skills must be present in
% the team
:- nSkiII(M), #count{Sk : emp(I, Sx, Sk, Sa), inTeam(I)} < M.

% The sum of the salaries of the employees working in the team
% must not exceed the given budget
:- budget(B). not #sum{Sa, I: emp(I, Sx, Sk, Sa), inTeam(I)} ≤ B.

Seating

A gala dinner has to be organized and table composition
must satisfy a number of requirements:

• Each table T has a given number of chairs.
• Each guest must be assigned one and only one table.
• People liking each other should sit at the same table.
• People disliking each other should not sit at the same

table.

Example: Seating

% INPUT facts
table(T,NC)  the set of available tables with corresponding seats
guest(P)  the set of guests to be accommodated
like(P1,P2)  couples of guests who are friends
dislike(P1,P2)  couples of guests disliking each other

% OUTPUT predicates
at(P,T)  guest P is accommodated to table T

Example: Seating

% Given some tables of nc chairs each, generate a sitting
% arrangement for a number of given guests.
at(P,T) | not_at(P,T) :- guest(P), table(T,_).

% Each table must not host more than NC guests.
:- table(T,NC), not #count{P : at(P,T)} <= NC.

%Each guest must be assigned one and only one table.
:- guest(P), not #count {T : at(P,T) }=1.

% People liking each other should sit at the same table.
:- like(P1,P2), at(P1,T), not at(P2,T).

% People disliking each other should not sit at the same table.
:- dislike(P1,P2), at(P1,T), at(P2,T).

Products control (unstratification)

bought(C,N) | notBought(C,N) :- company(C), forSale(C,N, Price).

% A product A is produced by us if it is produced by a company under our control.
produced(A) :- producedBy(A,C), controlled(C).

% A company C is under our direct control, if we bought more than 50% of its shares.
controlled(C) :- bought(C,N), N > 50.

% A company C is under our (indirect) control, if companies under our control
% (together) own more than 50% of C.
controlled(C) :- company(C), #sum{ N, C1 : shares(C,C1,N), controlled(C1) } > 50.

% The majority of the shares of C can be reached by summing up the C shares we
bought directly with the shares owned by the companies under our control.

controlled(C) :- bought(C,N), N ≤ 50,
#sum{ N, C1 : shares(C,C1,N), controlled(C1) } > K, 50 = K + N.

% Each desired product has to be produced.
:- desired(P), not produced(P).

% The budget must not be exceeded.
:- budget(B), #sum{ Price, C : forSale(C,N,Price), bought(C,N) } > B.

Weak Constraints:
a Linguistic Extension

to Encode Wishes

Weak Constraints (DLV syntax)
Express desiderata - constraints which should possibly
be satisfied, like Soft Constraints in CSP

Syntax :~ B.

Minimize the number of (instances of) violated weak
constraints.

Weak Constraints (DLV syntax) (cont.)
Weak constraints can be weighted according to their
importance (the higher the weight, the more important
the constraint).

Syntax :~ B. [W :]

Minimize the sum of the weights of violated (instances
of the) weak constraint.

Exams Scheduling
1. Assign course exams to time slots avoiding overlapping of exams
of courses with common students

r1: assign(X,s1) | assign(X,s2) | assign(X,s3) :- course(X).
s1: :- assign(X,S), assign(Y,S), commonStudents(X,Y,N), N>0.

2. If overlapping is unavoidable, then reduce it “As Much As
Possible” – Find an approximate solution
r2: assign(X,s1) | assign(X,s2) | assign(X,s3) :- course(X).
w2: :~ assign(X,S), assign(Y,S), commonStudents(X,Y,N), N>0. [N:]

Scenarios (models) that minimizes the total number of “lost” exams
are preferred.

Weak Constraints (DLV syntax) (cont.)
Weak constraints can also be prioritized.

Syntax :~ B. [W : L]

Minimize the sum of the weights of the (instances of)
violated weak constraints at the highest priority level
first; then the lower priority levels are considered one
after the other in descending order.

Team Building
(Prioritized Constraints)

Divide employees in two project groups p1 and p2.
A.Skills of group members should be different.
B. Persons in the same group should not be married each other.
C. Members of a group should possibly know each other.
Requirement A) is more important than B) and C)

assign(X,p1) | assign(X,p2) :- employee(X).
:~ assign(X,P), assign(Y,P), same_skill(X,Y). [1:2]
:~ assign(X,P), assign(Y,P), married(X,Y). [1:1]
:~ assign(X,P), assign(Y,P), X<>Y, not know(X,Y). [1:1]

Weak Constraints: formal semantics
Rules(P): set of the rules (including facts and strong constraints)
of P
WC(P): weak constraints of P

Semantcs of programs without Priorities (in weak constraints):
Answer sets of Rules(P) minimizing the sum of the weights of
the violated constraints in WC(P)

Semantics of programs with Priorities:
 minimize the sum of the weights of the violated constraints in

the highest priority level;
 then minimize the sum of the weights of the violated

constraints in the next lower level, etc.

Weak Constraints: ASP-Core-2 syntax
(DLV2, I-DLV+wasp)

Syntax :~ B [W@P, T1…Tn].

Satisfy B if possible; if not, pay W at priority P for each
distinct tuple of terms T1…Tn.

:~ p(X,Y). [1:1]
is equivalent to
:~ p(X,Y). [1@1, X,Y]

while
:~ p(X,Y). [1@1, X]
is different, and corresponds to
:~ q(X). [1:1]
q(X) :- p(X,Y).

Weak Constraints: projecting

Weak Constraints: projecting (cont.)

(a) :~ p(X,Y). [1@1, X] (equivalent to :~ q(X). [1:1]
q(X) :- p(X,Y).)

(b) :~ p(X,Y). [1@1, X,Y] (equivalent to :~ p(X,Y) [1:1])

With facts:
p(1,2). p(1,3).

(a) costs 1@1, while (b) costs 2@1.

The GCO (Guess/Check/Optimize)
Programming Technique

Generalization of the Guess and Check method
to express optimization problems

A program is made of 3 Modules:
[Guessing Part] defines the search space
[Checking Part] checks solution admissibility
[Optimizing Part] specifies a preference criterion

(by means of weak constraints)

Exams Scheduling (with GCO)

%Guess:

assign(X,s1) | assign(X,s2) | assign(X,s3) :- course(X).

%Optimize:
:~ assign(X,S), assign(Y,S),

commonStudents(X,Y,N), N>0. [N@1, X,Y]

% Guess
assign(X,p1) | assign(X,p2) :- employee(X).

% Optimize
:~ assign(X,P), assign(Y,P), same_skill(X,Y). [1@2, X,Y]
:~ assign(X,P),assign(Y,P), married(X,Y). [1@1, X,Y]
:~ assign(X,P), assign(Y,P), X<>Y, not know(X,Y). [1@1, X,Y]

Team Building (with GCO)

The Traveling Salesman Person (TSP)*

inPath(X,Y) | outPath(X,Y) :- arc(X,Y,_). Guess

:- inPath(X,Y), inPath(X,Y1), Y <> Y1. |
:- inPath(X,Y), inPath(X1,Y), X <> X1. | Check
:- node(X), not reached(X). |

reached(X) :- start(X). Auxiliary Predicate
reached(X) :- reached(Y), inPath(Y,X).

* “Path version” of TSP.

:~ inPath(X,Y), arc(X,Y,C). [C@1, X,Y,C] Optimize

Minimum Spanning Tree
Given a weighted graph by means of edge(Node1,Node2,Cost),

and node(N), compute a tree that starts at a root node, spans
that graph, and has minimum cost

%Guess the edges that are part of the tree:
inTree(X,Y) | outTree(X,Y) :- edge(X,Y,C). Guess

%Check that we are really dealing with a tree!
:- root(X), inTree(_,X). |
:- inTree(X,Y), inTree(X1,Y), X <> X1. |
%and the tree is connected | Check
:- node(X), not reached(X). |

%Minimize the cost of the tree
:~ inTree(X,Y), edge(X,Y,C). [C@1, X,Y,C] Optimize

reached(X) :- root(X). Auxiliary Predicate
reached(X) :- reached(Y), inTree(Y,X).

Testing and Debugging with GCO
Develop DLP programs incrementally:
 Design the Guess module G first

 test that the answer sets of G (+the input facts) correctly
define the search space

 Then the Check module C
 verify that the answer sets of G U C are the admissible

problem solutions
 Finally the Optimize module O

 test that G U C U O generates the optimal solutions of the
problem at hand.

Use small but meaningful problem test-instances!

Part III

Computational Issues

Computational Issues

Tackle high complexity by isolating simpler sub-
tasks

Problem: The complexity of DLP is very high
(ΣP

2 and even ∆P
3), how to deal with that?

Tool: An in-depth Complexity Analysis

Main Decision Problems

[Cautious Reasoning]
Given a DLP program P, and a ground atom A,

is A true in ALL answer sets of P?

[Brave Reasoning]
Given a DLP program P, and a ground atom A,

is A true in SOME answer sets of P?

A relevant subproblem

[Answer Set Checking]
Given a DLP program P and an interpretation M,

is M an answer set of Rules(P)?

Syntactic restrictions
on DLP programs

 Head-Cycle Free Property
[Ben-Eliyahu, Dechter]

 Stratification
[Apt, Blair, Walker]

Level Mapping: a function || || from ground (classical)
literals of the Herbrand Base BP of P to positive
integers.

Stratified Programs

P is (locally) stratified if there is a level mapping
|| ||s of P such that for every rule r of P

 For any l in Body+(r), and for any l' in Head(r),
|| l ||s <= || l’ ||s ;

 For any not l in Body-(r), and for any l' in
Head(r), || l ||s < || l’ ||s

Forbid recursion through negation.

Example: A stratified program

P1: p(a) | p(c) :- not q(a).
p(b) :- not q(b).

P1 is stratified:
||p(a)||s = 2, ||p(b)||s = 2, ||p(c)||s = 2
||q(a)||s = 1, ||q(b)||s = 1

Example: An unstratified program

P2: p(a) | p(c) :- not q(b).
q(b) :- not p(a)

P2 is not stratified,
No stratified level mapping exists,
as there is recursion through negation!

Stratification Theorem
 If a program P is stratified and V-free, then P has at

most one answer set.

 If, in addition, P does not contain strong negation and
integrity constraint, then P has precisely one answer
set.

 Under the above conditions, the answer set of P is
polynomial-time computable.

Head-Cycle Free Programs

P is head-cycle free if there is a level
mapping || ||h of P such that for every
rule r of P:

 For any atom l in Body+(r), and for any l'
in Head(r), || l ||h <= || l’ ||h ;

 For any pair of atoms, l, l’ in Head(r),
|| l ||h <> || l’ ||h

Example: an head-cycle free program

P3: a | b.
a :- b.

P3 is head-cycle free:

|| a ||h = 2; || b ||h = 1

Example: a non head-cycle free
program

P4: a | b.
a :- b.
b :- a.

P4 is not head-cycle free
No head-cycle free level mapping exists,
as there is recursion through disjunction!

Head-Cycle Free Theorem

Every head-cycle free program P is equivalent to
an V-free program shift(P) where disjunction is
“shifted” to the body.

P: a | b :- c. shift(P): a :- c, not b.
b :- c, not a.

Complexity of Answer-Set Checking

{} nots not

{} P P P

Vh P P P

V coNP coNP coNP

Complexity of Brave Reasoning

{} nots w w,nots not w, not

{} P P P P NP ∆P
2

Vh NP NP ∆P
2 ∆P

2 NP ∆P
2

V ΣP
2 ΣP

2 ∆P
3 ∆P

3 ΣP
2 ∆P

3

Completeness under Logspace reductions

Intuitive Explaination
Three main sources of complexity:
1. the exponential number of answer set

“candidates”
2. the difficulty of checking whether a candidate

M is an answer set of Rules(P) (the minimality
of M can be disproved by exponentially many
subsets of M)

3. the difficulty of determining the optimality of
the answer set w.r.t. the violation of the weak
constraints

The absence of source 1 eliminates both source 2 and source 3

Complexity of Cautious Reasoning

{} nots w w,nots not w, not

{} P P P P coNP ∆P
2

Vh coNP coNP ∆P
2 ∆P

2 coNP ∆P
2

V coNP ΠP
2 ∆P

3 ∆P
3 ΠP

2 ∆P
3

Note that < V, {} > is “only” coNP-complete!

Complexity of aggregates

p

(Brave Reasoning) Given a DLPA program P and a ground atom L, is
L true in SOME answer set of P ?

(Cautious Reasoning) Given a DLPA program P and ground atom L,
is L true in ALL answer sets of P ?

Theorem Brave Reasoning on ground DLPA programs is ∑2-complete

Theorem Cautios Reasoning on ground DLPA programs is coNP-
complete

Part IV

DLV:
The state-of-the-art implementation of DLP

DLV: a KR System based on DLP

 Advanced knowledge modelling features
 Extended DLP
 Declarative “Guess/Check/Optimize” Programming Paradigm
 Front-ends for specific AI Applications

 Solid Implementation
 Implementation of DDB optimization techniques
 Implementation of NMR optimization techniques

 Interfaced to Relational and Object-Oriented Databases

Frontends

 Diagnosis
 Planning
 Inheritance
 Meta-Interpreter
 SQL3
 External Frontends

Diagnosis Frontend
The frontend can handle Abductive Diagnosis and
Consistency - Based Diagnosis.

Example - Diagnosing a computer network:

We work at computer a and cannot reach computer e.

Diagnosis Frontend II
Theory

reaches(X,X) :- node(X), not offline(X).

reaches(X,Z) :- reaches(X,Y), connected(Y,Z), not offline(Z).

Hypotheses

offline(a). offline(b). offline(c).

offline(d). offline(e). offline(f).

Observations

not offline(a). not reaches(a,e).

Inheritance Frontend
Object: Set of DLP rules.
Program: Hierarchy of Objects.

bird { flies }
penguin : bird { - flies.}
tweety : penguin { }

Objects: bird, penguin, and tweety. tweety < penguin < bird.
Contradictions are solved according with the inheritance hierarchy:

-flies overrides flies.

The only model is { -flies}.

SQL3 Frontend - Bill of materials
The forthcoming ANSI SQL3 will include support for computing
transitive closures.
SCHEMA consists_of(major,minor);

WITH RECURSIVE listofmaterials(major,minor) AS
(
SELECT c.major, c.minor FROM consists_of AS c
UNION
SELECT c1.major, c2.minor
FROM consists_of AS c1, listofmaterials AS c2
WHERE c1.minor = c2.major
)

SELECT major, minor FROM listofmaterials;

Planning Frontend
fluents : on(B,L) requires block(B), location(L).

occupied(B) requires location(B).
actions : move(B,L) requires block(B), location(L).

always : executable move(B,L) if not occupied (B),
not occupied(L), B<>L.

inertial on(B,L).
caused occupied(B) if on(B1,B), block(B).
caused on(B,L) after move(B,L).
caused -on(B,L1) after move(B,L), on(B,L1), L<>L1.

noConcurrency.

System Architecture

Diagnosis
Frontend

Filtering

Model
Checker

Model
Generator

Intelligent
Grounding

Inheritance
Frontend

Brave/Cautious
Frontend

SQL3
Frontend

User Interface

Output

Ground
Program

File
System

Ground
Program

Relational
Database

ODBC

Some Exemplary Benchmarks (june 2001)

Problem instance Time

Strategic Companies (770 C; 770 P) 1.29 s

2QBF (1000 ∀; 20 ∃; 10000 C) 25.94s

3COL (3000 E; 2000 N) 22.15s

Hamcycle (60 N) 2.09s

Blocksworld (10 blocks, 11 steps) 8.56s

Hanoi (3 stacks, 4 disks, 15 steps) 6.39s

Ramsey(3,6) ≠ 17 13.87s

Cristal 15.26s

Timetabling 26.11s

		Problem instance

		 Time

		Strategic Companies (770 C; 770 P)

		1.29 s

		2QBF (1000 (; 20 (; 10000 C)

		25.94s

		3COL (3000 E; 2000 N)

		22.15s

		Hamcycle (60 N)

		2.09s

		Blocksworld (10 blocks, 11 steps)

		8.56s

		Hanoi (3 stacks, 4 disks, 15 steps)

		6.39s

		Ramsey(3,6) (17

		13.87s

		Cristal

		15.26s

		Timetabling

		26.11s

Other DLP Systems
 Smodels/GnT
 ASSAT (V-free programs, rewriting to SAT)
 NoMoRe (V-free programs, graph-colorings)
 Dislop (Model elimination, hyper-tableau calculi)
 DeReS (Default Logic)
 CCALC (Acyclic V-free programs, rewriting to SAT)
 XSB (Well-Founded Semantics)
 ASPPS (logic of propositional schemes)
 QUIP (based on QBF evaluators)
 SLG (Meta-Interpreter over prolog systems)
 DCS
 DisLog

Most systems accept only the V-free fragment of DLP

Smodels/GnT
 Smodels is the most widely used system

for V-free programs.
 Disjunction is not supported in Smodels.
 GnT extends Smodels by disjunction.

 Rewriting + Nested calls to Smodels for answer set
checking.

 Smodels supports a powerful construct for
representing cardinality and weight constraints

Summary of Benchmarks
maximum size where all out of 50 random instances where solved

in 2 hours of cpu time and 256MB of memory - August 2002

Problem DLV Smodels Smodels2 ASSAT
REACH 8500 450 n/a 450

SAMEGEN 9025 676 n/a 676

STRATCOMP 170 115 n/a n/a

QBF 48 40 n/a n/a

HAMPATH 105 50 40 50

TSP 26 24 28 n/a

SOKOBAN 95% 47% 47% n/a

RAMSEY 100% 29% 29% 39%

Applications
 The CMS project at CERN: An advanced deductive

Database ApplicationCheck and Automatic Repair of
Census Data

 Timetabling
 Education: Courses on Databases AI in European and

American Universities
 Authorization Database Model
 “Implementation Engine” for KR purposes,

experiments with new semantics and KR languages.

CERN DLV Example(1)
Projection of product data (assembly tree and part characteristics
provided by PDMS) onto matrix of detector readout channels

EDB: product data & part composition members (description of
relative location of immediate constituent parts of a composite part)

CERN DLV Example(2)

 Depth of assembly trees: 5 to 15
 ∃ integrity constraints (assembly finished?, manually
inserted data feasible?)
 85*20 (1700) readout channels out of totally 80000.
The goal of this projection is to assign product data to
particle detector readout channels, which will collect
observation data that will be used for the diagnosis of the
correct functioning of the particle detector.

Timetabling
Structural constraints give rise to integrity constraints.
Weak Constraints express desiderata.

The teacher of Geometry doesn’t like teaching in the
afternoon.
:~ timetable(Day,Hour,geometry),

Hour >12. [1@1, Day, Hour]

The teacher of French doesn’t like teaching on Saturday.
:~ timetable(saturday,Hour,french). [1@1, Hour]

New Applications
(Under Investigation)

 Information Integration
 Complex (CONP-hard) reasoning tasks arise in this

context
 Knowledge Management

 Powerful Tool to Represent Complex Knowledge
(Support for Decisions Taking, Planning)

 Ontologies Specification and Reasoning
 Advanced Querying/Reasoning on Top of the Result of

Data/Text Mining
(Combination of Induction with Deduction)

 Maneuvers Generation for the Space Shuttle
 Weak Constraints improve the quality of plans

Ongoing EU Projects

 INFOMIX: Boosting Information Integration
IST-2001-33570
3 Years (start: April 2002)
Main Contractor: University of Calabria

 ICONS: Intelligent CONtent Management System
IST 2001-32429
2 Years (start: January 2002)

 Enhancing Disjunctive Logic Programming
for Knowledge Management Applications
Marie Curie Grant
2 Years (start November 2002)

Conclusion

 Easy representation of hard problems
 Possibility to solve problems unsolvable by SAT

Checker or by other LP System (e.g., subset-minimal
diagnosis, planning under incomplete knowledge)

 Front-end for other non-monotonic formalisms
 Interface to relational and object-oriented databases
 Used by researchers around the world
 Fully operational prototype available from

http://www.dlvsystem.com/

Function Symbols
and Lists

Function Symbols in ASP
Function symbols can be used to introduce «structured»
terms in ASP (like «records» or «structs» in programming
languages).
 A binary tree can be represented as bt(R,LT,RT):

 subtree(bt(R,LT,RT), T)
 An employee can be represented as emp(ID,Name,Salary):

 assign_employee(emp(ID,Name,Salary), Dept)

Function terms can be nested:
 bt(R,bt(TL,LTL,TRL),RT)
 bt(R,bt(TL,LTL,bt(RL,nil,nil)),RT)

Function Symbols in ASP (cont.)

Functions can be used also in recursive predicates, allowing for the definition of
infinite domains:
 int(0).
 int(s(N)) :- int(N).

{ int(0), int(s(0)), int(s(s(0))), int(s(s(s(0)))) […] } (Answer Set)

Functions can be used to simulate existential quantification of classical logics via
skolemization:
 parent(X,Y)  person(X)
 parent(X,Y)  person(Y) first-order logics
 person(X)  ∃ Y : parent(X,Y)

 person(X) :- parent(X,Y).
 person(Y) :- parent(X,Y). ASP with functions
 parent(X,f(X)) :- person(X).
 person(a).

{ person(a), parent(a,f(a)), person(f(a)), parent(f(a),f(f(a))) […] } (Answer Set)

Thus, functional terms are explicitly allowed:
a TERM can be «simple» or «functional»

 p(s(X)) :- a(X, h(c)).

 We still focus on programs with safe rules!
 equal(X,X).
 p(X,f(Y)) :- q(X).

Not allowed

Function Symbols in ASP (cont.)

Functions?

 Functional terms are intended in the «traditional»
logic programming sense: no explicit semantics is
attached. A ground functional term represents a
«value», just as a function-free ground term.

 Functional terms can represent values that are
not originally present in the Herbrand Universe
 Ex.: hasFather(ciccio) :- father(ciccio,f(ciccio)).

The name of ciccio’s father does not need to
be known

Functions and finiteness

 As already pointed out, a program with recursive function
symbols might have an infinite ground program, which
makes the computation infeasible in practice
 Ex.: int(s(X)) :- int(X). int(0).

TP0 = TP(∅) = {int(0)}
TP1 = TP0 ∪ {int(s(0))}
TP2 = TP1 ∪ {int(s(s(0)))}
TP3 = TP2 ∪ {int(s(s(s(0))))}
….

The immediate consequence operator TP does not converge finitely
to a fixpoint, even on a simple positive program like this.

Ensure Computability

 In general:
 Function symbols + recursion Undecidability

 Horn Logic Programming is R.E.-complete (Tarnlünd 1977)

 Even a Turing Machine can be simulated
 see e.g., an encoding in DLV syntax at https://www.mat.unical.it/dlv-

complex#Examples

 Some subclasses of programs with function symbols
can be identified, that ensure termination.
 Ex.: Finite-Domain programs, omega-restricted programs,

argument-restricted programs, etc.
 Program belonging to such classes must comply with some

syntactical restrictions

Arguments

 A predicate p of arity n has n arguments.
 p[k] stands for the argument at position k

 Ex.: predicate «p» of arity 3
 p(X,f(ciccio),a)
 in this case, p[1] = X, p[2] = f(ciccio), p[3] = a

Argument Graph GA(P)
Given a program P, GA(P) is a directed graph containing
a node for each argument p[i] of an IDB predicate p of P;
there is an arc (q[j], p[i]) iff there is a rule r in P having an
atom p(t1…tn) in the head, an atom q(v1…vm) in B+(r) and
p(t1…tn) and q(v1…vm) are such that the same variable
appears within terms ti and vj, respectively.

q(g(3)).
p(X,Y) :- q(g(X)), t(f(Y)).
s(X) | t(f(X)) :- a(X), not q(X).
q(X) :- s(X), p(Y,X).

p[1]

p[2] q[1]

s[1]t[1]

Recursive Arguments

Given a program P, an argument p[i] is said to be
recursive with q[j] if there exists a cycle in the Argument
Graph of P involving both p[i] and q[j].
 the Argument Graph keeps track of (body-head) dependencies

between the arguments of predicates sharing some variable.
 it is a more detailed version of the commonly used (predicate)

dependency graph.

t(X,Y):- a(X,Y), not q(X).
q(f(X)) :- q(X), t(Y, f(X)).

Argument q[1] is recursive.

q[1]

t[2]

FD-programs: definition

 FINITE-DOMAIN programs: a simple, decidable subclass
of ASP programs

 All the arguments of a program P must be finite-domain.

 An argument q[k] in the Argument Graph is FINITE-
DOMAIN if for all occurrences q(…,t,…) of it appearing in
the head of a rule, one of the following conditions holds:

1. t is variable free (e.g. q(…, f(a,g(b)),…) is OK.), or
2. t is subterm of another fd-argument appearing in the body (e.g.

q(…, X,…)) :- p(f(X), …) is OK if p[1] is fd), or
3. t appears in some body arguments which is not recursive with

q[k] (e.g. q(…, X,…)) :- p(f(X), …) is OK if p[1] is not recursive
with q[k]

FD-programs: examples
 FD-program (q[1] is a FD argument)

q(f(0)). (condition 1 holds)
q(X) :- q(f(X)). (condition 2 holds)
q(f(X)) :- q(X), t(f(X)). (condition 3 holds)

 Non FD-program (s([1]) is not a FD argument)
q(f(0)). (q[1]: condition 1 holds)
q(X) :- q(f(X)). (q[1]: condition 2 holds)
s(f(X)) :- s(X). (s[1]: no condition hold)
v(X) :- q(X), s(X). (v[1]: condition 2 holds)

Finitely-ground (FG) Programs

INTUITION: The class of Finitely Ground
Programs is the set of programs for which the
«intelligent» instantiation is finite and
computable, i.e., the TP operator converges
finitely to a fix-point.

Finitely-ground (FG) and
Finite Domain (FD) Programs

THEOREM: Every FD program is Finitely
Ground.

Example: The following program is not FD, even if it
is Finitely Ground.

p(f(X)) :- q(X).
q(X) :- p(X), r(X).

Functions in DLV / DLV2
Functions are Implemented in DLV: it fully supports both Finitely Ground
Programs and Finite Domain programs. Actually, DLV is able to recognize
Argument Restricted (AR) programs, which is a super-class of FD. AR
programs require a more involved and less intuitive syntactic check to be
recognized.

If a program P is finitely ground, then DLV instantiator terminates over P,
generating its correct instantiation. By default, DLV checks the input
program P: if it belongs to the class of AR programs, then DLV guarantees
termination. If not, DLV returns an error.

The user must take over the responsibility about the program being finitely
ground in order to run non-AR programs. With option –nofinitecheck, DLV
skips the finite domain check. The instantiation will then terminates if the
program is FG.

DLV2 & I-DLV+WASP currently do not apply any syntactical check, so the
responsibility is left to the user.

Lists in DLV-DLV2-IDLV
 Very common data structure
 Easily obtained via function symbols

However, due to the usefulness
 explicit syntax is supported
 Dedicated built-ins are available

Lists in DLV-DLV2-IDLV
A list is a binary function denoted with a special
syntax:

[H | T]

where the first argument «H» is a term, called the
head of the list, and the second argument «T» is a list.

In addition, a list can be represented by explicitly
listing its elements.

[a, b, c] = [a | [b, c]] = [a | [b | [c]]]
= [a | [b | [c | []]]]

Lists in DLV / DLV2 / I-DLV
LIST TERMS
A list term can be of the two forms:
− [t1, . . . , tn], where t1, . . . , tn are terms;
− [h | t], where h (the head of the list) is a term, and t (the tail of the list) is a
list term.

Examples:
 The term [a,d,a] in the atom palindromic([a,d,a])
 [jan,feb,mar]
 [jan | [feb,mar,apr,may,jun]]
 [[jan,31] | [[feb,28], [mar,31], [apr,30], [may,31], [jun,30]]].

Built-in predicates for Lists
I-DLV (and DLV2) comes with a rich library of built-in predicates
for list manipulation.

A built-in atom is of the form
&p(t0,.., tn ; u0,…, um)

where n,m >= 0

 t0,.., tn are input terms, and are separated from the output
terms u0,…, um by a semicolon (“;”);

 an input/output term can be either a constant or a variable.
Intuitively, output terms are computed on the basis of the input
ones, according to a semantics which is defined “a priori” for
each predicate, as reported next.

Built-in predicates for Lists

Lists: example
Compute all simple (i.e. with no repeated vertices) paths in a
graph:
simplePath([X|[Y]]) :- edge(X,Y).
simplePath([X|[Y|W]]) :- edge(X,Y), simplePath([Y|W]),

not &member(X,[Y|W];).

Compute all simple cycles in a graph:
simpleCycle([X]) :- edge(X,X).
simpleCycle([X|L]) :- simplePath([X|L]), &last(L;Y), edge(Y,X).
Compute simple paths of maximum length:
maxPath(P) :- simplePath(P), &length(P;L),

L = #max { X : simplePath(Q), &length(Q;X) }.

LISTS: Applications
 Lists can easily represent trees:
 [root| List-of-subtrees]
 Leaf node: [a|[]] = [a]
 [a | [[b], [c | [d]]]]

- the list rooted in a
- b and c are the children of a
- d is a child of c
- b and d are leaves

List can therefore represent the HTML trees of
web pages

DIADEM
ERC Advanced Grant @Oxford - G. Gottlob

Domain-centric, Intelligent, Automated Data Extraction
 fully automated extraction from domain-specific websites

 no per site training, no user input other than the domain model
 main target: websites with structured records
 based on extensive domain knowledge

 web form understanding
 result page analysis (records, attributes)
 navigation blocks classification (next page link, detail pages)

 Template language on Datalog¬,Agg rules compiled to DLV, plus
Gazetteers, GATE annotation®ex, ML classifiers

Web Form Understanding with OPAL
Ontology-based Pattern Analysis with Logic

group(Es) :- similarFieldSequence(Es),
leastCommonAncestor(A,Es),
not hasAdditionalField(A,Es).

leastCommonAncestor(A,Es) :- commonAncestor(A,Es),
not (child(C,A), commonAncestor(C,Es)).

partOf(E,A) :- group(Es),
member(E,Es), leastCommonAncestor(A,Es).

• Recognizes and labels groups of fields + classifies them w.r.t.
the domain ontology

• Reasoning on structural & visual patterns + annotations

Result Page Analyses with AMBER

Adaptable Model Based Extraction of Result Pages

Reasoning on annotations and page structure to identify records & attributes

price

location

consistent_cluster_members(C, N1, N2, N3) :- pivot(N1), pivot(N2), ...
similar_depth(N1, N2), similar_depth(N2, N3), similar_depth(N1,N3),

similar_tree_distance(N1, N2, N3).

Bibliography (1)

Foundations of DLP:
• M. Gelfond and V. Lifschitz, Classical Negation in Logic

Programs and Disjunctive Databases. New Generation
Computing, 9:365-385, 1991.

• J. Minker. On Indefinite Data Bases and the Closed World Assumption.
In Proceedings 6th Conference on Automated Deduction (CADE
'82), D.~Loveland, Ed. Number 138 in Lecture Notes in Computer
Science. Springer, New York, 1982, pp. 292--308.

• N. Leone, P. Rullo, F. Scarcello, Disjunctive Stable Models:
Unfounded Sets, Fixpoint Semantics and Computation,
Information and Computation, Academic Press, New York, Vol.
135, N. 2, 15 June 1997, pp. 69-112.

Bibliography (2)

Knowledge Representation:

• M. Gelfond, N. Leone, Logic Programming and
Knowledge Representation --- the A-Prolog perspective.
Artificial Intelligence, Elsevier, 138(1&2), June, 2002.

• F. Buccafurri, N. Leone, P. Rullo, Enhancing
Disjunctive Datalog by Constraints. IEEE Transactions
on Knowledge and Data Engineering, 12(5)
Settembre/Ottobre 2000, pp 845-860.

Bibliography (3)

DLV System (Overviews):

• T. Eiter, N. Leone, C. Mateis, G. Pfeifer, F. Scarcello,
The Knowledge Representation System dlv: Progress Report,
Comparisons, and Benchmarks, in
Proc. of KR'98, pp. 406-417, Morgan Kaufman, 1998.

• T. Eiter, W. Faber, N. Leone, G. Pfeifer, Declarative Problem-
Solving Using the DLV System in Logic in Artificial
Intelligence. J. Minker editor, Kluwer Academic Publisher,
2000, pp 79-103.

• DLV Manual and Tutorial at http://www.dlvsystem.com

Bibliography (4)

DLV System (Algorithms and Optimizations):

• W. Faber, N. Leone, G. Pfeifer, "Experimenting with Heuristics for Answer
Set Programming”. Proceedings of the 17th International Joint Conference
on Artificial Intelligence -- IJCAI '01, Morgan Kaufmann Publishers,
Seattle, USA, August 2001, pp. 635--640.

• C. Koch, N. Leone, "Stable Model Checking Made Easy”. Proceedings of
the 16th International Joint Conference on Artificial Intelligence -- IJCAI
'99, Morgan Kaufmann Publishers, pp. 70--75, Stockolm, August 1999.

• N. Leone, S. Perri, F. Scarcello. “Improving ASP Instantiators by Join-
Ordering Methods”. Proceedings of the 6th International Conference on
Logic Programming and Non-Monotonic Reasoning -- LPNMR'01, Lecture
Notes in Artificial Intelligence (LNAI) 2173, Springer-Verlag, Vienna,
Austria, 17--19 September 2001.

Exercises and DLV Lab

Homework (1)

Consider program
a :- b.
b.
and Interpretations:
I1 = { a }, I2 = { b }, I3 = { a, b }
which interpretations are models?
which interpretations are answer sets?

Homework (2)

Consider program
a :- b.
b :- not c.
and Interpretations:
I1 = { a }, I2 = { c }, I3 = { a, b }
which interpretations are models?
which interpretations are answer sets?

Homework (3)

Consider program
a :- b.
a | b.
and Interpretations:
I1 = { a }, I2 = { b }, I3 = { a, b }
which interpretations are models?
which interpretations are answer sets?

Homework (4)

Consider program
a :- b.
a | b.
:- not a.
what are the answer sets?

Homework (5)

Consider program
a :- b.
a | b.
:- a.
is there any answer set?

Homework (6)

Consider program
a :- b.
b :- a.
a | b.
and Interpretations:
I1 = { a }, I2 = { b }, I3 = { a, b }
which interpretations are models?
which interpretations are answer sets?

Homework (7)

Compute the ground instantiation of
p(X) :- q(X), not r(X).
q(a).
q(b).
r(a).
and determine the answer sets of the

program.

Answer to Homework (7)

Instantiation:
p(a) :- q(a), not r(a).
p(b) :- q(b), not r(b).
q(a).
q(b).
r(a).
Answer sets: I = { p(b), q(a), q(b), r(a) }

Homework (8)

inPath(X,Y) | outPath(X,Y) :- arc(X,Y).

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1.
:- node(X), not reached(X).

reached(X) :- start(X).
reached(X) :- reached(Y), inPath(Y,X).

Transform the Hamiltonian Path program, to make sure
that the start arc is not reached again (i.e., is not the
endpoint of some arc in the path).

Answer to Homework (8)

inPath(X,Y) | outPath(X,Y) :- arc(X,Y).

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1.
:- node(X), not reached(X).

reached(X) :- start(X).
reached(X) :- reached(Y), inPath(Y,X).

:- start(X), inPath(Y,X).

Homework (9)
inPath(X,Y) | outPath(X,Y) :- arc(X,Y).

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1.
:- node(X), not reached(X).
reached(X) :- start(X).
reached(X) :- reached(Y), inPath(Y,X).

Transform the Hamiltonian Path program, in a program for
Hamiltonian Cycle (make sure that the start arc is reached
again, i.e., it is the end point of some arc in the path).
- Use the program to get the “tour version” of TSP.

Answer to Homework (9)
(a safety problem)

WARNING:
:- start(X), not inPath(Y,X).
does not work.
It would require each node to be connected to the start!
Suppose that the graph has 3 nodes: a, b, c.
The above constraint then has 3 instances (disregarding
those with start(b) or start(c)):

:- start(a), not inPath(b,a).
:- start(a), not inPath(c,a).
:- start(a), not inPath(a,a).

Answer to Homework (9)
(safety)

LESSON:To avoid any problem, always use safe negation!

p(X) :- a(X,Y), not q(Y,Z). (unsafe Z)
p(X,Y) :- not a(X). (unsafe X,Y)
p(X) :- a(X,Y), not q(_). (unsafe _)

DLP systems anyway require safety.

SAFETY: A rule R is safe if each variable appearing in R occurs
also in a positive body literal of R.

Answer to Homework (9)
first solution

inPath(X,Y) | outPath(X,Y) :- arc(X,Y).
:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1.
:- node(X), not reached(X).
reached(X) :- start(X).
reached(X) :- reached(Y), inPath(Y,X).

endPoint(X) :- inPath(_,X).
:- start(X), not endPoint(X).

Answer to Homework (9)
a better solution

inPath(X,Y) | outPath(X,Y) :- arc(X,Y).

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1.
:- node(X), not reached(X).

reached(X) :- start(Y), inPath(Y,X).
reached(X) :- reached(Y), inPath(Y,X).

Homework (10)
(Node Cover)

Design a DLP program to represent the following
problem.

Given a graph <V,E> by means of edge(Node1,Node2),
and node(N), find a node cover, that is, a subset
V' of | such that for each edge <u,v> in E at
least one of u and | belongs to V'.

Answer to Homework (10)
(Node Cover)

%Guess a set of nodes
inCover(X) | outCover(X) :- node(X).

%Check that all arcs are covered.
:- edge(X,Y), not inCover(X), not inCover(Y) .

Homework (11)
(Minimum Node Cover)

Design a DLP program to represent the following
problem.

Given a graph <V,E> by means of edge(Node1,Node2),
and node(N), find a minimum node cover, that is,
a subset V' of | of minimum cardinality such that
for each edge <u,v> in E at least one of u and |
belongs to V'.

Answer to Homework (11)
(Minimum Node Cover)

%Guess a set of nodes
inCover(X) | outCover(X) :- node(X).

%Check that all arcs are covered.
:- edge(X,Y), not inCover(X), not inCover(Y) .

% Prefer smaller covering
% Minimize the cardinality of the coverings
:~ inCover(X). [1@1, X]

Running DLV
 Copy DLV to a dir which is in your PATH
 Or make “alias dlv DLV-DIR/dlv” in your .cshrc (or

equivalent file).
 edit two files 3col and graph:
3col: col(X,green) | col(X,blue) | col(X,red) :- node(X).

:- edge(X,Y), col(X,C), col(Y,C), X<>Y.
graph: node(a). node(b). node(c). node(d).

edge(a,b).
edge(b,c).
edge(c,a).
edge(a,d).
edge(d,c).

Running DLV

> dlv 3col graph -filter=col -n=1

DLV [build DEV/Aug 1 2002 gcc 2.95.2 1999 1024 (release)]

{col(a,green), col(b,blue), col(c,red), col(d,blue)}

>

Combinatorial Auctions
In combinatorial auctions, bidders can bid for portfolios of several

goods at once. Each bidder can place as many bids as s/he
wants. The goal is to maximize the auctioneers revenue.

The input can be represented as follows, where requires states
that some item is part of a bid, and bid represents the price
associated with a bid:

requires(bid1, item1).
requires(bid1, item2).
requires(bid2, item1).
requires(bid2, item3).

:
bid(bid1, 21).
bid(bid2, 37).

Write a GCO program for DLV that solves this problem and also
develop two test cases, where you see that your program works
correctly.

Hints

Hint 2: By means of weak constraints one can
more easily perform minimization than
maximization. However, if you minimize the
cost of those items not accepted, then the cost
of those that are accepted is maximized in
consequence!

Hint 1: The output should list the bids which are
accepted by the auctioneer with the respective
prices. It should be of the form {accept(bid1,p1),
accept(bid3,p3),... }.

More on Combinatorial Auctions

The auctioneer, while preserving the maximization of the
revenue as the first criterion, wants to be
parsimonious w.r.t. the given items, that is, (s)he
wants to keep how many items as possible.

Refine the previous program to prefer, if two solutions
give the same revenue, the solution where a smaller
number of items is given away by the auctioneer.

Hint 1: use an auxiliary predicate defining the givenItems
in a solution.

Hint 2: Priorities in weak constraints are needed.

	Idee di McCarthy sull’IA
	Disjunctive Logic Programming: Knowledge Representation Techniques, Systems, and Applications
	Topics
	Diapositiva numero 4
	Roots  declarative programming
	Disjunctive Logic Programming (DLP)
	DLP Advantages
	���DLP Revolution���
	Diapositiva numero 10
	Drawbacks
	What is DLP Good for? (Applications)
	Applications
	Applications
	Applications
	Diapositiva numero 16
	Diapositiva numero 17
	Diapositiva numero 18
	Diapositiva numero 19
	Diapositiva numero 20
	Diapositiva numero 21
	Datalog Syntax: Terms
	Datalog Syntax: Atoms and Literals
	What is Datalog (I)
	Positive Datalog
	Facts
	What is Datalog (II)
	Datalog as a Query Language
	Datalog as a Query Language
	Datalog and RECURSION
	Transitive Closure
	Recursion (ancestor)
	Note the Full Declarativeness
	Datalog Semantics
	Semantics: Interpretations and Models
	Example: Interpretations
	Example: Models
	Operational Semantics: ground programs
	Operational Semantics: general case (non-ground)
	Operational Semantics: Seminaive Evaluation
	Operational Semantics: Derivation
	Operational Semantics: Ancestor
	Operational Semantics: Transitive Closure
	Negated Atoms
	Safety
	Problems with Negation and Recursion
	Recursion + Negation
	Stratified Negation
	Stratified Negation: Definition
	Example: unstratified program
	Example: stratified program
	Minimal Models
	Example: Multiple Models (1)
	Subprograms
	Evaluation of Stratified Programs 1
	Evaluation of Stratified Programs 2
	Stratified Model: example
	Example: Stratified Evaluation (2-1)
	Example: Stratified Evaluation (2-2)
	Diapositiva numero 60
	Foundations of DLP: �Syntax and Semantics
	(Extended) Disjunctive Logic Programming
	Disjunctive Logic Programming
	Example Disjunction
	Arithmetic Built-ins
	Informal Semantics
	Disjunction
	Informal Semantics
	Integrity Constraints
	(Formal) Semantics: Program Instantiation
	Interpretations and Models
	Semantics for Positive Programs
	Example (Answer set for a positive program)
	Example (Answer set for a positive program)
	Semantics for Programs with Negation
	Example (Answer set for a general program)
	Answer sets and minimality
	Some Useful Theorems
	Datalog Semantics: a special case
	Diapositiva numero 82
	Diapositiva numero 83
	Diapositiva numero 84
	Diapositiva numero 85
	Diapositiva numero 86
	Diapositiva numero 87
	Positive Dependency Graph
	Diapositiva numero 90
	Diapositiva numero 91
	Diapositiva numero 92
	Diapositiva numero 93
	Part II
	DLP – How To Program?
	“Guess and Check” Programming �Answer Set Programming (ASP)
	Vertex Cover
	3-colorability
	3-colorability
	3-colorability
	3-colorability
	Hamiltonian Path (HP) (1)
	Hamiltonian Path (HP) (2)
	Strategic Companies(1)
	Strategic Companies - Example
	Complexity Remark
	Testing and Debugging with GC
	Satisfiability
	SAT: example
	Exercise
	SAT: ASP encoding
	Example: SAT  ASP
	Planning - Blocksworld
	Blocksworld(1)
	Blocksworld(2)
	Blocksworld(3)
	Blocksworld Instance - Sussman anomaly
	Some programming tricks�(efficiency)
	Example: Clique
	Example: 3-col – encoding 1
	Example: 3-col - encoding 2
	Example: 3-col - encoding 3
	Aggregate Functions
	Aggregate functions
	Sum (DLP vs DLPA)
	DLPA = DLP + aggregates
	Aggregate function
	Aggregate atom
	Aggregate atoms: example (pure sets)
	Aggregate atoms: Dealing with Multisets
	Aggregate atoms: Dealing with Multisets
	Aggregate Semantics
	Team Building
	Example: Team Building
	Team Building: Homework
	Team Building: Homework�Solution
	Seating
	Example: Seating
	Example: Seating
	Products control (unstratification)
	Weak Constraints: �a Linguistic Extension �to Encode Wishes
	Weak Constraints (DLV syntax)
	Weak Constraints (DLV syntax) (cont.)
	Exams Scheduling
	Weak Constraints (DLV syntax) (cont.)
	Team Building �(Prioritized Constraints)
	Weak Constraints: formal semantics
	Weak Constraints: ASP-Core-2 syntax�(DLV2, I-DLV+wasp)
	Weak Constraints: projecting
	Weak Constraints: projecting (cont.)
	The GCO (Guess/Check/Optimize) Programming Technique
	Exams Scheduling (with GCO)
	Diapositiva numero 155
	The Traveling Salesman Person (TSP)*
	Minimum Spanning Tree
	Testing and Debugging with GCO
	Part III��Computational Issues
	Computational Issues
	Main Decision Problems
	A relevant subproblem
	Syntactic restrictions �on DLP programs
	Stratified Programs
	Example: A stratified program
	Example: An unstratified program
	Stratification Theorem
	Head-Cycle Free Programs
	Example: an head-cycle free program
	Example: a non head-cycle free program
	Head-Cycle Free Theorem
	Complexity of Answer-Set Checking
	Complexity of Brave Reasoning
	Intuitive Explaination
	Complexity of Cautious Reasoning
	Complexity of aggregates
	Part IV
	DLV: a KR System based on DLP
	Frontends
	Diagnosis Frontend
	Diagnosis Frontend II
	Inheritance Frontend
	SQL3 Frontend - Bill of materials
	Planning Frontend
	System Architecture
	Some Exemplary Benchmarks (june 2001)
	Other DLP Systems
	Smodels/GnT
	Summary of Benchmarks�maximum size where all out of 50 random instances where solved in 2 hours of cpu time and 256MB of memory - August 2002
	Applications
	CERN DLV Example(1)
	CERN DLV Example(2)
	Timetabling
	New Applications�(Under Investigation)
	Ongoing EU Projects
	Conclusion
	Function Symbols �and Lists
	Function Symbols in ASP
	Function Symbols in ASP (cont.)
	Function Symbols in ASP (cont.)
	Functions?
	Functions and finiteness
	Ensure Computability
	Arguments
	Argument Graph GA(P)
	Recursive Arguments
	FD-programs: definition
	FD-programs: examples
	Finitely-ground (FG) Programs
	Finitely-ground (FG) and �Finite Domain (FD) Programs
	Functions in DLV / DLV2
	Lists in DLV-DLV2-IDLV
	Lists in DLV-DLV2-IDLV
	Lists in DLV / DLV2 / I-DLV
	Built-in predicates for Lists
	Built-in predicates for Lists
	Lists: example
	LISTS: Applications
	DIADEM �ERC Advanced Grant @Oxford - G. Gottlob
	Web Form Understanding with OPAL
	Result Page Analyses with AMBER
	Bibliography (1)
	Bibliography (2)
	Bibliography (3)
	Bibliography (4)
	Exercises and DLV Lab
	Homework (1)
	Homework (2)
	Homework (3)
	Homework (4)
	Homework (5)
	Homework (6)
	Homework (7)
	Answer to Homework (7)
	Homework (8)
	Answer to Homework (8)
	Homework (9)
	Answer to Homework (9)�(a safety problem)
	Answer to Homework (9)�(safety)
	Answer to Homework (9)�first solution
	Answer to Homework (9)�a better solution
	Homework (10)�(Node Cover)
	Answer to Homework (10)�(Node Cover)
	Homework (11)�(Minimum Node Cover)
	Answer to Homework (11)� (Minimum Node Cover)
	Running DLV
	Running DLV
	Combinatorial Auctions
	Hints
	More on Combinatorial Auctions

