
Aggregate Functions in DLV?

Tina Dell’Armi1, Wolfgang Faber2, Giuseppe Ielpa1,
Nicola Leone1, and Gerald Pfeifer2

1 Department of Mathematics, University of Calabria
87030 Rende (CS), Italy

{dellarmi,ielpa,leone}@unical.it

2 Institut für Informationssysteme 184/3, TU Wien
Favoritenstraße 9-11, A-1040 Wien, Austria

faber@kr.tuwien.ac.at, gerald@pfeifer.com

Abstract. Disjunctive Logic Programming (DLP) is a very expressive formalism: it al-
lows for expressing every property of finite structures that is decidable in the complexity
class ΣP

2 (=NPNP). Despite this high expressiveness, there are some simple properties,
often arising in real-world applications, which cannot be encoded in a simple and natu-
ral manner. Especially properties that require the use of arithmetic operators (like sum,
count, or min) on a set of elements satisfying some conditions, cannot be naturally ex-
pressed in classic DLP.
To overcome this deficiency, we extend DLP by aggregate functions. In contrast to a
previous proposal, we also consider the case of unstratified aggregates. We formally de-
fine the semantics of the new language (called DLPA) by means of a generalization of
the Gelfond-Lifschitz transformation, and illustrate the use of the new constructs on rel-
evant knowledge-based problems. We analyze the computational complexity of DLPA,
showing that the addition of aggregates does not bring a higher cost in that respect. And
we provide an implementation of DLPA in DLV– the state-of-the-art DLP system –
and report on experiments which confirm the usefulness of the proposed extension also
for the efficiency of the computation.

1 Introduction

Disjunctive Logic Programs (DLP) are logic programs where (nonmonotonic) negation may
occur in the bodies, and disjunction may occur in the heads of rules. This language is very
expressive in a precise mathematical sense: under the answer set semantics [GL91] it allows
to express every property of finite structures that is decidable in the complexity class ΣP

2 (=
NPNP). Therefore, under widely believed assumptions, DLP is strictly more expressive than
normal (disjunction-free) logic programming, whose expressiveness is limited to properties
decidable in NP, and it can express problems which cannot be translated to satisfiability of
CNF formulas in polynomial time. Importantly, besides enlarging the class of applications
which can be encoded in the language, disjunction often allows for representing problems of
lower complexity in a simpler and more natural fashion (see [EFLP00]).

? This work was supported by the European Commission under projects IST-2002-33570 INFOMIX,
IST-2001-32429 ICONS, and FET-2001-37004 WASP. A preliminary version was presented at IJ-
CAI’03.

The problem. Despite this high expressiveness, there are some simple properties, often
arising in real-world applications, which cannot be encoded in DLP in a simple and natural
manner. Among these are properties which require the application of some arithmetic op-
erators (e.g., sum, times, count) on a set of elements satisfying some conditions. Suppose,
for instance, that you want to know if the sum of the salaries of the employees working in a
team exceeds a given budget (see Team Building in Section 3). To this end, you should first
order the employees defining a successor relation. You should then define a sum predicate,
in a recursive way, which computes the sum of all salaries, and compare its result with the
given budget. This approach has two drawbacks: (1) It is bad from the KR perspective, as
the encoding is not natural at all; (2) it is inefficient, as the (instantiation of the) program
is quadratic (in the cardinality of the input set of employees). Thus, there is a clear need to
enrich DLP with suitable constructs for the natural representation of such properties and to
provide means for an efficient evaluation.

Contribution. We overcome the above deficiency of DLP. Instead of inventing new con-
structs from scratch, we extend the language with a sort of aggregate functions, first studied
in the context of deductive databases, and implement them in DLV [EFLP00] – the state-of-
the-art Disjunctive Logic Programming system. The main contributions of this paper are the
following:

• We extend Disjunctive Logic Programming by aggregate functions and formally define the
semantics of the resulting language, named DLPA.
• We address knowledge representation issues, showing the impact of the new constructs on
relevant problems.
• We analyze the computational complexity of DLPA. Importantly, it turns out that the addi-
tion of aggregates does not increase the computational complexity, which remains the same
as for reasoning on DLP programs.
• We provide an implementation of DLPA in the DLV system, deriving new algorithms and
optimization techniques for efficient evaluation.
• We report on experimentation, evaluating the impact of the proposed language extension
on efficiency. The experiments confirm that, besides providing relevant advantages from the
knowledge representation point of view, aggregate functions can bring significant computa-
tional gains.
• We compare DLPA with related work.

A previous version of DLPA [DFI+03] required aggregates to honor stratification, that is,
predicates defined by means of aggregates could not mutually depend on one another. Here,
we lift this restriction and allow for arbitrarily recursive definitions. To that end we provide
a novel approach to defining the semantics of DLPA programs which naturally extends the
original definition of answer sets. We also describe suitable enhancements to the implemen-
tation in order to deal with unstratified aggregates.

2 The DLPA Language

In this section, we provide a formal definition of the syntax and semantics of the DLPA

language – an extension of DLP by set-oriented (or aggregate) functions. We assume that the
reader is familiar with standard DLP; we refer to atoms, literals, rules, and programs of DLP

as standard atoms, standard literals, standard rules, and standard programs, respectively. For
further background, see [GL91,EFLP00].

2.1 Syntax

A (DLPA) set is either a symbolic set or a ground set. A symbolic set is a pair {Vars :Conj },
where Vars is a list of variables and Conj is a conjunction of standard literals.3 A ground
set is a set of pairs of the form 〈t : Conj 〉, where t is a list of constants and Conj is a
ground (variable free) conjunction of standard literals. An aggregate function is of the form
f(S), where S is a set, and f is a function name among #count, #min, #max, #sum,
#times. An aggregate atom is Lg ≺1 f(S) ≺2 Rg , where f(S) is an aggregate function,
≺1,≺2∈ {=, <, ≤, >,≥}, and Lg and Rg (called left guard, and right guard, respectively)
are terms. One of “Lg ≺1” and “≺2 Rg” can be omitted. An atom is either a standard DLP
atom or an aggregate atom. A literal L is an atom A or an atom A preceded by the default
negation symbol not; if A is an aggregate atom, L is an aggregate literal.

A (DLPA) rule r is a construct
a1 ∨ · · · ∨ an :- b1, · · · , bk, not bk+1, · · · , not bm.

where a1, · · · , an are standard atoms, b1, · · · , bm are atoms, and n ≥ 0, m ≥ k ≥ 0, m+n ≥
1. The disjunction a1 ∨ · · · ∨ an is the head of r while the conjunction b1, . . . , not bm

is the body of r. We define H(r) = {a1, . . . , an} and B(r) = {b1, . . . , not bm}. A rule
with an empty body (i.e. k = m = 0) is called a fact, and we usually omit the “ :- ” sign. A
(DLPA) program is a set of DLPA rules.

Syntactic Restrictions and Notation.
For simplicity, and without loss of generality, we assume that the body of each rule con-

tains at most one aggregate atom. A global variable of a rule r is a variable appearing in
some standard atom of r; a local variable of r is a variable appearing solely in an aggregate
function in r.

Safety. A rule r is safe if the following conditions hold: (i) each global variable of r appears
in a positive standard literal in the body of r; (ii) each local variable of r that appears in a
symbolic set {Vars : Conj } also appears in a positive literal in Conj ; (iii) each guard of an
aggregate atom of r is either a constant or a global variable. Finally, a program is safe if all
of its rules are safe.

Example 1. Consider the following rules:
p(X) :- q(X, Y, V), Y < #max{Z : r(Z), not a(Z, V)}.
p(X) :- q(X, Y, V), Y < #sum{Z : not a(Z, S)}.
p(X) :- q(X, Y, V), T < #min{Z : r(Z), not a(Z, V)}.

The first rule is safe, while the second is not, since both local variables Z and S violate
condition (ii). The third rule is not safe either, since the guard T is not a global variable.

Stratification. This is a concept originally introduced for the use of negation in logic pro-
gramming. In our context, it ensures that two predicates defined by means of aggregates do

3 Intuitively, a symbolic set {X:a(X, Y), not p(Y)} stands for the set of X-values making the con-
junction a(X,Y), not p(Y) true, i.e., {X :∃Y s.t . a(X, Y) ∧ not p(Y) is true}.

not mutually depend on one another. Our original definition and implementation of DLPA in
[DFI+03] imposes this syntactic restriction, which we now lift in the present paper, though
we still differentiate stratified programs as they allow for a more efficient computation of the
instantiation of aggregate atoms.

A DLPA program P is aggregate-stratified if there exists a function || ||, called level
mapping, from the set of (standard) predicates of P to ordinals, such that for each pair a and
b of (standard) predicates of P , and for each rule r ∈ P the following hold: (i) If a appears in
the head of r, and b appears in an aggregate atom in the body of r, then ||b|| < ||a||; and (ii) if
a appears in the head of r, and b occurs in a standard atom in the body of r, then ||b|| ≤ ||a||.

Example 2. Consider the program consisting of a set of facts for predicates a and b, plus the
following two rules:

q(X) :- p(X), #count{Y : a(Y, X), b(X)} ≤ 2.

p(X) :- q(X), b(X).

The program is aggregate-stratified, as the level mapping ||a|| = ||b|| = 1 ||p|| = ||q|| = 2
satisfies the required conditions. If we add the rule b(X) :- p(X), then no level-mapping
exists and the program becomes aggregate-unstratified.

Intuitively, aggregate-stratification forbids recursion through aggregates. Stratified aggre-
gates are computationally somewhat easier, as they can be evaluated step by step, as the truth
value of an aggregate atom cannot change after it has been fixed once. On the other hand,
using unstratified aggregates, one can encode unstratified negation, and hence the situation
becomes less clear in this case.

Consider, for instance, the (aggregate-unstratified) program consisting only of the rule
r : p(a) :-#count{X : p(X)} = 0. Neither {p(a)} nor ∅ is an intuitive meaning for the pro-
gram, and neither of the two is an answer set. Indeed, the rule r corresponds to p(a) :- not pp.

and pp :- p(X). which does not admit any answer set, either.

2.2 Semantics

Given a DLPA program P , let UP denote the set of constants appearing in P , UN
P ⊆ UP the

set of the natural numbers occurring in UP , and BP the set of standard atoms constructible
from the (standard) predicates of P with constants in UP . Furthermore, given a set X , 2

X

denotes the set of all multisets over elements from X . Let us now describe the domains and
the meanings of the aggregate functions we consider:

#count: defined over 2
UP, the number of elements in the set.

#sum: defined over 2
U

N
P, the sum of the numbers in the set; 0 in case of the empty set.

#times: over 2
U

N
P, the product of the numbers in the set; 1 for the empty set. #min,

#max: defined over 2
UP − {∅}, the minimum/maximum element in the set; if the set

contains also strings, the lexicographic ordering is considered.4

If the argument of an aggregate function does not belong to its domain, the aggregate
evaluates to false (denoted as ⊥) and our implementation issues a warning.

4 #min and #max over strings are not yet supported in the current implementation.

A substitution is a mapping from a set of variables to the set UP of the constants in P .
A substitution from the set of global variables of a rule r (to UP) is a global substitution
for r; a substitution from the set of local variables of a symbolic set S (to UP) is a local
substitution for S. Given a symbolic set without global variables S = {Vars : Conj }, the
instantiation of S is the following ground set of pairs inst(S): {〈γ(Vars) : γ(Conj)〉 | γ is
a local substitution for S}.5

A ground instance of a rule r is obtained in two steps: (1) a global substitution σ for r is
applied over r; and (2) every symbolic set S in σ(r) is replaced by its instantiation inst(S).
The instantiation Ground(P) of a program P is the set of all possible instances of the rules
of P .

Example 3. Consider the following program P1:

q(1) ∨ p(2, 2). q(2) ∨ p(2, 1).
t(X) :- q(X), #sum{Y : p(X, Y)} > 1.

The instantiation Ground(P1) is the following:

q(1) ∨ p(2, 2). q(2) ∨ p(2, 1).
t(1) :- q(1), #sum{〈1 : p(1, 1)〉, 〈2 : p(1, 2)〉} > 1.

t(2) :- q(2), #sum{〈1 : p(2, 1)〉, 〈2 : p(2, 2)〉} > 1.

Interpretations and models. An interpretation for a DLPA program P is a set of standard
ground atoms I ⊆ BP . The truth valuation I(A), where A is a standard ground literal or a
standard ground conjunction, is defined in the usual way. Besides assigning truth values to
standard ground literals, an interpretation provides meaning also to (ground) sets, aggregate
functions and aggregate literals; the meaning of a set, an aggregate function, and an aggregate
atom under an interpretation, is a multiset, a value, and a truth value, respectively. Let f(S)
be a an aggregate function. The valuation I(S) of the set S w.r.t. I is the multiset of the
constants appearing in the first position of the first components of the elements in S whose
conjunctions are true w.r.t. I . More precisely, let SI = {〈t1, ..., tn〉 | 〈t1, ..., tn : Conj 〉 ∈
S ∧ Conj is true w.r.t. I}, then I(S) is the multiset [t1 | 〈t1, ..., tn〉∈SI]. The valuation
I(f(S)) of an aggregate function f(S) w.r.t. I is the result of the application of the function
f on I(S). If the multiset I(S) is not in the domain of f, I(f(S)) = ⊥.

An aggregate atom A = Lg ≺1 f(S) ≺2 Rg is true w.r.t. I if: (i) I(f(S)) 6= ⊥, and,
(ii) the relationships Lg ≺1 I(f(S)) and I(f(S)) ≺2 Rg hold whenever they are present;
otherwise, A is false.

A model for P is an interpretation M for P such that every rule r ∈ Ground(P) is true
w.r.t. M . A model M for P is (subset) minimal if no model N for P exists such that N is a
proper subset of M .

Example 4. Consider the aggregate atom A = #sum{〈1 : p(2, 1)〉, 〈2 : p(2, 2)〉} > 1 from
Example 3. Let S be the ground set appearing in A. For the interpretation I = {q(2), p(2, 2), t(2)},
I(S) = [2], the application of #sum over [2] yields 2, and A is therefore true w.r.t. I , since
2 > 1. I is a minimal model of the program of Example 3.

5 Given a substitution σ and a DLPA object O (rule, conjunction, set, etc.), with a little abuse of
notation, we denote by σ(O) the object obtained by replacing each variable X in O by σ(X).

Answer Sets. First we define the answer sets of positive programs without aggregates, then
we give a reduction of disjunctive datalog programs containing negation as failure and aggre-
gates to positive programs without aggregates and use that to define answer sets of arbitrary
disjunctive datalog programs (possibly containing negation as failure and aggregates).

An interpretation X ⊆ BP is called closed under a positive disjunctive datalog program
without aggregates P , if, for every r ∈ Ground(P), H(r) ∩ X 6= ∅ whenever B(r) ⊆ X .
An interpretation X ⊆ BP is an answer set for a positive DLPA program without aggregates
P , if it is minimal (under set inclusion) among all interpretations that are closed under P .6

Example 5. The positive program P1 = {a ∨ b ∨ c.} has the answer sets {a}, {b}, and {c}.
Its extension P2 = {a ∨ b ∨ c. , :- a} has the answer sets {b} and {c}. Finally, the positive
program P3 = {a ∨ b ∨ c. , :-a. , b :- c. , c :- b.} has the single answer set {b, c}.

The reduct or Gelfond-Lifschitz transform of a ground program P w.r.t. a set X ⊆ BP is
the positive ground program PX obtained from P by

– deleting all rules r ∈ P for which a negative literal in B(r) is false w.r.t. X or an
aggregate literal is false w.r.t. X ; and

– deleting the aggregate literals and the negative literals from the remaining rules.

An answer set of a programP is a set X ⊆ BP such that X is an answer set of Ground(P)X .

Example 6. Given the following program with negation and stratified aggregates P4 =

{d(1). , a ∨ b :- c. ,

b :- not a, not c, #count{Y : d(Y)} > 0. ,

a ∨ c :- not b, #sum{Y : d(Y)} > 1.}

and I = {b, d(1)}, the reduct PI
4 is {d(1). , a ∨ b :- c. , b.}. It is easy to see that I is an

answer set of PI
4 , and for this reason it is also an answer set of P4.

Now consider J = {a, d(1)}. The reduct PJ
4 is {d(1). , a ∨ b :- c.} and it can be easily

verified that J is an answer set of PJ
4 , so it is also an answer set of P4.

For K = {c, d(1)}, on the other hand, the reduct PK
4 is equal to PJ

4 , but K is not an
answer set of PK

4 : for the rule r : a ∨ b :- c, B(r) ⊆ K holds, but H(r) ∩ K 6= ∅ does not.
Indeed, it can be verified that I and J are the only answer sets of P4.

Example 7. Given the following program with unstratified aggregates

P5 = {p(1) :-#count{X : p(X)} < 2. , p(2) ∨ q(2).}

and I = {p(1), p(2)}, the reduct PI
5 is {p(2) ∨ q(2).}. It is easy to see that I is a model

but not a minimal model of PI
5 and thus not an answer set of PI

5 nor P5. Now consider
J = {p(1), q(2)}. The reduct PJ

5 is {p(1). , p(2) ∨ q(2).} and it can be easily verified that
J is an answer set of PJ

5 , so it is also an answer set of P5. If, on the other hand, we take
K = {p(2)}, the reduct PK

5 is equal to PJ
5 , but K is not a model of PK

5 as for the rule
r : p(1). We see that B(r) ⊆ K trivially holds, but H(r) ∩ K 6= ∅ obviously does not.
Indeed, it can be verified that J is the only answer sets of P5.

6 Note that we only consider consistent answer sets, while in [GL91] also the inconsistent set of all
possible literals can be a valid answer set.

3 Knowledge Representation in DLPA

In this section, we show how aggregate functions can be used to encode several relevant
problems: Team Building, Seating, and Products Control.

Team Building. A project team has to be built from a set of employees according to the
following specifications:

(p1) The team consists of a certain number of employees.
(p2) At least a given number of different skills must be present in the team.
(p3) The sum of the salaries of the employees working in the team must not exceed

the given budget.
(p4) The salary of each individual employee is within a specified limit.
(p5) The number of women working in the team has to reach at least a given num-

ber.

Suppose that our employees are provided by a number of facts of the form
emp(EmpId, Sex, Skill, Salary); the size of the team, the minimum number of different
skills, the budget, the maximum salary, and the minimum number of women are specified by
the facts nEmp(N), nSkill(N), budget(B), maxSal(M), and women(W). We then en-
code each property pi above by an aggregate atom Ai, and enforce it by an integrity constraint
containing not Ai.

in(I) ∨ out(I) :- emp(I, Sx, Sk, Sa).
:-nEmp(N), not #count{I : in(I)} = N.

:-nSkill(M), not #count{Sk : emp(I,Sx, Sk, Sa), in(I)} ≥ M.

:- budget(B),not #sum{Sa, I : emp(I,Sx, Sk, Sa), in(I)} ≤ B.

:-maxSal(M), not #max{Sa : emp(I, Sx, Sk, Sa), in(I)} ≤ M.

:-women(W), not #count{I : emp(I, f, Sk, Sa), in(I)} ≥ W.

Intuitively, the disjunctive rule “guesses” whether an employee is included in the team or
not, while the five constraints correspond one-to-one to the five requirements p1-p5. Thanks
to the aggregates the translation of the specifications is surprisingly straightforward. The
example highlights the usefulness of representing both sets and multisets in our language;
the latter can be obtained by specifying more than one variable in Vars of a symbolic set
{Vars : Conj }). For instance, the encoding of p2 requires a set, as we want to count different
skills; two employees in the team having the same skill, should count once w.r.t. p2. On the
contrary, p3 requires to sum the elements of a multiset; if two employees have the same salary,
both salaries should be summed up for p3. This is obtained by adding the variable I , which
uniquely identifies every employee, to Vars . The valuation of {Sa, I : emp(I, Sx, Sk, Sa), in(I)}
yields the set S = {〈Sa, I〉 : Sa is the salary of employee I in the team}. The sum func-
tion is then applied on the multiset of the first components Sa of the tuples 〈Sa, I〉 in S (see
Section 2.2).

Seating. We have to generate a sitting arrangement for a number of guests, with m tables
and n chairs per table. Guests who like each other should sit at the same table; guests who
dislike each other should not sit at the same table.

Suppose that the number of chairs per table is specified by nChairs(X) and that person(P)
and table(T) represent the guests and the available tables, respectively. Then, we can gener-

ate a seating arrangement by the following program:

% Guess whether person P sits at table T or not.
at(P, T) ∨ not at(P, T) :- person(P), table(T).
% The persons sitting at a table cannot exceed the chairs.
:- table(T), nChairs(C), not #count{P : at(P, T)} ≤ C.

% A person is seated at precisely one table; this is equivalent
% to :- person(P), at(P, T), at(P, U), T <> U.

:- person(P), not #count{T : at(P, T)} = 1.

% People who like each other should sit at the same table...
:- like(P1, P2), at(P1, T), not at(P2, T).
% ...while people who dislike each other should not.
:- dislike(P1, P2), at(P1, T), at(P2, T).

Products Control. Given a set of desired products, a set of companies and a fixed budget, the
problem consists of buying financial shares in this set of companies, within the given budget,
such that the controlled companies produce all the desired products. The specifications are
the following:

(p1) A product A is produced by us if it is produced by a company under our
control.

(p2) A company C is under our direct control, if we bought more than 50% of its
shares.

(p3) A company C is under our (indirect) control, if companies under our control
(together) own more than 50% of C.

(p4) The majority of the shares of C can be reached by summing up the C shares
we bought directly with the shares owned by the companies under our control.

(p5) Each desired product has to be produced.
(p6) The budget must not be exceeded.

Suppose that desired products and companies are provided by a number of facts of the
form desired(P) and company(C), respectively, and suppose that the budget is specified
by the fact budget(B). Furthermore, let the relations between products P and producing
companies C be given by facts producedBy(P, C) and the fact that N% shares of company
C are for sale at price P by forSale(C, N, P). (For simplicity we assume that only one
package of a fixed amount of shares is for sale per company.) Finally if company C1 owns
N% shares of company C2, let a fact shares(C2, C1, N) be defined.

Given this information, we encode the problem specified by properties p1 to p6 in the
following way:

bought(C,N) ∨ notBought(C, N) :- company(C), forSale(C, N, Price).
produced(A) :- producedBy(A,C), controlled(C).
controlled(C) :- bought(C, N), N > 50.

controlled(C) :- company(C), #sum{N, C1 : shares(C,C1, N), controlled(C1)} > 50.

controlled(C) :- bought(C, N), N ≤ 50,

#sum{N, C1 : shares(C,C1, N), controlled(C1)} > K, 50 = K + N.

:- desired(P), not produced(P).
:- budget(B),#sum{Price, C : forSale(C, N, Price), bought(C,N)} > B.

Intuitively, the disjunctive rule “guesses” whether a given number of shares of a company
C has been bought or not. The other rules define when a product is produced by us and the

different conditions to control a company. The last two constraints correspond to requirements
p5 and p6. Note that in all aggregates in this program the sums are computed over multisets,
as different companies may hold equal percentages of shares and different shares for sale may
cost equally much.

4 Computational Complexity of DLPA

As for the classical nonmonotonic formalisms [MT91], two important decision problems,
corresponding to two different reasoning tasks, arise in DLPA:

Brave Reasoning: Given a DLPA program P and a ground literal L, is L true in some
answer set of P?
Cautious Reasoning: Given a DLPA program P and a ground literal L, is L true in all
answer sets of P?

The following theorems report on the complexity of the above reasoning tasks for propo-
sitional (i.e., variable-free) DLPA programs that respect the safety restrictions imposed in
Section 2. Importantly, it turns out that reasoning in DLPA does not bring an increase in
computational complexity, which remains exactly the same as for standard DLP.

Lemma 1. Deciding whether an interpretation M is an answer set for a ground program P
is in co-NP.

Proof. We check in NP that M is not an answer set of P as follows. Guess a subset I of
M , and verify that: (1) M is not a model for P , or (2) I ⊂ M and I is a model of the
Gelfond-Lifschitz transform of P w.r.t. M .

The only difference w.r.t. the corresponding tasks of (1) and (2) in standard DLP, is the
computation of the truth valuations of the aggregate atoms, which in turn require to compute
the valuations of aggregate functions and sets. Computing the valuation of a ground set T

requires scanning each element 〈t1, ..., tn : Conj 〉 of T and adding t1 to the result multiset
if Conj is true w.r.t. I . This is evidently polynomial, as is the application of the aggregate
operators (#count, #min, #max, #sum, #times) on a multiset; the comparison of the
guards with its result, finally, is straightforward.

Therefore, the tasks (1) and (2) are tractable as in standard DLP. Deciding whether M is
not an answer set for P thus is in NP; consequently, deciding whether M is an answer set for
P is in co-NP. 2

Based on this lemma, we can identify the computational complexity of the main decision
problems, brave and cautious reasoning.

Theorem 1. Brave Reasoning on ground DLPA programs is ΣP
2 -complete.

Proof. We verify that a ground literal L is a brave consequence of a DLPA program P as
follows: Guess a set M ⊆ BP of ground literals, check that (1) M is an answer set for P ,
and (2) L is true w.r.t. M . Task (2) is clearly polynomial; while (1) is in co-NP by virtue of
Lemma 1. The problem therefore lies in ΣP

2 .
ΣP

2 -hardness follows from the ΣP
2 -hardness of DLP [EGM97], since DLPA is a superset

of DLP. 2

The complexity of cautious reasoning follows by similar arguments as above.

Theorem 2. Cautious Reasoning on ground DLPA programs is ΠP
2 -complete.

Proof. We verify that a ground literal L is not a cautious consequence of a DLPA program
P as follows: Guess a set M ⊆ BP of ground literals, check that (1) M is an answer set for
P , and (2) L is not true w.r.t. M . Task (2) is clearly polynomial; while (1) is in co-NP, by
virtue of Lemma 1. Therefore, the complement of cautious reasoning is in ΣP

2 , and cautious
reasoning is in ΠP

2 .
ΠP

2 -hardness again follows from [EG95], since DLPA is a superset of DLP. 2

5 Implementation Issues

The implementation of DLPA required changes to all modules of DLV. Apart from a prelim-
inary standardization phase, most of the effort concentrated on the Instantiation and Model
Generator modules.

Standardization. After parsing, each aggregate A is transformed such that both guards are
present and both ≺1 and ≺2 are set to ≤. The conjunction Conj of the symbolic set of A

is replaced by a single, new atom Aux and a rule Aux :-Conj is added to the program (the
arguments of Aux being the distinct variables of Conj).

Instantiation. The goal of the instantiator is to generate a ground program that has precisely
the same answer sets as the theoretical instantiation Ground(P), but is sensibly smaller. The
instantiation proceeds bottom-up following the dependencies induced by the rules, and, in
particular, respecting the ordering imposed by aggregate-stratification where applicable.

For aggregate-stratified components of the input program we proceed as follows. Let
“H :-B, aggr.” be a rule r, where H is the head of the rule, B is the conjunction of the
standard body literals in r, and aggr is an aggregate literal over a symbolic set {Vars:Aux}.
First we compute an instantiation B for the literals in B; this also binds the global vari-
ables appearing in Aux. The (partially bound) atom Aux is then matched against its ex-
tension (which is already available for aggregate-stratified rules since the bottom-up in-
stantiation respects the stratification), all matching facts are computed, and a set of pairs
{〈θ1(Vars) : θ1(Aux)〉,...,〈θn(Vars) : θn(Aux)〉} is generated, where θi is a substitution
for the local variables in Aux such that θi(Aux) is an admissible instance of Aux. (Recall
that DLV’s instantiator produces only those instances of a predicate which can potentially
become true [FLMP99,LPS01], where a ground atom A can potentially become true only
if we have generated a ground instance of a rule with A in the head.) Also, we only store
those elements of the symbolic set whose truth value cannot be determined yet and process
the others dynamically, (partially) evaluating the aggregate already during instantiation. For
instance, if Aux is defined by a disjunction-free stratified subprogram (where the truth values
of all atoms are already determined during grounding), the aggregate is completely evaluated
during the instantiation, its truth valuation is determined, and it is removed from the body of
the rule instance. The same process is then repeated for all further instantiations of the literals
in B.

Example 8. Consider the rule r: p(X) :- q(X), 1 < #count{Y : a(X, Y), not b(Y)}. The
standardization rewrites r to:

p(X) :- q(X), 2 ≤ #count{Y : aux(X, Y)} ≤ ∞.

aux(X, Y) :-a(X,Y), not b(Y).

Suppose that the instantiation of the rule for aux generates 3 potentially true facts aux(1, a),
aux(1, b), and aux(2, c). If the potentially true facts for q are q(1) and q(2), the following
ground instances are generated:

p(1) :- q(1), 2≤#count{〈a :aux(1, a)〉, 〈b :aux(1, b)〉}≤∞.

p(2) :- q(2), 2 ≤ #count{〈c : aux(2, c)〉} ≤ ∞.

Note that a ground set contains only those aux atoms which are potentially true.

For a rule r with unstratified aggregates, we proceed similarly to the stratified case, but
do not instantiate the symbolic set {Vars:Aux} yet, as we are not guaranteed that the entire
extension of Aux is already available (since Aux is recursive with the head, its extension
is being generated during the evaluation of the component at hand, and new facts for Aux

could still be produced). Thus, as in the stratified case we compute an instantiation B for
the literals in B, but we do not instantiate the symbolic set in r. We only “prepare” the
ground instance of r, storing a “container” for the set appearing in the aggregate function in a
temporary memory location. Then, once the instantiation of the current component has been
completed and we are sure that no further instance for Aux will be generated, we resume the
instantiation process for r, compute all facts matching Aux, and complete the generation of
the set.

Duplicate Sets Recognition. To optimize the evaluation during instantiation and especially
afterwards, we have designed a hashing technique which recognizes multiple occurrences of
the same set in the program, even in different rules, and stores them only once. This saves
memory (sets may be very large), and also implies a significant performance gain, especially
in the model generation where sets are frequently manipulated during the backtracking pro-
cess.

Example 9. Consider the following two constraints:

c1 : :- 10 ≤ #max{V : d(V, X)}.
c2 : :- #min{Y : d(Y, Z)} ≤ 5.

Our technique recognizes that the two sets are equal, and generates only one instance which
is shared by c1 and c2.

Now assume that both constraints additionally contain a standard literal p(T). In this case,
c1 and c2 have n instances each, where n is the number of facts for p(T). By means of our
technique, each pair of instances of c1 and c2 shares a common set, reducing the number of
instantiated sets by half.

Note that also the program for the example Products Control in Section 3 contains two
equal symbolic sets (appearing in the bodies of the second and the third rule with con-
trolled(C) in the head), which would generate, once they are instantiated, several pairs of
identical (ground) sets (one for each company C). Thanks to our hashing-based technique,
the generation of these duplicates is prevented with a relevant efficiency gain.

Model Generation. We have designed an extension of the Deterministic Consequences
operator of the DLV system [FLP99] for DLPA programs. The new operator makes both
forward and backward inferences on aggregate atoms, resulting in an effective pruning of the
search space. We have then extended the Dowling and Gallier algorithm [DG84] to compute
a fixpoint of this operator in linear time using a multi-linked data structure of pointers. Given
a ground set T , say, {〈t11, ..., t

1
n : Aux1〉, ..., 〈tm1 , ..., tmn : Auxm〉}, this structure allows to

access T in O(1) whenever some Auxi changes its truth value (supporting fast forward prop-
agation); on the other hand, it provides direct access from T to each Auxi atom (supporting
fast backward propagation).

6 Experiments and Benchmarks

To assess the usefulness of the proposed DLP extension and evaluate its implementation, we
compare the following two methods for solving a given problem:

DLVA Encode the problem in DLPA and solve it by using our extension of DLV
with aggregates.

DLV Encode the problem in standard DLP and solve it by using standard DLV.
To generate DLP encodings from DLPA encodings, suitable logic defi-
nitions of the aggregate functions are employed (which are recursive for
#count, #sum, and #times).

We compare these methods on two benchmark problems: Time Tabling is a classical
planning problem. In particular, we consider the problem of planning the timetable of lectures
which some groups of students have to take. We consider a number of real-world instances
University of Calabria where instance k deals with k groups.

Seating is the problem described in Section 3. We consider 4 (for small instances) or 5
(for larger instances) seats per table, with increasing numbers of tables and persons (with
numPersons = numSeats ∗ numTables). For each problem size (i.e., seats/tables configu-
ration), we consider classes with different numbers of like and dislike constraints, where the
percentages are relative to the maximum numbers of like and dislike constraints, resp. such
that the problem is not over-constrained.7

In particular, we consider the following classes: (-) no like/dislike constraints at all; (-)
25% like constraints; (-) 25% like and 25% dislike constraints; (-) 50% like constraints; (-
) 50% like and 50% dislike constraints. For each problem size, we randomly generated 10
instances for each of these classes.

For Seating we use the DLPA encoding reported in Section 3; all encodings and bench-
mark data are available at http://www.dlvsystem.com/examples/ijcai03.zip.

We ran the benchmarks on AMD Athlon 1.2 machines with 512MB of memory, using
FreeBSD 4.7 and GCC 2.95. We allowed a maximum running time of 1800 seconds per
instance and a maximum memory usage of 256MB. Cumulated results are provided in Fig-
ure 1. In particular, for Timetabling we report the execution time and the size of the residual
ground instantiation (the total number of atoms occurring in the instantiation, where multiple
occurrences of the same atom are counted).8 For Seating, the execution time is the average

7 Beyond these maxima there is trivially no solution.
8 Note that also atoms occurring in the sets of the aggregates are counted for the instantiation size.

Number of Exec. Time Instantiation Size
Groups DLV DLVA DLV DLVA

1 10.95 0.55 91217 6972
2 36.79 2.05 178533 13986
3 79.84 4.68 264938 20888
4 147.53 7.86 367014 29029
5 224.46 12.30 436544 36043
6 321.85 17.18 518950 42767
7 437.94 25.36 606361 49993
8 618.23 37.78 761429 61916
9 - 57.00 - 74027

Number of Exec. Time Instantiation Size
Persons DLV DLVA DLV DLVA

8 0.010 0.010 320 101
12 0.034 0.010 996 248
16 26.872 0.011 2272 490
25 - 0.024 6643 1346
50 - 0.307 50029 7559
75 - 1.883 165442 22049
100 - 7.082 387886 47946
125 - 64.293 752769 88781
150 - 152.450 1294977 147567

Fig. 1. Experimental Results for Timetabling and Seating

running time over the instances of the same size. A “-” symbol in the tables indicates that the
corresponding instance (some of the instances of that size, for Seating) was not solved within
the allowed time and memory limits.

On both problems, DLVA clearly outperforms DLV. On Timetabling, the execution time
of DLVA is one order of magnitude lower than that of DLV on all problem instances, and
DLV could not solve the last instances within the allowed memory and time limits. On Seat-
ing, the difference becomes even more significant. DLV could solve only the instances of
small size (up to 16 persons - 4 tables, 4 seats), while DLVA could solve significantly larger
instances in a reasonable time. The information about the instantiation sizes provides an ex-
planation for such a big difference between the execution times of DLV and DLVA. Thanks
to the aggregates, the DLPA encodings are more succinct than the corresponding encodings
in standard DLP. This succinctness is also reflected in the ground instantiations of the pro-
grams. Since the evaluation algorithms are then exponential in the size of the instantiation (in
the worst case), the execution times of DLVA turn out to be much shorter than those of DLV.

7 Related Works

Aggregate functions in logic programming languages appeared already in the 1980s, when
their need emerged in deductive databases like LDL [CGK+90] and were studied in detail,
cf. [RS97,KR98]. However, the first implementation in Answer Set Programming, in the
Smodels system, is recent [SNS02].

Comparing DLPA to the language of Smodels, we observe a strong similarity between
cardinality constraints there and #count. Also #sum and the weight constraints of Smodels
are similar in spirit. Indeed, the DLPA encodings of both Team Building and Seating can
be easily translated to Smodels’ language. However, there are some relevant differences. For
instance, in DLPA aggregate atoms can be negated, while cardinality and weight constraint
literals in Smodels cannot.

Negated aggregates are useful for a more direct knowledge representation, and allow
to express, for instance, that some value should be external to a given range. For example,
not 3 ≤ #count{X : p(X)} ≤ 7 is true if the number of true facts for p is in [0, 3[∪]7,∞[;
for expressing the same property in Smodels one needs to use two cardinality constraints.

Smodels, on the other hand, allows for weight constraints in the heads of rules, while
DLPA aggregates cannot occur in heads. (The presence of weight constraints in heads is a

powerful KR feature, which allows, for instance, to “guess” an arbitrary subset of a given set;
however, it causes the loss of some semantic property of nonmonotonic languages [MR02].)

DLPA aggregates like #min, #max, and #times do not have a counterpart in Smodels.
Moreover, DLPA provides a general framework where further aggregates can be easily ac-
commodated (e.g., #any and #avg are already under development). Furthermore, note that
symbolic sets of DLPA directly represent pure (mathematical) sets, and can also represent
multisets rather naturally (see the discussion on Team Building in Section 3). Smodels weight
constraints, on the other hand, work on multisets, and additional rules are needed to encode
pure sets; for instance, Condition p2 of Team Building cannot be directly encoded in a con-
straint, but needs the definition of an extra predicate. Thanks to stricter safety conditions (all
variables are to be restricted by domain predicates), like DLPA, Smodels is able to deal with
recursion through aggregates even though its instantiator is less sophisticated.

Finally, note that DLPA deals with sets of terms, while Smodels deals with sets of atoms.
As far as the implementation is concerned, Smodels, too, is endowed with advanced prun-
ing operators for weight constraints, which are efficiently implemented. We are not aware,
though, of techniques for the automatic recognition of duplicate sets in Smodels.

DLPA also seems to be very similar to a special case of the semantics for aggregates
discussed in [Gel02], which we are currently investigating.

Another interesting research line uses 4-valued logics and approximating operators to de-
fine the semantics of aggregate functions in logic-based languages [DPB01,DMT02,Pel02].
These approaches are founded on very solid theoretical grounds, and appear very promising,
as they could provide a clean formalization of a very general framework for arbitrary aggre-
gates in logic programming and nonmonotonic reasoning, where aggregate atoms can also
“produce” new values (currently, both DLPA and Smodels require the guards of aggregates
to be bound to some value). These approaches sometimes amount to a higher computational
complexity [Pel02] and have not been implemented so far. However, on the common fragment
we believe our language and semantics to be in sync with those defined in [Pel02].

8 Conclusion

We have proposed DLPA, an extension of DLP by aggregate functions, and have imple-
mented it in the DLV system. On the one hand, we have demonstrated that the aggregate
functions increase the knowledge modeling power of DLP, supporting a more natural and
concise knowledge representation. On the other hand, we have shown that aggregate func-
tions do not increase the complexity of the main reasoning tasks. Moreover, experiments
have confirmed that the succinctness of the encodings employing aggregates has a strong
positive impact on the efficiency of the computation.

Future work will concern the introduction of further aggregate operators like #any (“Is
there any matching element in the set?”) and #avg, as well as the design of further optimiza-
tion techniques and heuristics to improve the efficiency of the computation.

References

[CGK+90] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, and C. Zaniolo. The LDL
System Prototype. IEEE TKDE, 2(1), 1990.

[DFI+03] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate Functions in Disjunc-
tive Logic Programming: Semantics, Complexity, and Implementation in DLV. In IJCAI
2003, pp. 847–852, Acapulco, Mexico, August 2003. Morgan Kaufmann.

[DG84] W. F. Dowling and J. H. Gallier. Linear-time Algorithms for Testing the Satisfability of
Propositional Horn Formulae. JLP, 3:267–284, 1984.

[DMT02] M. Denecker, V. Marek, and M. Truszczyński. Ultimate Approximations in Monotonic
Knowledge Representation Systems. In KR-2002, pp. 177–188.

[DPB01] M. Denecker, N. Pelov, and M. Bruynooghe. Ultimate Well-Founded and Stable Model
Semantics for Logic Programs with Aggregates. In ICLP-2001, pp. 212–226. Springer,
2001.

[EFLP00] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-Solving Using the DLV
System. In Logic-Based Artificial Intelligence, pp. 79–103. Kluwer, 2000.

[EG95] T. Eiter and G. Gottlob. On the Computational Cost of Disjunctive Logic Programming:
Propositional Case. AMAI, 15(3/4):289–323, 1995.

[EGM97] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM TODS, 22(3):364–418,
September 1997.

[FLMP99] W. Faber, N. Leone, C. Mateis, and G. Pfeifer. Using Database Optimization Techniques
for Nonmonotonic Reasoning. In DDLP’99, pp. 135–139.

[FLP99] W. Faber, N. Leone, and G. Pfeifer. Pushing Goal Derivation in DLP Computations. In
LPNMR’99, pp. 177–191. Springer.

[Gel02] M. Gelfond. Representing Knowledge in A-Prolog. In Computational Logic. Logic Pro-
gramming and Beyond, LNCS 2408, pp. 413–451. Springer, 2002.

[GL91] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

[KR98] D. B. Kemp and K. Ramamohanarao. Efficient Recursive Aggregation and Negation in
Deductive Databases. IEEE TKDE, 10:727–745, 1998.

[LPS01] N. Leone, S. Perri, and F. Scarcello. Improving ASP Instantiators by Join-Ordering Meth-
ods. In LPNMR’01, LNAI 2173. Springer, September 2001.

[MR02] V.W. Marek and J.B. Remmel. On Logic Programs with Cardinality Constraints. In
NMR’2002, pp. 219–228, April 2002.

[MT91] V.W. Marek and M. Truszczyński. Autoepistemic Logic. JACM, 38(3):588–619, 1991.
[Pel02] N. Pelov. Non-monotone Semantics for Logic Programs with Aggregates. http://www.

cs.kuleuven.ac.be/˜pelov/papers/nma.ps.gz., October 2002.
[RS97] K. A. Ross and Y. Sagiv. Monotonic Aggregation in Deductive Databases. JCSS, 54(1):79–

97, February 1997.
[SNS02] P. Simons, I. Niemelä, and T. Soininen. Extending and Implementing the Stable Model

Semantics. Artificial Intelligence, 138:181–234, June 2002.

