
Computational Intelligence Chapter 2, Lecture 3, Page 1

Variables

➤ Variables areuniversally quantifiedin the scope of a

clause.

➤ A variable assignmentis a function from variables into

the domain.

➤ Given an interpretation and a variable assignment,

each term denotes an individual and

each clause is either true or false.

➤ A clause containing variables is true in an interpretation

if it is true for all variable assignments.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 2

Queries and Answers

A query is a way to ask if a body is a logical consequence of

the knowledge base:

?b1 ∧ · · · ∧ bm.

An answer is either

➤ an instance of the query that is a logical consequence of

the knowledge baseKB, or

➤ no if no instance is a logical consequence ofKB.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 3

Example Queries

KB =




in(alan, r123).

part_of (r123, cs_building).

in(X, Y) ← part_of (Z, Y) ∧ in(X, Z).

Query Answer

?part_of (r123, B). part_of (r123, cs_building)

?part_of (r023, cs_building). no

?in(alan, r023). no

?in(alan, B). in(alan, r123)

in(alan, cs_building)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 4

Logical Consequence

Atom g is a logical consequence ofKB if and only if:

➤ g is a fact inKB, or

➤ there is a rule

g ← b1 ∧ . . . ∧ bk

in KB such that eachbi is a logical consequence ofKB.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 5

Debugging false conclusions

To debug answerg that is false in the intended interpretation:

➤ If g is a fact inKB, this fact is wrong.

➤ Otherwise, supposeg was proved using the rule:

g ← b1 ∧ . . . ∧ bk

where eachbi is a logical consequence ofKB.

➣ If eachbi is true in the intended interpretation, this

clause is false in the intended interpretation.

➣ If somebi is false in the intended interpretation,

debugbi .

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 6

Axiomatizing the Electrical Environment

% light(L) is true ifL is a light

light(l1). light(l2).

% down(S) is true if switchS is down

down(s1). up(s2). up(s3).

% ok(D) is true ifD is not broken

ok(l1). ok(l2). ok(cb1). ok(cb2).

?light(l1). H⇒ yes

?light(l6). H⇒ no

?up(X). H⇒ up(s2), up(s3)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 7

connected_to(X, Y) is true if componentX is connected toY

connected_to(w0, w1) ← up(s2).

connected_to(w0, w2) ← down(s2).

connected_to(w1, w3) ← up(s1).

connected_to(w2, w3) ← down(s1).

connected_to(w4, w3) ← up(s3).

connected_to(p1, w3).

?connected_to(w0, W). H⇒ W = w1

?connected_to(w1, W). H⇒ no

?connected_to(Y, w3). H⇒ Y = w2, Y = w4, Y = p1

?connected_to(X, W). H⇒ X = w0, W = w1, …

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 8

% lit (L) is true if the lightL is lit

lit (L) ← light(L) ∧ ok(L) ∧ live(L).

% live(C) is true if there is power coming intoC

live(Y) ←
connected_to(Y, Z) ∧
live(Z).

live(outside).

This is a recursive definitionof live.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 9

Recursion and Mathematical Induction

above(X, Y) ← on(X, Y).

above(X, Y) ← on(X, Z) ∧ above(Z, Y).

This can be seen as:

➤ Recursive definition ofabove: proveabovein terms of a

base case (on) or a simpler instance of itself; or

➤ Way to proveaboveby mathematical induction: the base

case is when there are no blocks betweenX andY, and if

you can proveabovewhen there aren blocks between

them, you can prove it when there aren + 1 blocks.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 10

Limitations
Suppose you had a database using the relation:

enrolled(S, C)

which is true when studentS is enrolled in courseC.

You can’t define the relation:

empty_course(C)

which is true when courseC has no students enrolled in it.

This is becauseempty_course(C) doesn’t logically follow

from a set ofenrolledrelations. There are always models

where someone is enrolled in a course!

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

