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Abstract. We propose a new declarative planning language, c&lledhich is based on princi-
ples and methods of logic programming. In this languagesitions between states of knowledge
can be described, rather than transitions between corhpbiscribed states of the world, which
makes the language well-suited for planning under incotafdeowledge. Furthermore, our formal-
ism enables the use of default principles in the planninggse by supporting negation as failure.
Nonethelessf also supports the representation of transitions betwessssbf the world (i.e., states
of complete knowledge) as a special case, which shows thdatiguage is very flexible. As we
demonstrate on particular examples, the use of knowledgessmay allow for a natural and com-
pact problem representation. We then provide a thorouglysisaf the computational complexity
of K, and consider different planning problems, including dtad planning and secure planning
(also known agonformant planningproblems. We show that these problems have different com-
plexities under various restrictions, ranging fro\® to NEXPTIME in the propositional case. Our
results form the theoretical basis for theV* system, which implements the languagen top of
the DLV logic programming system.
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1 Introduction

Since intelligent agents must have planning capabilipésining has been an important problem in Al since
its very beginning, and numerous approaches and methodshiean developed in extensive work over the
last decades. The formulation of planning as a problem iit Idgtes back to a proposal of McCarthy in the
1950s; the breakthrough of Robinson’s resolution methioktiee basis for deductive planning as in Green’s
paper [32] and the well-known situation calculus [52]. Heete because of defects such as the well-known
frame problem, deductive planning lost attention, whike 8TRIPS approach [20], a hybrid between logic
and procedural computation, and its derivates were gainimgrtance. For a long period then, fairly no
other logic-related planning systems were explored.

In the last 12 years, however, logic-based planning celethra renaissance, emerging in the following
loosely identified streams of work:

e Solutions to the frame problem have been worked out, anddtigdplanning based on the situational
calculus has been considered extensively, in particulah&yloronto group, leading to the GOLOG
planning language [40]. In parallel, planning in the evesitelus [38] has been pursued, starting
from [15, 65].

e Formulating planning problems as logical satisfiabilitpllems, proposed by Kautz and Selman [36],
enabled to solve large planning problems which could nooheed by specialized planning systems,
and led to the efficient Blackbox planning system [37]. In $hene spirit, other approaches reduced
planning problems to computational tasks in logical foiisma, including logic programming [8, 68],
model checking [5, 6], and Quantified Boolean Formulas [62].

e Planning as a task in logic-based languages for reasonimgt abtions, which were developed in the
context of logics for knowledge representation and logagpamming, e.g. [23, 35, 26, 28, 29, 34, 49,
70]; see [24, 71] for surveys. Implementing these languagexy, in the spirit of Kautz and Selman,
satisfiability solvers led to the causal calculator (CCAI&D), 47] and the’-plan system [25], which
is based on the importagtaction language [28].

In very influential papers, Lifschitz proposed answer segmmming as a tool for problem solving, and
in particular for planning [43, 44]. In this approach, plamgqproblems, formulated in a domain-independent
planning language, are mapped into an extended logic proguah that the answer sets of this program give
the solutions of the planning problem (cf. also [45]). Insthiay, planners may be created which support
expressive action description languages and, by the usHic&ret answer sets engines such as Smodels
[55] or DLV [13], allow for efficient problem solving.

In our work, we pursue this suggestion and develop it furtherthe present paper, we propose a
new languagelC, for planning under incomplete knowledge. We namk tio emphasize that it describes
transitions betweestates of knowledgeather than betweestates of the world Namely, languag€ and
many others are based on extensions of classical logicsemudible transitions betwegnssible states of the
world. Here, a state of the world is characterized by the truthegahf a number of fluents, i.e. predicates
describing relevant properties of the domain of discoundeere every fluent necessarily is either true or
false. An action is applicable only if some preconditiorriffiala over the fluents) is true in the current state,
and executing this action changes the current state by gioglithe truth values of some fluents.

However, planning agents usually don't haveampleteview of the world. Even if their knowledge is
incomplete, that is, a number of fluents is unknown, they rtalst decisions, execute actions, and reason
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initial: goal:

Figure 1: A blocksworld example.

on the basis of their (incomplete) information at hand. F@maple, imagine a robot in front of a door. If it
is unknown whether the door is open, the robot may decide $b pack. Alternatively, it might decide to
sense the door status in order to obtain complete informaki@wever, this requires that a suitable sensing
action is available and, importantly, actually executgtihat is, the sensor is not broken). Thus, even in
the presence of sensing, some fluents may remain unknowneamd &n agent in a state of incomplete
information.

Our languagelC adopts a three-valued view of fluents in which their valueghihbe true, false, or
unknown. The language is very flexible, and is capable of higi&ransitions between states of the world
(i.e. states of complete knowledge) and of reasoning altauh tas a particular case, as we shall discuss.
Compared to similar planning languagésis closer in spirit to answer set semantics [22] than to @daks
logics. It allows for the explicit use of default negatioxptwiting the power of answer sets to deal with
incomplete knowledge. However, unlike action languagsvahg incomplete states such g [67], K
does not adopt a possible worlds view of knowledge statesesawbn about possible cases for determining
knowledge state transitions. Furthermore, we analyze ahgpatational complexity ok, which provides
the theoretical background for tie VX system implementingC on top of theDLV system [13, 16]DLV*
provides a powerful declarative planning system, whicle&ly-to-use for experiments (seeRL: ht t p:

/I www. dbai . tuwi en. ac. at/ proj/dl v/ K/ >).

1.1 A Brief Overview of

As an appetizer, we give a brief exposition of the main feswof the languagk’, which will be formally
defined in Section 2. We occasionally refer to well-knowmplag problems in the “blocksworld” domain,
which require turning given configurations of blocks intaboonfigurations (see Figure 1).

Background Knowledge The planning domain has a background which is representaddgyc program,
which is required to admit a unique answer set, which is pmiyially computable. A large class of such
problem are those which possess a total well-founded mode. rules and facts of this program define
predicates which are not subject to change, i.e., reprasatint knowledge. An example in blocksworld is
block(B), which states the (unchangeable) property Bhiata block.

Type Declarations The ranges of the arguments of fluents and actions are typestating that certain
predicates must hold on them. For example,

move(B,L) requires block(B), location(L).

specifies the types for the arguments of actimve. The literals after therequires keyword (here,
block(B) andlocation(L)) must be positive literals of the static background knogkethentioned above.
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Causation Rules The main construct of arecausation rules They are syntactically similar to rules of
the languag€ [28, 43, 45] and have the form:

caused f if B after A.

Intuitively, this rule reads “IfB is known to be true in the current state ahds known to be true in the
previous state, thefiis known to be true in the current state.” Both thiepart and theafter part may be
empty (which means that it is true).

Negation Default (or weak) negationnot” can be used in thaf and theafter part of the rules. It
allows for natural modeling of inertial properties, defqroperties, and dealing with incomplete knowledge
in general, similar to logic programming with answer set aetitcs. Furthermore, strong negation-(;'
written in programs as—") is supported as well. In order to support convenient peobkepresentation,
K provides several macros (explained in detail in Sectior2®.3vhich are “implemented” through weak

negation, as, e.g.,
inertial on(X,Y).

which informally states thain(X, Y) is concluded to hold in the current stateif(X, Y) held at the previous
state and-on(X,Y) is not known to hold, or

default — on(X,Y).

which states thaton(X, Y) is concluded to hold unlegsi(X, Y) is known to hold (as it has been entailed by
some causation rule).

Executability of Actions In order to be eligible for execution, any action needs tsgasome precondi-
tion in a given state of knowledge, which can be stated usiegudability statements. For example,

executable move(X,Y) if not occupied(X), not occupied(Y), X <> Y.

states that block can be moved on location if both X andY are not known to be occupied add# Y
(assuming proper typing). In this example a brave modeltrategyy is pursued: It is assumed that it is
sufficient to not know that a block is occupied in order to bkedab move it or to move something onto it.
Note that this is a kind of closed world assumption on the flverupied.

Here, X <> Y (inequality) stands fonot (X = Y), where “=" (equality) is a built-in predicate which is
tacitly present in the background knowledge.

In general, multiple executability statements for the saoion are allowed. If the body is empty,
it means that the action always qualifies for execution, igexy that the type restrictions ghandY are
respected. On the other hand, execution of an aatiemder conditionB can also be blocked, by the
statement

nonexecutable A if B.

In case of conflictsponexecutable A overridesexecutable A.
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Integrity Constraints In general, a causation rule expresses a state constratnhtlst be fulfilled in all
states. It is very common to stateegrity constraintsfor states (possibly referring to the respective pre-
ceding state), i.e. conjunctions of literals which can moidtaneously be satisfied. To facilitate convenient
representation of integrity constraints,provides a statement

forbidden B after A

as a shortcut foraused false if B after A. Intuitively, it discards any state wheBeis (known to be)
true, if A is (known to be) true in the previous state.

Initial State Constraints I allows to declare causation rules with empfiter-part that should apply to
the initial state only. Such rules, which represent coirggaon the initial state, must be preceded by the
keyword “initially :”. For example,

initially: forbidden block(B), not supported(B).

requires that the fluentupported is true for every block in the initial statéhe constraint is irrelevant for
all subsequent states. Initial state constraints may pldfireduce computation effort: If we are guaranteed
that actions preserve some propeftythen it is sufficient to check the validity @ only on the initial state

to ensure that it holds in any state.

Parallel Execution of Actions By default, simultaneous execution of actions is alloweiifThis can be
prohibited by suitable rules; however, for the user’s coismce, a statement

noConcurrency.

is provided as a shortcut which enforces the execution ofoat iIwne action at a time.

Handling of Complete and Incomplete Knowledge K also allows one to represent transitions between
possible states of the world (which can be seen as statesmflete knowledge). First of all, we can easily
enforce that the knowledge on some flugig complete, using a rule

forbiddennot f, not — f.
Moreover, we can “totalize” the knowledge of a fluent by deoka
total f.

which means that, unless a truth value faran be derived, the cases whéreesp.—£ is true will be both
considered. In other words, every state will be “totalizeg”addingf or —f£, if none of them is true.

Goals and Plans A goal is a conjunction of ground literals; a plan for a goaisequence of (in general,
sets of) actions whose execution leads from an initial $tatestate where all literals in the goal are true. In
K, the goal is followed by a question mark and by the numberlofhvad steps in a plan. For instance,

on(c,b), on(b,a) ? (3)
requests a plan of length 3 for the goal of Figure 1.

This concludes the exposition of thé planning language. We remark at this point that D/
planning system contains the command
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securePlan.

by which we can ask the system to compute a#ygure plangoften calledconformant plansr fail-safe
plansin the literature [30, 66]). Informally, a plan is secureitifs applicable starting at any legal initial
state, i.e., all its actions are executable regardlesswfthe states evolve and it always enforces the goal;
the formal definition is provided in Section 2.2. Using thésure, we can in particular modabssible-
worlds planning with an incomplete initial staterhere the initial world is only partially known, and we are
looking for a plan reaching the desired goal from every fmssivorld according to the initial state. Note
that, by our complexity results, unlike the other statemetitove the §ecurePlan.” command camot be
expressed as a shortcut in langu@geand thus has to be realized at an external level.

1.2 Contributions

The main contributions of the present paper are the follgwin

(1) We propose a new planning language, callédwhich is based on logic programming. We
formally define languagé&C and provide a declarative, model theoretic semantics folmiiportantly, the
language supports also default (nonmonotonic) negatidmchaenriches the knowledge modeling power
of K. The formal semantics of planning languageis transition-based. In order to capture the intuitive
meaning of default negation, legal transitions are definethbans of a reduction from domains including
default negation to positive domains (without default riegg similar as in the definition of stable models
for logic programs [22].

(2) We illustrate the knowledge modeling features of the laguby encoding some classical plan-
ning problems inkC, in particular different versions of blocksworld and “bomnithe toilet” planning prob-
lems [53]. We proceed incrementally, presenting all mamtuees ofC and their usage for knowledge
representation and reasoning in planning domains. In theseof this, we shoulC encodings of classical
planning problems (dealing with complete knowledge), ardfuvther describe how conformant planning
problems (in presence of incomplete knowledge on the istée, or in presence of nondeterministic action
effects) can be encoded i

As we show, the languagk is capable of expressing classical encodings based ors sthtbe world.
However, by its design itis very well-suited for encodingséd on states of knowledge. We show both types
of encodings on some “bomb in the toilet” planning problemusg discuss the two different approaches,
highlighting some computational advantages of the engsdiased on states of knowledge.

(3) We perform a thorough study of the complexity of major plagrproblems in the languadé,
where we focus on the propositional case. (Results for thedider case can be obtained in the usual
manner.) In particular, we consider the problems of degidire existence of an optimistic (i.e. standard)
plan for a given length, the problem of checking whether sagltan is secure (i.e. conformant), and the
combined problem of finding a secure (i.e. conformant) plarder various restrictions on the planning
instances. For formal definitions of optimistic and secdam®, we refer to Section 2.2.

It appears that deciding the existence of an optimistic plernieving the goal in a fixed number of steps is
NP-complete, while it is PSPACE-complete in general. Thusgyéneral we have the same complexity as
for planning in corresponding STRIPS-like systems [20]ichfare well-known PSPACE-complete [3]. On
the other hand, finding secure plans is obviously hardegusezit allows us to encode also planning under
incomplete initial states as in [1], which was shown ta§ecomplete there for polynomial-length plans. In



6 INFSYS RR 1843-01-11

fact, deciding the existence of a secure plan of variablttary) length is NEXPTIME-complete, and thus
not polynomially reducible to planning in STRIPS-like ssis or to QBF-solvers, which can only express
problems in PSPACE (unless NEXPTIME collapses to PSPACEENnENder fixed plan length, this problem
is ©¥-complete, and thus rather complex; further restrictiomgetto be imposed to lower its complexity. To
this end, we introduce meaningful subclasses of plannimgailess and problems, in particulproper and
plain planning domains resp. problems. As we show, for propernif@ndomains, existence of a secure
plan having a fixed number of steps is only mildly harder tNahif concurrent actions are not allowed.

Our complexity results give a clear picture of the feadipitif polynomial-time translations for particular
planning problems into computational logic systems sucBlaskbox [37], CCALC [47], Smodels [55],
DLV, satisfiability checkers, e.g. [2, 77], or Quantified Boolé®rmula (QBF) solvers [4, 63, 18].

1.3 Structure of the Paper

The rest of the paper is structured as follows. The next@edtrmally introduces the languagdg, and
provides the syntax and formal semantics of the core larguag well as enhancements of the language
by macro constructs that are useful “syntactic sugar” faweaiently representing problems. After that,
we consider in Section 3 knowledge representatiofCjrwhere different aspects such as planning with
incomplete initial states, representation of nondeteistimaction effects, and knowledge-based encodings
of the latter are discussed. In Section 4 we then embark ostody of the complexity of languagé, and
present an overview of the problems we considered and the mestilts that we obtained. Section 5 is then
devoted to the derivation of these complexity results. lotiBa 6, we discuss related work, and the final
Section 7 discusses further work and draws some conclusions

The present paper is part | in a series of papers which coraepsarely describe our work, and contains
the foundational semantic definitions and theoretical ltespart Il [12] reports about theLV* system
(which is freely available akURL: htt p: // ww. dbai . tuwi en. ac. at/ proj/dl v/ K/ >) and in
particular contains an experimental evaluation and coismas to other planning systems (for a theoretical
account, see also Section 6).

2 Languagek

In this section, we will detail syntax and semantics of theglaage/lC that we have briefly introduced in the
previous section.

2.1 Basic Syntax
2.1.1 Actions, Fluents, and Types

Let 0%, o7l ando'¥P be disjoint sets of action, fluent and type names, respégtivEhese names are
effectively predicate symbols with associated arity((). Here,o/! ando®* are used to describ#ynamic
knowledge whereaso™¥? is used to describstatic background knowledgeWe tacitly assume that¥?
contains built-in predicates, in particular equality (which are not explicitly shown. Furthermore, ™
andos¥?" be the disjoint sets of constant and variable symbols, otispéy.

Definition 2.1 Givenp € 0% (resp.of!, o'¥P), anaction (resp. fluent, type) atoimdefined ag(ty, ... ,t,))
wheren is the arity ofp andty, ... ,t, € " Uag"". An action (resp. fluent, type) literal is an action (resp.



INFSYS RR 1843-01-11 7

fluent, type) atonu or its negation—a, where “=” is the true negation symbol, for which we also use the
customary “-".

As usual, a literal (and any other syntactic objecgyrisund if it does not contain variables.

Given a literall, let —.I denote its complement, i.es.l = a if ] = —a and—.l = —a if | = a, wherea
is an atom. A seL of literals isconsistentif L N —.L = (). Furthermore™ (resp.L~) denotes the set of
positive (resp. negative) literals i

The set of all action (resp. fluent, type) literals is dena@eg,.; (resp.Ly;, Lt,p). FurthermoreL s 1,
=L U Liyp; Layn= LU L, (dyn stands fodynamic literaly; andL = L 4,, U L],

All actions and fluents must be declared using statementdlas/$.

Definition 2.2 An action (resp.fluen) declaration is of the form:
p(X1,...,X,) requires ty,...,tm @

act

m > 0, and everyX; occurs inty, ..., t,.

wherep € L}, (resp.p € L}*l), Xi,...,X, € 0" wheren > 0 is the arity ofp, t1,...,tm € Ly,

If m = 0, the keywordrequires may be omitted. In the following, we generically refer toiactand
fluent declarations aype declarationsvhen no further distinction is necessary.

We next define causation rules, by which static and dynanpentgencies of fluents on other fluents
and actions are specified.

Definition 2.3 A causation rulg(rule, for short) is an expression of the form

caused f if by,...,bg,not by4q,...,n0t Y
afterai,...,am,not ayy1, ..., 00t ay

(@)

wheref € Ly U {false}, bi,...,b € Lfiyp,a1,...,an € L, 1>k >0,andn >m > 0.

Rules wheren = 0 are referred to astatic rules all other rules aslynamic rulesWhenl = 0, the keyword
if is omitted; likewise, ifh = 0, the keyworcafter is dropped. If botli = n = 0 thencaused is optional.

To access the parts of a causation rulave use the following notationsh(r) = {f}, post™(r) =
{b1,..., by}, post (r) = {bgi1,...,b}, pret(r) = {a1,...,am}, pre (r) = {ams1,...,an}, and
lit(r) = {f,b1,...,b,a1,...,a,}. Intuitively, pre* (r) accesses the state before some action(s) happen,
andpost™ (r) the part after the actions have been executed.

While the scope of general static rules is over all knowlestgées, it is often useful to specify rules only
for the initial states.

Definition 2.4 An initial state constrainis a static rule of the form (2) preceded by the keywiidltially|

The languageC allows STRIPS-style [20] conditional execution of actipmhere K allows several
alternative executability conditions for an action; trideyond the repertoire of standard STRIPS.

Definition 2.5 An executability conditioris an expression of the form
executable a if by,...,bx,not bgyq,...,n0t Y 3)

wherea € L, andby,...,b € £,andl > k > 0.

INote that this definition only allows positive action litera
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If I = 0 (which means that the executability is unconditional) nttiee keywordi £ is skipped.

Given an executability condition, we access its parts with(e) = {a}, pre™(e) = {b1,..., b},
pre (e) = {bky1, ..., }, andlit(e) = {a,b1,..., b }. Intuitively, pre” (e) refers to the state at which some
action’s suitability is evaluated. Here, as opposed to at@ms rules we do not consider a state after the
execution of actions, and so no ppest™ (r) is needed. Nonetheless, for convenience we defise (e) =
post™(e) = 0.

Furthermore, for any executability condition, a rule, oriaitial state constraint, we definepost(r) =
post™(r) Upost™ (r), pre(r) = pre™ (r) Upre (r), andb(r) = b™(r) Ub ™ (r), whereb™ (r) = post™(r) U
pre™(r), andb™(r) = post™(r) U pre™(r).

Example 2.1 Consider the following type declarations, causation raie executability condition, respec-
tively, wherea™”? = {r, s}, o/l = {£}, ando?®*! = {ac}:

dy: £(X) requires —r(X,Y), s(Y,Y).

dy: ac(X,Y) requires s(X,Y).

ry: caused f(X) if s(X,X), not — £(X) after ac(X,Y), not — r(X X).
e1: executable ac(X,Y) if s(Z,Y), not £(X), Z<>VY.

Then, we havé(ry) = {£(X)}, pre(r1) = {ac(X,Y), —r(X,X)} andpost(r1) = {s(X,X), —£(X)}. Further-
more,h(e;) = ac(X,Y) andpre(e;) = {s(Z,Y),£(X),Z <> Y};

2.1.2 Safety Restriction

All rules (including initial state constraints and exedility conditions) have to satisfy the following syn-
tactic restriction, which is similar to the notion of safétylogic programs [73]. All variables in a default-
negated type literal must also occur in some literal whiatoisa default-negated type literal.

Thus, safety is required only for variables appearing iradiéfnegated type literals, while it is not
required at all for variables appearing in fluent and actiandls. The reason is that the range of the latter
variables is implicitly restricted by the respective typekdrations. Observe that the rules in Example 2.1
are all safe.

2.1.3 Planning Domains and Planning Problems

We now define planning domains and problems. Let us call ainy pa R) whereD is a finite set of action
and fluent declarations anfd is a finite set of safe causation rules, safe initial statestraimts, and safe
executability conditions, aaction description

Definition 2.6 A planning domairis a pairPD = (I, AD), wherell is a Datalog program over the literals

of Ly, (referred to avackground knowledgewhich is assumed to be safe in the standard LP sense (cf.
[73]) and to have a total well-founded model, adB is an action description. We say th@b is positive

if no default negation occurs iAD.

We recall that if a progranil has a total well-founded modé¥l/, then M is the unique answer set of
II. In particular, each stratified prografh has a total well-founded model. The semantic condition of a
total well-founded model admits a limited use of unstratifieegation, which is convenient for knowledge
representation purposes, and in particular for exprestefault properties.
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Planning domains represent the universe of discourse fidngaconcrete planning problems, which are
defined next.

Definition 2.7 A planning problen? = (PD, q) is a pair of a planning domaiRD and a query;, where a
gueryis an expression of the form

91s--s9m,00t gmi1,-..,00t gn 7 (4) 4)

wheregy,...,gn € Ly are variable-freep, > m > 0, andi > 0 denotes the plan length.

2.2 Semantics

For defining the semantics & planning domains and planning problems, we start with tledimpmary
definition of the typed instantiation of a planning domaihislis similar to the grounding of a logic program,
with the difference being that only correctly typed fluenti@ction literals are generated.

2.2.1 Typed Instantiation

Let substitutions and their application to syntactic otgdie defined as usual (i.e. assignments of constants
to variables which replace the variables throughout theaib).

Definition 2.8 Let PD = (II, (D, R)) be a planning domain, and 1&f be the (unique) answer set Of
[22]. Then,O(p(X;4,...,X,)) is alegal action(resp.fluen) instanceof an action (resp. fluent) declaration
d € D of the form (1), ifd is a substitution defined ovéf,, ..., X, suchthaf0(¢,),...,0(tn)} C M. By
Lpp we denote the set of all legal action instances, legal fluetances (also referred to pssitive legal
fluent instancésand classically negateeh] legal fluent instanceségative legal fluent instances

Based on this, we now define the instantiation of a planningailo respecting type information as
follows.

Definition 2.9 For any planning domai®D = (II, (D, R)), its typed instantiationis given by PD| =
(I}, (D, R])), wherell] is the grounding oflI (overo") andR| = {0(r) | r € R, 6 € ©,}, where®,
is the set of all substitution of the variables in usingo“”, such thatit(6(r)) N L4y, C Lpp

In other words, inPD| we replacell and R by their ground versions, but keep of the latter only
rules where the atoms of all fluent and action literals agritle thieir declarations. We say thatizD =
(I1, (D, R)) is ground if IT and R are ground, and moreover that itviell-typed if PD and PD| coincide.

2.2.2 States and Transitions

We are now prepared to define the semantics of a planning domvhich is given in terms of states and
transitions between states.

Definition 2.10 A statewith respect to a planning domaifD is any consistent set C L, N Lpp of
positive and negative legal fluent instances. A tupte(s, A, s’) wheres, s’ are states and C L,.:NLpp
is a set of legal action instances b is called astate transition
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Observe that a state does not necessarily contain eftloer—f for each legal instancg of a fluent.
In fact, a state may even be empty=£ )). The empty state represents a “tabula rasa” state of kiigwle
about the fluent values in the planning domain. Furthermioréhis definition, state transitions are not
constrained — this will be done in the definition of legal stafinsitions, which we develop now. To ease
the intelligibility of the semantics, we proceed in analdgythe definition of answer sets in [22] in two
steps. We first define the semantics for positive planninglpros, i.e. planning problems without default
negation, and then we define the semantics of general pgudieimains by a reduction to positive planning
domains.

In what follows, we assume th&D = (II, (D, R)) is a ground planning domain which is well-typed,
and thatM is the unique answer set Of. For any other”D, the respective concepts are defined through its
typed groundingPD, .

Definition 2.11 A statesq is alegal initial statefor a positivePD, if sq is the smallest (under inclusion) set
such thapost(c) C so U M impliesh(c) C so, for all initial state constraints and static rules R.

For a positivePD and a states, a setA C L/, is calledexecutable action seft.r.t. s, if for each
a € A there exists an executability conditienc R such thath(e) = {a}, pre(e) N Ly 4yp € s UM,
andpre(e) N L., C A. Note that this definition allows for modeling dependentanst, i.e. actions which

act

depend on the execution of other actions.

Definition 2.12 Given a positivePD, a causation rule € R is satisfiedby a states’ w.r.t. a state transition
t = (s, A,s') if and only if eitherh(r) C s'\ {false} or not all of (i)—(iii) hold: (i) post(r) C s U M, (ii)
pre(r) N L4y € sU M, and (jii) pre(r) N Lqe € A. A state transitiont = (s, A, s) is calledlegal, if A
is an executable action set w.stands’ is the minimal consistent set that satisfies all causatitesrin R
except initial state constraints w.It.

The above definitions are now generalized to a well-typediigid®D containing default negation by
means of a reduction to a positive planning domain, whichirislar in spirit to the Gelfond-Lifschitz
reduction [22].

Definition 2.13 Let PD be a ground and well-typed planning domain, andtlet (s, A,s’) be a state
transition. Then, theeductionPD? = (I1, (D, R')) of PD by is the planning domain whei®' is obtained
from R by deleting

1. every causal rule, executability condition, and inisi@te constraint € R for which eitherpost™ ()|
(sUM) #0Qorpre (r)N(sUAUM) # () holds, and

2. all default literalmot L (L € L) from the remaining € R.

Note thatPD! is positive and ground. Legal initial states, executabteacsets, and legal state transitions
are now defined as follows.

Definition 2.14 Let PD be any planning domain. Then, a stateis alegal initial state if s¢ is a legal
initial state forPD!, wheret = (0,0,s0); a setA is anexecutable action séh PD w.r.t. a states, if A is
executable w.r.ts in PD! with ¢t = (s, A, ()); and, a state transitioh= (s, A4, s’) islegalin PD, if itis legal
in PD?.
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Example 2.2 Reconsider the type declaratiods andd,, causation rule-; and executability condition;
in Example 2.1. Supposg®” contains two constantsandb, and that the background knowleddehas the
following answer setM = {—r(a,b), r(b,a), s(a,a), s(a,b), s(b,b)}. Then, e.gf(a) is a legal fluent
instance ofly,

f(X) requires —r(X,Y), s(Y,Y).

wheref = {X = a, Y = b}. Similarly, ac(a, b) is a legal action instance of declaratién
ac(X,Y) requires s(X,Y).

wheref = {X = a, Y = b}. Thus,f(a) andac(a, b) belong toLpp. The empty set; = () is a legal initial
state, and in fact the only one since there are no initiag stahstraints or static causation rulesiR, and
thus also not iPD" for everyt = ((), (), so). The action sefl = {ac(a, b)} is executable w.r.tsq, since for
t = (sg, A, (), the reductPD! contains the executability condition

€] : executable ac(a,b) if s(a,b), a <>b.

and boths(a, b) anda <> b are contained ing U M. Thus, we can easily verify that= (sg, A, s1), where
A ={ac(a,b)} ands; = {f(a)} is a legal state transitio?D! contains a single causation rule

ri: caused f(a) if s(a,a) after ac(a,b).

which results fromr; for § = {X =a, Y =b}. Clearly, s; satisfies this rule, as(r]) C s;, ands;

is smallest, sinces(a,a) € M andac(a,b) € A holds. On the other hand, = (so, 4’,s1), where
A" = {ac(a,b), ac(b,b)} is not a legal transition: whilec(b,b) is a legal action instance, there is no
executability condition for it inPD]?, and thusac(b, b) is not executable iPD W.r.t. 5.

2.2.3 Plans

After having defined state transitions, we now formalizenplas suitable sequences of states transitions
which lead from an initial state to some success state whitibfies a given goal.

Definition 2.15 A sequence of state transitiofis= ({sq, 41, s1), (51, 42,52), -+, (Sn—1, An, Sn)), n > 0,
is atrajectory for PD, if sq is a legal initial state of’D and all{(s;_1, 4;,s;), 1 < i < n, are legal state
transitions ofPD.

Note that in particular]” = () is empty ifn = 0.

Definition 2.16 Given a planning problen® = (PD,q), whereq has form (4), a sequence of action
sets(Ay,...,A;), i > 0, is anoptimistic planfor P, if a trajectoryT = ((so, A1, 1), (s1, A2,82), ...,
(si—1,4;,s;)) in PD exists such thal’ establishes the goal, i.€.g1,...9n} C s; and{gm+1,---,9n} N

s; = 0.
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The notion of optimistic plan amounts to what in the literatis defined as “plan” or “valid plan” etc.
The term “optimistic” should stress the credulous view ulyileg this definition, with respect to planning
domains that provide only incomplete information aboutittigal state of affairs and/or bear nondetermin-
ism in the action effects, i.e. alternative state transgio

In such domains, the execution of an optimistic plais not a guarantee that the goal will be reached.
We therefore resort to secure plans (alias conformant plarsch are defined as follows.

Definition 2.17 An optimistic plan(44,..., A;,) is asecure planif for every legal initial states; and
trajectoryT’ = ((so, A1,51), ..., {sj-1,4;,5;)) such that) < j < n, it holds that (i) ifj = n thenT
establishes the goal, and (ii) if < n, then A, is executable irs; w.r.t. PD, i.e., some legal transition
<Sj, Aj+1, Sj+1> exists.

Observe that plans admit in general the concurrent exacofiactions at the same time. However, in
many cases the concurrent execution of actions may not lieddand explicitly prohibited, as discussed
below), and attention focused to plans with one action aha.tivore formally, we call a plafA,, ..., A,)
sequentialor non-concurren, if |4, < 1,foralll <j <n.

2.3 Enhanced Syntax

While the language presented in Section 2.1 is complete Bmwsafor a succinct semantics definition, it
can be enhanced w.r.t. user-friendliness. E.g. it is ineni@nt to writeinitially in front of each initial
state constraint, having amitially section in which each rule is interpreted as an initial statestraint
would be more desirable. In addition, some frequently a@ogpatterns can be identified for which macros
will be defined for convenience and readability.

2.3.1 Partitions

The specification of a planning domait = (I, (D, R)) respectively planning problef = ((II, (D, R)), g)|
can be seen as being partitioned into

the background knowleddé

Fp, the fluent declarations i

Ap, the action declarations iy

IR, the initial state constraints iR

e Cp, the causation rules and executability condition®in

the query (or goaly.

In the sequel, we will denote a planning problem as follows:

fluents : Fp
actions: Ap
always : Cr

initially: Ip
goal: q
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where each construct ifip, Ap, Cr, andIy is terminated by . The background knowledge is assumed
to be represented separately.
2.3.2 Macros

In the following, we will define several macros which allow foconcise representation of frequently used
concepts. Let € £/, denote an action atont, € Ly, a fluent literal,B a (possibly empty) sequence

act
bi,...,by, not byyy,..., not by where eaclh; € Ly 4,p,7 = 1,...,1, andA a (possibly empty) sequence
ai,...,0m,n0t Gy, ...,0n0t a, Where each; € £,5=1,...,n.

Inertia  In planning it is often useful to declare some fluents as imenvhich means that these fluents
keep their truth values in a state transition, unless eilpliaffected by an action. In the Al literature this
has been studied intensively and is referred to agrétme problen{52, 64].

To allow for an easy representation of this kind of situatiar® have enhanced the language by the
shortcut

inertial f if B after A. =1 caused f if not —.f, B after f, A.

Defaults A default value of a fluent in the planning domain can be exggédy the shortcut
default f£. & caused f if not —.f.

This default is in effect unless there is evidence to the sippwalue of fluent, given through some other
causation rule.

Totality For reasoning under incomplete, but total knowledge wedhice

caused f if not —f, B after A.

total £ if B after A.
* t caused —f if not f, B after A.

wheref must be positive.

State Integrity It is very common to formulate integrity constraints forteta(possibly referring to the
respective preceding state). To this end, we define the macro

forbidden B after A & caused false if B after A

Nonexecutability Sometimes it is more intuitive to specify when some actionds executable, rather
than when it is. To this end, we introduce

nonexecutable a if B =1 caused false after a, B

Note that because of this definitiampnexecutable is stronger tharxecutable, so in case of conflicts,
executable is overridden byhonexecutable.
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Non-concurrent Plans Finally, noConcurrency disallows the simultaneous execution of actions. We
define

noConcurrency & caused false after aj, as.

wherea; anda, range over all possible actions such thatas, € Lpp N L4 anday # a,.
In all macros, if B” (resp. “after A”) can be omitted, iB (resp.A) is empty. We reserve the possibility
of including further macros in future versions/of

3 Knowledge Representation in

In this section, the use d&f for modeling planning problems is explored by examples.c&pattention is
given to features and techniques which distinguisirom similar languages.

3.1 Deterministic Planning with Complete Initial Knowledge

We first study a simple setting in which the planning domaimas subject to nondeterminism and the
planning agent has complete knowledge of the initial stdtaffairs. For later reference, we formally
introduce the following notion.

Definition 3.1 Let PD be a planning domain. Then, a legal transitianA, s1) in PD is determined if
s1 = s9 holds for every possible legal transitidn, A, s2) (i.e., executingA on s leads to a unique new
state). We calPDdeterministic if all legal transitions in it are determined.

Consider first the planning problem depicted in Figure 1,chlis set in the blocksworld. This problem
illustrates the famous Sussman anomaly [69].

We will first describe the planning domaitDy,,q = (I, (Dpwa, Rewa)) Of blocksworld. It involves
distinguishable blocks and a table. Blocks and the tableseare as locations on which other blocks can be
put (a block can hold at most one other block, while the tabke fwold arbitrarily many blocks). We thus
define the notions dflock andlocation in the background knowleddé,,, as follows:

block(a). block(b). block(c).

location(table).
location(B) : — block(B).

For representing states, we declare two fluentBr¥ ,: on states the fact that some block resides on
some locationpccupied is true for a location, if its capacity of holding blocks ishexisted.

fluents: on(B,L) requires block(B), location(L).
occupied(B) requires location(B).

Only one action is declared iAp, ,: move represents moving a block to some location (implicitly
removing it from its previous location).

actions: move(B,L) requires block(B), location(L).
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Let us now specify the initial state constraitig . For the initial statepccupied does not have to be
specified, as it follows from knowledge abaut. Note that only positive facts are stated éar, nevertheless
the initial state is unique because the fluents interpreted under the closed world assumption (CWA),[61]
i.e., ifon(B,L) does not hold, we assume that it is false.

initially: on(a,table). on(b,table). on(c,a).

Next, we specify causation rules and executability cooddCr, . First a static rule is given, defining
occupied for blocks if some other block isn them.

always : caused occupied(B) if on(B1,B), block(B).

A move action is executable if the block to be moved and the targettion are distinct (a block cannot
be moved onto itself). A move is not executable if either tloek or the target location is occupied.

executable move(B,L) if B <> L.
nonexecutable move(B,L) if occupied(B).
nonexecutable move(B,L) if occupied(L).

The action effects are defined by dynamic rules. They stateatimoved block is on the target location
after the move, and that a block is not on the location on whidsided before it was moved.

caused on(B,L) after move(B,L).
caused — on(B,L1) after move(B,L), on(B,L1), L <> L1.

Next we state that the fluenh should stay true, unless it becomes false explicitly. Nbé e need
not specify this property fosccupied, as it follows fromon via the static rule.

inertial on(B,L).

It is worthwhile noting that in this example the fluents arpresented positively and their negation
is usually implicit via the closed world assumption. Theref for example we do not need to declare
—on(B, L) as inertial. There is one exception in a rule describing atigaction effect: Here the negation
becomes known explicitly, and its purpose is the termimatib the inertial truth of an instance .
However, we do not need to remember this negative knowleggmdrtia. In this senselC allows to
formalize “forgetting” about information, such that we cieeep only the “necessary” information in the
domain of discourse.

In order to solve the original planning problem, we assecihe following goalg,, for plan length 3
to PDyy4, Yielding Pyq:

goal : on(c,b), on(b,a), on(a,table) 7 (3)

Prwa allows a single sequential plan of length 3:

({move(c,table)}, {move(b,a)}, {move(c,b)})
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initial: (4] ? goal: 5]
. d]
b

Figure 2: A blocksworld example with incomplete initial tga

Thus, the above plan requires to first mav®n the table, then to movie on top ofa, and, finally, to
movec onb. It is easy to see that this sequence of actions leads to #iedayoal. Since this domain is
deterministic and has a unique initial state, all optinigtians are also secure. We remark that the above
representation is tailored for sequential planning, sitheeexecutability conditions do not take possible
parallel moves properly into account. For example, movimg same object to different locations would
have to be excluded, if parallel moves were allowed.

3.2 Planning with Incomplete Initial State Descriptions

In the example of section 3.1 it is assumed that the initatests correct (with respect to the domain in
guestion) and fully specified (thus unique). In this sectianexplore how these implicit requirements can
be weakened.

As an accompanying example problem, suppose that thereuisheeif blockd in the original planning
problem of Figure 1. The exact locationdifs unknown, but we know that it is not on top ©f Furthermore,
there is a slightly different goal involving. The problem is depicted in Figure 2. We will define a corre-
sponding planning domaiftDy,,; = (I, (Dpwi, Rewi)) By extendingPDy,,q. The additional knowledge
about the initial state is represented by addingn(d, c). to I, . and the background knowled@g,,; is
obviously enriched by the fagLock(d).

Let us first consider the necessary extensions for handlisgscin which the initial state description
cannot be assumed to be correct (e.g., when completing ttial paitial state description, incorrect initial
states can arise). The following conditions should be \etifor each block: (i) It is on top of a unique
location, (ii) it does not have more than one block on top cdritd (iii) it is supported by the table (i.e., itis
either on the table or on a stack of blocks which is on the Jd4i.

It is straightforward to formulate conditions (i) and (ifcinclude them intdg,  .:

initially: forbidden on(B,L), on(B,L1), L <> L1.
forbidden on(B1,B), on(B2,B), block(B), Bl <> B2.

For condition (iii) we add a fluerdupported to Fp, ., which should be true for any block in a legal
initial state:

fluents: supported(B) requires block(B).

We add the definition afupported and a constraint stating that each block must be supportég to.

initially: caused supported(B) if on(B,table).
caused supported(B) if on(B,B1), supported(B1).
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forbidden not supported(B).

Any planning problem involving the domain defined so far doeesadmit any plan if the initial state is
either incorrectly specified or incomplete in the senseribagll block locations are known (aspported
will not hold for these blocks). Note that the actimive preserves the properties (i),(ii), (i) above for
sequential plans; it is therefore not necessary to chedethmperties in all states if concurrent actions are
not allowed.

Next we show how incomplete initial states can be complated.i To this end, we use the keyword
total (defined in section 2.3.2), and simply atletal on(X,Y). to I, .. In this way, all possible comple-
tions w.r.t.on(X,Y) serve as candidate initial states, only some of which gatief initial state constraints,
making them legal initial states. E.g. the state in whieltd, a) holds is not legal as the constraint which
checks condition (ii) is violated.

Finally, let us consider the planning problé®y,,; = (PDywi, Gowi), Wheregy,; is

goal : on(a,c), on(c,d), on(d,b), on(b,table) 7 (j)

Usually, when dealing with incomplete knowledge, we look ftans which establish the goal for any
legal initial state (in this particular case case no matteetiveron(d, b) or on(d, table) holds), so we are
interested irsecure plansThe following secure sequential plan existsfyy,; andj = 4:

({move(d, table)}, {move(d,b)}, {move(c,d)}, {move(a,c)})

It is easily verifiable that this plan works on each legali@histate: Sincel is not occupied in any legal
initial state, the first action can always be executed.

In some cases, one is interested in a plan which works for guossible initial state: FoP,,; an
optimistic plan exists foj = 2:

({move(c,d)}, {move(a,c)})

It works only for the initial state in whiclen(d, b) holds, and fails for all other admissible initial states.
Hence it is not a secure plan.

3.3 Nondeterministic Action Effects

Let us now focus on domains comprising nondeterministimadatffects. To this end we will turn our atten-
tion to the “bomb in the toilet” problem [53] and its variati& We will describe these domains gradually,
starting with two versions which involve deterministic iaot effects and incomplete initial state specifi-
cations, in which the representation techniques from 8e@i2 are applied. Only after these, a variant
comprising nondeterministic action effects and some audit elaborations are presented. We employ a
naming convention which is due to [6].

BT(p) - Bomb in toilet with p packages We have been alarmed that there is a bomb (exactly one) in a
lavatory. There are suspicious packages which could contain the bomb. Thenmetalet bowl, and it is
possible to dunk a package into it. If the dunked packageaduoed the bomb, the bomb is disarmed.

For theX encoding, the background knowleddg, consists of a definition of the packages:

package(1). package(2). ... package(p).
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We use two fluentsarmed(P) holds if packageP contains an armed bomb (this is an inertial property),
andunsafe expresses the fact that there are armed bombs. Only one,ahiitk(P), is required, which is
always executable and the effect of which is that paclkaigeno longer armed.

For the initial statetotal armed(P). expresses the fact that the armed bomb might be in any pagkage
while forbidden armed(P), armed(P1),P <> P1. enforces that at most one package can contain an armed
bomb. The statemerfiorbidden not unsafe. is included to guarantee that at least one package contains
an armed bomb in the initial state.

The goal is to achieve a state in which no armed bomb existswhich isnot unsafe. This goalgyoms
will be the same for all following variations of the bomb irléd problems, the respective plan lengths
will be stated for each problem. We thus arrive at the follmyplanning problenPy; = (PDy:, qyomp):

fluents: armed(P) requires package(P).
unsafe.

actions: dunk(P) requires package(P).

always : inertial armed(P).

caused — armed(P) after dunk(P).
caused unsafe if armed(P).
executable dunk(P).

initially: total armed(P).
forbidden armed(P), armed(P1), P <> P1.
forbidden not unsafe.

goal: not unsafe 7 (j)

Note that in the formulation of this simple domain there ifyame deterministic action, while the initial
state is incomplete since it is not known which of thpackages contains the bomb.

Usually, a plan should be produced which establishes thergoenatter in which package the bomb
is in, so we look for a secure plan. If concurrent actions #oevad, the following secure plan fgr= 1
(dunking all packages at the same time) can be found:

({dunk(1),...,dunk(p)})

A secure sequential plan consists of dunking all packaggseseially, soj = p:

({dunk(1)},..., {dunk(p)})

Any permutation of these action sets is also a valid secuare. pl

BTC(p) - Bomb in toilet with certain clogging Let us now consider a slightly more elaborate version of
the problem: Assume that dunking a package clogs the tailgkjng further dunking impossible. The toilet
can be unclogged by flushing it. The toilet is assumed to b#ogged initially. Note that this domain still
comprises only deterministic action effects.

We extendPDy; = (Ily;, (D, Ryt)) t0 PDyye = (I, (Dyte, Rpre)) by adding a new fluentlogged,
and a new actionflush, to Dy,

fluents: clogged.
actions: flush.
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clogged is inertial, is a deterministic effect efunk, and is terminated bylush. flush is always
executable, so the following rules are added’ig,, :

always : inertial clogged.
caused — clogged after flush.
caused clogged after dunk(P).
executable flush.

The executability statement fannk has to be modified, akink is not executable if the toilet is clogged.

executable dunk(P) if not clogged.

Sinceclogged is assumed not to hold initially, and since it is interpretedier the CWA, nothing has
to be added tdg,,, .

For the planning probler®y,. = (PDy., qvoms) We are only interested in sequential plans, as dunking
and flushing concurrently is not permitted. A minimal sequiea can be found fof = 2p — 1:

({dunk(1)}, {flush}, {dunk(2)},..., {flush}, {dunk(p)})

Again, the action sets containirignk actions can be arbitrarily permuted, as long asfthesh actions are
executed between think actions.

BTUC(p) - Bomb in toilet with uncertain clogging Consider a further elaboration of the domain, in
which clogged may or may not be an effect of dunking. In other words, theoactunk has a nondeter-
ministic effect, and the toilet is clogged or not cloggeeaftaving executedunk.

This behavior is modeled by declarirgogged to betotal after dunk has occurred. Therefore the
action effect

caused clogged after dunk(P).

in PDy,;. is modified to

total clogged after dunk(P).

yielding the planning domai#Dy;,.. The planning probler®y,. = (PDyiyc, qpoms) a@dmits the same
secure plans aBy;.

BMTC(p,t), BMTUC(p,t) - Bomb in toilet with multiple toilets  Yet another elaboration is to assume
that several toilet bowlst( rather than just one) are available in the lavatory. Theifitadions to PDy;..
yielding PDyptc = <Hbmta <Dbmt0a Rbmtc)) and toPDy;yc yielding PDymiye = <Hbmta <Dbmtu07 Rbmtuc))
are rather straightforward.

The background knowleddéy; is simply extended to contain also a definition of theilets, by adding:

toilet(1). toilet(2). ... toilet(?).

arriving atIl,,,;. The fluent and action declarations tarogged, dunk, andflush must be parametrized
w.r.t. the affected toilet. The updated definitions wii,. (resp.Dy;,.) are as follows:
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clogged(T) requires toilet(T).
dunk(P,T) requires package(P), toilet(T).
flush(T) requires toilet(T).

Furthermore, each occurrenceddfogged, dunk, andflush in Ry, (resp.Ry.,.) Must be updated by
adding a variabla (representing the toilet) to its parameters.

Since multiple resources can be used concurrently hereddies@me concurrency conditions for the
actions toPDy;. (resp.PDy,.): dunk and £f1lush should never be executed concurrently on any toilet.
Furthermore, at most one package should be dunked intoes, taild any package should be dunked in at
most one toilet at a time. These conditions are captureddfolfowing rules:

always : nonexecutable dunk(P,T) if flush(T).
nonexecutable dunk(P,T) if dunk(P1,T), P <> P1.
nonexecutable dunk(P,T) if dunk(P,T1), T <> T1.

In total, ( Dymtucs Romiuc) OF PDppmiue 100ks as follows:

fluents: clogged(T) requires toilet(T).
armed(P) requires package(P).
unsafe.
actions: dunk(P,T) requires package(P), toilet(T).
flush(T) requires toilet(T).
always : inertial armed(P).
inertial clogged(T).
caused — clogged(T) after flush(T).
caused — armed(P) after dunk(P,T).
total clogged(T) after dunk(P,T).
caused unsafe if armed(P).
executable flush(T).
executable dunk(P,T) if not clogged(T).
nonexecutable dunk(P,T) if flush(T).
nonexecutable dunk(P,T) if dunk(P1,T), P <> P1.
nonexecutable dunk(P,T) if dunk(P,T1), T <> T1.
initially: total armed(P).
forbidden armed(P), armed(P1), P <> P1.
forbidden not unsafe.

bl

The secure plans f®Pyic = (PDomtc, @ooms) @NAPymiue = (PDymtuc, Gomp) are similar to those for
Puie andPyse, respectively. The differences are that ug thank andf1ush actions, respectively, can be
executed in parallel (so the plans are no longer sequerdiat)that — 1 flushing actions can be saved since
no final flushing is required for any toilet. Therefore anywseglan consists dfp — ¢ actions and irgm,
the minimal plan length isj = 2[%7] — 1.

3.4 Knowledge Based Encoding of Nondeterministic Action Eécts

In this section, alternative planning domains for bomb itetawill be presented. These encodings will be
based on states of knowledge, a distinguishing featui@ ohther than states of the world as in the previous
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sections. We will use the same background knowledge(resp.I1;,,,;) and the same goal,,,, with the
same values for the plan lengthas in Section 3.3.

BT(p) In Section 3.3 we have represented the initial situation bpms of totalization oarmed(P), lead-
ing to multiple initial states, corresponding to differgrassible states of the world. From the knowledge
perspective, nothing definite is known abattined(P) (and about-armed(P)) for a particular package,

so the initial situation can be represented by one state iohaieitherarmed(P) nor —armed(P) holds.
The actiondunk(P) has the effect that -armed(P) is known to hold, aredmed(P) is inertial. We state the
planning domainPDy,;, as follows:

fluents: armed(P) requires package(P).
unsafe.

actions: dunk(P) requires package(P).

always : inertial — armed(P).
caused — armed(P) after dunk(P).
caused unsafe if not — armed(P).

executable dunk(P).

The advantage of this encoding is that multiple initialesado not have to be dealt with. Note that in this
formulation, it is not of much help to encode in addition tlkstriction that exactly one package is armed:
Nothing is known about the armed status of any individuakpge whatsoever, and any of the packages
could be the armed package. Without sensing, or other apatemletermining actions, we can not detect
it, and thus we can not fruitfully make use of definite knovgedrmed(P) or —armed(P). Furthermore,
since the domain is deterministic, optimistic and secuaagkoincide.

BTC(p) PDy.i is extended fronPDy,;, in the same way aBDy,;. was obtained fronD;,; in Section 3.3,
i.e., by adding declarations felogged andflush, adding rules for action effects w.rdlogged, defining
clogged to be inertial, stating lush to be always executable, and by modifying the executatubiydition
for dunk(P).

Note that in this encodinglogged is still interpreted under the CWA.

BTUC(p) In the variant with uncertain clogging, the effect @ink(P) is that the truth okclogged is
unknown. K has the capability of representing a state in which nei¢hegged nor —clogged holds, but

to do this, we should no longer interpretogged under the CWA, as we would not like to assume that
clogged does not hold if it is unknown. For this reasénertial — clogged. is included, and for the
initial state, it must be stated explicitly that the toilsetuinclogged.

Unfortunately, there is no construct Ay with which an action effect of some fluent being unknown can
be expressed directly. However, it is possible to modifyitiegtial rules forclogged and —clogged, SO
that inertia applies only if no package has been dunked. Mikans that dunking stops inertia tarogged,
and clogged will be unknown unless it becomes known otherwise. Since tachnique encodes inertia
under some conditions, we calldbnditional inertia

To achieve this, a new fluesitinked is introduced, which holds immediately afdank(P) occurred for
some packagk. Theinertial macros are then extended by the additional condition. Téeis# meaning
of the resulting program is that neithetogged nor —clogged will hold after dunk(P) has been executed
for some packagp, unless one of them is caused by some other rule different iinertia.
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To summarize, the following is added &y :

fluents:
always :

initially:

dunked.

inertial clogged if not dunked.
inertial -— clogged if not dunked.
caused dunked after dunk(P).
caused — clogged after flush.
executable dunk(P) if — clogged.
—clogged.

while a few statements are dropped:

always :

inertial clogged.
caused clogged after dunk(P).
executable dunk(P) if not clogged.

yielding PDygyck -

Note that alsaPDy,,. is deterministic and has a unique initial state, so optimiahd secure plans
coincide. This example shows that it is possible to find arodimg which requires a substantially less
complex solver by using technigues, which exploit the sttt knowledge” paradigm of the languagje
We would like to point out that this is not a contradiction tnwplexity results in Section 4 below (finding
secure plans is more complex than finding optimistic plafs)UC(p) per se is an easy problem (it is
solvable in linear time), it is just the representation iggg examination of alternatives, which made it

look hard.

BMTC(p,t), BMTUC(p,t) As in Section 3.3, a generalization to domains involving tipld toilets is
straightforward and can be achieved by applying the chadgssribed there, resulting in the planning
domainsPDyicr; aNd PDpiuck» espectively. FindPDy,,iucr @S an example belowly,,,; is omitted):

fluents:

actions:

always:

clogged(T) requires toilet(T).

armed(P) requires package(P).

dunked(T) requires toilet(T).

unsafe.

dunk(P,T) requires package(P), toilet(T).
flush(T) requires toilet(T).

inertial — armed(P).

inertial clogged(T) if not dunked(T).
inertial — clogged(T) if not dunked(T).
caused dunked(T) after dunk(P,T).
caused — clogged(T) after flush(T).
caused — armed(P) after dunk(P,T).
caused unsafe if not — armed(P).
executable flush(T).

executable dunk(P,T) if — clogged(T).
nonexecutable dunk(P,T) if flush(T).
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nonexecutable dunk(P,T) if dunk(P1,T), P <> P1.
nonexecutable dunk(P,T) if dunk(P,T1), T <> T1.
initially: —clogged(T).

Also in this case the resulting problem domains are detestitrand hence optimistic plans and secure
plans coincide. This indicates that planning problems &f #iection can be solved faster than those of
Section 3.3. Indeed, we have observed this also experithefitd]; the encodings of Section 3.4 can often
be solved several orders of magnitudes faster than thosectib8 3.3 in thebLV* system prototype.

3.5 Discussion

As we have seen in the preceding subsections, the use of &dgevistates instead of world states allows
us to represent planning scenarios in which certain inftionaemains open, or is (deliberatively) dropped
under the proviso that it is not relevant to the planning fwis that are considered. However, thgal
primitive provides a simple means to switch from knowledigdes to world states, and thus our approach
fully supports conventional world state planning.

An important advantage which our language offers is thds@ anables planning where world states are
projected to a subset of fluents of interest, leaving theildetbother fluents open. It thus supports to some
extentfocusingin the problem representation, by restricting attentiothtse fluents whose value may have
an influence on the evolution of the world depending on thimastthat are taken.

For example, if the toilets in the bomb in the toilet domainwgobe colored, and an actigraint(T, C)
would be available which causes the color of toBeb becomeC, represented by the fluenblor(T, C),
then the fluentolor is not relevant for the planning problems considered iniSest3.3 and 3.4. Thus,
the value of this fluent may be left open, and no totalizati@atesnent orcolor is needed in the problem
representation. For another example of focusing, in thekslworld scenario with incomplete initial state
description in Section 3.2, we have addettal on(X,Y). to the “initially” section. However, for the
planning problem considered, we might narrow thistaal on(d,Y)., and leave the locations of other
elements open.

The question then is how relevance can be (efficiently) detexd and exploited by the user. In general,
efficient automatic support will be difficult to achieve, @it requires analysis of the planning domain
which involves intractable computational problems. Hogreusing adapted results about relevance in logic
programming, cf. [9], under some assertions syntactieratmay be used to exclude (part of the) fluents
which are irrelevant for a goal. In the above example, giveataral representation we would find out that
color(T,C) is not relevant founsafe. Sophisticated usage ebtal remains with the user at the moment,
and developing automated support is an interesting reseapic.

Another issue concerns the use of knowledge states versis states, even with respect to fluents that
are relevant for achieving the planning goal. Here, we malg into account the underlying assumption
of taking actions depending on a state of knowledge (whereage of incomplete information, default
assumptions might be used) or a state of affairs, respéctive

For example, if a robot is in front of a door, and wants to phssugh it, it needs to know whether the
door is open or not. In our approach, we may represent thieéjollowing statements:

r1: caused —open if not open after check_door.
r9 ¢ caused open if not — open after check_door.
e: executable check.door if not open, not — open.
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That is, after checking the state of the door, we know wheithisropen or not (both is possible), and a
secure plan must handle both cases appropriately.chbek_door action is only executable if the state is
not known yet — otherwise doing it would be superfluous, agsgithat the robot’s state correctly models the
world. Thus, under knowledge state planning, a global plag maturally include the actiocheck_door,
assuming that its status is unknown in the current state. adery under world-state planning, such an
action would always be superfluous as the valuepsfn is known. Accordingly, if we add the statement
total open., then a plan includingheck _door is no longer feasible; this, however, is not a flaw, since it
simply reflects that the precondition for executing the sgnaction, namely that the door status is unknown,
does never apply. In the same line, we can find examples whdiegatotal statements render secure plans
insecure, or where new optimistic and secure plans emergehé&®other hand, by forgetting the status of
fluents, we might find plans for problems where world-stagaping has no plan.

We may explain these observations by reminding that knayeetite planning, in our approach, is plan-
ning under (default) assumptions made on incomplete irdition, which are represented in the planning
domain by the use of default literals and select one of thepmgsible values of a fluent. These assumptions
may turn out inappropriate in reality, and a plan may becamfigakible. Security of a plan is relative to
the emerging states of knowledge and the assumptions tlmatmede in selecting the actions. This looks
refutable, but a moment of reflection should convince thiatiticorporategjualitative decision makingn
terms of default principles into the planning process. Alesnenttotal £. is an unconditionalmplicit
sensing actionwhich refines the knowledge state by reporting the stattiseofluent in the new state.

We thus may proceed in planning as follows: try to find an ojsiim or secure plan, and then evaluate
feasibility of the plan under refined knowledge states, bgiragl suitabletotal statements. Here, not
necessarily all fluents have to be totalized, but merely ¢levant ones. In case no plan exists, a refinement
of the knowledge states may be attempted at the initial.stafgarticular, if incompleteness is just given in
the initial state, but each fluent is, by the causal rulesnddfin each future state, then one should describe
the properties known to hold in the beginning, totalize tieée/ant) fluents of the initial state, and ask for a
secure plan (cf. section 3.2, the interested reader is eaged to identify the relevant instancesoaf X, Y)
for totalization w.r.t. the goal there). Exploring the uddaialization, and developing a methodology for
this process is an interesting issue for further work.

4 Complexity of I

We now turn to the computational complexity of planning im tauinguagé(. In this section, we present the
results of a detailed study of major planning issues in tlpgsitional case. Results for the case of general
planning problems (with variables) may be obtained by applguitable complexity upgrading techniques
(cf. [31]). We call a planning domai#D (resp. planning probler®) propositiona] if all predicates in it
have arity 0, and thus it contains no variables.

4.1 Main Problems Studied

In our analysis, we consider the following three problems:

Optimistic Planning Decide, given a propositional planning probl€ifiD, ¢), whether some optimistic
plan exists.

Security Checking Decide, given an optimistic plaR = (A, ..., A,) for a propositional planning prob-
lem (PD, q), whetherP is secure.
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Secure Planning Decide, given a propositional planning probléfD, ¢), whether some secure plan ex-
ists.

We remark here that the formulation of security checkingtisctly speaking, @romise problemsince
it is assertedthat P is an optimistic plan, which can not be checked in polynortirake in general (and
thus legal inputs can not be recognized easily). Howevergdmplexity results that we derive below would
remain the same, eveniif were not known to be an optimistic plan.

We assume that the reader has some knowledge of basic cenéeamputational complexity theory;
see [56, 7] for a background and further sources. In padicule assume familiarity with the well-known
complexity classe®, NP, coNP, and PSPACE. The classég’ (resp.HkP), k > 0 of the Polynomial
Hierarchy PH =, , =" are defined byol’ = TII" = P andXf = NP1 (resp.IIf = coxl), for
k > 1. The latter model nondeterministic polynomial-time cotgpion with an oracle for problems in
¥ . FurthermoreD?” = {LN L' | L € NP, L' € co-NP} is the logical “conjunction” ofNP and coNP,
and NEXPTIME is the class of problems decidable by nondetestic Turing machines in exponential
time. We recall thaNP C D C PH C PSPACE=NPSPACE NEXPTIME holds, where NPSPACE is
the nondeterministic analog of PSPACE. It is generallydwelil that these inclusions are strict, and that PH
is a true hierarchy of problems with increasing difficultyotd that NEXPTIME-complete problems are
provably intractablei.e., exponential lower bounds can be proved, while no gpucbfs for problems in PH
or PSPACE are known today.

4.2 Overview of Results

We will consider the three problems from above under thewahg two restrictions:

1. General vs. proper planning domainsBecause of their underlying stable semantics, which is-well
known intractable [46], causation rules in domain desionis can express computationally intractable
relationships between fluents. In fact, determining whetbea states and a set of executable ac-
tions A in s some legal transitioris, A, s’) to any successor statéexists in a planning domaifD
is intractable in general, since it comprises checking e logic program has an answer set. For
this reason, we pay special attention to the following saggbf planning domains.

Definition 4.1 We call a planning domaiD proper if, given any states and any set of actions
A, deciding whether some legal state transit{enA, s’) exists is polynomial. A planning problem
(PD, q) is proper, if PD is proper.

Proper planning domains are not plagued with intractgbilftdeciding whether doing some actions
will violate the dynamic domain axioms, even if they posgibave nondeterministic effects. In fact,
we expect that in many scenarios, the domain is representadnaiay such that if a set of actions
qualifies for execution in a state, then performing thes®m@asgtis guaranteed to reach a successor
state. In such cases, the planning domain is trivially proplis applies, for example, to the standard
STRIPS formalism [20] and many of its variants.

Unfortunately, deciding whether a given planning domaipr@per is intractable in general; we thus
need syntactic restrictions for taking advantage of thisn@ntic) property in practice. For obtain-
ing significant lower complexity bounds, we consider in onalgsis a very simple class of proper
planning domains.
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Definition 4.2 We call a planning domai’D = (II, AD) plain, if the background knowledgH is
empty, andAD satisfies the following conditions:

1. Executability conditiongxecutable. .. refer only to fluents.

2. No default negation —neither explicit nor implicit thghulanguage extensions (such as inertia
rules)— is used in thgost-part of causation rules in thalways” section.

3. Given thaty,... «,, are all ground actionsdD contains the rules

nonexecutable «; if «;. 1<i<ji<m
caused false after not «ag, not as, ..., not ay,.

We call a planning probler® = (PD, q) plain, if PD is plain.

The conditions ensure that every legal state transitien(s, A, s’) must satisfy|A| = 1. Thus all
optimistic and secure plans must be sequential.

As easily seen, in plain planning domains (which can be effity recognized), deciding whether for
a states and an action setl some legal state transitian= (s, A, s') exists is polynomial, since this
essentially reduces to evaluatingeét -free logic program with constraints. Thus, plain plannitog
mains are proper. Moreover, even deciding whether for a staty legal state transition= (s, A, s’)
exists is polynomial, since the candidate space for s@itatlion sets! is small and efficiently com-
puted. Furthermore, each legal state transitiona plain planning domaiiD is clearly determined,
and thusPD is also deterministic. As discussed below, for many proBl@tain planning domains
harbor already the full complexity of proper planning donsai

We remark that further, more expressive syntactic fragmehproper planning domains can be ob-
tained by exploiting known results on logic programs whioh guaranteed to have answer sets, such
as stratified logic programs, or order-consistent and gatedree logic programs [17, 10]; the latter
allow for expressing nondeterministic action effects. éntigular, these results may be applied on the
rules obtained from the dynamic causation rules by strippiifitheir pre-parts. We do not investigate
this issue further here; stratified planning domains areessed in [59].

2. Fixed vs. arbitrary plan length We analyze the impact of fixing the lengtin the queryy = Goal ? (4)
of (PD, q) to a constant. In general, the length of an optimistic planfeD, ¢q) can be exponential
in the size of the string representing the numbg@rhich, as usual, is represented in binary notation),
and even exponential in the size of the string representiagvhole input D, ¢). Indeed, it may be
necessary to pass through an exponential number of diffetates until a state satisfying the goal is
reached. For example, the initial statemay describe the valu@, . .. ,0) of ann-bit counter, and
the goal description might state that the counter has vdlue. , 1). Assuming an action repertoire
which allows, in each state, to increment the value of thentaruby 1, the shortest optimistic plan
for this problems hag" — 1 steps. (We leave the formalization of this problenkimas an illustrative
exercise to the reader.) This shows that storing a compfieistic plan in working memory requires
exponential space in general.ilis fixed, however, then the representation size of the plAndar in
the size of( PD, q).
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plan lengthi in queryq = Goal 7 (i)
planning domainPD fixed (=constant) arbitrary
general NP/ 1Y /%P -complete  PSPACE/IIY /NEXPTIME -complete
proper NP /co-NP /%L -complete PSPACE /cdP / NEXPTIME -complete

Table 1. Complexity Results for Optimistic Planning / Séisu€hecking / Secure Planning (Propositional
Case)

Main complexity results Our main results on the complexity &f are compactly summarized in Table 1,
and can be explained as follows.

e As for Optimistic Planning, we can avoid exponential spamestoring an optimistic plalP =
(A1,...,A,) by generating istep by stepwe guess a legal initial statg, and subsequently, one
by one, the legal transitions;_1, A;, s;). Since storing one legal transition requires only polyredmi
workspace and NPSPACE=PSPACE, Optimistic Planning is iRAZE. On the other hand, propo-
sitional STRIPS, which is PSPACE-complete [3], can be gasilluced to planning i#C, where the
resulting planning problem is plain and thus proper. Fordfigkan length, thevholeoptimistic plan
has linear size, and thus can be guessed and verified in poightime.

¢ In Security Checking, the optimistic plah = (A, ..., A,) to be checked is part of the input, so the
binary representation of the plan length is not an issue. hei is not secure, there must be a legal
initial statesy and a trajectory executing the actionsAp, ..., A; such that either the execution is
stuck, i.e., no successor stateexists or the actions id; are not executable ig;, or the goal is not
fulfilled in the final states,,. Such a trajectory can be guessed and verified in polynoima! with
the help of arlNP oracle; this places the problemif,’. The NP oracle is needed to cover the case
where no successor statgexists, which reduces to checking whether a logic prograsmioaanswer
set. In proper planning domains, existence, afan be decided in polynomial time, which makes the
use of arnNP oracle obsolete and lowers the overall complexity fidin = co-NPNF to coNP.

¢ In Secure Planning, the existence of a secure plan can beedieloy composing algorithms for con-
structing optimistic plans and for security checking. Owmipership proofs for deciding the exis-
tence of an optimistic plan actually (nondeterministigatonstruct such a plan, and thus we easily
obtain upper bounds on the complexity of Secure Planning ftee complexity of the combined al-
gorithm, by using the security check as an oracle. In the ahagbitrary plan length, the use off &’
oracle can be eliminated by a more clever procedure, in whient security is checked by inspecting
all states reachable aftérl, 2, ... steps of the plan. Even if their number may be exponentia, th
does not lead to a further complexity blow up. Thus, Secuaerihg is in NEXPTIME. On the other
hand, even in plain planning domains, an exponential numit{exponentially long) candidate secure
plans may exist, and the best we can do seems to be guessiitgldesane and verifying it.

Effect of parallel actions The results in Table 1 address the case where parallel adtioplans are
allowed. However, excluding parallel actions and congmeonly sequential plans does not change the
picture drastically. In all cases, the complexity staysdhme except for secure planning under fixed plan
length, where Secure Planninglig’-complete in general anB*-complete in proper planning domains
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(Theorem 5.7). Intuitively, this is explained by the factifor a plan length fixed to a constant, the number
of potential candidate plans is polynomially bounded initiput size ofP, and thus the guess of a proper
secure candidate can be replaced by an exhaustive searete Wwhemains to check as a side issue the
consistency of the domain (i.e. existence of some legaairgtate), which iSNP-complete in general (also
for plain domains); see Theorem 5.7 below.

Effect of nondeterministic actions Our results also imply some conclusions on nondeterministi de-
terministic planning domains. Interestingly, in propeamping domains, nondeterminism has no impact
on the complexity for all problems considered, and we carclcole the same for Optimistic Planning as
well as Secure Planning under arbitrary plan length. Fumbee, for proper planning problems even the
combined restrictions of sequential plans and deternregtion outcomes do not decrease the complexity
except for Secure Planning with fixed plan length, since #reiess results are obtained for plain planning
problems, which guarantee these restrictions.

Implications for implementation The complexity results have important consequences foinipée-
mentation ofiC on top of existing computational logic systems, such asklax [37], CCALC [47], Smod-
els [55], DLV, satisfiability checkers, e.g. [54, 41, 2, 77], or Quantifitablean Formula (QBF) solvers
[4, 63, 18]. Optimistic Planning under arbitrary plan ldmgs not polynomially reducible to systems
with capability of solving problems within the Polynomiaigfiarchy, e.g. Blackbox, satisfiability check-
ers, CCALC, Smodels, or DLV, while it is feasible using QBHRvsos. On the other hand, for fixed (and
similarly, for polynomially bounded) plan length, OptiticsPlanning can be polynomially expressed in all
these systems. On the other hand, even in the case of fixeteplgth and proper planning domains, Secure
Planning is beyond the capability of systems having “oMy” expressiveness such as Blackbox, CCALC,
Smodels, or satisfiability checkers, while it can be encaddl Vv (which hasx-l’ expressiveness) and QBF
solvers. Even in the more restrictive plain planning dorsaimhere Secure PlanningIs”-complete, the
systems mentioned can not polynomially express Secur@iftaim a single encoding. On the other hand,
if we abandon properness, then aldio/ is incapable of encoding Secure Planning (whose compléxity
creases t&’-completeness). Nonetheless, Secure Planning is feasible/ using a two step approach as
in [25], where optimistic plans are generated as secureidatedplans and then checked for security; this
check is polynomially expressible BLV.

Secure planning under arbitrary plan length is provablaitaible, even in plain domains. Since NEXP-
TIME strictly contains PSPACE, there is no polynomial timanisformation to QBF solvers or other popular
computational logic systems with expressiveness limibdd$PACE, such as traditional STRIPS planning.

Here, further restrictions are needed to lower complexit SPACE, such as a polynomial bound on
the plan length in the input query. We leave this for furthestigation.

5 Derivation of Results

In this section, we show how the results discussed in théqus\section are derived.

In the proofs of the lower bounds, the constructed plannimolpmsP = ((I1, (D, R)), q) will always
have empty background knowledfje Furthermore, the action and fluent declaratiéizsand A p, respec-
tively, will be as needed for th&-part, and are not explicitly mentioned. That is, we shalyaxplicitly
addressk andq, while IT = () and D are implicitly understood.
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The following lemma on checking initial states and legatesteansitions is straightforward from well-
known complexity results for logic programming (cf. [7]).

Lemma 5.1 Given a states, (resp. a state transition = (s, A, s')) and a propositional planning domain
PD = (I1, (D, R)), checking whethes is a legal initial state (resp+ is a legal state transition) is possible
in polynomial time.

Proof. [of Lemma 5.1] The unique answer skt of the logic progranil can be computed in polynomial
time (cf. [7]). GivenM, the set of legal action and (positive and negative) fluestaimcesC pp is easily
computable in polynomial time, as well as the reductii’. Checking whethes, is a legal initial state
for PD' amounts to checking whethey is the least fix-point of a set of positive propositional sjlevhich
is well-known polynomial. Overall, this means that chegkimhethersg is a legal initial state ofPD is
polynomial. FromM, t, and PD, it can be easily checked in polynomial time whetheis executable
w.r.t. s and, furthermore, whethet is the minimal consistent set that satisfies all causatitesrw.r.t.
s U AU M by computing the least fixpoint of a set of positive rules aadfying constraints on it. Thus,
checking whethet is a legal state transition is polynomial in the proposkiilocase. O

Corollary 5.2 Given a sequence of state transitiofis= (t1,...,t,), wheret; = (s;_1, A;,s;) fori =
1,...,n,and a propositional planning domaifD = (II, (D, R)), checking whethef is legal with respect
to PD is possible in polynomial time.

5.1 Optimistic Planning

From the preparatory results, we thus obtain the followegult on Optimistic Planning.

Theorem 5.3 Deciding whether for a given propositional planning prablé® = (PD,q) an optimistic
plan exists is (aNP-complete, if the plan length iq is fixed, and (bPSPACEcomplete in general. The
hardness parts hold even for plai

Proof. (a). The problem is ifNP, since a trajectoryl’ = (ti,...,t;) wheret; = (s;j_1,A;,s;) for
j =1,...,1i, such thats; satisfies the goak in ¢ = G 7(i) can be guessed and, by Corollary 5.2, verified
in polynomial time ifs is fixed.

NP-hardness for plaifP is shown by a reduction from the satisfiability problem (SAI8t¢ = C; A
--- A C}, be a CNF, i.e. a conjunction of claus€s= L;; V - -- V L; ,,, Wwhere theL; ; are classical literals
over propositional atomX = {z,...,z,}. We declare these atoms and a further atéhas fluents
in D, and put into the initially” sectionly of the planning domai®’D = (0, (D, R)) the following
constraints:

total z;. forallz; € X
forbidden —|.LZ"1, e _‘-Li,mi- 1< <k
caused 0.

Here, the first constraint effects the choice of a truth vétwesach fluent:;, the second excludes choices
which violate claus€’;, and the third addg)’ as a marker to the initial state. ClearyD has a legal initial
state iff ¢ is satisfiable. Thus, an optimistic plahexists forP = (PD,0 ? (0)) iff ¢ is satisfiable. AsP
can easily be constructed frog the result follows.
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(b). A proof of membership in PSPACE follows from the diséossin Section 4.2 (note Lemma 5.1).
We remark that the problem can be solved by a determinigimrighm in polynomial workspace as follows.
Similar as in [3], design a deterministic algorithm REAGHSs’, #) which decides, given statesands’ and
an integer, whether a sequence,. . . ¢, of legal transitions; = (s; 1, A;, s;) exists, where = so ands’ =
s¢, by cycling trough all states” and recursively solving REACH, s”, |£/2]) and REACHs", s, [(£ +
1)/2]). Then, the existence of an optimistic plan of lengttan be decided cyclic through all pairs of states
s, s' and testing whethes is a legal initial states’ satisfies the goal in given ig, and REACHs, s', /)
returns true. Since the recursion deptlDiog ¢), and each level of the recursion needs only polynomial
space, Lemma 5.1 implies that this algorithm runs in polyiabspace.

For the PSPACE-hardness part, we describe how propodi&drRRIPS planning as in [3] can be reduced
to planning inkC, where the planning domaiRD is plain.

Recall that in propositional STRIPS, a state descripfitsia consistent set of propositional literals, and
an operatoop has a preconditiopc(op), an add-listadd(op), and a delete-listel (op), which all are lists
of propositional literals. The operatop can be applied i if pc(op) C s holds, and its execution yields
the states’ = (s \ del(op)) U add(op) (wheres’ must be consistent). Otherwise, the applicationzobn s
is undefined. A goa, which is a set of literals, can be reached from a statkthere exists a sequence of
operatorsopy, . . . , opg, Where/ > 0, such thats; = op;(s;—1), fori = 1,...,¢, wheresy = s, andy C sy
holds. Any such sequence is calle&aRIPS-plarfof length/) for s, . Givens, -y, a collection of STRIPS
operatorsp, . .., 0p,, and an integef > 0, the problem of deciding whether some STRIPS-plan of length
at most/ exists is PSPACE-complete [3]. As easily seen, this remairesif we ask for a plan of length
exactly/ (just introduce a dummy operation with empty preconditiod ao effects).

Each STRIPS operatap; is easily modeled as action in languageausing the following statements in
the “always” section, i.e. the”r part of R:

executable op; if pc(op;).
caused L after op;. for eachL € add(op;)
caused L after op;, L. for eachL ¢ add(op;) U del(op;)

The last rule is an inertia rule for the literals not affecbsthp.
The initial states of a STRIPS planning problem can be easily represented tse§pllowing con-
straints in the initially” section, i.e. thelr part of R:

caused L. forall L € s
Finally, Cr contains the mandatory rules for unique action executianptain planning domain:

nonexecutable op; if op;. 1<i<j<n
caused false after not op;, not ops, ..., not op,,.

It is easy to see that for the planning problém= (PD, q) where PD = ((), AD) andq = ~ ? (£),
some optimistic plan exists iff a STRIPS-plan of lengtfor s,y exists. SinceP is constructible from the
STRIPS instance in polynomial time, this proves the PSPAGEness part. O

5.2 Secure Planning

Secure Planning appears to be harder; already recognizdaguae plan is difficult.
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Theorem 5.4 Given a propositional planning problefd = (PD, ¢) and an optimistic plar for P, decid-
ing whetherP is secure is (aJI;’-complete in general and (b) a&§P-complete, ifP is proper? Hardness
in (&) and (b) holds even for fixed plan lengthgiand sequentiaP, and if P in (b) is moreover plain.

Proof.
TheplanP = (A4, ..., A;) for Pis not secure, if atrajectofyf = (t1,...,t,), wheret; = (sj_1, Aj,s;))
forj =1,..., ¢ exists, such that either ({)= 7 ands; does not satisfy the goal in or (ii) £ < < and for no

states, the tuple(s,, A1, s) is a legal transition. A trajectory’ of any length? can, by Corollary 5.2, be
guessed and verified in polynomial time. Condition (i) carebsily checked. Condition (ii) can be checked
by a call to anNP oracle in polynomial time. It follows that checking secyris in coNP™ = TI¥ in
general. IfP is proper, condition (ii) can be checked in polynomial tiraeg thus the problem is in Q3§P.
This shows the membership parts.

I1¥-hardness in case (a) is shown by a reduction from decidingttven a QBF® = VX3Y ¢ is true,
whereX, Y are disjoint sets of variables agd= C; A ... A Cy isa CNF overX UY'. Itis well-known that
this problem id14’-complete, cf. [56]. Without loss of generality, we assuimg § is satisfied if all atoms
in X UY are set to true.

We declare the atoms i UY and further atom8 and1 as fluents inD. The “initially” sectionlp
for AD = (D, R) has the following constraints:

totalz;. forallz; € X
caused O.

The "always” sectionCr of R contains the following rules. Suppose tiat;, ...L; ,; are all literals over
atoms fromX which occur inC;, and similarly thatk; , ...K; ,,, are all literals over atoms frofi that
occur inC;.

total y; after 0. forally; € Y

forbidden —.Kj; 1,...,.K; p, after 0, =.L;1,...,~.Lip,. 1<i<k

caused 1 after O.

These rules generaf$*| legal initial statess}, ..., s2" w.r.t. (, AD), which correspond 1-1 to the
truth assignments to the atomsih Each suchs) contains precisely one af; and—z;, for all z; € X,
and the atom 0. The totalization rule fgr effects that each legal state following the initial state contains
exactly one ofy; and—y;. That is,s; must encode a truth assignment #r Theforbidden statements
check that the assignment 6 U Y, given jointly by s} ands;, satisfies all clauses @f. Furthermore,l
must be contained isy by the last rule.

Let us introduce an action, which is always executable. Then, the assumptionbomplies that
T = ((sg,A1,s1)), wheresy = X U {0}, 41 = {a}, ands; = X UY U {1}, is a trajectory w.r.t.
PD = ((, AD), and thusP = (A;) is an optimistic plan for the planning problefh = (PD, q) where
g =17 (1). Itis not hard to see tha®? is secure iff® is true. SincePD, q) is easily constructed frond,
this proves the hardness part of (a). The hardness part &f €isjablished by a variant of the reduction; we
disregardY (i.e.,Y = ()), and modify the rules as followsalse (after macro expansion) is replaced by
1, and the rule with effect is dropped. Note that the resulting planning domain is pldihen, the plan
P = (A,)is secure ifV X —¢ is true, i.e., the CNR is unsatisfiable, which is cd¥P-hard to check. O

2\We are grateful to Hudson Turner for pointing out that in &tdsf[11], a coNP-upper bound as reported there obtains only
if deciding executability of an action (leading to a new legfate) is inP, and that the complexity in the general case may be one
level higher up in PH. In fact, we were mainly interested intsdomains, which are covered by our notion of proper domains
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For Secure Planning, we obtain the following result.

Theorem 5.5 Deciding whether a given propositional planning probléh= (PD, q) has a secure plan is
(a) ©F-complete, if the plan length ipis fixed, (b)>4-complete, if the plan length inis fixed andP is
proper. Hardness in (b) holds even for deterministic andrplaD.

Proof. a) and b). A trajectoryl’ = ((sg, A1,51),...,(si—1,A;,s;)) of fixed lengthi that induces an
optimistic planP = (A, ..., A;) can be guessed and verified in polynomial time (Corollary,a8d by
Theorem 5.4, checking whethér is secure is possible with a call to an oracle Fof in case (a) and for
co-NP in case (b). Hence, it follows that the problem iS1§ in case (a) and i}’ in case (b).

For the hardness part of (a), we transform deciding the itslaf a QBF ® = 37VX3Y ¢, where
X, Y, Z are disjoint sets of variables agd= C; ... Cy is a CNF overX UY U Z, which isX¥-complete
[56], into this problem. The transformation extends theuatin in the proof of Theorem 5.4.

We introduce, for each atom) € Z, an actionset,, in D. The “initially” section, i.e. thelp part
of R, contains the following constraints:

totalz;. forallz; € X
caused 0.

Cr contains the following rules. Suppose tHat;, ...L; ,, are all literals over atoms froo¥ that occur in
C;, and similarly thatk; i, .. .K; ,,, are all literals over atoms froi U Z that occur inCy;.

caused z; after 0, set,,. forall z; € Z
caused —z; after 0, not set,. forall z; € Z
caused 1 after O.

total y; after 0. forally; € Y

forbidden —|.K1"1, - 7_‘-Ki,mi after 0, —|.L1"1, cee —|.L1"m.. 1< <k

Given these action descriptions, there ar&l many legal initial states}, ...,sg'x‘ for the emerging
planning domainPD = (), AD), which correspond 1-1 to the possible truth assignmentset@ariables in
X and contairf). Executing in these state§ some actions! means assigning a subset/othe value true.
Every statesi reached fromsg by a legal transition must, for each ateme Z UY, either containx or —«,
where for the atoms if¥ this choice is determined by. Furthermores? must contain the atorh

It is not hard to see that an optimistic plan of foith= (A4;) (whereA; C {set,, | z; € Z}) for the
goal 1 exists w.r.t.PD = (0, AD) iff there is an assignment to all variables¥hU Y U Z such that the
formula ¢ is satisfied. Furthermord? is secure iffA; represents an assignment to the variableg such
that, regardless of which assignment to the variableX is chosen (which corresponds to the legal initial
statess}), there is some assignment to the variable¥ ii.e., there is at least some statereachable from
sb, by doing4,), such that all clauses gfare satisfied; any sucfj containsl. In other words P is secure
iff ® is true.

Since PD is constructible from® in polynomial time, it follows that deciding whether a sexynan
exists forP = (PD, q), whereg = 1 7 (1), is ¥’ -hard. This proves part (a).

For the hardness part of (b), we modify the construction fot a) by assuming that = (), and

e replacefalse in rule heads (after macro expansion)lyy

e remove the rule fot and thetotal-rules fory;).
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The resulting planning domaiRD’ is proper: since no causation ruledfy; contains default negation,
for each transitiort = (s, A, s1), the reductP’D'" coincides withPD’<5’A’@>, and thus existence of a a legal
transition(s, A, s;) can be determined in polynomial time. Furthermdre A, s1) is determined, and thus
PD' is also deterministic. We have agar! initial statess), which correspond to the truth assignments to
X. An optimistic plan for the goal of the formP = (A;), whereA; C {set,, | z; € Z}, corresponds
to an assignment t& U X such thatp evaluates tdalse The planP is secure iff every assignment 6,
extended by the assignmentZoencoded by4;, makesp false.

It follows that a secure plan fo? = (PD’, q), whereq = 1 7 (1), exists iff the QBFEZVX ¢ is true.
Evaluating a QBF of this form i -hard (recall that is in CNF). SinceP is constructible in polynomial
time, this proves:Z’-hardness for part (b). O

Next, we consider Secure Planning under arbitrary plantteng

As mentioned above, we can build a secure plan step by stgjif oré know all states that are reachable
after the stepsly, ..., A; so far when the next step; ,; is generated. Either we store these states explicitly,
which needs exponential space in general, or we store the 4ie. . ., A; (from which these states can be
recovered) which also needs exponential space in the mget®on size of PD, ¢). In any case, such a
nondeterministic algorithm for generating a secure platdaexponential time. The next result shows that
NEXPTIME actually captures the complexity of deciding tixéstence of a secure plan.

Theorem 5.6 Deciding whether a given propositional planning probléh= (PD, q) has a secure plan is
NEXPTIME-complete. Hardness holds even for plain (and thus detastiah?.

Proof. As for the membership part, the size of a string represgratisecure plai® = (Aq,..., A;) of

lengths for the queryg = Goal ? (4) is at mostO(i - |PD|), which is single exponential in the sizgRD)|

andlog i of the strings forPD andi, respectively. Hence, this string has size single expdadentthe size
of P. We can thus guess and verify a secure @afior P in (single) exponential time as follows:

1. Compute the sef; of all legal initial states. IfS; = (), thenP is not secure (in fact, no secure plan
exists).

2. Otherwise, for each = 1,...,4, compute for each € S;_; the setS;(s) = {s' | (s, 4;,5')isa
legal transition), and halt if someS;(s) is empty; otherwise, s&l; = Usesf1 S;(s).

3. Finally, check whether the goal is satisfied in every S;, and accept iff this is true.

The computation o8y, as well as of eacl;(s), can be done in single exponential time, by considering
all possible knowledge statesthat might occur in a legal transitiofs, A, s’). The number of different
S;(s) is exponentially bounded in the size Bf thus, overall an exponential number of steps suffices to
check whether the plaR is secure.

The NEXPTIME-hardness part is shown by a generic Turing rimecfl M) encoding. That is, given a
nondeterministic TMM which accepts a languag®.,, in exponential time and an input wotd, we show
how to construct a plain planning problebh= (PD, ¢) in polynomial time which has a secure plan iff
acceptaw. Roughly, the states in the st of legal initial states encode the tape cells\éfand their initial
contents; the actions in a secure plan represent the movhs afiachine, which change the cell contents,
and lead to acceptance ©f While the idea is clear, the technical realization beanseseubtleties.

The reduction is as follows. Without loss of generality,halts onw in less tharen" many steps, where
n = |w| is the length of the input ankl > 0 is some fixed integer (independentgf and M has a unique
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accepting state. We modify/ such that it loops in this state once it is reached. The €&l ..., Cy,
whereN = 27" — 1, of the work tape of\f (only those are relevant) are represented in different kgtes

of the planning domain. Initially, the cellSy, . .., C,—; contain the symbolsy,w; ..., w),—; of the
input wordw, and all other ceII$?|w‘, ...,Cx are blank.
The computation of\/ onw is modeled by a secure pldh= (Aq,..., Ay), in which eachd; contains

a single actionv,; which models the transition a¥/ from the current configuration of the machine to the
next one. A configuration a#/, given by the contents of the work tape, the position of tlaelrerite (rw)
head, and the current state of the machine, is describedyal/kaowledge states, 0 < i < N, such that
s; contains the symbat currently stored irC;, the current positiork of the rw-head, and the current state
q of M; all this information is encoded using fluents.

The information to which cell’; a legal knowledge state corresponds is given by litetals. . . , £i,,,
which represent the integére [0, N] in binary encoding, wheré; (resp.—i;) means that thg-th bit of
i is 1 (resp. 0). The position of the rw-heald,c [0, N], is represented similarly using further literals
+hi,...,£h,. Each symbob in the tape alphabet of M is represented by a fluepg. Similarly, each
stateq in the setQ) of states ofM is represented by a fluepy; in each legal knowledge state, exactly one
pes and onep, is contained. There age" legal initial knowledge states, which uniquely describe itfitial
configuration ofM, in which the rw-head of\/ is placed ovely, M is in its initial state (sayg:), and the
work tape contains the input.

The legal initial knowledge statesare generated using constraints which “guess” a value fdr lpia of
i, initialize the contents of’; with the right symbop,, include—#h; forall j = 1,... .n¥ (i.e., seth = 0),
and includeg;. More precisely, thetnitially” section, i.e.Ir of R, in AD = (D, R) is as follows:

totali;. forallj =1,...,n*
caused —h;. forallj=1,...,n* %seth=0
caused Py, 1f —i1, —92,..., —i,k. % work tape position 0

caused py, if i1, —i9,..., —i,k. % work tape position 1

caused py,,,_, if “code of|w| —1". % work tape positiorw| — 1
caused p, if not p,,,...,not p,,,. % rest of tape is blank
caused ¢;. % initial state isg;

Here, the tape alphabEtis assumed to bE = {U, 01, 09, ...,0n}, Wherel is the blank symbol.

The transition function of\/ is given by tuples = (o0, ¢, o', d, ¢'), which reads as follows: i/ is in
stateq and reads the symbel at the current rw-head positidn(i.e., C}, containso), then M writeso’ at
the positionk (i.e. into Cj,), moves the rw-head to positidn+ d, whered = +1, and changes to staté
(Without loss of generality, we omit here modeling that twehread might remain in the same position.)

Such a possible transitionis modeled using rules which describe how to change a cukreawledge
states, which corresponds to the tape cé€l}, to reflectC; in the new configuration oM. Informally, its
constituents are manipulated as follows.

work tape contents For the case that = i, i.e., the rw-head is at positioh a rule includew,, into the
state. Otherwise, i.e., the rw-head is nobaan inertia rule includeg,, whereo is the old contents
of C;, to the new knowledge state.

rw-head position The change of the rw-head position #yl, is incorporated by replacing with A + 1.
This is possible using a few rules, which simply realize arément resp. decrement of the counter
h. We assume at this point thaf is well-behaved, i.e., does not move leftf.
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state A rule includesp, for the resulting statg’ of M into the new knowledge state.

To implement this, we introduce for each possible transitio= (o, q,0’,d, ¢') of M an actiona.,
whose executability is stated @r as follows:

executable «a; if py, ps, h=1.
executable o, if not h=1.

Hereh =1 is afluentatom, which indicates whether the rw-head positiois the index: of the cellC;
represented by the knowledge state.
Furthermore, several groups of rules are put in thewhys” section, i.e.Cr of R. The first group

serves for determining the value ¥ i, using auxiliary fluents,, ..., e,x:
caused e; if hj, i;. forallj =1,...,n"
caused ej if —h;, —i,. forallj =1,...,n"
caused h=41if e1,...,e,k.

The execution ofy; effects a change in the state and the contents; of

caused p, after a,;, h=1.
caused p, after a,, p,, not h=1. forallc € &
caused py after a;.

Depending on the value df different rules are added for realizing the move of the eadh Recall that,
given the binary representatiar11 - - - 1 of an integerz, the binary representation ef+ 1 is 2100 - - 0.
The rules ford = 1 are as follows.

caused h; after a;, —h;.
caused hy after a;, —hg, hq.
caused —h; after a,, —ho, hq.

caused h,x after a;, —h,k, hpe_y,...,h1.

caused —h,x_; after a,, —h,x, hyx_q,...,h1.

caused —h; after a;, —h,k, hpk_1,...,h1.

caused hy after a,, hy, —h;. wherel < j < £ < nkF
caused —hy after a,, —hy, —h;. wherel < j < £ < nk

The last two rules serve for carrying the leading bits, @fhich are not affected by the increment, over to the
new knowledge state. (This could also be realized in a sinvpdgy usinginertial statements; however,
recall that such rules are not allowed in plain domains.)

The rules ford = —1 are similar, with the roles df and1 interchanged:
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caused —h; after a,, h.
caused —hy after a,, hg, —hq.
caused hy after a;, ho, —h;.

caused —h,» after o, hyk, —hpr_q,..., —h1.

caused h,x_; after a,, hye, —hyk_q,...,—h1.

caused h; after a,, h,k, —h,x_q,...,—h1.

caused hy after a,, hy, hj. wherel < j < £ < nkF
caused —hy after a,, —hy, h;. wherel < j < ¢ < nF

Further rules are added € for carrying the cell index over to the next knowledge state:

caused ij after i;. forallj =1,...,n*
caused —i; after —i;. forallj =1,... ,nk

Finally, the mandatory rules of a plain planning domain erifig the execution of one and only one
action in each transition are addeddg.

As easily checked, all rules that we have introduced satisfysyntactic restrictions for plain planning
domains.

Suppose now that,, € @ is the unique accepting state bf. Then, a secure plaR = (44,..., A;) of
length/ reaching the goa},,, corresponds to the fact thaf will, starting from the initial configuration, be
in an accepting configuration after executing the transitiq,. .., 7,, whereA; = {a;, }, forj =1,... £
By our assumption o/, we know that) can reach some accepting configuration withinsteps iff it
can reach an accepting configuration in exadflgteps. Thus, we have th&f accepts the inpub iff there
exists some secure plan of lengshfor the goalg,, in the planning domaiPD = (), AD) where AD is
from above. In other words)/ acceptsw within N steps iff the proper propositional planning problem
P = (PD, g, 7 (N)) has a secure plan.

As easily seenP can be constructed in polynomial time frold andw. This proves NEXPTIME-
hardness of deciding the existence of a secure plan, evesr timel restriction to plain planning problems.

O

Secure planning has lower complexity if the plan length isdiand concurrent actions are not allowed.

Theorem 5.7 Deciding whether a given propositional planning probl@n= (PD, ¢) has a secure sequen-
tial plan is (a) TTY -complete, ify is fixed, and (bD¥-complete, if; is fixed andP is proper. The hardness
part of (b) holds even for plaif®.

Proof. If the plan lengthi in the queryg = Goal ? (1) is fixed, the number of candidate sequential secure
plans, given by(a + 1), wherea is the number of actions iRD, is bounded by a polynomial.

A candidateP = (Aq,...,A,) is not a secure plan, if (i) no initial statg exists, or (ii) like in the
proof of Theorem 5.4, a trajectof = (t1,...,t,), wheret; = (s;_1, 4;,s;),forj =1,..., £ exists, such
that either (ii.1)/ = 7 ands; does not satisfy the goal ify or (ii.2) £ < 7 and for no state, the tuple(s,
Ayy1,s) is a legal transition. The test for (i) is in @P, while the test for (ii) is in2Z” in general and in
NP if P is proper (cf. proof of Theorem 5.4). Note that (i) is ideatitor all candidates.

Thus, the existence of a sequential secure plan can be ddajdéne conjunction of a problem INP
and a disjunction of polynomially many instances of a probla I1%" in case (a) and in c&P in case (b);
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sinceNP C TI¥" and bothll{ and coNP are closed under polynomial disjunctions and conjunctiais
instances (i.e., a logical disjunction resp. conjunctibimstances can be polynomially transformed into an
equivalent single instance), it follows that the problermisl in case (a) and i’ in case (b).

17-hardness for case (a) follows from the reduction in the podoTheorem 5.4. There, a secure,
sequential plan exists for the query (1) iff the plan P = ({«a}) is the secure.

D”-hardness for case (b) is shown by a reduction from decidingn CNFsp = Niey LiaVLiaVLg
andy = \jL, K1V K2V K 3 over disjoint sets of atom& andY’, respectively, whethef is satisfiable
andq is unsatisfiable.

The “initially” section, i.e.Ir of R contains the following constraints:

total z;. forallz; € X
caused Li,l if —|.Li,2, —|.Li73. foralls = 1,...,n
total y;. forally; € Y
causedf if _|.Ki,1, TG 9, TG 3. foralls = 1,....,m

Obviously, these rules satisfy the conditions for a plaemping domain. Then, for the quegy= f 7 (0),
the only candidate for a sequential secure plan is the entaty/p= (). As easily seenP is a secure plan
for ¢ iff ¢ is satisfiable (which is equivalent to the existence of saggallinitial state) and is unsatisfiable
(which means thaf is true in each initial state). This proves the hardnessqigh). O

We conclude this section with remarking that the constomstiin the proofs of the hardness parts of
Theorem 5.4, items (a) and (b) of Theorem 5.5, and item (a)h&fofem 5.7 involve planning problems
that have length fixed to 1. For plan length fixed to 0, thesdlpros have lower complexity (cNP-
completeness for the problems in Theorem 5.4Rfdcompleteness for the other problems).

6 Related Work

There is a huge body of literature on planning (see [75, 76ktwveys). We will only focus on directly
related research concerning:

e action languages and answer set planning,
e causation,
¢ planning under incomplete knowledge, and

e planning complexity.

6.1 Action Languages and Answer Set Planning

The languageC proposed in this paper builds on earlier work on action |laiggs [24]. The languagd,
proposed in [23] provides a rudimentary set of causal statesn which roughly corresponds 0 with
complete states in which all rulesare of the form (2) of Section 2.1 withost(r) = (), all actions are
executable by default in any state, and all fluents are alefthe languag® described in [24] is very similar
to A, the difference is that the restriction on rules is relaxed milesr of the form (2) withpre(r) = 0 are
allowed additionally, allowing for the formulation of rafiziations.

The language’, proposed in [28] and based on the theory of causal exptanati [49, 42], is the
action language which is closest 0. In C not all fluents are automatically inertial — just as it
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must be explicitly declared if a fluent has the property ofbeinertial. As inC, this is achieved by

a macroinertial F. which is defined inC as causedF if F after F. whereas inK it is defined as
caused F if not — F after F. Furthermore( has (likeX) a macrodefault F. for declaring that a prop-
erty holds by default. I, it stands forcaused F if F, while in I, it is defined axaused F if not — F.
The difference in macro expansion is due to the slightlyedéht semantic definition of causation (discussed
in Subsection 6.1.1 below) and also due to the lack of defeaglation inC. In particulardefault F. means

in C thatF is true without the need of further causal support. Findllg/so provides a way to specify non-
deterministic action effects. A recent extensiorf afalledC+ allows for multi-valued fluents which can be
used for example in order to encode resources [27] and afiame more compact representation of some
problems.

None of the languages mentioned above explicitly suppoitiglistate constraints, nor does any support
explicit executability conditions. Most importantly, iheinderlying semantics is not based on knowledge
states, so fluents may not be undefined in any state. As a a@rsms totality of fluents cannot be expressed
in any of the languaged, BB, andC, as each fluent is implicitly total, and default negationas supported.
As we have seen, an advantage of representatidhisthe possibility of representing only what we need
to know, and of forgetting about superfluous knowledge. Tiiefor this flexibility is that one has to be
aware of what knowledge is needed or where to apply “totédinawhen encoding a special problem.

The action languagel i [67] is a variation of the languagd, which was developed for incorporating
sensing actions and to support reasoning about conditpdaas. A - provides value, effect, and executabil-
ity propositions, which correspond to restrictions ofialistate constraints, causal rules, and executability
conditions infC, respectively, where most noticeably thest(-)-parts are empty and no default negation
occurs. Furthermored i provides knowledge determining propositions of fo#metermines f, which
intuitively means that after executing actianthe value of fluenyf is known; this corresponds to a condi-
tionalized form of totalization, which can be expressedlgas K. Using this language, particular temporal
projection problems to the state reached after executirandittonal plan are considered, namely, whether
a fluent (or formula) is known, or whether it is decided, iether known to be true or known to be false.
For that, a transition-based semantics.fg¢ is developed, both in a 2-valued and 3-valued setting. In the
latter, states are modeled as 3-valued interpretationsichafluents can be true, false, or unknown. State
transitions are defined in increasingly sophisticated eafients, by taking into account both fluent values
which can definitely be derived from effect propositions aviuch canpossiblybe derived, by an effect
proposition whose body is not contradicted by the curreatestA fluent literal is kept in or added to the
current state only if there is no danger of a possible coitttiad; in the worst case, the state is emptied out,
and all fluents become unknown.

The view of state transitions i i, which aims at handling reasoning by cases in possible woi$d
different from the view inC, where a new knowledge state is determined just by the smectiknowledge
about the current state, without considering possible dvextensions. To model this in (an extension of)
K, we might complete the knowledge states and consider a gevoliving) knowledge states rather than
a single one, and reason about them. This, however, is bepencurrent scope of langua@é which is
conceived for planning in terms of reaching goal stateeratian for reasoning about actions.

6.1.1 Correspondence to languagé

Despite some differences, there is a principal fragmegtadtion descriptions which correspond to similar
K action descriptions, and allow to semantically embed ttaigrhent ofC efficiently into . Namely, any
propositional definit€ action descriptiomdDc, i.e, set of causal rules having only fluent literals in thadwe
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where rule bodies are conjunctions of fluent literals is s&oally equivalent to théC action description
ADy = tr(AD¢) which contains:

() fluent and action declarations, for each fluent symbahd action symbat in AD¢, respectively;
(i) executable a, for every action symbat in AD¢, i.e. all actions are executable;
(i) initially total f, for each fluent symbaf in ADg;

(iv) a causation rule caused 1 if not —.by,...,not —.by after H, for every rule
caused 1l if by,...,by after H in AD¢; and,

(v) aconstraintforbiddennot f, not —f, for every fluent symbof in AD¢.

The fluent declarations in (i) and executability conditiamgii) are required by the conventions &f.
The statements in (iii) effec’s exogenous assignment of values to the fluents in thelisitiée, which are
exempted from causation (but must comply with all statiesyl the legal initial states ADx and AD.
coincide. The rewriting of the causation rules in (iv) serte emulateC’s notion of causation, while the
constraints in (v) enforce completeness of a state. The imgpp(-) amounts, apart from minor variations,
via the translation ofC to answer set programming (see [12]) to the translation efathove fragment of
languageC to answer set programming given in [45]. From the resultgl§],[we thus obtain the following
correspondence:

Proposition 6.1 For any complete state, the legal state transitiongs, A, s’) in the planning domain
(B, tr(AD¢)) correspond 1-1 to the causally explained (i.e. possiblapgitions froms to complete state
s’ in AD. executing the actions id.

The above translation can be easily generalized to arpitigfiniteC action descriptionsiD., in which
bodies of causal rules: caused f if I/ after H may be arbitrary propositional expressidisBYy using
disjunctive normal form¢¥ = E; v ---V E, andH = H, V --- V Hy,,, we can easily split ug into
an equivalent set of rules ; : caused f if F; after H;, i € {1,...,n}, j € {1,...,m}. While this
transformation is, due to disjunctive normal form conwemsiexponential in general, we remark that by the
use of auxiliary fluents for labeling subexpressionsFond H in a standard way, one can polynomially
translate any definité action description into & action description which is equivalent modulo the auxil-
iary fluents. Thus, in summary, planningd@nusing definite action descriptions is naturally and effittien
embeddable intdC. We can view this syntactic class ©fas a semantic fragment &f, and any/C planning
system can be easily utilized for planning in it as well.

On the other handf action descriptions seem not amenable to a simple tramslatioC. The reason
is a semantic difference between the notion of causatidhaind in/C, which is a consequence of a stronger
foundedness principle for causation that is implementefd,iand is in analogy to minimal models versus
supported models of a logic program. Ay only transitions between states are legal which are “fedhd
supported” by the respective causation rules; in morelgdatay causation of a fluent must, by starting from
unconditional facts, be derivable by applying causatidagwhich are recursively founded. On the other
hand,C defines causally explained transitions where supportedmaisno minimality aspects play a role.
This is exemplified by the encoding of a defacdtused f if f. considered above. 16, the state{f} is
causally explained by this rule, while it is not . f is concluded from the assumption of its truth “by
default;” using negation as failure, this is more familjaeixpressed irkC by not —f. SinceC adheres in
spirit to supported models aridto minimal models, encodini§ action descriptions i@ is obviously more
involved (e.g., expressing transitive closure of a gragingple in/C, while is more involved irC).
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6.1.2 Direct planning using answer sets

In [68, 8] two approaches can be found, in which planning [emmis are formulated directly using answer
set programming, without an intermediate representatioani action language. These approaches have
an obvious representational deficiency, as recurring qp&ttend concepts are not summarized in a more
abstract action language. The problems studied in thessrgdp not contain ramifications, and all fluents
are assumed to be inertial; explicit executability comditi are considered, though. Furthermore, none of
these approaches comprises nondeterministic actiongfieincomplete initial states. Default negation is
only used for the implementation of the planning framewarll & not allowed for the specification of the
transition system.

6.2 Causation

As discussed in Subsection 6.1.1 abodeemploys in a sense a stronger notion of causation than lgegua
C. This notion is not completely new, however, and is in facilable through Turner’s universal logic of
causation (ULC) [71], in whictiC's notion of causation is easily captured. ULC is a proposéi modal
logic, whose sentences are built using standard propoalticonnectives and a unary modal opera&ior
which intuitively reads as “formula is caused.”

Models of a formulap in ULC are defined as S5 Kripke modél$ = (s, .S), wheres is a total interpre-
tation, i.e. a complete state on the set of atoms viewed ast§lue@ndS is a set of complete states including
s with universal accessibility between states; satisfactio S) = ¢ is defined by recursion through propo-
sitional connectives as usual whére S) = p iff p € s, for every atonp, and(s, S) = Cy iff (s/,S) = 4,
for everys’ € S. Any model(s, S) of ¢ is also called as-model of¢. Then, a complete stateis causally
explainedby a setl" of ULC formulas, if(s, {s}) is the uniques-model which satisfies all formulas if.

The intuition behind this notion of causation is that eveagtfwhich is caused obtains, and that every
fact which obtains is caused. The latter is thmversal principle of causatiof49], which is, e.g., obeyed
by the action languagé.

It is easily seen that also languajeomplies with the universal principle of causation, allbed setting
where incomplete states are admissible. Indeed, any flitergll which is in the state’ of a legal state
transitiont = (s, A, s’) in K must be included on behalf of a causal rulhich fires, such thdtis the head
of r» and thepost- andpre-parts ofr are true with respect th

The notion of causation incorporated Kyis easily expressed in ULC, and can be viewed as a general-
ization to a setting with incomplete states. The essencausation inC are propositional causal rules

caused/ if by,...,bg,not bgyy,...,not by,. (5)
over fluent literald, b1, ...b,,. Any such ruler is equivalent to the ULC formula
=bg1 A Abyy AChy A -+ A Chy D CL (6)

which we denote byilci(r). This is an easy consequence of the embedding of (disj@)atisfault logic
into ULC given in [71, Section 6] and the fact that the rule¢ah be viewed as a default rdleA - -- A by, :
—.bg11,- .., .0y /1, exploiting that in ULCC(a; A a3) = Cay A Cay holds for any formulagy; andas,.
Fork = m (i.e., no default literals occur i), this is the semantics of static causal laws from [48], asvsh
in [71, Section 7].

More precisely, let us call any complete stateausally explainedby a setT” of rules (5) in/C, if sis a
legal initial state of theC planning domainPD = (I, (D, R)), wherell is empty,D defines all fluents in
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T, andR consists of all ruleinitially r, for » € T. Then, by the correspondence/6frules to default
rules and the results in [71], we have:

Proposition 6.2 A complete state is causally explained by a s@&t of rules (5) ink, if and only ifs is
causally explained by the theowyci (T') = {ulcx(r) | r € T} in ULC.

Note that completeness of states can be easily expressédah rule (v) in the translatiorir(-) in
Subsection 6.1.1). Thus, as for causatiincan be regarded as a semantical fragment of ULC. In turn,
causation in definit€ (where only fluent literals are caused) can be regarded anansieal fragment ok
by the translatiortr(-). Thus, by composinglcx(-) and¢r(-), any causal rule

caused!/ if by, ..., b @)
on fluent literald, b1,...,b in C is equivalent to the ULC formula
b1 A--- ANbg D Cl; (8)

this is the translation described in [71, Section 4].

6.3 Planning Under Incomplete Knowledge

Planning under incomplete knowledge has been widely ilgegsd in the Al literature. Most works extend
algorithms/systems for classical planning, rather thamgudeduction techniques for solving planning tasks
as proposed in this paper. The systems Buridan [39], UDTEJR Conformant Graphplan [66], CNLP
[58] and CASSANDRA [60] fall in this class. In particular, Bdan, UDTPOP, and Conformant Graphplan
can solve secure planning (also called conformant planrikg DLV®. On the other hand, the systems
CNLP and CASSANDRA deal with conditional planning (where gequence of actions to be executed
depends on dynamic conditions).

More recent works propose the use of automated reasonihgitees for planning under incomplete
knowledge. In [62] a technique for encoding conditionahplag problems in terms of 2-QBF formulas is
proposed. The work in [21] proposes a technique based oassign for solving secure planning problems
in the framework of the situation calculus, and presentsadoBrimplementation of such a technique. In
[50], sufficient syntactic conditions ensuring securityevery (optimistic) plan are singled out. While
sharing their logic-based nature, our work presented sghper differs considerably from such proposals,
since it is based on a different formalism.

Work similar to ours has been independently reported in.[28] that paper, the author presents a
SAT-based procedure for computing secure plans over pigrdomains specified in the action langu@ge
[28, 43, 45]. The main differences between our paper anddg5{i) the different action languages used for
specifying planning domaing vs iC; the former is closer to classical logic, while the lattemiere “logic
programming oriented” by the use default negation; (ii) difeerent computational engines underlying the
two systems (a SAT Checker vs a DLP system), which imply cetepy different translation techniques for
the implementation.

6.4 Planning Complexity

Our results on the complexity of planning Ahare related to several results in the planning literatunest F
and foremost, planning in STRIPS can be easily emulated planning domains, and thus results for
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STRIPS planning carry over to respective planning problen4s, in particular Optimistic Planning, which
by the results in [3, 14] is PSPACE-complete.

As for finding secure plans (alias conformant or valid platis¢re have been interesting results in the
recent literature. Turner [72] has analyzed in a recent iptqeeeffect of various assumptions on different
planning problems, including conformant planning and dtmahl planning under domain representation
based on classical propositional logic. In particular,fEureports that deciding the existence of a classical
(i.e. optimistic) plan of polynomial length ISP-complete, andNP-hard already for length 1 where actions
are always executable. Furthermore, he reports that decitie existence of a conformant (i.e. secure)
plan of polynomial length i€’ -complete, an&{’-hard already for length 1. Furthermore, the problem is
reportedXZ’-complete if, in our terminology, the planning domain ispeg andx’ -hard for length 1 in
deterministic planning domains. Turner’s results matchammplexity results, announced in [11]; this is
intuitively sound, since answer set semantics and clddsigi&, which underlies ours and his framework,
respectively, have the same computational complexity.

Enrico Giunchiglia [25] considered conformant planningtlie action languagé€, where concurrent
actions, constraints on the action effects, and nondetésmion both the initial state and effects of the
actions are allowed — all these features are provided inanguageC as well. Furthermore, Giunchiglia
presented the planning systehplan, which is based on SAT solvers for computing, in oumiaology,
optimistic and secure plans following a two step approacbr tRis purpose, transformations of finding
optimistic plans and security checking into SAT instanced @BFs are provided. The same approach is
studied in [19] for an extension of STRIPS in which part of #detion effects may be nondeterministic.
While not explicitly analyzed, the structures of the QBFseging in [25, 19] reflect our complexity results
for Optimistic Planning and Security Checking.

Rintanen [62] considered planning in a STRIPS-style frantkwHe showed that, in our terminology,
deciding the existence of a polynomial-length sequenféihuistic plan for every totalization of the initial
state, given that actions are deterministid,I@-complete. Furthermore, Rintanen showed how to extract a
singlesuch planP which works for all these totalizations, from an assignmrerthe variables{ witnessing
the truth of a QBHEXVYY3Z ¢ that is constructed in polynomial time from the planningtamee. Thus,
the associated problem of deciding whether such a Plaxists is inX}". Note that intuitively, checking
suitability of a given optimistic plan is in this problem neadifficult than Security Checking, since only the
operability of some trajectory vs all trajectories must heaked for each initial state. However, the prob-
lems have the same complexitii{-hardness for Rintanen’s problem is obtained by slightlgithg the
proof of Theorem 5.4), and are thus polynomially intertfatable. Following Rintanen’s and Giunchiglia’s
approach, finding secure plans for planning problems tan be mapped to solving QBFs. However, since
our framework is based on answer set semantics, the resp€iiFs will be more involved due to intrinsic
minimality conditions of the answer set semantics.

Baral et al. [1] studied the complexity of planning underamplete information about initial states
in the languageA [23], which is similar to the framework in [62] and gives rige proper, deterministic
planning domains. They show that deciding the existencenpiraour terminology, polynomial-length
secure sequential plan B2-complete. Notice that we have considered this problem Fangof fixed
length, for which this problem iB”-complete and thus simpler.

From our results on the complexity of planning in the langu&g similar complexity results may
be derived for other declarative planning languages, sscBTRIPS-like formalisms as in [62] and the
languageA [23], or the fragment of restricted to causation of literals (cf. [25]), by adamia$ of our
complexity proofs. The intuitive reason is that in all thésenalisms, state transitions are similar in spirit
and have similar complexity characteristics. In particubaur results on Secure Planning should be easily
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transferred to these formalisms by adapting our proofshferappropriate problem setting.

7 Conclusion

In this paper, we have presented an approach to knowledtgeganning, based on nonmonotonic logic pro-
gramming. We have introduced the langu@gedefined its syntax and semantics, and then shown how this
language can be used to represent various planning prolilemshe planning literature, in various settings
comprising incomplete initial states, nondeterministitians effects, and parallel executions of actions. In
particular, we have shown how knowledge-states, ratherweld states, can be used in representing plan-
ning problems. We then have thoroughly analyzed the cortipotd complexity of propositional planning
problems inC, where we have considered optimistic planning and secteed@nformant) planning. As
we have seen, under various restrictions these problerge iartomplexity from the first level of the Poly-
nomial Hierarchy to NEXPTIME. In particular, secure plampiunder fixed vs variable plan length turned
out to bex!’-complete and NEXPTIME-complete, respectively. Finalig have compared our work to a
number of related planning approaches and complexity teeboim the literature.

As we believe, the languag€, and in particular the nonmonotonic negation operatorlav in it,
allows for a more convenient and natural representatioregfin pieces of knowledge that are part of a
planning problem than similar languages. In particulas #pplies to Giunchiglia and Lifschitz’s important
language”, which was the starting point for developing dalanguage. We have demonstrated that natural
knowledge-state encodings of particular planning probleeng. some versions of the “bomb in the toilet”
problem, exist, for which the problem of finding optimistitaps coincides with the problem of finding
secure plans, while for encodings in the literature, whiehtesed on the world state paradigm, this equiva-
lence does not hold — all of the world-state-based encodiagsire secure planning, which is conceptually
and computationally harder. We point out that the “bomb etttilet” problems per se are computationally
easy, so it seems that encodings based on world statesi@itifidoat these problems because of their lack
of allowing a natural statement about fluents being unknownsoime state.

Indeed, we have verified experimentally, using th&/* system, that the knowledge-state encodings of
the “bomb in the toilet” problems reported in this paper rongiderably faster than their world-state-based
counterparts. TheLVX system, which is described in detail in a companion pape}, jirplements the
language/C on top of theDLV logic programming system [13, 16]. It supports both opttiniand secure
planning (currently, the latter is supported for restdatéasses of planning problems). Extensive experimen-
tal evaluation has shown that tbeV* system, even if it was built merely as a front end to anothstesy
and not optimized for performance, had reasonable perfacenaompared to other similar systems, and
even outperformed various specialized systems for cordntrplanning under the use of knowledge-state
problem encodings. This shows that nonmonotonic logic iamogning has potential for declarative plan-
ning, and that, in our opinion, further exploration of theoltedge-state encoding approach is worthwhile
to pursue from a computational perspective.

While we have presented the languagend discussed its basic features and advantages, sesed is
are currently investigated or scheduled for future work.fétsthe implementation, we have already men-
tioned theDLV* system, which will be improved in a steady effort. An intiiigg issue in that is the design
of efficient algorithms and methods for secure planning;esthis problem is rather complex even for short
plans (it resides at the third level of the Polynomial Hiergy. Furthermore, we are currently exploring
a possible enhancement of the planning formalism to comguiptimal plans, i.e. plans whose execution
cost, measured in accumulated costs of primitive actioougi@n, is smallest over all plans. An implemen-
tation of optimal planning may take advantageDaf/'s optimization features which are available through
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weak constraints. Finally, extensions of the language hijpdn constructs such as sensing operators are part
future work.
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A Appendix: Further Examples of Problem Solving in X

This appendix contains encodings of three well-known glamproblems, which should further illustrate
the practical use of languagé

A.1 The Yale Shooting Problem

Another example for dealing with incomplete knowledge isaation of the famous Yale Shooting Problem
(see [33]). We assume here that the agent has a gun and ddesomotvhether it is initially loaded. This
can be modeled as follows:

fluents: alive. loaded.
actions: load. shoot.
always : executable shoot if loaded.

executable load if not loaded.
caused —alive after shoot.
caused — loaded after shoot.
caused loaded after load.
initially: total loaded.
alive.
goal : —alive 7 (1)

The total statement leads to two possible legal initial states: = {loaded,alive} andss =
{—loaded, alive}. With s; shoot is executable, while it is not witk,. Executingshoot establishes
the goal, so the planning problem has the optimistic plan

({shoot})

which is not secure because 5t
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A.2 The Monkey and Banana Problem

This example is a variation of the Monkey and Banana problendescribed in the CCALC manual
(<URL: htt p: //www. cs. ut exas. edu/ users/ nccai n/ cc/ >). It shows that inC the applica-
bility of actions can be formulated very intuitively by ugithe executable statement. The encoding in
CCALC uses manyionexecutable statements instead.

In the background knowledge we have three objects: the nypthebanana and a box.

object(box). object(monkey). object(banana).

Furthermore there are three locations: 1, 2 and 3.

location(1). location(2). location(3).

In the beginning, the monkey is at location 1, the box is aation 2, and the banana is hanging from
the ceiling over location 3. The monkey shall get the bananenbving the box towards it, climbing the
box, and then grasping the banana hanging from the ceilirgysahe this problem using the followirig
program:

fluents: at(0,L) requires object(0), location(L).
onBox.
hasBanana.
actions: walk(L) requires location(L).
pushBox(L) requires location(L).
climbBox.
graspBanana.
always: caused at(monkey,L) after walk(L).
caused — at(monkey,L) after walk(Ll), at(monkey,L), L <> L1.
executable walk(L) if not onBox.
caused at(monkey,L) after pushBox(L).
caused at(box,L) after pushBox(L).
caused — at(monkey,L) after pushBox(L1), at(monkey,L), L <> L1.
caused — at(box,L) after pushBox(L1), at(box,L), L <> L1.
executable pushBox(L) if at(monkey,L1), at(box,L1), not onBox.
caused onBox after climbBox.
executable climbBox if not onBox, at(monkey,L), at(box,L).
caused hasBanana after graspBanana.
executable graspBanana if onBox, at(monkey,L), at(banana,L).
inertial at(O,L).
inertial onBox.
inertial hasBanana.
initially: at(monkey,1).
at(box, 2).
at(banana, 3).
noConcurrency.
goal: hasBanana ? (4)
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In this representation, the fluerds andonBox are used under an economical CWA convention, i.e., if
a legal instance of these fluents is not contained in a stadn,itis false. The explicit causation of negative
legal instances ait serves for terminating inertia.

For this planning problem, the following secure plan exists

({walk(2)}, {pushBox(3)}, {climbBox}, {graspBanana})

Let us now deal with incomplete knowledge about the locatibobjects. Similar as in the blocksworld
example in Section 3.2, we introduce a new fluent:

objectIsSomewhere(0) requires object(0).

Furthermore, we add the following constraints and ruleséninitial state:

forbidden at(0,L), at(0,L1), L <> L1.

caused objectIsSomewhere(0) if at(0,L).
forbidden not objectIsSomewhere(0).
forbidden onBox, at(monkey,L), not at(box,L).

These constraints guarantee a correct initial state indlf@rfing sense: The first three rules guarantee that
in any legal initial state, each object has to be at a unigoation. The last rule finally states that in any
initial state where the monkey is on the box, the monkey aadtx must be at the same location.

A.3 The Rocket Transport Problem

This example is a variation of a planning problem for rocketsoduced in [74]. There are two one-way
rockets, which can transport cargo objects from one pla@mtdher. The objects have to be loaded on the
rocket and unloaded at the destination. This example shiegvsadpability ofiC to deal with concurrent
actions, as the two rockets can be loaded, can move, and aanridzeled in parallel.

The background knowledge consists of three places, thedwale@ts and the objects to transport:

rocket(sojus). rocket(apollo).
cargo(food). cargo(tools). cargo(car).
place(earth). place(mir). place(moon).

The action description for the rocket planning domain casgs three actionsove(R,L), load(C,R)
andunload(C,R). The fluents aratR(R,L) (where the rocket currently isytC(C,L) (where the cargo
object currently is)in(C,R) (describing that an object is inside a rocket) an@Fuel(R) (the rocket has
fuel and can move). Now let us solve the problem of transpgrthe car to the moon and food and tools
to Mir, given that all objects are initially on the earth anothbrockets have fuel. We define the following
planning problem:

fluents: atR(R,P) requires rocket(R), place(P).
atC(C,P) requires cargo(C), place(P)
in(C,R) requires rocket(R), cargo(C)
hasFuel(R) requires rocket(R).

actions: move(R,P) requires rocket(R), place(P).
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always :

initially:

goal :
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load(C,R) requires rocket(R), cargo(C).
unload(C,R) requires rocket(R), cargo(C).
caused atR(R,P) after move(R,P).

caused — atR(R,P) after move(R,P1), atR(R,P).
caused — hasFuel(R) after move(R,P).
executable move(R,P) if hasFuel(R), not atR(R,P).
caused in(C,R) after load(C,R).

caused — atC(C,P) after load(C,R), atC(C,P).
executable load(C,R) if atC(C,P), atR(R,P).
caused atC(C,P) after unload(C,R), atR(R,P).
caused — in(C,R) after unload(C,R).

executable unload(C,R) if in(C,R).
nonexecutable move(R,P) if load(C,R).
nonexecutable move(R,P) if unload(C,R).
nonexecutable move(R,P) if move(R,P1), P <> P1.
nonexecutable load(C,R) if load(C,R1), R <> R1.
inertial atC(C,L).

inertial atR(R,L).

inertial in(C,R).

inertial hasFuel(R).

atR(R, earth).

atC(C, earth).

hasFuel(R).

atC(car,moon), atC(food,mir), atC(tools,mir) 7 (3)

bl

Thenonexecutable statements exclude simultaneous actions as follows:

¢ |loading/unloading a rocket and moving it;

e moving a rocket to two different places;

¢ loading an object on two different rockets.

For the given goal, there are two secure plans, where in steofile rocketo jus flies to the moon and
apollo flies to Mir, and in the second one the roles are interchanged:

( {load(food, sojus),load(tools, sojus),load(car, apollo)},
{move(sojus,mir),move(apollo, moon)},
{unload(food, sojus),unload(tools, sojus),unload(car, apollo)} )
({load(car, sojus),load(food, apollo),load(tools, apollo)},
{move(sojus, moon), move(apollo, mir)},
{unload(car, sojus),unload(food, apollo),unload(tools, apollo)} )



