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Abstract. We propose a new declarative planning language, called
�

, which is based on princi-
ples and methods of logic programming. In this language, transitions between states of knowledge
can be described, rather than transitions between completely described states of the world, which
makes the language well-suited for planning under incomplete knowledge. Furthermore, our formal-
ism enables the use of default principles in the planning process by supporting negation as failure.
Nonetheless,

�
also supports the representation of transitions between states of the world (i.e., states

of complete knowledge) as a special case, which shows that the language is very flexible. As we
demonstrate on particular examples, the use of knowledge states may allow for a natural and com-
pact problem representation. We then provide a thorough analysis of the computational complexity
of
�

, and consider different planning problems, including standard planning and secure planning
(also known asconformant planning) problems. We show that these problems have different com-
plexities under various restrictions, ranging from�� to NEXPTIME in the propositional case. Our
results form the theoretical basis for theDLV� system, which implements the language

�
on top of

theDLV logic programming system.
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1 Introduction

Since intelligent agents must have planning capabilities,planning has been an important problem in AI since
its very beginning, and numerous approaches and methods have been developed in extensive work over the
last decades. The formulation of planning as a problem in logic dates back to a proposal of McCarthy in the
1950s; the breakthrough of Robinson’s resolution method laid the basis for deductive planning as in Green’s
paper [32] and the well-known situation calculus [52]. However, because of defects such as the well-known
frame problem, deductive planning lost attention, while the STRIPS approach [20], a hybrid between logic
and procedural computation, and its derivates were gainingimportance. For a long period then, fairly no
other logic-related planning systems were explored.

In the last 12 years, however, logic-based planning celebrated a renaissance, emerging in the following
loosely identified streams of work:

� Solutions to the frame problem have been worked out, and deductive planning based on the situational
calculus has been considered extensively, in particular bythe Toronto group, leading to the GOLOG
planning language [40]. In parallel, planning in the event calculus [38] has been pursued, starting
from [15, 65].

� Formulating planning problems as logical satisfiability problems, proposed by Kautz and Selman [36],
enabled to solve large planning problems which could not be solved by specialized planning systems,
and led to the efficient Blackbox planning system [37]. In thesame spirit, other approaches reduced
planning problems to computational tasks in logical formalisms, including logic programming [8, 68],
model checking [5, 6], and Quantified Boolean Formulas [62].

� Planning as a task in logic-based languages for reasoning about actions, which were developed in the
context of logics for knowledge representation and logic programming, e.g. [23, 35, 26, 28, 29, 34, 49,
70]; see [24, 71] for surveys. Implementing these languagesusing, in the spirit of Kautz and Selman,
satisfiability solvers led to the causal calculator (CCALC)[50, 47] and the

�
-plan system [25], which

is based on the important
�

action language [28].

In very influential papers, Lifschitz proposed answer set programming as a tool for problem solving, and
in particular for planning [43, 44]. In this approach, planning problems, formulated in a domain-independent
planning language, are mapped into an extended logic program such that the answer sets of this program give
the solutions of the planning problem (cf. also [45]). In this way, planners may be created which support
expressive action description languages and, by the use of efficient answer sets engines such as Smodels
[55] or DLV [13], allow for efficient problem solving.

In our work, we pursue this suggestion and develop it further. In the present paper, we propose a
new language,�, for planning under incomplete knowledge. We name it� to emphasize that it describes
transitions betweenstates of knowledgerather than betweenstates of the world. Namely, language

�
and

many others are based on extensions of classical logics and describe transitions betweenpossible states of the
world. Here, a state of the world is characterized by the truth values of a number of fluents, i.e. predicates
describing relevant properties of the domain of discourse,where every fluent necessarily is either true or
false. An action is applicable only if some precondition (formula over the fluents) is true in the current state,
and executing this action changes the current state by modifying the truth values of some fluents.

However, planning agents usually don’t have acompleteview of the world. Even if their knowledge is
incomplete, that is, a number of fluents is unknown, they musttake decisions, execute actions, and reason
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Figure 1: A blocksworld example.

on the basis of their (incomplete) information at hand. For example, imagine a robot in front of a door. If it
is unknown whether the door is open, the robot may decide to push back. Alternatively, it might decide to
sense the door status in order to obtain complete information. However, this requires that a suitable sensing
action is available and, importantly, actually executable(that is, the sensor is not broken). Thus, even in
the presence of sensing, some fluents may remain unknown and leave an agent in a state of incomplete
information.

Our language� adopts a three-valued view of fluents in which their values might be true, false, or
unknown. The language is very flexible, and is capable of modeling transitions between states of the world
(i.e. states of complete knowledge) and of reasoning about them as a particular case, as we shall discuss.
Compared to similar planning languages,� is closer in spirit to answer set semantics [22] than to classical
logics. It allows for the explicit use of default negation, exploiting the power of answer sets to deal with
incomplete knowledge. However, unlike action languages allowing incomplete states such as�� [67], �
does not adopt a possible worlds view of knowledge states andreason about possible cases for determining
knowledge state transitions. Furthermore, we analyze the computational complexity of�, which provides
the theoretical background for theDLV� system implementing� on top of theDLV system [13, 16].DLV�
provides a powerful declarative planning system, which is ready-to-use for experiments (see<URL:http:
//www.dbai.tuwien.ac.at/proj/dlv/K/>).

1.1 A Brief Overview of �
As an appetizer, we give a brief exposition of the main features of the language�, which will be formally
defined in Section 2. We occasionally refer to well-known planning problems in the “blocksworld” domain,
which require turning given configurations of blocks into goal configurations (see Figure 1).

Background Knowledge The planning domain has a background which is represented bya logic program,
which is required to admit a unique answer set, which is polynomially computable. A large class of such
problem are those which possess a total well-founded model.The rules and facts of this program define
predicates which are not subject to change, i.e., representstaticknowledge. An example in blocksworld is�����	
�, which states the (unchangeable) property that



is a block.

Type Declarations The ranges of the arguments of fluents and actions are typed, by stating that certain
predicates must hold on them. For example,

���	
��� �������������	
�� ��������	���

specifies the types for the arguments of action���. The literals after the
�������� keyword (here,�����	
�and

��������	��) must be positive literals of the static background knowledge mentioned above.
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Causation Rules The main construct of� arecausation rules. They are syntactically similar to rules of
the language

�
[28, 43, 45] and have the form:

������ � �� 
 ����� ��

Intuitively, this rule reads “If



is known to be true in the current state and
�

is known to be true in the
previous state, then

�
is known to be true in the current state.” Both the�� part and the����� part may be

empty (which means that it is true).

Negation Default (or weak) negation “���” can be used in the�� and the����� part of the rules. It
allows for natural modeling of inertial properties, default properties, and dealing with incomplete knowledge
in general, similar to logic programming with answer set semantics. Furthermore, strong negation (“�”,
written in programs as “�”) is supported as well. In order to support convenient problem representation,
� provides several macros (explained in detail in Section 2.3.2), which are “implemented” through weak
negation, as, e.g.,

�������� ��	�����

which informally states that��	���� is concluded to hold in the current state if��	���� held at the previous
state and���	���� is not known to hold, or

������� � ��	�����

which states that���	���� is concluded to hold unless��	���� is known to hold (as it has been entailed by
some causation rule).

Executability of Actions In order to be eligible for execution, any action needs to satisfy some precondi-
tion in a given state of knowledge, which can be stated using executability statements. For example,

���������� ���	���� �� ��� ��������	��� ��� ��������	��� � 	
 ��

states that block
�

can be moved on location
�

if both
�

and
�

are not known to be occupied and
� �� �

(assuming proper typing). In this example a brave modeling strategy is pursued: It is assumed that it is
sufficient to not know that a block is occupied in order to be able to move it or to move something onto it.
Note that this is a kind of closed world assumption on the fluent ��������.

Here,
� 	
 �

(inequality) stands for��� 	� � ��
, where “=” (equality) is a built-in predicate which is

tacitly present in the background knowledge.
In general, multiple executability statements for the sameaction are allowed. If the body is empty,

it means that the action always qualifies for execution, provided that the type restrictions on
�

and
�

are
respected. On the other hand, execution of an action

�
under condition



can also be blocked, by the

statement

������������� � �� 
�

In case of conflicts,������������� � overrides���������� �.
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Integrity Constraints In general, a causation rule expresses a state constraint that must be fulfilled in all
states. It is very common to stateintegrity constraintsfor states (possibly referring to the respective pre-
ceding state), i.e. conjunctions of literals which can not simultaneously be satisfied. To facilitate convenient
representation of integrity constraints,� provides a statement

��������� 
 ����� �
as a shortcut for������ ����� �� 
 ����� �. Intuitively, it discards any state where



is (known to be)

true, if
�

is (known to be) true in the previous state.

Initial State Constraints � allows to declare causation rules with empty�����-part that should apply to
the initial state only. Such rules, which represent constraints on the initial state, must be preceded by the
keyword “��������� �”. For example,

��������� � ��������� �����	
�� ��� ���������	
��
requires that the fluent��������� is true for every block in the initial state; the constraint is irrelevant for
all subsequent states. Initial state constraints may profitably reduce computation effort: If we are guaranteed
that actions preserve some property� , then it is sufficient to check the validity of� only on the initial state
to ensure that it holds in any state.

Parallel Execution of Actions By default, simultaneous execution of actions is allowed in�. This can be
prohibited by suitable rules; however, for the user’s convenience, a statement

��������������
is provided as a shortcut which enforces the execution of at most one action at a time.

Handling of Complete and Incomplete Knowledge � also allows one to represent transitions between
possible states of the world (which can be seen as states of complete knowledge). First of all, we can easily
enforce that the knowledge on some fluent

�
is complete, using a rule

��������� ��� �� ��� �
��

Moreover, we can “totalize” the knowledge of a fluent by declaring
����� ��

which means that, unless a truth value for
�

can be derived, the cases where
�

resp.�
�

is true will be both
considered. In other words, every state will be “totalized”by adding

�
or �

�
, if none of them is true.

Goals and Plans A goal is a conjunction of ground literals; a plan for a goal isa sequence of (in general,
sets of) actions whose execution leads from an initial stateto a state where all literals in the goal are true. In
�, the goal is followed by a question mark and by the number of allowed steps in a plan. For instance,

��	����� ��	�� �� � 	��
requests a plan of length 3 for the goal of Figure 1.

This concludes the exposition of the� planning language. We remark at this point that theDLV�
planning system contains the command
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�����������

by which we can ask the system to compute onlysecure plans(often calledconformant plansor fail-safe
plans in the literature [30, 66]). Informally, a plan is secure, ifit is applicable starting at any legal initial
state, i.e., all its actions are executable regardless of how the states evolve and it always enforces the goal;
the formal definition is provided in Section 2.2. Using this feature, we can in particular modelpossible-
worlds planning with an incomplete initial state, where the initial world is only partially known, and we are
looking for a plan reaching the desired goal from every possible world according to the initial state. Note
that, by our complexity results, unlike the other statements above the “�����������” command cannot be
expressed as a shortcut in language�, and thus has to be realized at an external level.

1.2 Contributions

The main contributions of the present paper are the following:

(1) We propose a new planning language, called�, which is based on logic programming. We
formally define language� and provide a declarative, model theoretic semantics for it. Importantly, the
language supports also default (nonmonotonic) negation, which enriches the knowledge modeling power
of �. The formal semantics of planning language� is transition-based. In order to capture the intuitive
meaning of default negation, legal transitions are defined by means of a reduction from domains including
default negation to positive domains (without default negation) similar as in the definition of stable models
for logic programs [22].

(2) We illustrate the knowledge modeling features of the language by encoding some classical plan-
ning problems in�, in particular different versions of blocksworld and “bombin the toilet” planning prob-
lems [53]. We proceed incrementally, presenting all main features of� and their usage for knowledge
representation and reasoning in planning domains. In the course of this, we show� encodings of classical
planning problems (dealing with complete knowledge), and we further describe how conformant planning
problems (in presence of incomplete knowledge on the initial state, or in presence of nondeterministic action
effects) can be encoded in�.

As we show, the language� is capable of expressing classical encodings based on states of the world.
However, by its design it is very well-suited for encodings based on states of knowledge. We show both types
of encodings on some “bomb in the toilet” planning problems,and discuss the two different approaches,
highlighting some computational advantages of the encodings based on states of knowledge.

(3) We perform a thorough study of the complexity of major planning problems in the language�,
where we focus on the propositional case. (Results for the first-order case can be obtained in the usual
manner.) In particular, we consider the problems of deciding the existence of an optimistic (i.e. standard)
plan for a given length, the problem of checking whether sucha plan is secure (i.e. conformant), and the
combined problem of finding a secure (i.e. conformant) plan,under various restrictions on the planning
instances. For formal definitions of optimistic and secure plans, we refer to Section 2.2.

It appears that deciding the existence of an optimistic planachieving the goal in a fixed number of steps is��
-complete, while it is PSPACE-complete in general. Thus, ingeneral we have the same complexity as

for planning in corresponding STRIPS-like systems [20], which are well-known PSPACE-complete [3]. On
the other hand, finding secure plans is obviously harder, because it allows us to encode also planning under
incomplete initial states as in [1], which was shown to be�

�� -complete there for polynomial-length plans. In
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fact, deciding the existence of a secure plan of variable (arbitrary) length is NEXPTIME-complete, and thus
not polynomially reducible to planning in STRIPS-like systems or to QBF-solvers, which can only express
problems in PSPACE (unless NEXPTIME collapses to PSPACE). Even under fixed plan length, this problem
is �

�� -complete, and thus rather complex; further restrictions have to be imposed to lower its complexity. To
this end, we introduce meaningful subclasses of planning domains and problems, in particularproper and
plain planning domains resp. problems. As we show, for proper planning domains, existence of a secure
plan having a fixed number of steps is only mildly harder than

��
if concurrent actions are not allowed.

Our complexity results give a clear picture of the feasibility of polynomial-time translations for particular
planning problems into computational logic systems such asBlackbox [37], CCALC [47], Smodels [55],
DLV, satisfiability checkers, e.g. [2, 77], or Quantified Boolean Formula (QBF) solvers [4, 63, 18].

1.3 Structure of the Paper

The rest of the paper is structured as follows. The next section formally introduces the language�, and
provides the syntax and formal semantics of the core language, as well as enhancements of the language
by macro constructs that are useful “syntactic sugar” for conveniently representing problems. After that,
we consider in Section 3 knowledge representation in�, where different aspects such as planning with
incomplete initial states, representation of nondeterministic action effects, and knowledge-based encodings
of the latter are discussed. In Section 4 we then embark on ourstudy of the complexity of language�, and
present an overview of the problems we considered and the main results that we obtained. Section 5 is then
devoted to the derivation of these complexity results. In Section 6, we discuss related work, and the final
Section 7 discusses further work and draws some conclusions.

The present paper is part I in a series of papers which comprehensively describe our work, and contains
the foundational semantic definitions and theoretical results; part II [12] reports about theDLV� system
(which is freely available at<URL:http://www.dbai.tuwien.ac.at/proj/dlv/K/>) and in
particular contains an experimental evaluation and comparisons to other planning systems (for a theoretical
account, see also Section 6).

2 Language
�

In this section, we will detail syntax and semantics of the language� that we have briefly introduced in the
previous section.

2.1 Basic Syntax

2.1.1 Actions, Fluents, and Types

Let ����, ���, and���	 be disjoint sets of action, fluent and type names, respectively. These names are
effectively predicate symbols with associated arity (
 �). Here,��� and���� are used to describedynamic
knowledge, whereas���	 is used to describestatic background knowledge. We tacitly assume that���	
contains built-in predicates, in particular equality (=),which are not explicitly shown. Furthermore, let���
and���� be the disjoint sets of constant and variable symbols, respectively.

Definition 2.1 Given� � ���� (resp.���, ���	), anaction (resp. fluent, type) atomis defined as� 	��� � � � � ��,
where� is the arity of� and

��� � � � � � � ��� �����. An action (resp. fluent, type) literal is an action (resp.
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fluent, type) atom� or its negation��, where “�” is the true negation symbol, for which we also use the
customary “–”.

As usual, a literal (and any other syntactic object) isground, if it does not contain variables.
Given a literal

�
, let �

��
denote its complement, i.e.,�

�� � � if
� � �� and�

�� � �� if
� � �, where�

is an atom. A set� of literals isconsistent, if � � ��� � �. Furthermore,�� (resp.��) denotes the set of
positive (resp. negative) literals in�.

The set of all action (resp. fluent, type) literals is denotedas���� (resp.���, ���	). Furthermore,������	� ���
����	; �	�� ���

������ (
�� stands fordynamic literals); and� � ������	
������.

1

All actions and fluents must be declared using statements as follows.

Definition 2.2 An action (resp.fluent) declaration, is of the form:

� 	��� � � � ��� �������� ��� � � � � � (1)

where� � ����� (resp.� � ����),
��� � � � �� � ���� where� 
 � is the arity of�,

��� � � � � � � ���	,� 
 �, and every
��

occurs in
��� � � � � �

.

If � � �, the keyword
��������may be omitted. In the following, we generically refer to action and

fluent declarations astype declarationswhen no further distinction is necessary.
We next define causation rules, by which static and dynamic dependencies of fluents on other fluents

and actions are specified.

Definition 2.3 A causation rule(rule, for short) is an expression of the form

������ � �� ��� � � � � �� ���� ���
�� � � � ���� �

������ ��� � � � �� ���� ��
�� � � � ���� � (2)

where
� � ���

� �������, ��� � � � � �� � ������	, �
�� � � � �� � �,

� 
 � 
 �, and� 
� 
 �.
Rules where� � � are referred to asstatic rules, all other rules asdynamic rules. When

� � �, the keyword�� is omitted; likewise, if� � �, the keyword����� is dropped. If both
� � � � � then������ is optional.

To access the parts of a causation rule�, we use the following notations:�	�� � ���, �����	�� ����� � � � � ���, �����	�� � ����
�� � � � � �

�
�, ����	�� � ���� � � � ���, ����	�� � ���

�� � � � ���, and���	�� � �� � ��� � � � � �
�
���� � � � ���. Intuitively, ����	�� accesses the state before some action(s) happen,

and�����	�� the part after the actions have been executed.
While the scope of general static rules is over all knowledgestates, it is often useful to specify rules only

for the initial states.

Definition 2.4 An initial state constraintis a static rule of the form (2) preceded by the keyword���������.

The language� allows STRIPS-style [20] conditional execution of actions, where� allows several
alternative executability conditions for an action; this is beyond the repertoire of standard STRIPS.

Definition 2.5 An executability conditionis an expression of the form

���������� � �� ��� � � � � �� ���� ���
�� � � � ���� �

� (3)

where� � ����� and
��� � � � � �

� � �, and
� 
 � 
 �.

1Note that this definition only allows positive action literals.
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If
� � � (which means that the executability is unconditional), then the keyword�� is skipped.

Given an executability condition�, we access its parts with�	�� � ���, ����	�� � ���� � � � � ���,
����	�� � ����

�� � � � � �
�
�, and

���	�� � ��� ��� � � � � ���. Intuitively, ����	�� refers to the state at which some
action’s suitability is evaluated. Here, as opposed to causation rules we do not consider a state after the
execution of actions, and so no part�����	�� is needed. Nonetheless, for convenience we define�����	�� �
�����	�� � �.

Furthermore, for any executability condition, a rule, or aninitial state constraint�, we define����	�� �
�����	��� �����	��, ���	�� � ����	��� ����	��, and

�	�� � ��	��� ��	��, where
��	�� � �����	���

����	��, and
��	�� � �����	�� � ����	��.

Example 2.1 Consider the following type declarations, causation rule,and executability condition, respec-
tively, where���	 � ��� ��, ��� � ���, and���� � ����:


� � �	�� �������� �
�	����� �	�����


� � ��	���� �������� �	�����
�� � ������ �	�� �� �	����� ��� �

�	�� ����� ��	����� ��� �
�	�����

�� � ���������� ��	���� �� �	����� ��� �	��� � 	
 ��

Then, we have�	��� � ��	���, ���	��� � ���	�������	�����and����	��� � ��	����� ��	���. Further-
more,�	��� � ��	���� and���	��� � ��	������	���� 	
 ��;

2.1.2 Safety Restriction

All rules (including initial state constraints and executability conditions) have to satisfy the following syn-
tactic restriction, which is similar to the notion of safetyin logic programs [73]. All variables in a default-
negated type literal must also occur in some literal which isnot a default-negated type literal.

Thus, safety is required only for variables appearing in default-negated type literals, while it is not
required at all for variables appearing in fluent and action literals. The reason is that the range of the latter
variables is implicitly restricted by the respective type declarations. Observe that the rules in Example 2.1
are all safe.

2.1.3 Planning Domains and Planning Problems

We now define planning domains and problems. Let us call any pair �� ���
where

�
is a finite set of action

and fluent declarations and
�

is a finite set of safe causation rules, safe initial state constraints, and safe
executability conditions, anaction description.

Definition 2.6 A planning domainis a pair�
� � �� ����

, where
�

is a Datalog program over the literals
of ���	(referred to asbackground knowledge), which is assumed to be safe in the standard LP sense (cf.
[73]) and to have a total well-founded model, and

��
is an action description. We say that�� is positive,

if no default negation occurs in
��

.

We recall that if a program
�

has a total well-founded model	, then	 is the unique answer set of�
. In particular, each stratified program

�
has a total well-founded model. The semantic condition of a

total well-founded model admits a limited use of unstratified negation, which is convenient for knowledge
representation purposes, and in particular for expressingdefault properties.
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Planning domains represent the universe of discourse for solving concrete planning problems, which are
defined next.

Definition 2.7 A planning problem� � ��� ���
is a pair of a planning domain�� and a query

�
, where a

queryis an expression of the form

��� � � � �� ���� �
�
�� � � � ���� � � 	��

(4)

where��� � � � �� � ��� are variable-free,� 
� 
 �, and
� 
 � denotes the plan length.

2.2 Semantics

For defining the semantics of� planning domains and planning problems, we start with the preliminary
definition of the typed instantiation of a planning domain. This is similar to the grounding of a logic program,
with the difference being that only correctly typed fluent and action literals are generated.

2.2.1 Typed Instantiation

Let substitutions and their application to syntactic objects be defined as usual (i.e. assignments of constants
to variables which replace the variables throughout the objects).

Definition 2.8 Let �� � �� � �� ����
be a planning domain, and let	 be the (unique) answer set of

�
[22]. Then,�	� 	��� � � � ���� is a legal action(resp.fluent) instanceof an action (resp. fluent) declaration

 �� of the form (1), if� is a substitution defined over

��� � � � �� such that
��	���� � � � ��	��� �	. By

��� we denote the set of all legal action instances, legal fluent instances (also referred to aspositive legal
fluent instances) and classically negated (�) legal fluent instances (negative legal fluent instances).

Based on this, we now define the instantiation of a planning domain respecting type information as
follows.

Definition 2.9 For any planning domain�
� � �� � �� ����

, its typed instantiationis given by�
�� �

���� �������
, where

��
is the grounding of

�
(over���) and

�� � ��	�� � � � � � � � 	��, where	�
is the set of all substitutions� of the variables in� using���, such that

���	�	��� ��	� � ���

In other words, in���
we replace

�
and

�
by their ground versions, but keep of the latter only

rules where the atoms of all fluent and action literals agree with their declarations. We say that a�� �

�� � �� ����
is ground, if

�
and

�
are ground, and moreover that it iswell-typed, if �� and���

coincide.

2.2.2 States and Transitions

We are now prepared to define the semantics of a planning domain, which is given in terms of states and
transitions between states.

Definition 2.10 A statewith respect to a planning domain�
�

is any consistent set
 � ��� � ��� of
positive and negative legal fluent instances. A tuple

� � �
���
��where
�
� are states and
� � ���� ����

is a set of legal action instances in�� is called astate transition.
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Observe that a state does not necessarily contain either
�

or �
�

for each legal instance
�

of a fluent.
In fact, a state may even be empty (
 � �). The empty state represents a “tabula rasa” state of knowledge
about the fluent values in the planning domain. Furthermore,in this definition, state transitions are not
constrained – this will be done in the definition of legal state transitions, which we develop now. To ease
the intelligibility of the semantics, we proceed in analogyto the definition of answer sets in [22] in two
steps. We first define the semantics for positive planning problems, i.e. planning problems without default
negation, and then we define the semantics of general planning domains by a reduction to positive planning
domains.

In what follows, we assume that�� � �� � �� ����
is a ground planning domain which is well-typed,

and that	 is the unique answer set of
�

. For any other��, the respective concepts are defined through its
typed grounding���

.

Definition 2.11 A state
� is a legal initial statefor a positive��, if 
� is the smallest (under inclusion) set
such that����	�� � 
� �	 implies �	�� � 
�, for all initial state constraints and static rules� ��.

For a positive�� and a state
, a set
� � ����� is calledexecutable action setw.r.t. 
, if for each

� � �
there exists an executability condition� � �

such that�	�� � ���, ���	�� � ������	
� 
 �	,

and���	�� � �����
� �

. Note that this definition allows for modeling dependent actions, i.e. actions which
depend on the execution of other actions.

Definition 2.12 Given a positive��, a causation rule� �� is satisfiedby a state
� w.r.t. a state transition� � �
���
�� if and only if either�	�� � 
� � ������� or not all of (i)–(iii) hold: (i) ����	�� � 
� �	, (ii)
���	�� � ������	

� 
 �	, and (iii) ���	�� � ����
� �

. A state transition
� � �
���
�� is calledlegal, if

�
is an executable action set w.r.t.
 and
� is the minimal consistent set that satisfies all causation rules in

�
except initial state constraints w.r.t.

�
.

The above definitions are now generalized to a well-typed ground �� containing default negation by
means of a reduction to a positive planning domain, which is similar in spirit to the Gelfond-Lifschitz
reduction [22].

Definition 2.13 Let �� be a ground and well-typed planning domain, and let
� � �
���
�� be a state

transition. Then, thereduction��� � �� � �� �����
of �� by

�
is the planning domain where

��
is obtained

from
�

by deleting

1. every causal rule, executability condition, and initialstate constraint� �� for which either�����	���	
� �	 � �� � or ����	�� � 	
 �� �	 � �� � holds, and

2. all default literals��� � (� � �) from the remaining� ��.

Note that���
is positive and ground. Legal initial states, executable action sets, and legal state transitions

are now defined as follows.

Definition 2.14 Let �� be any planning domain. Then, a state
� is a legal initial state, if 
� is a legal
initial state for���

, where
� � �����
��; a set

�
is anexecutable action setin �� w.r.t. a state
, if

�
is

executable w.r.t.
 in ���
with

� � �
�����; and, a state transition
� � �
���
�� is legal in ��, if it is legal

in �
��

.
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Example 2.2 Reconsider the type declarations
� and
�, causation rule�� and executability condition��
in Example 2.1. Suppose��� contains two constants�and

�
, and that the background knowledge

�
has the

following answer set:	 � �
�
�	����, �	�� ��, �	�� ��, �	����, �	�����. Then, e.g.

�	�� is a legal fluent
instance of
�,

�	�� �������� �
�	����� �	�����

where� � �� � �, � � ��. Similarly, ��	���� is a legal action instance of declaration
�,
��	���� �������� �	�����

where� � �� � �, � � ��. Thus,
�	�� and��	���� belong to���. The empty set
� � � is a legal initial

state, and in fact the only one since there are no initial state constraints or static causation rules in��, and
thus also not in���

for every
� � �����
��. The action set

� � ���	����� is executable w.r.t.
�, since for� � �
� �����, the reduct���
contains the executability condition

��� � ���������� ��	���� �� �	����� � 	
 ��

and both�	���� and� 	
 �
are contained in
��	. Thus, we can easily verify that

� � �
� ���
��, where� � ���	����� and
� � ��	��� is a legal state transition:���
contains a single causation rule

��� � ������ �	�� �� �	�� �� ����� ��	�����

which results from�� for � � �� � �, � � ��. Clearly, 
� satisfies this rule, as�	���� � 
�, and 
�
is smallest, since�	�� �� � 	 and ��	���� � �

holds. On the other hand,
� � �
� ��� �
��, where�� � ���	����, ��	����� is not a legal transition: while��	���� is a legal action instance, there is no

executability condition for it in����
, and thus��	���� is not executable in�� w.r.t. 
�.

2.2.3 Plans

After having defined state transitions, we now formalize plans as suitable sequences of states transitions
which lead from an initial state to some success state which satisfies a given goal.

Definition 2.15 A sequence of state transitions� � ��
� ����
��� �
���� �
��� � � �, �
�
��� �
��, � 
 �,

is a trajectory for ��, if 
� is a legal initial state of�� and all �
��
���� �
��, � � � � �, are legal state

transitions of��.

Note that in particular,� � �� is empty if� � �.

Definition 2.16 Given a planning problem� � ��� ���
, where

�
has form (4), a sequence of action

sets���� � � � ����
,
� 
 �, is anoptimistic planfor �, if a trajectory� � ��
� ����
��, �
���� �
��� . . . ,

�
��
���� �
��� in �� exists such that� establishes the goal, i.e.,

���� � � ��� � 
� and
��

�
�� � � � ��� �


� � �.
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The notion of optimistic plan amounts to what in the literature is defined as “plan” or “valid plan” etc.
The term “optimistic” should stress the credulous view underlying this definition, with respect to planning
domains that provide only incomplete information about theinitial state of affairs and/or bear nondetermin-
ism in the action effects, i.e. alternative state transitions.

In such domains, the execution of an optimistic plan� is not a guarantee that the goal will be reached.
We therefore resort to secure plans (alias conformant plans), which are defined as follows.

Definition 2.17 An optimistic plan ���� � � � ��� is a secure plan, if for every legal initial state
� and
trajectory� � ��
� ����
��, . . . , �
��

���� �
� �� such that� � � � �, it holds that (i) if� � � then�
establishes the goal, and (ii) if� 	 �, then

���
�

is executable in
� w.r.t. ��, i.e., some legal transition
�
� ����

��
��
��

exists.

Observe that plans admit in general the concurrent execution of actions at the same time. However, in
many cases the concurrent execution of actions may not be desired (and explicitly prohibited, as discussed
below), and attention focused to plans with one action at a time. More formally, we call a plan���� � � � ���
sequential(or non-concurrent), if

��� � � �, for all � � � � �.

2.3 Enhanced Syntax

While the language presented in Section 2.1 is complete and allows for a succinct semantics definition, it
can be enhanced w.r.t. user-friendliness. E.g. it is inconvenient to write��������� in front of each initial
state constraint, having an��������� section in which each rule is interpreted as an initial stateconstraint
would be more desirable. In addition, some frequently occurring patterns can be identified for which macros
will be defined for convenience and readability.

2.3.1 Partitions

The specification of a planning domain�
� � �� � �� ����

respectively planning problem� � ��� � �� �������
can be seen as being partitioned into

� the background knowledge
�

� ��, the fluent declarations in
�

� ��, the action declarations in
�

� ��, the initial state constraints in
�

� ��, the causation rules and executability conditions in
�

� the query (or goal)
�
.

In the sequel, we will denote a planning problem as follows:

������� � ��
������� � ��
������ � ��
��������� � ��
���� � �
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where each construct in��,
��, ��, and�� is terminated by “

�
”. The background knowledge is assumed

to be represented separately.

2.3.2 Macros

In the following, we will define several macros which allow for a concise representation of frequently used
concepts. Let� � ����� denote an action atom,

� � ��� a fluent literal,



a (possibly empty) sequence��� � � � � �� � ��� ���
�� � � � � ��� �

� where each
�� � ������	

� � � �� � � � � �, and
�

a (possibly empty) sequence
��� � � � �� � ��� ��

�� � � � ���� � where each�� � � �� � �� � � � ��.

Inertia In planning it is often useful to declare some fluents as inertial, which means that these fluents
keep their truth values in a state transition, unless explicitly affected by an action. In the AI literature this
has been studied intensively and is referred to as theframe problem[52, 64].

To allow for an easy representation of this kind of situation, we have enhanced the language by the
shortcut

�������� � �� 
 ����� �� � ������ � �� ��� ���� 
 ����� �� ��

Defaults A default value of a fluent in the planning domain can be expressed by the shortcut

������� �� � ������ � �� ��� ����

This default is in effect unless there is evidence to the opposite value of fluent
�
, given through some other

causation rule.

Totality For reasoning under incomplete, but total knowledge we introduce

����� � �� 
 ����� �� �
������ � �� ��� �

�� 
 ����� ��
������ �

� �� ��� �� 
 ����� ��

where
�

must be positive.

State Integrity It is very common to formulate integrity constraints for states (possibly referring to the
respective preceding state). To this end, we define the macro

��������� 
 ����� � � ������ ����� �� 
 ����� �

Nonexecutability Sometimes it is more intuitive to specify when some action isnot executable, rather
than when it is. To this end, we introduce

������������� � �� 
 � ������ ����� ����� �� 


Note that because of this definition,������������� is stronger than����������, so in case of conflicts,���������� is overridden by�������������.
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Non-concurrent Plans Finally, ������������� disallows the simultaneous execution of actions. We
define

������������� � ������ ����� ����� ��� �� �

where�� and�� range over all possible actions such that��� �� � ��� ����� and�� �� ��.
In all macros, “�� 
” (resp. “����� �”) can be omitted, if



(resp.

�
) is empty. We reserve the possibility

of including further macros in future versions of�.

3 Knowledge Representation in
�

In this section, the use of� for modeling planning problems is explored by examples. Special attention is
given to features and techniques which distinguish� from similar languages.

3.1 Deterministic Planning with Complete Initial Knowledge

We first study a simple setting in which the planning domain isnot subject to nondeterminism and the
planning agent has complete knowledge of the initial state of affairs. For later reference, we formally
introduce the following notion.

Definition 3.1 Let �� be a planning domain. Then, a legal transition�
���
�� in �� is determined, if

� � 
� holds for every possible legal transition�
���
�� (i.e., executing

�
on 
 leads to a unique new

state). We call��deterministic, if all legal transitions in it are determined.

Consider first the planning problem depicted in Figure 1, which is set in the blocksworld. This problem
illustrates the famous Sussman anomaly [69].

We will first describe the planning domain���
�	 � ���

�
� ���

�	 ���
�	�� of blocksworld. It involves

distinguishable blocks and a table. Blocks and the table canserve as locations on which other blocks can be
put (a block can hold at most one other block, while the table can hold arbitrarily many blocks). We thus
define the notions of

����� and
�������� in the background knowledge

��
� as follows:

�����	��� �����	��� �����	���
��������	�������
��������	
� � � �����	
��

For representing states, we declare two fluents in����� : �� states the fact that some block resides on
some location,�������� is true for a location, if its capacity of holding blocks is exhausted.

������� � ��	
��� �������� �����	
�� ��������	���
��������	
� �������� ��������	
��

Only one action is declared in
�����: ��� represents moving a block to some location (implicitly

removing it from its previous location).

������� � ���	
��� �������� �����	
�� ��������	���
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Let us now specify the initial state constraints�����. For the initial state,�������� does not have to be
specified, as it follows from knowledge about��. Note that only positive facts are stated for��, nevertheless
the initial state is unique because the fluent�� is interpreted under the closed world assumption (CWA) [61],
i.e., if ��	
��� does not hold, we assume that it is false.

��������� � ��	��������� ��	��������� ��	�� ���

Next, we specify causation rules and executability conditions����� . First a static rule is given, defining�������� for blocks if some other block is�� them.

������ � ������ ��������	
� �� ��	
��
�� �����	
��

A ��� action is executable if the block to be moved and the target location are distinct (a block cannot
be moved onto itself). A move is not executable if either the block or the target location is occupied.

���������� ���	
��� �� 
 	
 ��
������������� ���	
��� �� ��������	
��
������������� ���	
��� �� ��������	���

The action effects are defined by dynamic rules. They state that a moved block is on the target location
after the move, and that a block is not on the location on whichit resided before it was moved.

������ ��	
��� ����� ���	
����
������ � ��	
���� ����� ���	
���� ��	
����� � 	
 ���

Next we state that the fluent�� should stay true, unless it becomes false explicitly. Note that we need
not specify this property for��������, as it follows from�� via the static rule.

�������� ��	
����

It is worthwhile noting that in this example the fluents are represented positively and their negation
is usually implicit via the closed world assumption. Therefore, for example we do not need to declare
���	
��� as inertial. There is one exception in a rule describing a negative action effect: Here the negation
becomes known explicitly, and its purpose is the termination of the inertial truth of an instance of��.
However, we do not need to remember this negative knowledge by inertia. In this sense,� allows to
formalize “forgetting” about information, such that we cankeep only the “necessary” information in the
domain of discourse.

In order to solve the original planning problem, we associate the following goal
��
�	 for plan length 3

to �
��

�	, yielding��
�	:

���� � ��	����� ��	�� ��� ��	�������� � 	��

��
�	 allows a single sequential plan of length 3:

�����	���������� ����	�� ���� ����	������



16 INFSYS RR 1843-01-11
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Figure 2: A blocksworld example with incomplete initial state.

Thus, the above plan requires to first move� on the table, then to move
�

on top of �, and, finally, to
move� on

�
. It is easy to see that this sequence of actions leads to the desired goal. Since this domain is

deterministic and has a unique initial state, all optimistic plans are also secure. We remark that the above
representation is tailored for sequential planning, sincethe executability conditions do not take possible
parallel moves properly into account. For example, moving the same object to different locations would
have to be excluded, if parallel moves were allowed.

3.2 Planning with Incomplete Initial State Descriptions

In the example of section 3.1 it is assumed that the initial state is correct (with respect to the domain in
question) and fully specified (thus unique). In this sectionwe explore how these implicit requirements can
be weakened.

As an accompanying example problem, suppose that there is a further block
�

in the original planning
problem of Figure 1. The exact location if

�
is unknown, but we know that it is not on top of�. Furthermore,

there is a slightly different goal involving
�
. The problem is depicted in Figure 2. We will define a corre-

sponding planning domain���
�
� � ���

�
� � ���

�
� ���

�
���

by extending���
�	. The additional knowledge

about the initial state is represented by adding���	�� ��� to �����. and the background knowledge
��

�
�
is

obviously enriched by the fact
�����	��.

Let us first consider the necessary extensions for handling cases in which the initial state description
cannot be assumed to be correct (e.g., when completing the partial initial state description, incorrect initial
states can arise). The following conditions should be verified for each block: (i) It is on top of a unique
location, (ii) it does not have more than one block on top of it, and (iii) it is supported by the table (i.e., it is
either on the table or on a stack of blocks which is on the table) [44].

It is straightforward to formulate conditions (i) and (ii) and include them into�����:
��������� � ��������� ��	
���� ��	
����� � 	
 ���

��������� ��	
��
�� ��	
��
�� �����	
�� 
� 	
 
��

For condition (iii) we add a fluent��������� to �����, which should be true for any block in a legal
initial state:

������� � ���������	
� �������� �����	
��

We add the definition of��������� and a constraint stating that each block must be supported to�����.
��������� � ������ ���������	
� �� ��	
��������

������ ���������	
� �� ��	
�
��� ���������	
���
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��������� ��� ���������	
��

Any planning problem involving the domain defined so far doesnot admit any plan if the initial state is
either incorrectly specified or incomplete in the sense thatnot all block locations are known (as���������
will not hold for these blocks). Note that the action��� preserves the properties (i),(ii), (iii) above for
sequential plans; it is therefore not necessary to check these properties in all states if concurrent actions are
not allowed.

Next we show how incomplete initial states can be completed in �. To this end, we use the keyword����� (defined in section 2.3.2), and simply add����� ��	����� to �����. In this way, all possible comple-
tions w.r.t.��	���� serve as candidate initial states, only some of which satisfy the initial state constraints,
making them legal initial states. E.g. the state in which��	�� �� holds is not legal as the constraint which
checks condition (ii) is violated.

Finally, let us consider the planning problem��
�
� � ����

�
� ���

�
��

, where
��
�
�
is

���� � ��	�� ��� ��	����� ��	����� ��	�������� � 	� �

Usually, when dealing with incomplete knowledge, we look for plans which establish the goal for any
legal initial state (in this particular case case no matter whether��	���� or ��	�������� holds), so we are
interested insecure plans. The following secure sequential plan exists for��

�
�
and� � �:

�����	���������� ����	������ ����	������ ����	�� ����

It is easily verifiable that this plan works on each legal initial state: Since
�

is not occupied in any legal
initial state, the first action can always be executed.

In some cases, one is interested in a plan which works for somepossible initial state: For��
�
�

an
optimistic plan exists for� � �:

�����	������ ����	�� ����

It works only for the initial state in which��	���� holds, and fails for all other admissible initial states.
Hence it is not a secure plan.

3.3 Nondeterministic Action Effects

Let us now focus on domains comprising nondeterministic action effects. To this end we will turn our atten-
tion to the “bomb in the toilet” problem [53] and its variations. We will describe these domains gradually,
starting with two versions which involve deterministic action effects and incomplete initial state specifi-
cations, in which the representation techniques from Section 3.2 are applied. Only after these, a variant
comprising nondeterministic action effects and some additional elaborations are presented. We employ a
naming convention which is due to [6].

BT(�) - Bomb in toilet with � packages We have been alarmed that there is a bomb (exactly one) in a
lavatory. There are� suspicious packages which could contain the bomb. There is one toilet bowl, and it is
possible to dunk a package into it. If the dunked package contained the bomb, the bomb is disarmed.

For the� encoding, the background knowledge
��� consists of a definition of the packages:

�������	��� �������	��� � � � �������	���
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We use two fluents:�����	�� holds if package
�

contains an armed bomb (this is an inertial property),
and������ expresses the fact that there are armed bombs. Only one action,

����	��, is required, which is
always executable and the effect of which is that package

�
is no longer armed.

For the initial state,����� �����	���expresses the fact that the armed bomb might be in any package
�
,

while
��������� �����	��� �����	����� 	
 ���

enforces that at most one package can contain an armed
bomb. The statement

��������� ��� ������� is included to guarantee that at least one package contains
an armed bomb in the initial state.

The goal is to achieve a state in which no armed bomb exists, i.e., which is��� ������. This goal
��
�
�

will be the same for all following variations of the bomb in toilet problems, the respective plan lengths�
will be stated for each problem. We thus arrive at the following planning problem��� � ����� ����

��
:

������� � �����	�� �������� �������	���
�������

������� � ����	�� �������� �������	���
������ � �������� �����	���

������ � �����	�� ����� ����	���
������ ������ �� �����	���
���������� ����	���

��������� � ����� �����	���
��������� �����	��� �����	���� � 	
 ���
��������� ��� �������

���� � ��� ������ � 	� �

Note that in the formulation of this simple domain there is only one deterministic action, while the initial
state is incomplete since it is not known which of the� packages contains the bomb.

Usually, a plan should be produced which establishes the goal no matter in which package the bomb
is in, so we look for a secure plan. If concurrent actions are allowed, the following secure plan for� � �
(dunking all packages at the same time) can be found:

������	��� � � � �����	����

A secure sequential plan consists of dunking all packages sequentially, so� � �:

������	���� � � � � �����	����

Any permutation of these action sets is also a valid secure plan.

BTC(�) - Bomb in toilet with certain clogging Let us now consider a slightly more elaborate version of
the problem: Assume that dunking a package clogs the toilet,making further dunking impossible. The toilet
can be unclogged by flushing it. The toilet is assumed to be unclogged initially. Note that this domain still
comprises only deterministic action effects.

We extend���� � ���� � ���� ������ to ����� � ���� � �����
�����

��
by adding a new fluent,�������,

and a new action,
�����, to

����:
������� � ��������
������� � ������



INFSYS RR 1843-01-11 19

������� is inertial, is a deterministic effect of
����, and is terminated by

�����.
����� is always

executable, so the following rules are added to�����:
������ � �������� ��������

������ � ������� ����� ������
������ ������� ����� ����	���
���������� ������

The executability statement for
���� has to be modified, as

���� is not executable if the toilet is clogged.

���������� ����	�� �� ��� ��������

Since������� is assumed not to hold initially, and since it is interpretedunder the CWA, nothing has
to be added to�����.

For the planning problem���� � ������
���

�
��

we are only interested in sequential plans, as dunking
and flushing concurrently is not permitted. A minimal secureplan can be found for� � �� � �:

������	���� �������� �����	���� � � � � �������� �����	p���
Again, the action sets containing

���� actions can be arbitrarily permuted, as long as the
����� actions are

executed between the
���� actions.

BTUC(�) - Bomb in toilet with uncertain clogging Consider a further elaboration of the domain, in
which ������� may or may not be an effect of dunking. In other words, the action

���� has a nondeter-
ministic effect, and the toilet is clogged or not clogged after having executed

����.
This behavior is modeled by declaring������� to be����� after

���� has occurred. Therefore the
action effect

������ ������� ����� ����	���

in ����� is modified to

����� ������� ����� ����	���

yielding the planning domain������. The planning problem����� � �������
���

�
��

admits the same
secure plans as����.

BMTC(�,
�
), BMTUC(�,

�
) - Bomb in toilet with multiple toilets Yet another elaboration is to assume

that several toilet bowls (
�
, rather than just one) are available in the lavatory. The modifications to�����

yielding ����� � ���� � �����
�����

��
and to������ yielding ������ � ���� � ������

������
��

are rather straightforward.
The background knowledge

��� is simply extended to contain also a definition of the
�
toilets, by adding:

������	��� ������	��� � � � ������	���

arriving at
���. The fluent and action declarations for�������, ����, and

����� must be parametrized
w.r.t. the affected toilet. The updated definitions w.r.t.

���� (resp.
�����) are as follows:
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�������	�� �������� ������	���
����	���� �������� �������	��� ������	���
�����	�� �������� ������	���

Furthermore, each occurrence of�������, ����, and
����� in

���� (resp.
�����) must be updated by

adding a variable
�

(representing the toilet) to its parameters.
Since multiple resources can be used concurrently here, we add some concurrency conditions for the

actions to����� (resp.������):
���� and

����� should never be executed concurrently on any toilet.
Furthermore, at most one package should be dunked into a toilet, and any package should be dunked in at
most one toilet at a time. These conditions are captured by the following rules:

������ � ������������� ����	���� �� �����	���
������������� ����	���� �� ����	������ � 	
 ���
������������� ����	���� �� ����	������ � 	
 ���

In total, ������
������

�
of ������ looks as follows:

������� � �������	�� �������� ������	���
�����	�� �������� �������	���
�������

������� � ����	���� �������� �������	��� ������	���
�����	�� �������� ������	���

������ � �������� �����	���
�������� �������	���
������ � �������	�� ����� �����	���
������ � �����	�� ����� ����	�����
����� �������	�� ����� ����	�����
������ ������ �� �����	���
���������� �����	���
���������� ����	���� �� ��� �������	���
������������� ����	���� �� �����	���
������������� ����	���� �� ����	������ � 	
 ���
������������� ����	���� �� ����	������ � 	
 ���

��������� � ����� �����	���
��������� �����	��� �����	���� � 	
 ���
��������� ��� �������

The secure plans for���� � ������
���

�
��

and����� � �������
���

�
��

are similar to those for
���� and�����, respectively. The differences are that up to

� ���� and
����� actions, respectively, can be

executed in parallel (so the plans are no longer sequential), and that
�
�� flushing actions can be saved since

no final flushing is required for any toilet. Therefore any secure plan consists of�� ��
actions and in

��
�
�

,
the minimal plan length is:� � ��	� � � �.

3.4 Knowledge Based Encoding of Nondeterministic Action Effects

In this section, alternative planning domains for bomb in toilet will be presented. These encodings will be
based on states of knowledge, a distinguishing feature of�, rather than states of the world as in the previous
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sections. We will use the same background knowledge
��� (resp.

���) and the same goal
��
�
�

with the
same values for the plan length� as in Section 3.3.

BT(�) In Section 3.3 we have represented the initial situation by means of totalization on�����	��, lead-
ing to multiple initial states, corresponding to differentpossible states of the world. From the knowledge
perspective, nothing definite is known about�����	�� (and about������	��) for a particular package

�
,

so the initial situation can be represented by one state in which neither�����	�� nor ������	�� holds.
The action

����	�� has the effect that -armed(P) is known to hold, and������	�� is inertial. We state the
planning domain����� as follows:

������� � �����	�� �������� �������	���
�������

������� � ����	�� �������� �������	���
������ � �������� � �����	���

������ � �����	�� ����� ����	���
������ ������ �� ��� � �����	���
���������� ����	���

The advantage of this encoding is that multiple initial states do not have to be dealt with. Note that in this
formulation, it is not of much help to encode in addition the restriction that exactly one package is armed:
Nothing is known about the armed status of any individual package whatsoever, and any of the packages
could be the armed package. Without sensing, or other appropriate determining actions, we can not detect
it, and thus we can not fruitfully make use of definite knowledge �����	�� or ������	��. Furthermore,
since the domain is deterministic, optimistic and secure plans coincide.

BTC(�) ������ is extended from����� in the same way as����� was obtained from���� in Section 3.3,
i.e., by adding declarations for������� and

�����, adding rules for action effects w.r.t.�������, defining������� to be inertial, stating
����� to be always executable, and by modifying the executabilitycondition

for
����	��.
Note that in this encoding������� is still interpreted under the CWA.

BTUC(�) In the variant with uncertain clogging, the effect of
����	�� is that the truth of������� is

unknown.� has the capability of representing a state in which neither������� nor �������� holds, but
to do this, we should no longer interpret������� under the CWA, as we would not like to assume that������� does not hold if it is unknown. For this reason�������� � �������� is included, and for the
initial state, it must be stated explicitly that the toilet is unclogged.

Unfortunately, there is no construct in�, with which an action effect of some fluent being unknown can
be expressed directly. However, it is possible to modify theinertial rules for������� and��������, so
that inertia applies only if no package has been dunked. Thatmeans that dunking stops inertia for�������,
and ������� will be unknown unless it becomes known otherwise. Since this technique encodes inertia
under some conditions, we call itconditional inertia.

To achieve this, a new fluent
������ is introduced, which holds immediately after

����	��occurred for
some package

�
. The��������macros are then extended by the additional condition. The precise meaning

of the resulting program is that neither������� nor ��������will hold after
����	�� has been executed

for some package
�
, unless one of them is caused by some other rule different from inertia.
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To summarize, the following is added to�
�����:

������� � �������
������ � �������� ������� �� ��� �������

�������� � ������� �� ��� �������
������ ������ ����� ����	���
������ � ������� ����� ������
���������� ����	�� �� � ��������

��������� � ���������

while a few statements are dropped:

������ � �������� ��������
������ ������� ����� ����	���
���������� ����	�� �� ��� ��������

yielding �������.
Note that also������� is deterministic and has a unique initial state, so optimistic and secure plans

coincide. This example shows that it is possible to find an encoding which requires a substantially less
complex solver by using techniques, which exploit the “state of knowledge” paradigm of the language�.
We would like to point out that this is not a contradiction to complexity results in Section 4 below (finding
secure plans is more complex than finding optimistic plans):BTUC(�) per se is an easy problem (it is
solvable in linear time), it is just the representation requiring examination of alternatives, which made it
look hard.

BMTC(�,
�
), BMTUC(�,

�
) As in Section 3.3, a generalization to domains involving multiple toilets is

straightforward and can be achieved by applying the changesdescribed there, resulting in the planning
domains������ and�������, respectively. Find������� as an example below (

��� is omitted):

������� � �������	�� �������� ������	���
�����	�� �������� �������	���
������	�� �������� ������	���
�������

������� � ����	���� �������� �������	��� ������	���
�����	�� �������� ������	���

������ � �������� � �����	���
�������� �������	�� �� ��� ������	���
�������� � �������	�� �� ��� ������	���
������ ������	�� ����� ����	�����
������ � �������	�� ����� �����	���
������ � �����	�� ����� ����	�����
������ ������ �� ��� � �����	���
���������� �����	���
���������� ����	���� �� � �������	���
������������� ����	���� �� �����	���
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������������� ����	���� �� ����	������ � 	
 ���
������������� ����	���� �� ����	������ � 	
 ���

��������� � ��������	���

Also in this case the resulting problem domains are deterministic and hence optimistic plans and secure
plans coincide. This indicates that planning problems of this section can be solved faster than those of
Section 3.3. Indeed, we have observed this also experimentally [12]; the encodings of Section 3.4 can often
be solved several orders of magnitudes faster than those of Section 3.3 in theDLV� system prototype.

3.5 Discussion

As we have seen in the preceding subsections, the use of knowledge states instead of world states allows
us to represent planning scenarios in which certain information remains open, or is (deliberatively) dropped
under the proviso that it is not relevant to the planning problems that are considered. However, the�����
primitive provides a simple means to switch from knowledge states to world states, and thus our approach
fully supports conventional world state planning.

An important advantage which our language offers is that it also enables planning where world states are
projected to a subset of fluents of interest, leaving the details of other fluents open. It thus supports to some
extentfocusingin the problem representation, by restricting attention tothose fluents whose value may have
an influence on the evolution of the world depending on the actions that are taken.

For example, if the toilets in the bomb in the toilet domain would be colored, and an action�����	����
would be available which causes the color of toilet



to become�, represented by the fluent�����	����,

then the fluent����� is not relevant for the planning problems considered in Sections 3.3 and 3.4. Thus,
the value of this fluent may be left open, and no totalization statement on����� is needed in the problem
representation. For another example of focusing, in the blocksworld scenario with incomplete initial state
description in Section 3.2, we have added����� ��	����� to the “���������” section. However, for the
planning problem considered, we might narrow this to����� ��	�����, and leave the locations of other
elements open.

The question then is how relevance can be (efficiently) determined and exploited by the user. In general,
efficient automatic support will be difficult to achieve, since it requires analysis of the planning domain
which involves intractable computational problems. However, using adapted results about relevance in logic
programming, cf. [9], under some assertions syntactic criteria may be used to exclude (part of the) fluents
which are irrelevant for a goal. In the above example, given anatural representation we would find out that�����	���� is not relevant for������. Sophisticated usage of����� remains with the user at the moment,
and developing automated support is an interesting research topic.

Another issue concerns the use of knowledge states versus world states, even with respect to fluents that
are relevant for achieving the planning goal. Here, we must take into account the underlying assumption
of taking actions depending on a state of knowledge (where incase of incomplete information, default
assumptions might be used) or a state of affairs, respectively.

For example, if a robot is in front of a door, and wants to pass through it, it needs to know whether the
door is open or not. In our approach, we may represent this by the following statements:

�� � ������ � ���� �� ��� ���� ����� ����� �����
�� � ������ ���� �� ��� � ���� ����� ����� �����
� � ���������� ����� ���� �� ��� ����� ��� � �����
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That is, after checking the state of the door, we know whetherit is open or not (both is possible), and a
secure plan must handle both cases appropriately. The����� ���� action is only executable if the state is
not known yet – otherwise doing it would be superfluous, assuming that the robot’s state correctly models the
world. Thus, under knowledge state planning, a global plan may naturally include the action����� ����,
assuming that its status is unknown in the current state. However, under world-state planning, such an
action would always be superfluous as the value of���� is known. Accordingly, if we add the statement����� �����, then a plan including����� ���� is no longer feasible; this, however, is not a flaw, since it
simply reflects that the precondition for executing the sensing action, namely that the door status is unknown,
does never apply. In the same line, we can find examples where adding total statements render secure plans
insecure, or where new optimistic and secure plans emerge. On the other hand, by forgetting the status of
fluents, we might find plans for problems where world-state planning has no plan.

We may explain these observations by reminding that knowledge state planning, in our approach, is plan-
ning under (default) assumptions made on incomplete information, which are represented in the planning
domain by the use of default literals and select one of the twopossible values of a fluent. These assumptions
may turn out inappropriate in reality, and a plan may become infeasible. Security of a plan is relative to
the emerging states of knowledge and the assumptions that were made in selecting the actions. This looks
refutable, but a moment of reflection should convince that this incorporatesqualitative decision makingin
terms of default principles into the planning process. Any statement����� �� is an unconditionalimplicit
sensing action, which refines the knowledge state by reporting the status ofthe fluent in the new state.

We thus may proceed in planning as follows: try to find an optimistic or secure plan, and then evaluate
feasibility of the plan under refined knowledge states, by adding suitable����� statements. Here, not
necessarily all fluents have to be totalized, but merely the relevant ones. In case no plan exists, a refinement
of the knowledge states may be attempted at the initial state. In particular, if incompleteness is just given in
the initial state, but each fluent is, by the causal rules, defined in each future state, then one should describe
the properties known to hold in the beginning, totalize the (relevant) fluents of the initial state, and ask for a
secure plan (cf. section 3.2, the interested reader is encouraged to identify the relevant instances of��	����
for totalization w.r.t. the goal there). Exploring the use of totalization, and developing a methodology for
this process is an interesting issue for further work.

4 Complexity of
�

We now turn to the computational complexity of planning in our language�. In this section, we present the
results of a detailed study of major planning issues in the propositional case. Results for the case of general
planning problems (with variables) may be obtained by applying suitable complexity upgrading techniques
(cf. [31]). We call a planning domain�� (resp. planning problem�) propositional, if all predicates in it
have arity 0, and thus it contains no variables.

4.1 Main Problems Studied

In our analysis, we consider the following three problems:

Optimistic Planning Decide, given a propositional planning problem��� ���
, whether some optimistic

plan exists.

Security Checking Decide, given an optimistic plan� � ���� � � � ��� for a propositional planning prob-
lem ��� ���

, whether� is secure.
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Secure Planning Decide, given a propositional planning problem��� ���
, whether some secure plan ex-

ists.

We remark here that the formulation of security checking is,strictly speaking, apromise problem, since
it is assertedthat � is an optimistic plan, which can not be checked in polynomialtime in general (and
thus legal inputs can not be recognized easily). However, the complexity results that we derive below would
remain the same, even if� were not known to be an optimistic plan.

We assume that the reader has some knowledge of basic concepts of computational complexity theory;
see [56, 7] for a background and further sources. In particular, we assume familiarity with the well-known
complexity classes

�
,
��

, co-
��

, and PSPACE. The classes�
�� (resp.

��� ), � 
 � of the Polynomial

Hierarchy PH =���� ��� are defined by�
�
� � ��� � �

and�
�� � �������

(resp.
��� � co-�

�� ), for
� 
 �. The latter model nondeterministic polynomial-time computation with an oracle for problems in
�
���

�. Furthermore,�� � �� ��� � � ������ � co-
��� is the logical “conjunction” of

��
and co-

��
,

and NEXPTIME is the class of problems decidable by nondeterministic Turing machines in exponential
time. We recall that

�� � �� � PH � PSPACE=NPSPACE� NEXPTIME holds, where NPSPACE is
the nondeterministic analog of PSPACE. It is generally believed that these inclusions are strict, and that PH
is a true hierarchy of problems with increasing difficulty. Note that NEXPTIME-complete problems are
provably intractable, i.e., exponential lower bounds can be proved, while no suchproofs for problems in PH
or PSPACE are known today.

4.2 Overview of Results

We will consider the three problems from above under the following two restrictions:

1. General vs. proper planning domainsBecause of their underlying stable semantics, which is well-
known intractable [46], causation rules in domain descriptions can express computationally intractable
relationships between fluents. In fact, determining whether for a state
 and a set of executable ac-
tions

�
in 
 some legal transition�
���
�� to any successor state
� exists in a planning domain��

is intractable in general, since it comprises checking whether a logic program has an answer set. For
this reason, we pay special attention to the following subclass of planning domains.

Definition 4.1 We call a planning domain�� proper if, given any state
 and any set of actions�
, deciding whether some legal state transition�
���
�� exists is polynomial. A planning problem

��� ���
is proper, if �� is proper.

Proper planning domains are not plagued with intractability of deciding whether doing some actions
will violate the dynamic domain axioms, even if they possibly have nondeterministic effects. In fact,
we expect that in many scenarios, the domain is represented in a way such that if a set of actions
qualifies for execution in a state, then performing these actions is guaranteed to reach a successor
state. In such cases, the planning domain is trivially proper. This applies, for example, to the standard
STRIPS formalism [20] and many of its variants.

Unfortunately, deciding whether a given planning domain isproper is intractable in general; we thus
need syntactic restrictions for taking advantage of this (semantic) property in practice. For obtain-
ing significant lower complexity bounds, we consider in our analysis a very simple class of proper
planning domains.
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Definition 4.2 We call a planning domain�
� � �� ����

plain, if the background knowledge
�

is
empty, and

��
satisfies the following conditions:

1. Executability conditions���������� � � � refer only to fluents.

2. No default negation –neither explicit nor implicit through language extensions (such as inertia
rules)– is used in the��
�-part of causation rules in the “������” section.

3. Given that�
�
,. . . ,�


are all ground actions,

��
contains the rules

������������� �
� �� �� � � � � 	 � ��

������ ����� ����� ��� ��� ��� �� � � � � � ��� � �

We call a planning problem� � ��� ���
plain, if �� is plain.

The conditions ensure that every legal state transition
� � �
���
�� must satisfy

��� � �. Thus all
optimistic and secure plans must be sequential.

As easily seen, in plain planning domains (which can be efficiently recognized), deciding whether for
a state
 and an action set

�
some legal state transition

� � �
���
�� exists is polynomial, since this
essentially reduces to evaluating a��� -free logic program with constraints. Thus, plain planningdo-
mains are proper. Moreover, even deciding whether for a state 
any legal state transition

� � �
���
��
exists is polynomial, since the candidate space for suitable action sets

�
is small and efficiently com-

puted. Furthermore, each legal state transition
�

in a plain planning domain�� is clearly determined,
and thus�� is also deterministic. As discussed below, for many problems plain planning domains
harbor already the full complexity of proper planning domains.

We remark that further, more expressive syntactic fragments of proper planning domains can be ob-
tained by exploiting known results on logic programs which are guaranteed to have answer sets, such
as stratified logic programs, or order-consistent and odd-cycle free logic programs [17, 10]; the latter
allow for expressing nondeterministic action effects. In particular, these results may be applied on the
rules obtained from the dynamic causation rules by stripping off their���-parts. We do not investigate
this issue further here; stratified planning domains are addressed in [59].

2. Fixed vs. arbitrary plan length We analyze the impact of fixing the length
�
in the query

� � ���� � 	��
of ��� ���

to a constant. In general, the length of an optimistic plan for ��� ���
can be exponential

in the size of the string representing the number
�

(which, as usual, is represented in binary notation),
and even exponential in the size of the string representing the whole input��� ���

. Indeed, it may be
necessary to pass through an exponential number of different states until a state satisfying the goal is
reached. For example, the initial state
� may describe the value

	�� � � � ��� of an�-bit counter, and
the goal description might state that the counter has value

	�� � � � � ��. Assuming an action repertoire
which allows, in each state, to increment the value of the counter by 1, the shortest optimistic plan
for this problems has�


� � steps. (We leave the formalization of this problem in� as an illustrative

exercise to the reader.) This shows that storing a complete optimistic plan in working memory requires
exponential space in general. If

�
is fixed, however, then the representation size of the plan islinear in

the size of��� ���
.
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plan length
�

in query
� � ���� � 	��

planning domain�� fixed (=constant) arbitrary

general
��

/
��� / �

�� -complete PSPACE /
��� / NEXPTIME -complete

proper
��

/ co-
��

/ �
�� -complete PSPACE / co-

��
/ NEXPTIME -complete

Table 1: Complexity Results for Optimistic Planning / Security Checking / Secure Planning (Propositional
Case)

Main complexity results Our main results on the complexity of� are compactly summarized in Table 1,
and can be explained as follows.

� As for Optimistic Planning, we can avoid exponential space for storing an optimistic plan� �

���� � � � ��� by generating itstep by step: we guess a legal initial state
�, and subsequently, one
by one, the legal transitions�
��

���� �
��. Since storing one legal transition requires only polynomial
workspace and NPSPACE=PSPACE, Optimistic Planning is in PSPACE. On the other hand, propo-
sitional STRIPS, which is PSPACE-complete [3], can be easily reduced to planning in�, where the
resulting planning problem is plain and thus proper. For fixed plan length, thewholeoptimistic plan
has linear size, and thus can be guessed and verified in polynomial time.

� In Security Checking, the optimistic plan� � ��� � � � � ��� to be checked is part of the input, so the
binary representation of the plan length is not an issue here. If � is not secure, there must be a legal
initial state
� and a trajectory executing the actions in

�� � � � � ��� such that either the execution is
stuck, i.e., no successor state
� exists or the actions in

��
are not executable in
�, or the goal is not

fulfilled in the final state
. Such a trajectory can be guessed and verified in polynomial time with
the help of an

��
oracle; this places the problem in

��� . The
��

oracle is needed to cover the case
where no successor state
� exists, which reduces to checking whether a logic program has no answer
set. In proper planning domains, existence of
� can be decided in polynomial time, which makes the
use of an

��
oracle obsolete and lowers the overall complexity from

��� � co-
����

to co-
��

.

� In Secure Planning, the existence of a secure plan can be decided by composing algorithms for con-
structing optimistic plans and for security checking. Our membership proofs for deciding the exis-
tence of an optimistic plan actually (nondeterministically) construct such a plan, and thus we easily
obtain upper bounds on the complexity of Secure Planning from the complexity of the combined al-
gorithm, by using the security check as an oracle. In the caseof arbitrary plan length, the use of a

���
oracle can be eliminated by a more clever procedure, in whichplan security is checked by inspecting
all states reachable after�� ���� � � � steps of the plan. Even if their number may be exponential, this
does not lead to a further complexity blow up. Thus, Secure Planning is in NEXPTIME. On the other
hand, even in plain planning domains, an exponential numberof (exponentially long) candidate secure
plans may exist, and the best we can do seems to be guessing a suitable one and verifying it.

Effect of parallel actions The results in Table 1 address the case where parallel actions in plans are
allowed. However, excluding parallel actions and considering only sequential plans does not change the
picture drastically. In all cases, the complexity stays thesame except for secure planning under fixed plan
length, where Secure Planning is

��� -complete in general and�� -complete in proper planning domains
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(Theorem 5.7). Intuitively, this is explained by the fact that for a plan length fixed to a constant, the number
of potential candidate plans is polynomially bounded in theinput size of�, and thus the guess of a proper
secure candidate can be replaced by an exhaustive search, where it remains to check as a side issue the
consistency of the domain (i.e. existence of some legal initial state), which is

��
-complete in general (also

for plain domains); see Theorem 5.7 below.

Effect of nondeterministic actions Our results also imply some conclusions on nondeterministic vs. de-
terministic planning domains. Interestingly, in proper planning domains, nondeterminism has no impact
on the complexity for all problems considered, and we can conclude the same for Optimistic Planning as
well as Secure Planning under arbitrary plan length. Furthermore, for proper planning problems even the
combined restrictions of sequential plans and deterministic action outcomes do not decrease the complexity
except for Secure Planning with fixed plan length, since the hardness results are obtained for plain planning
problems, which guarantee these restrictions.

Implications for implementation The complexity results have important consequences for theimple-
mentation of� on top of existing computational logic systems, such as Blackbox [37], CCALC [47], Smod-
els [55], DLV, satisfiability checkers, e.g. [54, 41, 2, 77], or QuantifiedBoolean Formula (QBF) solvers
[4, 63, 18]. Optimistic Planning under arbitrary plan length is not polynomially reducible to systems
with capability of solving problems within the Polynomial Hierarchy, e.g. Blackbox, satisfiability check-
ers, CCALC, Smodels, or DLV, while it is feasible using QBF solvers. On the other hand, for fixed (and
similarly, for polynomially bounded) plan length, Optimistic Planning can be polynomially expressed in all
these systems. On the other hand, even in the case of fixed planlength and proper planning domains, Secure
Planning is beyond the capability of systems having “only”

��
expressiveness such as Blackbox, CCALC,

Smodels, or satisfiability checkers, while it can be encodedin DLV (which has�
�� expressiveness) and QBF

solvers. Even in the more restrictive plain planning domains, where Secure Planning is�� -complete, the
systems mentioned can not polynomially express Secure Planning in a single encoding. On the other hand,
if we abandon properness, then alsoDLV is incapable of encoding Secure Planning (whose complexityin-
creases to�

�� -completeness). Nonetheless, Secure Planning is feasiblein DLV using a two step approach as
in [25], where optimistic plans are generated as secure candidate plans and then checked for security; this
check is polynomially expressible inDLV.

Secure planning under arbitrary plan length is provably intractable, even in plain domains. Since NEXP-
TIME strictly contains PSPACE, there is no polynomial time transformation to QBF solvers or other popular
computational logic systems with expressiveness limited to PSPACE, such as traditional STRIPS planning.

Here, further restrictions are needed to lower complexity to PSPACE, such as a polynomial bound on
the plan length in the input query. We leave this for further investigation.

5 Derivation of Results

In this section, we show how the results discussed in the previous section are derived.
In the proofs of the lower bounds, the constructed planning problems� � ��� � �� ����� ��

will always
have empty background knowledge

�
. Furthermore, the action and fluent declarations�� and

��, respec-
tively, will be as needed for the

�
-part, and are not explicitly mentioned. That is, we shall only explicitly

address
�

and
�
, while

� � � and
�

are implicitly understood.
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The following lemma on checking initial states and legal state transitions is straightforward from well-
known complexity results for logic programming (cf. [7]).

Lemma 5.1 Given a state
� (resp. a state transition
� � �
���
��) and a propositional planning domain

�� � �� � �� ����
, checking whether
 is a legal initial state (resp.,

�
is a legal state transition) is possible

in polynomial time.

Proof. [of Lemma 5.1] The unique answer set	 of the logic program
�

can be computed in polynomial
time (cf. [7]). Given	, the set of legal action and (positive and negative) fluent instances��� is easily
computable in polynomial time, as well as the reduction���

. Checking whether
� is a legal initial state
for ���

amounts to checking whether
� is the least fix-point of a set of positive propositional rules, which
is well-known polynomial. Overall, this means that checking whether
� is a legal initial state of�� is
polynomial. From	,

�
, and���

, it can be easily checked in polynomial time whether
�

is executable
w.r.t. 
 and, furthermore, whether
� is the minimal consistent set that satisfies all causation rules w.r.t.

 � � �	 by computing the least fixpoint of a set of positive rules and verifying constraints on it. Thus,
checking whether

�
is a legal state transition is polynomial in the propositional case.

�

Corollary 5.2 Given a sequence of state transitions� � ���� � � � � ��, where
�� � �
��

���� �
�� for
� �

�� � � � ��, and a propositional planning domain�� � �� � �� ����
, checking whether� is legal with respect

to �� is possible in polynomial time.

5.1 Optimistic Planning

From the preparatory results, we thus obtain the following result on Optimistic Planning.

Theorem 5.3 Deciding whether for a given propositional planning problem � � ��� ���
an optimistic

plan exists is (a)
��

-complete, if the plan length in
�

is fixed, and (b)PSPACE-complete in general. The
hardness parts hold even for plain�.

Proof. (a). The problem is in
��

, since a trajectory� � ���� � � � � ��� where
�� � �
��

���� �
� � for
� � �� � � � � �, such that
� satisfies the goal� in

� � � �	��
can be guessed and, by Corollary 5.2, verified

in polynomial time if
�

is fixed.��
-hardness for plain� is shown by a reduction from the satisfiability problem (SAT). Let � � �� �

� � � � �� be a CNF, i.e. a conjunction of clauses�� � ���
� � � � � ����


� where the���� are classical literals

over propositional atoms
� � ���� � � � ���. We declare these atoms and a further atom ’�’ as fluents

in
�

, and put into the “���������” section �� of the planning domain�� � ��� �� ����
the following

constraints:
����� �� � for all �� ��
��������� �����

�� � � � �
�
����


�
� � � � � ������� ��

Here, the first constraint effects the choice of a truth valuefor each fluent�� , the second excludes choices
which violate clause��, and the third adds ’�’ as a marker to the initial state. Clearly,�

�
has a legal initial

state iff � is satisfiable. Thus, an optimistic plan� exists for� � ��� �� � 	��� iff � is satisfiable. As�
can easily be constructed from�, the result follows.
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(b). A proof of membership in PSPACE follows from the discussion in Section 4.2 (note Lemma 5.1).
We remark that the problem can be solved by a deterministic algorithm in polynomial workspace as follows.
Similar as in [3], design a deterministic algorithm REACH

	
�
� ���which decides, given states
 and
� and
an integer

�
, whether a sequence

��
,. . . ,

�� of legal transitions
�� � �
��

���� �
��exists, where
 � 
� and
� �

�, by cycling trough all states
�� and recursively solving REACH

	
�
�� � ������ and REACH
	
�� �
� � �	� �

������. Then, the existence of an optimistic plan of length
�

can be decided cyclic through all pairs of states

�
� and testing whether
 is a legal initial state,
� satisfies the goal in given in

�
, and REACH

	
�
� ���
returns true. Since the recursion depth is�	��	 ��, and each level of the recursion needs only polynomial
space, Lemma 5.1 implies that this algorithm runs in polynomial space.

For the PSPACE-hardness part, we describe how propositional STRIPS planning as in [3] can be reduced
to planning in�, where the planning domain�� is plain.

Recall that in propositional STRIPS, a state description
 is a consistent set of propositional literals, and
an operator�� has a precondition��	���, an add-list�

	���, and a delete-list
��	���, which all are lists
of propositional literals. The operator�� can be applied in
 if ��	��� � 
 holds, and its execution yields
the state
� � 	
 � 
��	���� � �

	��� (where
� must be consistent). Otherwise, the application of�� on 

is undefined. A goal
, which is a set of literals, can be reached from a state
, if there exists a sequence of
operators���� � � � ����, where

� 
 �, such that
� � ��� 	
��
��

, for
� � �� � � � ��, where
� � 
, and
 � 
�

holds. Any such sequence is called aSTRIPS-plan(of length
�
) for 
�
. Given
�
, a collection of STRIPS

operators���� � � � ���, and an integer
� 
 �, the problem of deciding whether some STRIPS-plan of length

at most
�

exists is PSPACE-complete [3]. As easily seen, this remainstrue if we ask for a plan of length
exactly

�
(just introduce a dummy operation with empty precondition and no effects).

Each STRIPS operator��� is easily modeled as action in language� using the following statements in
the “������” section, i.e. the�� part of

�
:

���������� ��� �� ��	����������� � ����� ��� � for each� � �

	���������� � ����� ��� � �� for each� �� �

	���� � 
��	����

The last rule is an inertia rule for the literals not affectedby ��.
The initial state
 of a STRIPS planning problem can be easily represented usingthe following con-

straints in the “���������” section, i.e. the�� part of
�

:

������ �� for all � � 


Finally, �� contains the mandatory rules for unique action execution ina plain planning domain:

������������� ��� �� ��� � � � � 	 � � ������� ����� ����� ��� ���� ��� ��� � � � � � ��� �� �

It is easy to see that for the planning problem� � ��� ���
where�� � ������ and

� � 
 � 	��
,

some optimistic plan exists iff a STRIPS-plan of length
�

for 
�
 exists. Since� is constructible from the
STRIPS instance in polynomial time, this proves the PSPACE-hardness part.

�

5.2 Secure Planning

Secure Planning appears to be harder; already recognizing asecure plan is difficult.
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Theorem 5.4 Given a propositional planning problem� � ��� ���
and an optimistic plan� for �, decid-

ing whether� is secure is (a)
��� -complete in general and (b) co-

��
-complete, if� is proper.2 Hardness

in (a) and (b) holds even for fixed plan length in
�

and sequential� , and if� in (b) is moreover plain.

Proof.
The plan� � ���� � � � ����

for � is not secure, if a trajectory� � ���� � � � � ���, where
�� � �
��

���� �
� �,
for � � �� � � � �� exists, such that either (i)

� � �
and
� does not satisfy the goal in

�
, or (ii)

� 	 �
and for no

state
, the tuple�
�, ���
��
� is a legal transition. A trajectory� of any length

�
can, by Corollary 5.2, be

guessed and verified in polynomial time. Condition (i) can beeasily checked. Condition (ii) can be checked
by a call to an

��
oracle in polynomial time. It follows that checking security is in co-

���� � ��� in
general. If� is proper, condition (ii) can be checked in polynomial time,and thus the problem is in co-

��
.

This shows the membership parts.��� -hardness in case (a) is shown by a reduction from deciding whether a QBF� � ���� � is true,
where

���
are disjoint sets of variables and� � ��� � � ���� is a CNF over

� ��
. It is well-known that

this problem is
��� -complete, cf. [56]. Without loss of generality, we assume that� is satisfied if all atoms

in
� � �

are set to true.
We declare the atoms in

� ��
and further atoms� and�as fluents in

�
. The “���������” section��

for
�� � �� ���

has the following constraints:

����� �� � for all �� ��
������ ��

The “������” section�� of
�

contains the following rules. Suppose that���
�
, . . .���� are all literals over

atoms from
�

which occur in��, and similarly that��
�
�
, . . .��

�

� are all literals over atoms from

�
that

occur in��.
����� �� ����� �� for all �� � �
��������� ����

�
�� � � � �

�
���

�

�
����� �� �����

�� � � � �
�
�����

� � � � � ������� � ����� ��

These rules generate��
� � legal initial states


�
�, . . . , 


��	 �
� w.r.t. ������, which correspond 1-1 to the

truth assignments to the atoms in
�

. Each such

�
� contains precisely one of�� and��� , for all �� � �

,
and the atom 0. The totalization rule for�� effects that each legal state
� following the initial state contains
exactly one of�� and��� . That is,
� must encode a truth assignment for

�
. The

��������� statements
check that the assignment to

� � �
, given jointly by 


�
� and
�, satisfies all clauses of�. Furthermore,�

must be contained in
� by the last rule.
Let us introduce an action�, which is always executable. Then, the assumption on� implies that

� � ��
� ����
���, where
� � � � ���, �� � �
��, and 
� � � � � � ���, is a trajectory w.r.t.

�� � ������, and thus� � ����
is an optimistic plan for the planning problem� � ��� ���

where� � � � 	��. It is not hard to see that� is secure iff� is true. Since��� ���
is easily constructed from�,

this proves the hardness part of (a). The hardness part of (b)is established by a variant of the reduction; we
disregard

�
(i.e.,

� � �), and modify the rules as follows:
����� (after macro expansion) is replaced by

�, and the rule with effect� is dropped. Note that the resulting planning domain is plain. Then, the plan
� � ����

is secure iff���� is true, i.e., the CNF� is unsatisfiable, which is co-
��

-hard to check.
�

2We are grateful to Hudson Turner for pointing out that in a draft of [11], a co-
�-upper bound as reported there obtains only
if deciding executability of an action (leading to a new legal state) is in�, and that the complexity in the general case may be one
level higher up in PH. In fact, we were mainly interested in such domains, which are covered by our notion of proper domains.
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For Secure Planning, we obtain the following result.

Theorem 5.5 Deciding whether a given propositional planning problem� � ��� ���
has a secure plan is

(a) �
�� -complete, if the plan length in

�
is fixed, (b)�

�� -complete, if the plan length in
�

is fixed and� is
proper. Hardness in (b) holds even for deterministic and plain ��.

Proof. a) and b). A trajectory� � ��
� ����
��� � � � � �
��
���� �
��� of fixed length

�
that induces an

optimistic plan� � ���� � � � ����
can be guessed and verified in polynomial time (Corollary 5.2), and by

Theorem 5.4, checking whether� is secure is possible with a call to an oracle for
��� in case (a) and for

co-
��

in case (b). Hence, it follows that the problem is in�
�� in case (a) and in�

�� in case (b).
For the hardness part of (a), we transform deciding the validity of a QBF � � ������ �, where��� ��

are disjoint sets of variables and� � �� � � ��� is a CNF over
� � � � �

, which is�
�� -complete

[56], into this problem. The transformation extends the reduction in the proof of Theorem 5.4.
We introduce, for each atom�

� � �
, an action����� in

�
. The “���������” section, i.e. the�� part

of
�

, contains the following constraints:

����� �� � for all �� ��
������ ��

�� contains the following rules. Suppose that���
�
, . . .���� are all literals over atoms from

�
that occur in��, and similarly that��

�
�
, . . .��

�

� are all literals over atoms from

� � �
that occur in��.

������ �� ����� �� ����� � for all �
� � �

������ ��� ����� �� ��� ����� � for all �
� � �

������ � ����� ��
����� �� ����� �� for all �� � �
��������� ����

�
�� � � � �

�
���

�

�
����� �� �����

�� � � � �
�
�����

� � � � � �

Given these action descriptions, there are��� � many legal initial states

�
�, . . . , 


��	 �
� for the emerging

planning domain�� � ������, which correspond 1-1 to the possible truth assignments to the variables in�
and contain�. Executing in these states


�
� some actions

�
means assigning a subset of

�
the value true.

Every state

�� reached from


�
� by a legal transition must, for each atom� � � ��

, either contain� or ��,
where for the atoms in

�
this choice is determined by

�
. Furthermore,


�� must contain the atom�.
It is not hard to see that an optimistic plan of form� � ����

(where
�� � ������ � �� � ��) for the

goal � exists w.r.t.�� � ������ iff there is an assignment to all variables in
� � � � �

such that the
formula � is satisfied. Furthermore,� is secure iff

��
represents an assignment to the variables in

�
such

that, regardless of which assignment to the variables in
�

is chosen (which corresponds to the legal initial
states


�
�), there is some assignment to the variables in

�
(i.e., there is at least some state


�� reachable from


�
�, by doing

��
), such that all clauses of� are satisfied; any such


�� contains�. In other words,� is secure
iff � is true.

Since�� is constructible from� in polynomial time, it follows that deciding whether a secure plan
exists for� � ��� ���

, where
� � � � 	��, is �

�� -hard. This proves part (a).
For the hardness part of (b), we modify the construction for part (a) by assuming that

� � �, and

� replace
����� in rule heads (after macro expansion) by�;

� remove the rule for�and the�����-rules for��).
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The resulting planning domain�
��

is proper: since no causation rule in�� contains default negation,
for each transition

� � �
���
��, the reduct����
coincides with��� �������, and thus existence of a a legal

transition �
���
�� can be determined in polynomial time. Furthermore,�
���
�� is determined, and thus
���

is also deterministic. We have again��
� � initial states


�
�, which correspond to the truth assignments to�

. An optimistic plan for the goal� of the form� � ����
, where

�� � ������ � �� � ��, corresponds
to an assignment to

� ��
such that� evaluates tofalse. The plan� is secure iff every assignment to

�
,

extended by the assignment to
�

encoded by
��

, makes� false.
It follows that a secure plan for� � ���� ���

, where
� � � � 	��, exists iff the QBF

������ is true.
Evaluating a QBF of this form is�

�� -hard (recall that� is in CNF). Since� is constructible in polynomial
time, this proves�

�� -hardness for part (b).
�

Next, we consider Secure Planning under arbitrary plan length.
As mentioned above, we can build a secure plan step by step only if we know all states that are reachable

after the steps
��

, . . . ,
��

so far when the next step
��

�
�

is generated. Either we store these states explicitly,
which needs exponential space in general, or we store the steps

��
,. . . ,

��
(from which these states can be

recovered) which also needs exponential space in the representation size of��� ���
. In any case, such a

nondeterministic algorithm for generating a secure plan needs exponential time. The next result shows that
NEXPTIME actually captures the complexity of deciding the existence of a secure plan.

Theorem 5.6 Deciding whether a given propositional planning problem� � ��� ���
has a secure plan is

NEXPTIME-complete. Hardness holds even for plain (and thus deterministic) �.

Proof. As for the membership part, the size of a string representing a secure plan� � ���� � � � ����
of

length
�

for the query
� � ���� � 	��

is at most�	� � ��� ��
, which is single exponential in the sizes

��� �
and

��	 � of the strings for�� and
�
, respectively. Hence, this string has size single exponential in the size

of �. We can thus guess and verify a secure plan� for � in (single) exponential time as follows:

1. Compute the set�� of all legal initial states. If�� � �, then� is not secure (in fact, no secure plan
exists).

2. Otherwise, for each� � �� � � � � �, compute for each
 � ���
�

the set�� 	
� � �
� � �
��� �
�� is a
legal transition�, and halt if some�� 	
� is empty; otherwise, set�� � ������� �� 	
�.

3. Finally, check whether the goal is satisfied in every
 � ��, and accept iff this is true.

The computation of��, as well as of each�� 	
�, can be done in single exponential time, by considering
all possible knowledge states
� that might occur in a legal transition�
��� �
��. The number of different
�� 	
� is exponentially bounded in the size of�; thus, overall an exponential number of steps suffices to
check whether the plan� is secure.

The NEXPTIME-hardness part is shown by a generic Turing machine (TM) encoding. That is, given a
nondeterministic TM	 which accepts a language�	 in exponential time and an input word
, we show
how to construct a plain planning problem� � ��� ���

in polynomial time which has a secure plan iff	
accepts
. Roughly, the states in the set�� of legal initial states encode the tape cells of	 and their initial
contents; the actions in a secure plan represent the moves ofthe machine, which change the cell contents,
and lead to acceptance of
. While the idea is clear, the technical realization bears some subtleties.

The reduction is as follows. Without loss of generality,	 halts on
 in less than�
�

many steps, where
� � �
 �

is the length of the input and� 
 � is some fixed integer (independent of�), and	 has a unique
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accepting state. We modify	 such that it loops in this state once it is reached. The cells�� ��� � � � ��� ,
where

� � �� � �, of the work tape of	 (only those are relevant) are represented in different legal states
of the planning domain. Initially, the cells�� � � � � ���� ��

�
contain the symbols
� �
� � � � �
�� ��

�
of the

input word
, and all other cells��� �, . . . ,�� are blank.
The computation of	 on
 is modeled by a secure plan� � ���� � � � ��� �, in which each

�� contains
a single action��� which models the transition of	 from the current configuration of the machine to the
next one. A configuration of	, given by the contents of the work tape, the position of the read-write (rw)
head, and the current state of the machine, is described by legal knowledge states
�, � � � � �

, such that

� contains the symbol� currently stored in��, the current position� of the rw-head, and the current state�

of 	; all this information is encoded using fluents.
The information to which cell�� a legal knowledge state corresponds is given by literals���� � � � ����,

which represent the integer
� � �����

in binary encoding, where
�� (resp.�

��) means that the�-th bit of�
is 1 (resp. 0). The position of the rw-head,� � �����

, is represented similarly using further literals
���� � � � ����. Each symbol� in the tape alphabet� of 	 is represented by a fluent��. Similarly, each
state

�
in the set� of states of	 is represented by a fluent�	; in each legal knowledge state, exactly one

�� and one�	 is contained. There are�
�

legal initial knowledge states, which uniquely describe the initial
configuration of	, in which the rw-head of	 is placed over��, 	 is in its initial state (say,

��
), and the

work tape contains the input
.
The legal initial knowledge states
 are generated using constraints which “guess” a value for each bit of�

, initialize the contents of�� with the right symbol��, include��� for all � � �� � � � ��� (i.e., set� � �),
and include

��
. More precisely, the “���������” section, i.e.�� of

�
, in

�� � �� ���
is as follows:

����� �� � for all � � �� � � � ��������� ��� � for all � � �� � � � ��� % set� � ������� ��
 �� ������� � � � � ���� � % work tape position 0������ ��� �� ���
�
�� � � � � ���� � % work tape position 1

...
...������ ������� �� “code of

�
 �
� �” � % work tape position

�
 �
� ������� �� �� ��� ��� � � � � ���� ��� � % rest of tape is blank������ ��� % initial state is

��

Here, the tape alphabet� is assumed to be� � ����, ��, . . . ,��, where


is the blank symbol.
The transition function of	 is given by tuples� � ������� �
����, which reads as follows: if	 is in

state
�

and reads the symbol� at the current rw-head position� (i.e., �� contains�), then	 writes�� at
the position� (i.e. into��), moves the rw-head to position� � 
, where
 � ��, and changes to state

��
.

(Without loss of generality, we omit here modeling that the rw-head might remain in the same position.)
Such a possible transition� is modeled using rules which describe how to change a currentknowledge

state
, which corresponds to the tape cell��, to reflect�� in the new configuration of	. Informally, its
constituents are manipulated as follows.

work tape contents For the case that� � �
, i.e., the rw-head is at position

�
, a rule includes�� into the

state. Otherwise, i.e., the rw-head is not at�, an inertia rule includes��, where� is the old contents
of ��, to the new knowledge state.

rw-head position The change of the rw-head position by��, is incorporated by replacing� with � � �.
This is possible using a few rules, which simply realize an increment resp. decrement of the counter
�. We assume at this point that	 is well-behaved, i.e., does not move left of��.
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state A rule includes�	� for the resulting state
��

of 	 into the new knowledge state.

To implement this, we introduce for each possible transition � � ������� �
���� of 	 an action�� ,
whose executability is stated in�� as follows:

���������� �� �� �	 � �� � ����
���������� �� �� ��� ����

Here�� �
is afluentatom, which indicates whether the rw-head position� is the index

�
of the cell��

represented by the knowledge state.
Furthermore, several groups of rules are put in the “������” section, i.e.�� of

�
. The first group

serves for determining the value of���
, using auxiliary fluents��� � � � ���:

������ �� �� �� � �� � for all � � �� � � � ��������� �� �� ��� � ��� � for all � � �� � � � ��������� ��� �� ��� � � � ��� �

The execution of�� effects a change in the state and the contents of��:

������ ���
����� �� � ����

������ �� ����� �� � �� � ��� ����
for all � � ������� �	� ����� �� �

Depending on the value of
, different rules are added for realizing the move of the rw-head. Recall that,
given the binary representation���� � � � � of an integer�, the binary representation of� � � is ���� � � � �.
The rules for
 � �are as follows.

������ �� ����� �� � ���������� �� ����� �� � ��� � ��������� ��� ����� �� � ��� � ���
...������ �� ����� �� � ��� � ���

�� � � � ���������� ����
� ����� �� � ��� � ���

�� � � � ����
� � �

������ ��� ����� �� � ��� � ���
�� � � � ���������� �� ����� �� � �� � ��� � where� � � 	 � � �������� ��� ����� �� � ��� � ��� � where� � � 	 � � ��

The last two rules serve for carrying the leading bits of
�
, which are not affected by the increment, over to the

new knowledge state. (This could also be realized in a simpler way using�������� statements; however,
recall that such rules are not allowed in plain domains.)

The rules for
 � ��are similar, with the roles of� and� interchanged:
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������ ��� ����� �� � ��������� ��� ����� �� � �� � ���������� �� ����� �� � �� � ����
...������ ��� ����� �� � �� � ����

�� � � � ����������� ���
� ����� �� � �� � ����

�� � � � �����
� � �

������ �� ����� �� � �� � ����
�� � � � ����������� �� ����� �� � �� � �� � where� � � 	 � � �������� ��� ����� �� � ��� � �� � where� � � 	 � � ��

Further rules are added to�� for carrying the cell index
�

over to the next knowledge state:

������ �� ����� �� � for all � � �� � � � ��������� ��� ����� ��� � for all � � �� � � � ���

Finally, the mandatory rules of a plain planning domain enforcing the execution of one and only one
action in each transition are added to��.

As easily checked, all rules that we have introduced satisfythe syntactic restrictions for plain planning
domains.

Suppose now that
� � � is the unique accepting state of	. Then, a secure plan� � ���� � � � ���� of

length
�

reaching the goal
�

corresponds to the fact that	 will, starting from the initial configuration, be
in an accepting configuration after executing the transitions ��,. . . ,��, where

�� � �
��� �, for � � �� � � � ��.

By our assumption on	, we know that	 can reach some accepting configuration within
�

steps iff it
can reach an accepting configuration in exactly

�
steps. Thus, we have that	 accepts the input
 iff there

exists some secure plan of length
�

for the goal
�

in the planning domain�� � ������ where
��

is
from above. In other words,	 accepts
 within

�
steps iff the proper propositional planning problem

� � ��� � � � 	� ��
has a secure plan.

As easily seen,� can be constructed in polynomial time from	 and
. This proves NEXPTIME-
hardness of deciding the existence of a secure plan, even under the restriction to plain planning problems.�

Secure planning has lower complexity if the plan length is fixed and concurrent actions are not allowed.

Theorem 5.7 Deciding whether a given propositional planning problem� � ��� ���
has a secure sequen-

tial plan is (a)
��� -complete, if

�
is fixed, and (b)�� -complete, if

�
is fixed and� is proper. The hardness

part of (b) holds even for plain�.

Proof. If the plan length
�

in the query
� � ���� � 	�� is fixed, the number of candidate sequential secure

plans, given by
	� � ��

�
, where� is the number of actions in��, is bounded by a polynomial.

A candidate� � ���� � � � ��� is not a secure plan, if (i) no initial state
� exists, or (ii) like in the
proof of Theorem 5.4, a trajectory� � ���� � � � � ���, where

�� � �
��
���� �
� �, for � � �� � � � �� exists, such

that either (ii.1)
� � �

and
� does not satisfy the goal in
�
, or (ii.2)

� 	 �
and for no state
, the tuple�
�,���

��
� is a legal transition. The test for (i) is in co-
��

, while the test for (ii) is in�
�� in general and in��

if � is proper (cf. proof of Theorem 5.4). Note that (i) is identical for all candidates.
Thus, the existence of a sequential secure plan can be decided by the conjunction of a problem in

��

and a disjunction of polynomially many instances of a problem in
��� in case (a) and in co-

��
in case (b);
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since
�� � ��� and both

��� and co-
��

are closed under polynomial disjunctions and conjunctionsof
instances (i.e., a logical disjunction resp. conjunction of instances can be polynomially transformed into an
equivalent single instance), it follows that the problem isin

��� in case (a) and in�� in case (b).��� -hardness for case (a) follows from the reduction in the proof of Theorem 5.4. There, a secure,
sequential plan exists for the query� � 	�� iff the plan� � ����� is the secure.

�� -hardness for case (b) is shown by a reduction from deciding,given CNFs� � �������
������

�����
and� � �

����� �
���� ��

��� �� over disjoint sets of atoms
�

and
�

, respectively, whether� is satisfiable
and� is unsatisfiable.

The “���������” section, i.e.�� of
�

contains the following constraints:
����� �� � for all �� ��
������ ���

� �� ������
�
�
�����

�
for all

� � �� � � � ������� �� � for all �� � �
������ � �� ����

�
��
�
���

��
�
�
���

��
�

for all
� � �� � � � ��

Obviously, these rules satisfy the conditions for a plain planning domain. Then, for the query
� � � � 	��,

the only candidate for a sequential secure plan is the empty plan� � ��. As easily seen,� is a secure plan
for

�
iff � is satisfiable (which is equivalent to the existence of some legal initial state) and� is unsatisfiable

(which means that
�

is true in each initial state). This proves the hardness partof (b).
�

We conclude this section with remarking that the constructions in the proofs of the hardness parts of
Theorem 5.4, items (a) and (b) of Theorem 5.5, and item (a) of Theorem 5.7 involve planning problems
that have length fixed to 1. For plan length fixed to 0, these problems have lower complexity (co-

��
-

completeness for the problems in Theorem 5.4 and�� -completeness for the other problems).

6 Related Work

There is a huge body of literature on planning (see [75, 76] for surveys). We will only focus on directly
related research concerning:

� action languages and answer set planning,

� causation,

� planning under incomplete knowledge, and

� planning complexity.

6.1 Action Languages and Answer Set Planning

The language� proposed in this paper builds on earlier work on action languages [24]. The language�,
proposed in [23] provides a rudimentary set of causal statements, which roughly corresponds to� with
complete states in which all rules� are of the form (2) of Section 2.1 with����	�� � �, all actions are
executable by default in any state, and all fluents are inertial. The language� described in [24] is very similar
to �, the difference is that the restriction on rules is relaxed and rules� of the form (2) with���	�� � � are
allowed additionally, allowing for the formulation of ramifications.

The language
�

, proposed in [28] and based on the theory of causal explanation in [49, 42], is the
action language which is closest to�. In

�
not all fluents are automatically inertial – just as in� it
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must be explicitly declared if a fluent has the property of being inertial. As in�, this is achieved by
a macro�������� �� which is defined in

�
as ������ � �� � ����� ��

whereas in� it is defined as������ � �� ��� �
� ����� ��

Furthermore,
�

has (like�) a macro
������� ��

for declaring that a prop-
erty holds by default. In

�
, it stands for������ � �� �

, while in �, it is defined as������ � �� ��� �
�
.

The difference in macro expansion is due to the slightly different semantic definition of causation (discussed
in Subsection 6.1.1 below) and also due to the lack of defaultnegation in

�
. In particular,

������� ��
means

in
�

that
�

is true without the need of further causal support. Finally,
�

also provides a way to specify non-
deterministic action effects. A recent extension of

�
called

��
allows for multi-valued fluents which can be

used for example in order to encode resources [27] and allowsfor a more compact representation of some
problems.

None of the languages mentioned above explicitly supports initial state constraints, nor does any support
explicit executability conditions. Most importantly, their underlying semantics is not based on knowledge
states, so fluents may not be undefined in any state. As a consequence, totality of fluents cannot be expressed
in any of the languages���, and

�
, as each fluent is implicitly total, and default negation is not supported.

As we have seen, an advantage of representation in� is the possibility of representing only what we need
to know, and of forgetting about superfluous knowledge. The price for this flexibility is that one has to be
aware of what knowledge is needed or where to apply “totalization” when encoding a special problem.

The action language�� [67] is a variation of the language�, which was developed for incorporating
sensing actions and to support reasoning about conditionalplans.�� provides value, effect, and executabil-
ity propositions, which correspond to restrictions of initial state constraints, causal rules, and executability
conditions in�, respectively, where most noticeably the����	��-parts are empty and no default negation
occurs. Furthermore,�� provides knowledge determining propositions of form� ���������� �

, which
intuitively means that after executing action�, the value of fluent

�
is known; this corresponds to a condi-

tionalized form of totalization, which can be expressed easily in �. Using this language, particular temporal
projection problems to the state reached after executing a conditional plan are considered, namely, whether
a fluent (or formula) is known, or whether it is decided, i.e.,either known to be true or known to be false.
For that, a transition-based semantics for�� is developed, both in a 2-valued and 3-valued setting. In the
latter, states are modeled as 3-valued interpretations in which fluents can be true, false, or unknown. State
transitions are defined in increasingly sophisticated refinements, by taking into account both fluent values
which can definitely be derived from effect propositions andwhich canpossiblybe derived, by an effect
proposition whose body is not contradicted by the current state. A fluent literal is kept in or added to the
current state only if there is no danger of a possible contradiction; in the worst case, the state is emptied out,
and all fluents become unknown.

The view of state transitions in��, which aims at handling reasoning by cases in possible worlds, is
different from the view in�, where a new knowledge state is determined just by the sanctioned knowledge
about the current state, without considering possible world extensions. To model this in (an extension of)
�, we might complete the knowledge states and consider a set of(evolving) knowledge states rather than
a single one, and reason about them. This, however, is beyondthe current scope of language�, which is
conceived for planning in terms of reaching goal states rather than for reasoning about actions.

6.1.1 Correspondence to language
�

Despite some differences, there is a principal fragment of
�

action descriptions which correspond to similar
� action descriptions, and allow to semantically embed this fragment of

�
efficiently into�. Namely, any

propositional definite
�

action description
���, i.e, set of causal rules having only fluent literals in the heads,
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where rule bodies are conjunctions of fluent literals is semantically equivalent to the� action description��
� � ��	��� �which contains:

(i) fluent and action declarations, for each fluent symbol
�

and action symbol� in
���, respectively;

(ii) ���������� �, for every action symbol� in
���, i.e. all actions are executable;

(iii) ��������� ����� �
, for each fluent symbol

�
in
��� ;

(iv) a causation rule ������ � �� ��� ����� � � � ���� ���� ������, for every rule������ � �� ��� � � � ��� ������ in
��� ; and,

(v) a constraint
��������� ��� � � ��� ��, for every fluent symbol

�
in
��� .

The fluent declarations in (i) and executability conditionsin (ii) are required by the conventions of�.
The statements in (iii) effect

�
’s exogenous assignment of values to the fluents in the initial state, which are

exempted from causation (but must comply with all static rules); the legal initial states of
��

� and
���

coincide. The rewriting of the causation rules in (iv) serves to emulate
�

’s notion of causation, while the
constraints in (v) enforce completeness of a state. The mapping

��	�� amounts, apart from minor variations,
via the translation of� to answer set programming (see [12]) to the translation of the above fragment of
language

�
to answer set programming given in [45]. From the results in [45], we thus obtain the following

correspondence:

Proposition 6.1 For any complete state
, the legal state transitions�
���
�� in the planning domain
��� ��	��� �� correspond 1-1 to the causally explained (i.e. possible) transitions from
 to complete state

� in

��� executing the actions in
�

.

The above translation can be easily generalized to arbitrary definite
�

action descriptions
���, in which

bodies of causal rules� � ������ � �� � ����� � may be arbitrary propositional expressions
�

. By using
disjunctive normal forms

� � �� � � � � � � and
� � �� � � � � � �

, we can easily split up� into
an equivalent set of rules����

� ������ � �� �� ������� , � � ��� � � � ���, � � ��� � � � ���. While this
transformation is, due to disjunctive normal form conversion, exponential in general, we remark that by the
use of auxiliary fluents for labeling subexpressions of

�
and

�
in a standard way, one can polynomially

translate any definite
�

action description into a� action description which is equivalent modulo the auxil-
iary fluents. Thus, in summary, planning in

�
using definite action descriptions is naturally and efficiently

embeddable into�. We can view this syntactic class of
�

as a semantic fragment of�, and any� planning
system can be easily utilized for planning in it as well.

On the other hand,� action descriptions seem not amenable to a simple translation into
�

. The reason
is a semantic difference between the notion of causation in

�
and in�, which is a consequence of a stronger

foundedness principle for causation that is implemented in�, and is in analogy to minimal models versus
supported models of a logic program. In�, only transitions between states are legal which are “foundedly
supported” by the respective causation rules; in more detail, any causation of a fluent must, by starting from
unconditional facts, be derivable by applying causation rules which are recursively founded. On the other
hand,

�
defines causally explained transitions where supportedness but no minimality aspects play a role.

This is exemplified by the encoding of a default������ � �� � �
considered above. In

�
, the state

��� is
causally explained by this rule, while it is not in�:

�
is concluded from the assumption of its truth “by

default;” using negation as failure, this is more familiarly expressed in� by ��� ��. Since
�

adheres in
spirit to supported models and� to minimal models, encoding� action descriptions in

�
is obviously more

involved (e.g., expressing transitive closure of a graph issimple in�, while is more involved in
�

).
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6.1.2 Direct planning using answer sets

In [68, 8] two approaches can be found, in which planning problems are formulated directly using answer
set programming, without an intermediate representation in an action language. These approaches have
an obvious representational deficiency, as recurring patterns and concepts are not summarized in a more
abstract action language. The problems studied in these papers do not contain ramifications, and all fluents
are assumed to be inertial; explicit executability conditions are considered, though. Furthermore, none of
these approaches comprises nondeterministic action effects or incomplete initial states. Default negation is
only used for the implementation of the planning framework and is not allowed for the specification of the
transition system.

6.2 Causation

As discussed in Subsection 6.1.1 above,� employs in a sense a stronger notion of causation than language�
. This notion is not completely new, however, and is in fact available through Turner’s universal logic of

causation (ULC) [71], in which�’s notion of causation is easily captured. ULC is a propositional modal
logic, whose sentences are built using standard propositional connectives and a unary modal operator��,
which intuitively reads as “formula� is caused.”

Models of a formula� in ULC are defined as S5 Kripke models	 � 	
���, where
 is a total interpre-
tation, i.e. a complete state on the set of atoms viewed as fluents, and

�
is a set of complete states including


 with universal accessibility between states; satisfaction
	
��� �� � is defined by recursion through propo-

sitional connectives as usual where
	
��� �� � iff � � 
, for every atom�, and

	
��� �� �� iff
	
� ��� �� �,

for every
� � �. Any model
	
��� of � is also called an
-model of�. Then, a complete state
 is causally

explainedby a set� of ULC formulas, if
	
� �
�� is the unique
-model which satisfies all formulas in� .

The intuition behind this notion of causation is that every fact which is caused obtains, and that every
fact which obtains is caused. The latter is theuniversal principle of causation[49], which is, e.g., obeyed
by the action language

�
.

It is easily seen that also language� complies with the universal principle of causation, albeitin a setting
where incomplete states are admissible. Indeed, any fluent literal

�
which is in the state
� of a legal state

transition
� � �
���
�� in �must be included on behalf of a causal rule� which fires, such that

�
is the head

of � and the����- and���-parts of� are true with respect to
�
.

The notion of causation incorporated by� is easily expressed in ULC, and can be viewed as a general-
ization to a setting with incomplete states. The essence of causation in� are propositional causal rules

������ � �� ��� � � � � �� ���� ���
�� � � � ���� � �

(5)

over fluent literals
�
,
��

, . . .
�

. Any such rule� is equivalent to the ULC formula

�
����

� � � � � � ��� � ��� � � � � � ��� � ��� (6)

which we denote by����
	��. This is an easy consequence of the embedding of (disjunctive) default logic

into ULC given in [71, Section 6] and the fact that the rule (5)can be viewed as a default rule
�� � � � � � �� �

�
����

�� � � � �
�
�� � �

, exploiting that in ULC�	�� � ��� � ��� � ��� holds for any formulas�
�

and��.
For � �� (i.e., no default literals occur in�), this is the semantics of static causal laws from [48], as shown
in [71, Section 7].

More precisely, let us call any complete state
 causally explainedby a set� of rules (5) in�, if 
 is a
legal initial state of the� planning domain�� � �� � ������

, where
�

is empty,
�

defines all fluents in
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� , and
�

consists of all rules��������� �, for � � � . Then, by the correspondence of� rules to default
rules and the results in [71], we have:

Proposition 6.2 A complete state
 is causally explained by a set� of rules (5) in�, if and only if 
 is
causally explained by the theory����

	� � � �����
	�� � � � � � in ULC.

Note that completeness of states can be easily expressed in� (cf. rule (v) in the translation
��	�� in

Subsection 6.1.1). Thus, as for causation,� can be regarded as a semantical fragment of ULC. In turn,
causation in definite

�
(where only fluent literals are caused) can be regarded as a semantical fragment of�

by the translation
��	��. Thus, by composing����

	�� and
��	��, any causal rule

������ � �� ��� � � � � �� (7)

on fluent literals
�
,
��

,. . . ,
�� in

�
is equivalent to the ULC formula

�� � � � � � �� � ��� (8)

this is the translation described in [71, Section 4].

6.3 Planning Under Incomplete Knowledge

Planning under incomplete knowledge has been widely investigated in the AI literature. Most works extend
algorithms/systems for classical planning, rather than using deduction techniques for solving planning tasks
as proposed in this paper. The systems Buridan [39], UDTPOP [57], Conformant Graphplan [66], CNLP
[58] and CASSANDRA [60] fall in this class. In particular, Buridan, UDTPOP, and Conformant Graphplan
can solve secure planning (also called conformant planning) like DLV�. On the other hand, the systems
CNLP and CASSANDRA deal with conditional planning (where the sequence of actions to be executed
depends on dynamic conditions).

More recent works propose the use of automated reasoning techniques for planning under incomplete
knowledge. In [62] a technique for encoding conditional planning problems in terms of 2-QBF formulas is
proposed. The work in [21] proposes a technique based on regression for solving secure planning problems
in the framework of the situation calculus, and presents a Prolog implementation of such a technique. In
[50], sufficient syntactic conditions ensuring security ofevery (optimistic) plan are singled out. While
sharing their logic-based nature, our work presented in this paper differs considerably from such proposals,
since it is based on a different formalism.

Work similar to ours has been independently reported in [25]. In that paper, the author presents a
SAT-based procedure for computing secure plans over planning domains specified in the action language

�

[28, 43, 45]. The main differences between our paper and [25]are (i) the different action languages used for
specifying planning domains:

�
vs�; the former is closer to classical logic, while the latter ismore “logic

programming oriented” by the use default negation; (ii) thedifferent computational engines underlying the
two systems (a SAT Checker vs a DLP system), which imply completely different translation techniques for
the implementation.

6.4 Planning Complexity

Our results on the complexity of planning in� are related to several results in the planning literature. First
and foremost, planning in STRIPS can be easily emulated in� planning domains, and thus results for
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STRIPS planning carry over to respective planning problemsin �, in particular Optimistic Planning, which
by the results in [3, 14] is PSPACE-complete.

As for finding secure plans (alias conformant or valid plans), there have been interesting results in the
recent literature. Turner [72] has analyzed in a recent paper the effect of various assumptions on different
planning problems, including conformant planning and conditional planning under domain representation
based on classical propositional logic. In particular, Turner reports that deciding the existence of a classical
(i.e. optimistic) plan of polynomial length is

��
-complete, and

��
-hard already for length 1 where actions

are always executable. Furthermore, he reports that deciding the existence of a conformant (i.e. secure)
plan of polynomial length is�

�� -complete, and�
�� -hard already for length 1. Furthermore, the problem is

reported�
�� -complete if, in our terminology, the planning domain is proper, and�

�� -hard for length 1 in
deterministic planning domains. Turner’s results match our complexity results, announced in [11]; this is
intuitively sound, since answer set semantics and classical logic, which underlies ours and his framework,
respectively, have the same computational complexity.

Enrico Giunchiglia [25] considered conformant planning inthe action language
�

, where concurrent
actions, constraints on the action effects, and nondeterminism on both the initial state and effects of the
actions are allowed – all these features are provided in our language� as well. Furthermore, Giunchiglia
presented the planning system

�
-plan, which is based on SAT solvers for computing, in our terminology,

optimistic and secure plans following a two step approach. For this purpose, transformations of finding
optimistic plans and security checking into SAT instances and QBFs are provided. The same approach is
studied in [19] for an extension of STRIPS in which part of theaction effects may be nondeterministic.
While not explicitly analyzed, the structures of the QBFs emerging in [25, 19] reflect our complexity results
for Optimistic Planning and Security Checking.

Rintanen [62] considered planning in a STRIPS-style framework. He showed that, in our terminology,
deciding the existence of a polynomial-length sequential optimistic plan for every totalization of the initial
state, given that actions are deterministic, is

��� -complete. Furthermore, Rintanen showed how to extract a
singlesuch plan� which works for all these totalizations, from an assignmentto the variables

�
witnessing

the truth of a QBF
���� �� � that is constructed in polynomial time from the planning instance. Thus,

the associated problem of deciding whether such a plan� exists is in�
�� . Note that intuitively, checking

suitability of a given optimistic plan is in this problem more difficult than Security Checking, since only the
operability of some trajectory vs all trajectories must be checked for each initial state. However, the prob-
lems have the same complexity (

��� -hardness for Rintanen’s problem is obtained by slightly adapting the
proof of Theorem 5.4), and are thus polynomially intertranslatable. Following Rintanen’s and Giunchiglia’s
approach, finding secure plans for planning problems in� can be mapped to solving QBFs. However, since
our framework is based on answer set semantics, the respective QBFs will be more involved due to intrinsic
minimality conditions of the answer set semantics.

Baral et al. [1] studied the complexity of planning under incomplete information about initial states
in the language� [23], which is similar to the framework in [62] and gives riseto proper, deterministic
planning domains. They show that deciding the existence of an, in our terminology, polynomial-length
secure sequential plan is�

�� -complete. Notice that we have considered this problem for plans of fixed
length, for which this problem is�� -complete and thus simpler.

From our results on the complexity of planning in the language �, similar complexity results may
be derived for other declarative planning languages, such as STRIPS-like formalisms as in [62] and the
language� [23], or the fragment of

�
restricted to causation of literals (cf. [25]), by adaptations of our

complexity proofs. The intuitive reason is that in all theseformalisms, state transitions are similar in spirit
and have similar complexity characteristics. In particular, our results on Secure Planning should be easily
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transferred to these formalisms by adapting our proofs for the appropriate problem setting.

7 Conclusion

In this paper, we have presented an approach to knowledge-state planning, based on nonmonotonic logic pro-
gramming. We have introduced the language�, defined its syntax and semantics, and then shown how this
language can be used to represent various planning problemsfrom the planning literature, in various settings
comprising incomplete initial states, nondeterministic actions effects, and parallel executions of actions. In
particular, we have shown how knowledge-states, rather then world states, can be used in representing plan-
ning problems. We then have thoroughly analyzed the computational complexity of propositional planning
problems in�, where we have considered optimistic planning and secure (i.e. conformant) planning. As
we have seen, under various restrictions these problems range in complexity from the first level of the Poly-
nomial Hierarchy to NEXPTIME. In particular, secure planning under fixed vs variable plan length turned
out to be�

�� -complete and NEXPTIME-complete, respectively. Finally,we have compared our work to a
number of related planning approaches and complexity results from the literature.

As we believe, the language�, and in particular the nonmonotonic negation operator available in it,
allows for a more convenient and natural representation of certain pieces of knowledge that are part of a
planning problem than similar languages. In particular, this applies to Giunchiglia and Lifschitz’s important
language

�
, which was the starting point for developing our� language. We have demonstrated that natural

knowledge-state encodings of particular planning problems, e.g. some versions of the “bomb in the toilet”
problem, exist, for which the problem of finding optimistic plans coincides with the problem of finding
secure plans, while for encodings in the literature, which are based on the world state paradigm, this equiva-
lence does not hold — all of the world-state-based encodingsrequire secure planning, which is conceptually
and computationally harder. We point out that the “bomb in the toilet” problems per se are computationally
easy, so it seems that encodings based on world states artificially bloat these problems because of their lack
of allowing a natural statement about fluents being unknown in some state.

Indeed, we have verified experimentally, using theDLV� system, that the knowledge-state encodings of
the “bomb in the toilet” problems reported in this paper run considerably faster than their world-state-based
counterparts. TheDLV� system, which is described in detail in a companion paper [12], implements the
language� on top of theDLV logic programming system [13, 16]. It supports both optimistic and secure
planning (currently, the latter is supported for restricted classes of planning problems). Extensive experimen-
tal evaluation has shown that theDLV� system, even if it was built merely as a front end to another system
and not optimized for performance, had reasonable performance compared to other similar systems, and
even outperformed various specialized systems for conformant planning under the use of knowledge-state
problem encodings. This shows that nonmonotonic logic programming has potential for declarative plan-
ning, and that, in our opinion, further exploration of the knowledge-state encoding approach is worthwhile
to pursue from a computational perspective.

While we have presented the language� and discussed its basic features and advantages, several issues
are currently investigated or scheduled for future work. Asfor the implementation, we have already men-
tioned theDLV� system, which will be improved in a steady effort. An intriguing issue in that is the design
of efficient algorithms and methods for secure planning, since this problem is rather complex even for short
plans (it resides at the third level of the Polynomial Hierarchy). Furthermore, we are currently exploring
a possible enhancement of the planning formalism to computing optimal plans, i.e. plans whose execution
cost, measured in accumulated costs of primitive action execution, is smallest over all plans. An implemen-
tation of optimal planning may take advantage ofDLV’s optimization features which are available through
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weak constraints. Finally, extensions of the language by further constructs such as sensing operators are part
future work.
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[60] L. Pryor and G. Collins. Planning for Contingencies: A Decision-based Approach.Journal of Artificial
Intelligence Research, 4:287–339, 1996.

[61] R. Reiter. On Closed World Data Bases. In H. Gallaire andJ. Minker, editors,Logic and Data Bases,
pages 55–76. Plenum Press, New York, 1978.

[62] J. Rintanen. Constructing Conditional Plans by a Theorem-Prover.Journal of Artificial Intelligence
Research, 10:323–352, 1999.

[63] J. Rintanen. Improvements to the evaluation of quantified boolean formulae. In T. Dean, editor,
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI) 1999,
pages 1192–1197, Stockholm, Sweden, Aug. 1999. Morgan Kaufmann Publishers.

[64] S. J. Russel and P. Norvig.Artificial Intelligence, A Modern Approach. Prentice-Hall, Inc., 1995.

[65] M. Shanahan. Prediction is deduction but explanation is abduction. InProceedings IJCAI ’89, pages
1055–1060, 1989.

[66] D. E. Smith and D. S. Weld. Conformant Graphplan. InProceedings of the Fifteenth National Confer-
ence on Artificial Intelligence, (AAAI’98), pages 889–896. AAAI Press / The MIT Press, July 1998.

[67] T. C. Son and C. Baral. Formalizing sensing actions – A transition function based approach.Artificial
Intelligence, 125(1–2):19–91, 2001.

[68] V. Subrahmanian and C. Zaniolo. Relating Stable Modelsand AI Planning Domains. In L. Sterling, ed-
itor, Proceedings of the 12

��
International Conference on Logic Programming, pages 233–247, Tokyo,

Japan, June 1995. MIT Press.

[69] G. J. Sussman. The Virtuous Nature of Bugs. In J. Allen, J. Hendler, and A. Tate, editors,Readings
in Planning, chapter 3, pages 111–117. Morgan Kaufmann Publishers, Inc., 1990. Originally written
1974.

[70] H. Turner. Representing Actions in Logic Programs and Default Theories: A Situation Calculus Ap-
proach.Journal of Logic Programming, 31(1–3):245–298, 1997.



INFSYS RR 1843-01-11 49

[71] H. Turner. A logic of universal causation.Artificial Intelligence, 113:87–123, 1999.

[72] H. Turner. Polynomial-Length Planning Spans the Polynomial Hierarchy. InProceedings of the 8th
European Conference on Artificial Intelligence (JELIA), S. Flesca, S. Greco, G. Ianni, and N. Leone,
Eds. Number 2424 in Lecture Notes in Computer Science, pages111–124. Springer Verlag, September
2002.

[73] J. D. Ullman. Principles of Database and Knowledge Base Systems, volume 1. Computer Science
Press, 1989.

[74] M. Veloso. Nonlinear problem solving using intelligent causal-commitment. Technical Report CMU-
CS-89-210, Carnegie Mellon University, 1989.

[75] D. S. Weld. An Introduction to Least Commitment Planning. AI Magazine, 15(4):27–61, 1994.

[76] D. S. Weld. Recent Advances in AI Planning.AI Magazine, 20(2):93–123, 1999.

[77] H. Zhang. SATO: An Efficient Propositional Prover. InProceedings of the International Conference
on Automated Deduction (CADE’1997), pages 272–275, 1997.

A Appendix: Further Examples of Problem Solving in
�

This appendix contains encodings of three well-known planning problems, which should further illustrate
the practical use of language�.

A.1 The Yale Shooting Problem

Another example for dealing with incomplete knowledge is a variation of the famous Yale Shooting Problem
(see [33]). We assume here that the agent has a gun and does notknow whether it is initially loaded. This
can be modeled as follows:

������� � ����� �������
������� � ����� ������
������ � ���������� ����� �� �������

���������� ���� �� ��� �������
������ � ���� ����� ������
������ �

������ ����� ������
������ ������ ����� �����

��������� � ����� �������
�����

���� � ����� � 	��

The ����� statement leads to two possible legal initial states:
� � �������� ����� and 
� ��
�
������� �����. With 
� ����� is executable, while it is not with
�. Executing����� establishes

the goal, so the planning problem has the optimistic plan

���������
which is not secure because of
�.
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A.2 The Monkey and Banana Problem

This example is a variation of the Monkey and Banana problem as described in the CCALC manual
(<URL:http://www.cs.utexas.edu/users/mccain/cc/>). It shows that in� the applica-
bility of actions can be formulated very intuitively by using the���������� statement. The encoding in
CCALC uses many������������� statements instead.

In the background knowledge we have three objects: the monkey, the banana and a box.

������	����� ������	�������� ������	��������

Furthermore there are three locations: 1, 2 and 3.
��������	��� ��������	��� ��������	���

In the beginning, the monkey is at location 1, the box is at location 2, and the banana is hanging from
the ceiling over location 3. The monkey shall get the banana by moving the box towards it, climbing the
box, and then grasping the banana hanging from the ceiling. We solve this problem using the following�
program:
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In this representation, the fluents�� and��
�� are used under an economical CWA convention, i.e., if
a legal instance of these fluents is not contained in a state, then it is false. The explicit causation of negative
legal instances of�� serves for terminating inertia.

For this planning problem, the following secure plan exists:

������	���� �����
��	���� ������
���� ������
�������

Let us now deal with incomplete knowledge about the locationof objects. Similar as in the blocksworld
example in Section 3.2, we introduce a new fluent:

�����������������	�� �������� ������	���

Furthermore, we add the following constraints and rules in the initial state:

��������� ��	����� ��	������ � 	
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These constraints guarantee a correct initial state in the following sense: The first three rules guarantee that
in any legal initial state, each object has to be at a unique location. The last rule finally states that in any
initial state where the monkey is on the box, the monkey and the box must be at the same location.

A.3 The Rocket Transport Problem

This example is a variation of a planning problem for rocketsintroduced in [74]. There are two one-way
rockets, which can transport cargo objects from one place toanother. The objects have to be loaded on the
rocket and unloaded at the destination. This example shows the capability of� to deal with concurrent
actions, as the two rockets can be loaded, can move, and can beunloaded in parallel.

The background knowledge consists of three places, the two rockets and the objects to transport:

������	������� ������	��������
�����	������ �����	������� �����	�����
�����	������� �����	����� �����	������

The action description for the rocket planning domain comprises three actions���	����, ����	����
and������	����. The fluents are���	���� (where the rocket currently is),���	���� (where the cargo
object currently is),��	���� (describing that an object is inside a rocket) and

�������	�� (the rocket has
fuel and can move). Now let us solve the problem of transporting the car to the moon and food and tools
to Mir, given that all objects are initially on the earth and both rockets have fuel. We define the following
planning problem:
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The������������� statements exclude simultaneous actions as follows:

� loading/unloading a rocket and moving it;

� moving a rocket to two different places;

� loading an object on two different rockets.

For the given goal, there are two secure plans, where in the first one rocket����� flies to the moon and������ flies to Mir, and in the second one the roles are interchanged:
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