LU EinfUhrung in Wissensbasierte Systeme

Diagnosis and Planning using DLV

Wolfgang Faber, Hans Tompits

Institut far Informationssysteme
Abteilung Wissensbasierte System (184/3)

Technische Universitat Wien

http://ww.kr.tuw en. ac. at

KBS

Overview

Overview

Reminder: What is planning?

Formalising planning
Tour of Language /C
Example: Blocksworld

Invocation of DLVX

KBS

Planning in General

Reminder: What is Planning?

e Starting from a situation
e Try to reach a goal
e By executing some actions

Given the initial situation, a goal, and a domain description, choose the

actions such that the goal is achieved.

KBS

Planning in General

Planning — Example

e | am at Favoritenstral3e at 8:30
e And have to give a lecture at Gusshausstralde at 9:00

e | can pack my lecture material in a bag, exit Favoritenstral3e, walk to

Gusshausstral3e in order to achieve the goal.

Obviously, there could also be other plans (e.g. going by bike if one is

available to me), taking a taxi, etc.

Note also that the plan need not always work (e.g. forgot the lecture material

at home, Gusshausstral3e is locked, etc.)

KBS

Planning in General

Planning — How to formalize?

We can identify 3 main elements:

e Static statements “| am at Favoritenstrafie.”
— Fluents

e Action statements “Walk to Gusshausstrafie.”
—> Actions

e Time-Independent statements “Favoritenstralde is a location.”

—> Background Knowledge

KBS Planning in General

Planning — How to formalize?

Observations:
1. In general, actions need preconditions.
2. Actions usually have effects.
3. Often, fluents remain true when unaffected by actions.

4. Sometimes fluents depend (only) on other fluents.

KBS

Planning in General

Planning — How to formalize?

Examples for observations:

1. Preconditions: E.g. | can leave Favoritenstral3e only if | am currently at

Favoritenstralie.
2. Effects: E.g. entering Gusshausstral3e has the effect of me being there.

3. E.g. if | am at Favoritenstral3e and pack my lecture material in a bag, | am

still at Favoritenstralie afterwards.

4. If lamin EI 5, | am at Gusshausstralle.

KBS

Planning in General

Planning — How to formalize?

Terms for these observations:
1. Qualification Problem
2. Effects (only focus for a long time)
3. Frame Problem, Inertia

4. Ramification Problem, Indirect Effects

KBS

Blocksworld

Example: Blocksworld

Initial: goal:

O

O
@)

d

One clear block can be moved to a clear block or the table at a time.

KB m Blocksworld

Blocksworld: Background Knowledge

initial: goal:

c
F -
I

o

o

® Block names:

a, b, c are blocks.

® Location names:
table is a location.

All blocks are also locations.

KBS

Blocksworld

Blocksworld: Fluents and Actions

initial: goal:
C
C b
b a a
I
Fluents: on(B,L) (block B is on top of location L)

occupied(B) (something is on top of block B)
clear(B) (nothing is on top of block B)
supported(B) (B does not “float”)

Actions: move(B,L) (move block B to location L).

10

KBS

Blocksworld

Blocksworld: Initial State, Goal, Domain Description

initial: goal:
C
C b
b a a
I
Initial state: on(b, table), on(c, a), on(a, table).
Goal: on(c,b), on(b, a), on(a, table).

System Description: source and destination locations must be clear,

Nno concurrent actions,

11

KBS

Language /C

JC— A Logic-Based Action Language

e Action and Fluent Declarations

e Action Costs

e Causation Rules

e Nonmonotonic Negation, Strong Negation
e Conditional Executability

e [nitial State Constraints, Goal

® |nertia

12

KBS

Background Knowledge

Language /C: Background Knowledge

We assume that an Answer Set Program (the background knowledge) exists,

which admits exactly one answer set (and is computable in polynomial time).

In the blocksworld example, it is

bl ock(a). block(b). block(c).
| ocati on(table).
| ocation(L) :- block(L).

It admits one answer set:

{bl ock(a), block(b), block(c), l|ocation(table),
| ocation(a), location(b), location(c)}

13

KBS

Type Declarations

Language /C: Type Declarations

Specify the ranges of the arguments of the fluents and actions, using the

background knowledge.

For fluents On and occupi ed:
on(B,L) requires block(B), location(L).
occupi ed(B) requires bl ock(B).
For action NOVe:

nove(B,L) requires block(B), |location(L).

14

KBS

Action Costs

Action Costs

It is possible to associate costs to actions.

E.g. if moving costs five resources:

nove(B,L) requires block(B), |ocation(L) costs
5.

15

KBS

Causation Rules

Language /C: Causation Rules

Causation rules can be used to model action effects.

Moving a block to a location L causes the block to be on L afterwards:
caused on(B,L) after nove(B,L).

Moving a block to a location L causes the block to be not on any other

location L1 afterwards:

caused -on(B,L1) after nove(B,L), L <> L1.

16

KBS

Causation Rules

Language /C: Causation Rules

Causation rules can model indirect effects (solving the ramification problem).

If some block B1 is on a block B, then B is occupied in the same moment:
caused occupied(B) 1f on(Bl, B).
A block B is clear if it is not occupied:
caused clear(B) 1 f not occupi ed(B).

One causation rule can also have both | f and af t er conditions.

17

KBS

Negation

Language /C: Negation

Default negation (not)
caused cl

Strong negation (-)

caused -on(B,L) after nove(B,L1), L <> L1.

ear(B) 1 f not occupi ed(B).

Difference between default negation and strong negation:

Default negation: not a holds if a is not known

Strong negation: —a holds only if —a is known explicitly

18

KBS

Transitions

Semantics: Transitions

caused fl If Condl after

. ~ A

Sp and sy are states, A a set of actions.
“Executing A after state sy takes you to s7.”
C'ond?2 refers to sy and A, while fl and C'ond refer to s;.

Valid transitions satisfy all causation rules.

19

KBS

Transitions

What is a State? _

Consistent sets of Fluent literals = Fluents which are known to hold (positive

literals) = Fluents which are known not to hold (strongly negative literals)

BRI IDICY
BHOC

consistent interpretations
for atoms fand g

20

KBS

Constraints

Constraints

Constraints are special causation rules:

forbi dden a after b.

Any state satisfyinga aft er Db isillegal. Can also be written as

caused false 1If a after

b.

21

KBS Executability

Executability

Express preconditions actions (solving the qualification problem).
NDV e is executable if neither the moved block B nor the destination L is
occupied, and if B and L differ.

execut abl e nove(B,L) I f not occupi ed(B),
not occupied(L), B <> L.

An executability condition can have both | f and af t er conditions.

22

KBS

Executability

Nonexecutability

Specify conditions under which an action is not executable.

nonexecutable takes precedence over executable!

execut abl e nove(B,L).
nonexecut abl e nove(B, L) if occupi ed(B).
nonexecut abl e nove(B,L) iIf occupied(L).
nonexecut able nove(B,L) if B <> L.

23

KBS

Initial State

Initial State Constraints

To specify valid initial states, the scope of causation rules can be set to apply

only to the initial state.
These rules cannot have an af t er condition!

They are grouped into a block preceded by I ni t 1 al | y: , while causation
rules applying to all states are gruped into a block preceded by al ways: .

initially: forbidden block(B), not
supported(B).

24

KBS

Goal

Goal

A goal is a conjunction of fluents, plus an optional planlength.
on(c,b), on(b,a), on(a,table) ? (3)

A goal may also contain default negated fluents.

25

KBS

Goal

Language /C: Inertia

A fluent may be declared to be inertial:
Inertial on(B,L).

The inertial fluent on(B, L) continues to hold until - on(B, L) is caused.

26

KBS

Goal

Language /C: Parallel vs. Sequential Plans

Can actions be executed in parallel or only one at a time?

In JC, parallel actions are allowed by default. Sequential plans can be

enforced by the keyword:

noConcurrency.

27

KBS

Goal

Plans]|

A chaining of transitions, starting from initial state, arriving at a goal state.

-

28

KBS

Blocksworld: Sample Encoding

Blocksworld in

(Background Knowledge in file bl ockswor | d. dl)

bl ock(a).

bl ock(b).

bl ock(c).

| ocati on(table).

| ocation(L) :- block(L).

29

KBS

Blocksworld: Sample Encoding

fluents:

acti ons:

al ways:

Blocksworld in

(Domain Description in file bl ockswor | d. pl an)

on(B,L) requires block(B), |ocation(L).
occupi ed(B) requires bl ock(B).

nove(B,L) requires block(B), location(L).

execut abl e nove(B, L) if not occupied(B),
not occupi ed(L), B<>L.
Il nertial on(B,L).
caused occupied(B) if on(B1, B).
caused on(B,L) after nove(B,L).

caused -on(B,L1) after nove(B,L), on(B,L1l), L<>L1.

noConcurrency.

30

KBS

Blocksworld: Sample Encoding

initially:

goal :

Blocksworld in /C (cont’d)

(Planning Instance in file sussman. pl an)

on(a,table). on(b,table). on(c,a).

on(c, b),on(b,a),on(a,table)? (3)
initial: goal:

c
F -
I

o

o

31

KBS

Invoking DLV

Invoking DLV*

> dl v -FPopt bl ocksworl d. dl blocksworld. pl an sussnan. pl an
DLV [build BEN May 16 2003 gcc 2.95.4 20011002 (Debi an prerel ease)]

STATE 0: occupied(a), on(a,table), on(b,table), on(c,a)
ACTI ONS: nove(c, tabl e)
STATE 1: on(a,table), on(b,table), on(c,table), -on(c, a)
ACTI ONS: nove(b, a)
STATE 2: on(a,table), on(b,a), on(c,table), -on(b,table), occupied(a)
ACTI ONS: nove(c, b)
STATE 3: on(a,table), on(b,a), on(c,b), -on(c,table),
occupi ed(a), occupied(b)
PLAN: nove(c,table); nove(b,a); nove(c, b)

32

KBS

Invoking DLV

Invoking DLV*

Viewing only the plan: Use grep (on Unix-like systems).

> dl v -FPopt bl ocksworl d.dl blocksworld. plan sussman. plan | grep PLAN
PLAN: nove(c,table); nove(b,a); nove(c, b)

33

KBS Invoking DLV

Invoking DLV*

Setting plan length on the commandline:

> dl v - FPopt bl ocksworl d. dl blocksworld. pl an sussnman. pl an -pl anl engt h=2
DLV [build BEN May 16 2003 gcc 2.95.4 20011002 (Debi an prerel ease)]

There is no plan of length 2.

34

KBS

Invoking DLV

Invoking DLV*

Assume bl ockswor | d_cost . dl isequalto bl ockswor | d. dl ,
except that moving costs 5.

> dl v -FPopt bl ocksworld cost.dl blocksworld. plan sussman. pl an
DLV [build BEN May 16 2003 gcc 2.95.4 20011002 (Debi an prerel ease)]

STATE 0: occupied(a), on(a,table), on(b,table), on(c,a)

ACTI ONS: nove(c, tabl e)

STATE 1: on(a,table), on(b,table), on(c,table), -on(c, a)

ACTI ONS: nove(b, a)

STATE 2: on(a,table), on(b,a), on(c,table), -on(b,table), occupied(a)
ACTI ONS: nove(c, b)

STATE 3: on(a,table), on(b,a), on(c,b), -on(c,table), occupied(a), occupied(b)

PLAN: nove(c,table); nove(b,a); nove(c,b) COST: 15

Only plans with minimal cost are computed!

35

KBS

Further Information

Further Information

http://ww.dl vsystem conf K

36

KBS

Commercial Break

Commercial Break

Praktika, Diplomarbeiten:
e Handbuch zu Action Language C und zu DLV
e Evaluierung und Vergleich mit anderen Systemen
e GUI: Weiterarbeit am Prototypen

e Weiterentwicklung/Optimierung von DLV

® Nicht-Deterministisches Planen: Sichere Plane, Reaktive Plane .

e Anwendungen

37

