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Abstract

This chapter introduces planning and knowledge representation in the
declarative action language K. Rooted in the area of Knowledge Represen-
tation & Reasoning, action languages like K allow to formalize complex
planning problems involving non-determinism and incomplete knowledge
in a very flexible manner. By giving an overview of existing planning lan-
guages and comparing these against our language, we aim on further pro-
moting the applicability and usefulness of high-level action languages in the
area of planning. As opposed to previously existing languages for modeling
actions and change, K adopts a logic programming view where fluents rep-
resenting the epistemic state of an agent might be true, false or undefined in
each state. We will show that this view of knowledge states can be fruitfully
applied to several well-known planning domains from the literature as well
as novel planning domains. Remarkably, K often allows to model problems
more concisely than previous action languages. All the examples given can
be tested in an available implementation, the DLVK planning system.

1 Introduction

While most existing planning systems rely on “classical” planning languages like
STRIPS (Fikes & Nilsson, 1971) and PDDL (Ghallab et al., 1998; Fox & Long,
2003), the last few years have seen the development of action languages which
provide expressive and flexible tools for describing the relation between fluents
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and actions. Action languages have received considerable attention in the Knowl-
edge Representation & Reasoning community and their formal properties (com-
plexity, etc.) have been studied in depth. Less efforts have been spent on how to
use the constructs offered by these languages for problem solving.

In this chapter, we tackle this shortcoming and elaborate on knowledge rep-
resentation & reasoning with action languages which are significantly different
from the strict operator-based frameworks of STRIPS and PDDL.

To that end, we present the planning language K (Eiter, Faber, Leone, Pfeifer,
& Polleres, 2004) via its realization in the DLVK planning system (Eiter, Faber,
Leone, Pfeifer, & Polleres, 2003a).1 We discuss knowledge representation issues
and provide both general guidelines for encoding action domains and detailed
examples for illustration.

The language K significantly stands out from other action languages in that
it offers proven concepts from logic programming to represent knowledge about
the action domain. This includes the distinction between negation as failure (or
default negation) and strong negation: In K, it is possible to reason about states
of knowledge, in which a fluent might be true, false or unknown, and states of
the world, in which a fluent is either true or false. In this way, we can deal with
uncertainty in the planning world at a qualitative level, in which default and plau-
sibility principles might come into play when reasoning about the current or next
state of the world, the effects of actions, etc. This allows different approaches to
planning, including traditional planning (with information and knowledge treated
in a classical way) and planning with default assumptions or forgetting.

2 States, Transitions, and Plans

Intuitively, a planning problem consists of the following task: Given an initial
state, several actions, their preconditions and effects, find a sequence of actions
(viz. a plan) to achieve a state in which a particular goal holds. In the following,
we will describe and discuss these concepts in more detail.

2.1 Fluents and States

Fluents represent basic properties of the world which can change over time. They
are comparable to first-order predicates or propositional assertions. States are
collections (usually sets) of fluents, each of which is associated with a truth-value.

1http://www.dbai.tuwien.ac.at/proj/dlv/K/
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We distinguish between so called world states and knowledge states: The cur-
rent state of the world wrt. a set of fluents F = {f 1, . . . , fn} can be defined as a
function s : F → {true, false}, i.e., a set of literals which contains either f or
¬f for any f ∈ F . From an agent’s point of view, states can also be seen as par-
tial functions s′, i.e., consistent sets of fluent literals, where for a particular fluent
f ∈ F neither f nor ¬f may hold. The state s′ then only consists of the subset of
s which is known; it is a state of knowledge.

Note that this view of the epistemic state of an agent differs from other ap-
proaches where incomplete knowledge states are defined as the set of all possible
worlds an agent might be in (Son & Baral, 2001; Bonet & Geffner, 2000; Bertoli,
Cimatti, Pistore, & Traverso, 2001). Such sets of (compatible) world states are
often referred to as belief states. Knowledge states as described here can, to some
extent, be viewed as assigning a value only to those fluents having the same value
in all states of a corresponding belief state. When working with knowledge states
ones usually does not consider any relationship to world states, though.

Both knowledge states and belief states can (to a certain degree) be modeled
in the language K discussed in this text.

We remark that the terminology concerning knowledge and belief states is
not always consistent in the literature. For example, Son and Baral use the term
“states of knowledge” when they describe a set of reachable worlds in a Kripke
structure (Son & Baral, 2001). This amounts to what we call “belief states” in our
terminology. An in-depth discussion of the terms “knowledge” and “belief” can
be found in (Hintikka, 1962).

A useful generalization is to allow not only Boolean fluents, but also multi-
valued fluents (Giunchiglia, Lee, Lifschitz, & Turner, 2001) which take a certain
value of a specific (finite) domain in each state. A state can then be seen as a set
of functions which assigns to each fluent f a value of its domain D f , Boolean
fluents having the domain {true, false}. Such a multi-valued fluent f with finite
domain Df = {d1, . . . , dn} can be readily “emulated” by a set of Boolean fluents
fd1

, . . . fdn
plus constraints which prohibit concurrent truth of two distinct fdi

, fdj
.

2.2 Actions, Transitions, and Plans

Actions represent dynamic momenta of the world, and their execution can change
the state of the world (or knowledge). Transitions are atomic changes, represented
by a previous state, a set of actions, and a resulting state. Implicitly, such a defi-
nition incurs the simplifying but commonly used abstraction that all actions have

3



unique duration and the assumption that all effects materialize in the successor
state (i.e., a discrete notion of time is employed). Given these assumptions, a plan
is a sequence of n sets of actions, which is backed by trajectories (sequences of
n + 1 states), such that interleaving these states and the sets of actions yields a
chaining of transitions and the last state in the trajectory satisfies the goal.

In order to define the semantics of such transitions, the dynamic properties
of fluents and actions are to be represented using an appropriate formalism. Key
issues for such a formalism are how it deals with

• effects of actions,

• executability of actions (known as qualification problem),

• indirect effects, or interdependencies of fluents (the so-called ramification
problem),

• the fact that usually fluents remain unchanged in a transition (known as the
frame problem (McCarthy & Hayes, 1969; Russel & Norvig, 1995))

As we will see on the example of language K, action languages provide an
expressive means to deal with these issues.

3 Action Language A and Descendants

In the planning community, the development of formal languages is driven by a fo-
cus on special-purpose algorithms and systems, where ease of structural analysis
of the problem description at hand is a main issue. On the other hand, expres-
sive languages for formalizing actions and change in a more general context have
emerged from the field of knowledge representation.

One of the first of these languages was A (Gelfond & Lifschitz, 1993) which
essentially represents the propositional fragment of Pednault’s ADL (Pednault,
1989) formalism, but offers a more “natural” logic-based language with constructs
for the formalization of actions and change rather than a formal description of op-
erators.

A has been extended in various ways, both syntactically and semantically, for
example by constructs allowing to express ramifications, sensing actions, explicit
inertia, action costs, and more.

In the sequel, we will describe the most important features of the language
A and some important extensions thereof. In particular, we will focus on the
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language K (in a separate section), which we will use in the remainder of the
paper.

Action Language A

From the viewpoint of expressiveness A (Gelfond & Lifschitz, 1993) essentially
represents the propositional fragment of Pednault’s ADL, i.e., STRIPS enriched
with conditional effects. Effects and preconditions are expressed by causation
rules

a causes l if F.

where a is an action name, l is a fluent literal, and F is a conjunction of fluent
literals. An action description D consists of a set of such propositions.

It should be noted that (Gelfond & Lifschitz, 1993) and (Gelfond & Lifschitz,
1998) provide differing semantics for A. The semantics of (Gelfond & Lifschitz,
1998) is as follows: States are boolean valuations of fluents. Let E(A, s) be the
set of effects of action A wrt. the state s, i.e. all l of causation rules for A s.t. F is
satisfied in s. Then 〈s, A, s′〉 is a valid transition if E(A, s) ⊆ s′ ⊆ E(A, s) ∪ s.
Intuitively, the successor state s′ must contain all action effects and can contain
fluent values of s (and no other fluent values), i.e. s ′ contains all values of s which
are not overridden by action effects. For each pair (s, A) there is at most one s′.

Example 1 Executability and effects of moving block b to block a in the well-
known Blocks World example could be described in A as follows:

moveb,a causes f if blockeda.
moveb,a causes ¬f if blockeda.
moveb,a causes f if blockedb.
moveb,a causes ¬f if blockedb.
moveb,a causes onb,a.
moveb,a causes ¬blockedc if onb,c.

A does not provide any means for representing executability in an explicit way,
but one can model the fact that for a state s, in which some condition holds, and
an action A no consistent s′ exists such that 〈s, A, s′〉 is a valid transition, ren-
dering action A nonexecutable in such a state s. In the example above, the first
four rules encode a nonexecutability condition for moveb,a by enforcing inconsis-
tency on the auxiliary fluent f. The last two rules encode an unconditional and a
conditional action effect, respectively. 3
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Extensions of A

Language AR A further step in the development of action languages was the
language AR (Giunchiglia, Kartha, & Lifschitz, 1997), which extends A by al-
lowing to model indirect effects by introducing constraints

always F.

where F is a propositional formula. Valid states are those for which all constraints
are satisfied. AR also allows for arbitrary propositional fluent formulae C and F

in causal rules of the form

a causes C if F.

and is capable of modeling nondeterministic actions by statements

a possibly changes l if F.

In addition, AR also allows for multi-valued fluents and non-inertial fluents.
The semantics relies on the principle of “minimal change”: Let Res0(A, s)

denote the set of states in which C holds for any causation rule for A s.t. F holds in
s. Then, 〈s, A, s′〉 is a valid transition if the changes in s′ ∈ Res0(A, s) are subset-
minimal wrt. inertial fluents and nondeterministic action effects. It is important to
note that always constraints do not give causal explanations and therefore not
all indirect effects can be modeled (see Example 2 below).

Language B The language B (Gelfond & Lifschitz, 1998) extends the language
A by so-called “static laws”

l if F.

where l is a fluent literal and F is a conjunction of fluent literals. As opposed to
always in AR the semantics of static laws can give causal explanations.

The semantics of B is based on the principle of “minimal change” and causal-
ity. It incurs the operator CnZ(s), which is defined on a set of static laws Z and a
set of literals s, producing the smallest set of literals that contains s and satisfies
Z. Then, 〈s, A, s′〉 is a valid transition if s′ = CnZ(E(A, s) ∪ (s ∩ s′)), i.e. s′

is stable when action effects E(A, s) and unchanged fluents s ∩ s ′ are minimally
extended to satisfy the static laws.

As an example, consider a simplified version of Lin’s Suitcase (Lin, 1995):
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Example 2 Assume we have a spring-loaded suitcase with two latches. Unlock-
ing a latch turns its position to “up”, and as an indirect effect the suitcase opens
as soon as both latches are up. This can be modeled by the following B action
description:

unlock1 causes up1.
unlock2 causes up2.
open if up1, up2.

Consider an initial state s = {up1,¬up2,¬open} and action a = unlock2. For
s′ = {up1, up2, open} we have CnZ(E(A, s)∪(s∩s′)) = CnZ({up2}∪{up1}) =
{up1, up2, open} = s′, and hence 〈s, a, s′〉 is a valid transition in B. It can be
verified that s′ is the only valid successor state for s and a.

When we would replace the final static law by the AR constraint

always up1 ∧ up2 ⇒ open.

we obtain Res0(a, s) = {s′, s′′, s′′′}, where s′′ = {¬up1, up2, open} and s′′′ =
{¬up1, up2,¬open} (i.e. Res0(a, s) contains all valid states in which up2 holds).
The changed fluents (wrt. s) for s ′ are {open, up2}, for s′′ {open, up1, up2}, and
for s′′′ {up1, up2}, so by subset-minimality 〈s, a, s′〉 and 〈s, a, s′′′〉 are valid tran-
sitions. In s′′′, ¬up1 lacks a causal explanation (Why did it change its value wrt.
s?), and hence 〈s, a, s′′′〉 is intuitively not expected to be a valid transition. Note
that both s′ and s′′′ satisfy the criterion for “minimal change”, but in the semantics
of AR causal explanations among fluents are not considered. 3

Language AK An extension of the action languages AR and A to formalize
sensing actions was proposed by Son and Baral with language AK (Son & Baral,
2001). AK provides propositions of the form a determines f , which intuitively
states that after executing action a, the value of fluent f is known. This concept of
knowledge differs from what we referred to as knowledge states in Section 1 and
which we will further discuss in the following.

Action Language C

The most recent and evolved languages in this line of action languages are the
languages C (Giunchiglia & Lifschitz, 1998) and its extension C+ (Giunchiglia,
Lee, Lifschitz, McCain, & Turner, 2004). C is similar to B in that it distinguishes
between static and dynamic laws. It is in some ways more expressive than B and
AR though, strictly speaking, not a superset of either.
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C action descriptions consist of a set of causation laws c of the form

caused F if G after H. (1)

where the after-part is optional: c is called static if it has no after-part and
dynamic otherwise. These rules are more flexible than the previous approaches in
that F and G are arbitrary propositional formulae over fluent literals and H is a
propositional formula over fluent and action literals. Furthermore, constraints and
qualifications can be expressed via F = f ∧ ¬f which is written as

caused ⊥ if G after H.

These rules encode inconsistency similar to constraints in logic programming.
An action description D consists of static and dynamic causation laws. Its

semantics is given by the following definition of causally explained transitions:
A transition 〈s, a, s′〉 is causally explained according to D if its resulting state

s′ is the only interpretation that satisfies all rules caused in this transition, where
a formula F is caused if it is

• the head of a static law (1) from D such that s′ |= G or

• the head of a dynamic law (1) from D such that s′ |= G and s ∪ a |= H

Note that this allows for nondeterministic actions and valid transitions 〈s, a, s′〉,
〈s, a, s′′〉 with s′ 6= s′′. The definition of causally explained transitions is closely
related to causal theories as defined by (McCain & Turner, 1997) and the under-
lying concept of causal explanation (Lifschitz, 1997).

Remarkably, inertia (i.e., that a fluent remains unchanged unless explicitly
stated otherwise) has to be explicitly encoded in C; frame axioms are not implicit
like in the previously discussed approaches. However, they can be conveniently
expressed by the following macro:

inertial F . ⇔ caused F if F after F.

A further macro that allows for modeling qualifications of actions is

nonexecutable A if G. ⇔ caused ⊥ after A ∧ G.

C and K (which will be presented below) share several distinct features such
as concurrent actions, the intuitive modeling of state constraints, action qualifica-
tions, inertia, non-determinism of actions, and incomplete initial knowledge.

8



Action Language C+

A recent extension of C called C+ allows for multi-valued, additive fluents which
can be used to encode resources and allows for a more compact representation of
several practical problems (Giunchiglia et al., 2001, 2004).

4 Action Language K

We next give an overview of the language K as implemented in the DLVK plan-
ning system, cf. Footnote 1 of Section 1. Details and the formal definition of the
semantics of K can be found in (Eiter et al., 2004). Since we will use K through-
out the rest of this chapter, we consider an example from the well-known Blocks
World domain in detail.

The distinguishing feature of the language K wrt. to the action languages con-
sidered so far is the notion of incomplete states and the ability to reason about
this incompleteness. In particular, a state may either contain a fluent f , its strong
negation –f , or it may say nothing about f . Causal rules may contain default
negated fluent literals not f which hold if either –f holds or nothing is said about
f in the respective state. This is often referred to as negation as failure.

A K planning problem is a pair P = 〈PD, q〉 of a planning domain PD (infor-
mally, the world of discourse) and a query q, which specifies the goal. A planning
problem is represented as a combination of background knowledge Π, provided
as a function-free logic program (possibly with negation) admitting exactly one
answer set, and a program of the following general form:

fluents : FD

actions : AD

always : CR

initially : IR

goal : q

where the first four sections consist of statements, described below, each of which
is terminated by “.”. Together with the background knowledge Π, they specify a
K planning domain of the form PD = 〈Π, 〈D,R〉〉, where the declarations D are
given by FD and AD and the rules R by CR and IR .

The statements in FD and AD consist of fluent and action declarations, respec-
tively. They type the fluents and actions with respect to the (static) background
predicates and have the form

p(X1, . . . , Xn) requires t1, . . . , tm (2)
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where p is a fluent or action predicate of arity n ≥ 0, and the t i are classical literals
(i.e., an atom α or its strong negation –α), over the predicates from the background
knowledge, such that every variable Xi occurs in t1, . . . , tm (As common, upper
case letters denote variables). Only instances of fluents and actions which are
“supported” by some ground instance of a declaration, where the requires part
is true, need to be considered.

The always-section specifies the dynamics of the planning domain in terms
of causation rules of the form

caused f if b1, . . . , bk, not bk+1, . . . , not bl

after a1, . . . , am, not am+1, . . . , not an
(3)

where f is either a classical literal over a fluent or false (representing inconsis-
tency), the bis are classical literals over fluents and background predicates, and
the ajs are positive action atoms or classical literals over fluents and background
predicates. Informally, a rule of the form (3) states that f is true in the new state
reached by (simultaneously) executing some actions, provided that the condition
of the after part is true with respect to the old state and the actions executed on
it, and the condition of the if part is true in the new state.

Both the if- and after-parts are optional. Specifically, both can be omitted
together with the caused-keyword to represent facts.

The always-section also contains executability conditions for actions

executable a if b1, . . . , bk, not bk+1, . . . , not bl (4)

where a is an action atom and b1, . . . , bl are classical literals over fluents and back-
ground predicates. They state that a (well-typed) action is eligible for execution
in a state, if b1,. . . ,bk are known to hold while bk+1,. . . ,bl are not known to hold in
that state.

The initially-section specifies conditions that hold in any initial state (which
is not unique in general). They have the form of causation rules, as described
above, without the after part.

The goal-section, finally, specifies the goal to be reached, and has the form

g1, . . . , gm, not gm+1, . . . , not gn ? (i) (5)

where g1, . . . , gn are ground fluent literals, n ≥ m ≥ 0, and i ≥ 0 is the number
of steps in which the plan must reach the goal.

All rules in IR and CR have to satisfy the safety requirement for default
negated type literals (i.e., literals corresponding to predicates from the background
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Figure 1: A Blocks World instance

knowledge): each variable occurring in a default negated type literal has to occur
in at least one positive type literal or dynamic literal. Note that this safety restric-
tion does not apply to action and fluent literals whose variables are already safe
due to their respective declarations.

Example 3 (Blocks World) Let us consider the Blocks World, one of the best-
known scenarios in AI Planning. Here, the goal is to build stacks of blocks which
are located on a table. The planning problem consists of an initial configuration
of blocks and a (probably partly specified) goal configuration. The only action is
moving a block x to a location l, i.e., onto the table or on top of another block
which is clear, and we allow parallel moves. Figure 1 shows a simple instance.

A K encoding PDbw1 for this domain is shown in Figure 2. This encoding
guarantees serializability, which means that parallel actions are non-interfering
and could be executed in any sequential order; each parallel plan can be arbitrarily
“unfolded” to a sequential plan.

We use three fluents: on(B, L) states that block B resides at location L, flu-
ent blocked(B) indicates that the capacity of a block B to hold further blocks
is exhausted, and fluent moved(B) holds directly after B was moved. There is a
single action move(B, L), which represents moving a block B to some location L

(and implicitly removes it from its previous location). Finally, we add background
knowledge which defines the six blocks and the table as a location:

block(1). block(2). block(3). block(4). block(5). block(6).
location(table).
location(B) :- block(B).

The configurations of blocks shown in Figure 1 are expressed by extending
PDbw1, the program in Figure 2, as follows, yielding Pbw1(l):

initially : on(1, 2). on(2, table). on(3, 4). on(4, table).
on(5, 6). on(6, table).

goal : on(1, 3), on(3, table), on(2, 4), on(4, table),
on(6, 5), on(5, table) ? (l)
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fluents : on(B, L) requires block(B), location(L).
blocked(B) requires block(B).
moved(B) requires block(B).

actions : move(B, L) requires block(B), location(L).

always : caused blocked(B) if on(B1, B).
executable move(B, L) if B<> L.

nonexecutable move(B, L) if blocked(B).
nonexecutable move(B, L) if blocked(L).
nonexecutable move(B, B1) if move(B1, L).
nonexecutable move(B, L) if move(B1, L), B<> B1, block(L).
nonexecutable move(B, L) if move(B, L1), L<> L1.

caused on(B, L) after move(B, L).
caused moved(B) after move(B, L).

caused on(B, L) if not moved(B) after on(B, L).

Figure 2: K encoding for the Blocks World domain PDbw1

Here, l is a non-negative integer representing the plan length. Note that only
positive knowledge is stated for on and blocked; this is because our modeling
assumes that fluents are interpreted under the closed world assumption (CWA)
(Reiter, 1978): If some fluent does not hold, we assume that it is false. Note
that CWA is not a feature in the syntax or semantics of K; it is just a modeling
assumption in this example.

The values of the fluent blocked in the initial state are not specified explicitly;
rather they are obtained from a general rule that applies to any state, and thus is
part of the always-section: the first rule there says that a block B (but not the
table) is blocked if another block is on it. Observe that the fluent moved can
never hold in the initial state.

Next we specify when an action move(B, L) is executable. This is achieved by
a combination of executable and nonexecutable statements defining defaults
and exceptions, respectively. A move is executable, if the positive executability
condition holds and all negative executability conditions fail. In our case, a block
can be moved to any location except onto itself, with several exceptions: (i) blocks
which are blocked cannot be moved; (ii) a block can not be moved to a blocked
block; (iii) a block can not be moved on top of another block which is moved at
the same time; (iv) two different blocks can not be moved to the same block at
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once; and (v) a block can not be moved to two different locations at once.
The effects of a move action are defined by two dynamic rules. The first states

that a moved block is on the target location after the move, and the second states
that moved(B) holds directly after a block B has been moved.

The last rule is an explicit frame axiom for on. It states that blocks which
have not been moved remain where they were before. Such frame axioms are
not included for blocked and moved, because blocked follows as a ramification
from on, and moved is supposed to hold only right after a respective move action
occurred. 3

The semantics of a K planning domain PD is defined in terms of legal states
and state transitions. Informally, a state is any consistent set of ground fluent
literals which respect the typing information. It is a legal initial state, if it satisfies
all rules in the initially-section and the rules in the always-section with empty
after part if causal rules are read as logic programming rules under the answer
set semantics (Gelfond & Lifschitz, 1991). A state transition is a triple 〈s, A, s′〉
where s and s′ are states and A is a set of legal action instances in PD, i.e., action
instances that respect the typing information. A transition is legal, if the action set
A is executable wrt. s, i.e., each action a in A is the head of a clause (4) whose
body is true, and s′ satisfies all causal rules (3) from the always-section whose
after part is true with respect to s and A.

An optimistic plan for a goal g1, . . . , gm, not gm+1, . . . , not gn is a sequence
of action sets 〈A1, . . . , Ai〉, i ≥ 0, such that a corresponding sequence
T = 〈〈s0, A1, s1〉, 〈s1, A2, s2〉, . . . , 〈si−1, Ai, si〉〉 of legal state transitions ex-
ists that leads from a legal initial state s0 to a state si which establishes the goal,
i.e., {g1, . . . , gm} ⊆ si and {gm+1, . . . , gn} ∩ si = ∅. T is called trajectory, and
an optimistic plan of length i is a solution to the planning problem P = 〈PD, q〉,
q has the form (5).

Example 4 (Blocks World (cont’d)) If we instantiate the plan length l by 2 in
Pbw1(l), we get a plan which involves six move actions:

P2 = 〈 {move(1, table), move(3, table), move(5, table)},
{move(1, 3), move(2, 4), move(6, 5)} 〉

By unfolding these steps, this plan gives rise to similar plans of length l = 3, . . . , 6.
For l = 3, we can also find the following plan comprising only five actions:

P3 = 〈 {move(3, table)}, {move(1, 3), move(5, table)}, {move(2, 4), move(6, 5)}〉
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5 Knowledge Representation

We will now consider different aspects of knowledge representation in K and the
DLVK planning system. First, we discuss some particular constructs which facil-
itate expressing some commonly occurring concepts. Subsequently, we focus on
the handling of incomplete knowledge and nondeterminism, differentiating var-
ious scenarios and suggesting techniques for modeling these, by providing ex-
amples. We then briefly cover an extension of K which allows to express action
costs and compute optimal plans and conclude by giving some basic principles for
knowledge representation in K as well as an overview of features and pitfalls.

5.1 Basic Features

Let us recall how the dynamic behavior was specified in the Blocks World program
of Figure 2. The basic structures are causal rules and executability statements.

Direct Action Effects An important use of causal rules is the specification of
direct action effects. If an action a has the effect that a fluent f holds, this can be
expressed by caused f after a.

Qualification Problem The constructs executable and nonexecutable are
used to express and solve the qualification problem, i.e., the problem of deter-
mining whether an action is executable in a particular state. By default an action
does not qualify for execution. One can grant this qualification by specifying
executable clauses (which can be as general as stating that the action is always
executable). Dually, these qualifications can be narrowed down by specifying
nonexecutable conditions. In our example, move is the only action. It is first
made executable for all cases where its first and second arguments differ, and
subsequently cases are excluded by using nonexecutable statements. Thus, K
offers a flexible means for dealing with the qualification problem by offering con-
structs for specifying executability conditions and exceptions to them. Using K,
one can also create more complex hierarchies of exceptions by using auxiliary
fluents and negation as failure, though no first-class syntactic constructs for doing
so are provided in the language.

Ramification Problem Let us now turn to the ramification problem, i.e., the
problem that some fluents may depend on other fluents rather than being directly

14



affected by actions; sometimes this is also referred to as indirect effects. In K, in-
direct effects are also dealt with by causal rules: If a fluent f causes another fluent
g, this is expressed by caused g if f., where the use of if indicates simultaneity.
In Figure 2, the fluent blocked depends directly on the fluent on and indirectly
on the effects of the action move.

Frame Problem The handling of the frame problem, i.e., the fact that fluents
usually do not change their value, unless there is a direct or indirect cause for
a change, leaves room for improvement. Indeed, in the program of Figure 2, we
declare a fluent moved which indicates whether a block was just moved. Addition-
ally, there is a causal law using this fluent which states that the fluent on should
remain unchanged for fluents not affected by a move action. While not incorrect,
this representation is not easily extensible. In particular, for each pair of actions
and fluents at least one such statement should be included to describe unaffect-
edness conditions (Shanahan, 1997), whereas in general, one would rather like to
express default assumption on fluents.

K directly supports inertia, that is the assumption that a fluent remains un-
changed by default. Unlike in other languages, inertia is not implicitly assumed
on all fluents; rather a fluent, say f, has to be declared inertial by inertial f.

What we have left open so far is how to express exceptions to the inertial de-
fault. To this end we consider the concept of strong negation, which we have
briefly mentioned, but not used in an example so far. Concerning an inertial fluent
f, the exception to its inertia is its strong negation –f. (Intuitively, strong negation
–f says that we explicitly know that f does not hold, whereas not f states that we
do not know that f holds and thus can implicitly assume that it does not.) Using
this, inertial f can alternatively be written as caused f if not –f after f. In-
deed, inertial f is implemented as such a macro in DLVK. Contrast this with
the respective macro in the language C, which is caused f if f after f: while
in K, f is assumed to hold in lack of any information to the contrary, C takes the
view that f explains itself after it was true in the previous stage.

Note that in K, inertia may also be defined on a truly negated fluent –f by the
statement inertial –f, to which f acts as exception.

Coming back to the Blocks World domain, we can modify the program of
Figure 2 by eliminating the fluent moved, replacing the pseudo-inertial rule by an
inertial statement, and explicitly stating that a block is no longer on a particular
location if it was just moved away. The resulting program PDbw2 is depicted in
Figure 3. The planning problem Pbw2(l), obtained by replacing PDbw1 by PDbw2
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fluents : on(B, L) requires block(B), location(L).
blocked(B) requires block(B).

actions : move(B, L) requires block(B), location(L).
always : caused blocked(B) if on(B1, B).

executable move(B, L) if B<> L.

nonexecutable move(B, L) if blocked(B).
nonexecutable move(B, L) if blocked(L).
nonexecutable move(B, B1) if move(B1, L).
nonexecutable move(B, L) if move(B1, L), B <> B1, block(L).
nonexecutable move(B, L) if move(B, L1), L <> L1.

caused on(B, L) after move(B, L).
caused –on(B, L1) after move(B, L), on(B, L1), L<> L1.

inertial on(B, L).

Figure 3: Alternative DLVK program for the Blocks World domain PDbw2

in Pbw1(l), has the same plans as Pbw1(l).

Negation and Closed World Assumption We point out that the only negative
information in this encoding is the exception for the inertia of on. Indeed, the
encoding focuses on the relevant information. Any state reachable by a legal
transition only consists of positive fluents on(B, L) and blocked(L) describing
a “relevant clipping” of knowledge. We do not care which blocks are currently
unblocked or wherever a block is not located, and indeed K does not require to
completely specify truth values for all fluents, as in this example the fluents are
interpreted under a closed world assumption (CWA), meaning that fluents which
are not explicitly caused are considered false. Note that the CWA is a modeling
decision (like a programming technique), and indeed the next sections will show
examples where the CWA is not applicable. Also note that one could reify the
CWA by including a rule caused− on(X, Y)ifnoton(X, Y).; doing so eliminates
the computational benefits of CWA, however.

5.2 Planning with Incomplete Knowledge

Let us now focus on domains with inherent nondeterminism and incomplete knowl-
edge. In this context incomplete knowledge is a lack of knowledge in the problem
specification rather than incompleteness resulting from model abstraction, focus-
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ing onto the relevant part of the specification. E.g. in the Blocks World domain
we did not represent some knowledge which was irrelevant for the problem at
hand, resulting in incomplete states; the planning domain was sufficiently speci-
fied, though, and did not admit nondeterminism.

The forms of incompleteness we will consider now are of a more fundamental
nature, as relevant knowledge is missing, usually resulting in nondeterminism. In
particular, we will consider three main sources of nondeterminism:

1. incomplete initial states;

2. nondeterministic actions;

3. nondeterministic evolutions.

We will exemplify each of them in some domain encoding below. Source 1 deals
with scenarios where some aspects of the initial state are unknown. This entails a
comparatively light form of nondeterminism, since it is confined to a single point
in time. The Square domain will serve as an example for such a setting. Source 2
refers to actions with multiple alternative outcomes, where the knowledge about
action effects is incomplete. This form of nondeterminism potentially affects all
points in time. In the Paint example we will tackle such a problem. Finally, for
source 3 the environment itself can change nondeterministically. Affected fluents
may change values without actions causing this change, meaning that there are dy-
namics which are not under the agent’s control. The Ring domain comprises such
evolutions. Summarizing, these three sources are uncertainties on the initial state,
the action effects, and the world evolution, respectively. Since those uncertainties
are not associated with probabilities and thus are not quantified in our framework,
we refer to them as qualitative uncertainties. Indeed this is a common setting, as
probabilities are often hard to obtain or simply unknown.

In the context of nondeterministic planning problems, optimistic plans can es-
tablish the goal in some nondeterministic evolutions, while so-called secure or
conformant plans (Goldman & Boddy, 1996; Smith & Weld, 1998) establish the
goal for all possible evolutions, i.e., the plan is executable from every initial state
and eventually establishes the goal in any possible evolution. K and the DLVK

system allow to specify such domains, as demonstrated below, and support con-
formant plan generation. For details we refer to (Eiter et al., 2004).

17



5.2.1 Square

The Square domain is about self-location of a robot which moves in a wall-
bounded n×n grid. The robot can move in four directions (up, down, left, right)
and its initial position is unknown. Moving towards a wall has no effect, and the
robot stays in its position. The problem of finding a conformant plan for reaching
the corner position (0, 0) is referred to as SQUARE(n) in the literature (Bonet &
Geffner, 2000; Parr & Russel, 1995). SQUARE(4) with one of the possible initial
states – the robot is at position (2, 1) – is illustrated in Figure 4.

?
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0

0 1 2 3

Figure 4: SQUARE(4)

A K encoding for this problem is as follows, where Πsquare consists of facts
index(0). . . . index(n− 1). and next(0, 1). . . . next(n− 2, n− 1).

fluents : atX(P) requires index(P). atY(P) requires index(P).
anywhere.

actions : up. down. left. right.

always : executable up. executable right.

executable left. executable down.

nonexecutable up if down.

nonexecutable left if right.

inertial atX(X). inertial atY(Y).

caused atY(Y) after atY(Y1), next(Y, Y1), up.

caused atY(Y1) after atY(Y), next(Y, Y1), down.

caused atX(X) after atX(X1), next(X, X1), left.

caused atX(X1) after atX(X), next(X, X1), right.

caused –atX(X) if atX(X1), X1<> X after atX(X).
caused –atY(Y) if atY(Y1), Y1<> Y after atY(Y).

initially : total atX(X). total atY(Y).
forbidden atX(X), atX(X1), X<> X1.

forbidden atY(Y), atY(Y1), Y<> Y1.

caused anywhere if atX(X), atY(Y).
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forbidden not anywhere.

goal : atX(0), atY(0)?(n)

Fluents atX and atY represent the current position of the robot in the grid and
are inertial. Another fluent, anywhere, is used to ensure the validity of the initial
state. Four actions move one step up, down, left or right, respectively. They
are concurrently executable, giving the possibility to move diagonally in one step.
Just concurrent execution of {up, down} and {left, right} is not admitted. The
effects of the respective move actions are changes in the horizontal or vertical
coordinates and an invalidation of the previous horizontal or vertical coordinates,
overriding inertia.

For the initial state, we use new language constructs: total f is a macro
representing the two causal rules caused f if not –f and caused –f if not f.
It gives rise to nondeterminism in that both states containing f and –f, respec-
tively, are considered. In the example, total atX(X) and total atY(Y) give
rise to 22n possible initial states, corresponding to all possible assignments of
{atX(i), –atX(i)} and {atY(i), –atY(i)} for 0 ≤ i < n. These statements thus
create many illegal states, e.g. one containing atX(0), . . . , atX(n−1), atY(0), . . . ,
atY(n−1), and one containing –atX(0), . . . , –atX(n−1), –atY(0), . . . , –atY(n−1).

We therefore also use the macro forbidden, which renders states where the
specified condition holds illegal. In our example, we express that atX and atY

hold for at most one horizontal and vertical position, respectively. The fluent
anywhere is used to avoid states in which only –atX or only –atY holds, re-
spectively, in that the case where anywhere is not caused is forbidden. These
conditions narrow the number of legal initial states down to the actual n2 possible
initial positions.

For the problem depicted in Figure 4, the following optimistic plan works if
the initial position of the robot is as in Figure 4 (or anywhere closer the upper
left), but not if the initial position of the robot is further down or right, so it is not
secure:

P1 = 〈 {left, up}, {left}〉

The following, on the other hand, is a three-step secure plan for SQUARE(4):

P2 = 〈 {left, up}, {left, up}, {left, up}〉
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Note that in this domain the only source of uncertainty is the initial state. All
actions are always executable and effects are deterministic. The actions do not
“gain” any knowledge, so a representation exploiting knowledge states is not ben-
eficial. Since the exact initial position is not known, knowledge of the position at
each step is necessary in order to determine the action effects. Encoding all possi-
ble initial world states seems to be the only option for representing this problem.

5.2.2 Paint

Consider the following scenario: A house is to be painted. Several colors for
painting are available, and several painters, e.g. joe and jack. Assume joe suf-
fers from a red-green color-blindness known as “Daltonism”. When we tell him
to paint the house red, we do not know whether it will be red or green when he
is done. Therefore, we have incomplete knowledge about the action effect, result-
ing in a nondeterministic action effect. However, even in this case some facts are
known, e.g. that the house is definitely not blue.

Basic Encoding Let us first consider a simple planning problem in which the
house is initially colored blue and we want it colored green after one time unit. In
the background knowledge we define predicates c(x) for colors x, painter(p) for
persons p to paint, and a predicate conf(c1, c2, p) if painter p confuses the colors
c1 and c2; the latter is symmetric on colors. Furthermore, we use a predicate
confusedBy(p, c) for painters p which confuse a color c; this is conveniently
expressed by a logic programming rule representing projections.

c(blue). c(red). c(green).
painter(joe). painter(jack).
conf(red, green, joe).
conf(C1, C2, A) :- conf(C2, C1, A).
confusedBy(C, A) :- conf(C, C1, A).

An encoding PDpaint of the Paint domain is shown in Figure 5. We only use
one fluent, col, which describes the color of the house, and one action paint,
expressing that a painter is asked to paint the house in a particular color. We de-
clare this action to be unconditionally executable, and the macro noConcurrency

forces actions to be executed sequentially.
We next define action effects. If the painter does not confuse the color he is

asked to paint with, the action has the deterministic effect of the house being in
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fluents : col(C) requires c(C).
actions : paint(C, A) requires c(C), painter(A).
always : executable paint(C, A).

noConcurrency.

caused col(C) after paint(C, A), not confusedBy(C, A).
caused col(C1) if not col(C2), conf(C1, C2, A) after paint(C1, A).
caused col(C2) if not col(C1), conf(C1, C2, A) after paint(C1, A).
inertial col(C).
caused –col(C1) if col(C), C<> C1.

initially : col(blue).
goal : col(green)? (1)

Figure 5: An encoding of the painting domain (PDpaint)

the requested color. If, however, the painter is asked to paint the house in a color
he might confuse with another color, we model a nondeterministic effect.

This is achieved in way which is reminiscent of the causal rules making up the
total macro presented in Section 5.2.1. A pair of causal rules caused f if not g
and caused g if not f gives rise to two alternative successor states, one contain-
ing f and one containing g. In our example, f and g are the fluents col(C1)
and col(C2) where C1 and C2 are the confusable colors. We want these al-
ternative states to occur exactly after a suitable action is performed, so we add
after paint(C1, A) to each of the rules.

Finally, col is declared inertial. Concerning exceptions to inertia, the sit-
uation is different than in the Blocks World or Square domains, because of the
nondeterministic action effect. The rule

caused –col(C1) after paint(C2, A), col(C1), C1<> C2.

would be incorrect if conf(C1, C2, A) holds. We could use the rule

caused –col(C1) if col(C2), C1<> C2 after col(C1).

expressing that –col(C1) holds if the color of the house has really changed. Al-
ternatively, as in Figure 5, we can state that col should be true for only one color,
explicitly deriving –col for all other colors. In that case, negative inertia for –col
can be safely ignored.

It should be noted that the knowledge states reachable from the initial state in
PDpaint are in one-to-one correspondence with the actual world states.

For this planning problem, the following three optimistic plans exist:
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P1 = 〈 {paint(green, joe)}〉
P2 = 〈 {paint(red, joe)}〉
P3 = 〈 {paint(green, jack)}〉

The color-blind painter joe can be told to paint red or green, and we can
hope that he will choose green, but he might also choose red. On the other hand,
jack, who is not color-blind, will paint the house green for sure, and therefore
only the latter plan P3 is secure.

Forgetting In some cases we can avoid nondeterminism by employing a know-
ledge state view. In the Paint domain, nondeterminism arises from the fact that
the exact color of the house after a paint action is not known in some cases, and
two possible world states need to be considered nondeterministically.

However, the language K also allows for a knowledge-oriented representation.
We modify the domain by modeling only definitely known information and omit
the two rules responsible for the nondeterministic choice in PDpaint. We thus no
longer cause the house to be of some color after a color-blind painter has been
asked to paint the house in a color he might confuse. However, we still need to
block inertia, or the house would retain its color. One way to achieve this is to
encode the negative information about the house color, which is known even if
no positive information is available. In the particular example, we know that the
house will not have a color which the painter does not confuse with the asked-for
color. For example, we know –col(blue) after paint(green, joe), and this can
be expressed by the general causal rule

caused –col(C) after paint(C1, A), conf(C1, C2, A), col(C), C<> C1, C<> C2.

Note that executing paint(green, joe) in the modified domain, PDkpaint, en-
codes forgetting parts of the knowledge about col, and that the knowledge states
reachable from the initial state no longer correspond one-to-one with the actual
world states. By applying forgetting techniques, we have managed to transform
the nondeterministic domain PDpaint to a deterministic one. Indeed, the only se-
cure plan when using PDpaint is the single optimistic plan (which is also trivially
secure) when using PDkpaint. In our experience, problems formulated by such
knowledge-oriented encodings are usually much easier to solve (cf. benchmarks
in (Eiter et al., 2003a)), but it is probably not always possible to find a determin-
istic knowledge-oriented encoding for a nondeterministic domain, by complexity
results presented in (Eiter et al., 2003a).
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Forgetting cannot be emulated directly by formalisms which adopt a world
state view. There, leaving fluents open necessarily amounts to a disjunction over
all possible world states (as argued in (Lin & Reiter, 1994)), whereas we can
explicitly distinguish between such a totalization and a true forgetting approach.

Conditional Inertia The encoding PDkpaint has a minor problem, though: It
will not work correctly if the painter confuses all available colors, because in-
ertia is not overridden by the added rule in this case. Indeed, if we remove
c(blue) from the background knowledge of the example above, and the house
is already green in the initial state, i.e. initially : col(blue). is replaced by
initially : col(green)., we get the following (optimistic and secure) plans:

Pa = 〈 {paint(green, joe)}〉
Pb = 〈 {paint(red, joe)}〉
Pc = 〈 {paint(green, jack)}〉
Pd = 〈 ∅〉

of which Pa and Pb are wrong, as they do not necessarily establish the goal.
As already mentioned, the reason for this fault is that no exception to inertia

is provided when paint(green, joe) or paint(red, joe) are executed, and so
col(green) continues to hold, even if it should not. The inertia macro requires
negative knowledge about the inertial fluent to be derived. In situations as the one
above, however, there is no cause for such a negative knowledge.

One approach to solve such a scenario is to create an additional way for pro-
viding exceptions to inertia, by adding explicit conditions under which inertia
applies. We refer to this concept as conditional inertia. In K, we simply extend
the inertial macro by allowing if and after conditions, just as for standard
causal rules.

In the Paint domain, we modify PDkpaint by introducing a new auxiliary fluent
unknowncolor, which explicitly represents the fact that the color of the house is
not known. This fluent holds after a painter has been asked to paint with a color
he confuses and inertia is not applied in that case. The modified domain PDcipaint

is given in Figure 6. The planning problem involving PDcipaint correctly yields
only Pc and Pd as (optimistic and secure) plans.

It turns out that conditional inertia is a versatile concept, which can be used to
encode many domains involving nondeterministic action effects by a deterministic
knowledge oriented encoding.
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fluents : unknowncolor. col(C) requires c(C).
actions : paint(C, A) requires c(C), painter(A).
always : executable paint(C, A).

noConcurrency.

caused col(C) after paint(C, A), not confusedBy(C, A).
caused unknowncolor after paint(C, A), confusedBy(C, A).
caused –col(C) after paint(C1, A), conf(C1, C2, A),

col(C), C<> C1, C<> C2.

inertial col(C) if not unknowncolor.

caused –col(C1) if col(C), C<> C1.

initially : col(blue).
goal : col(green)? (1)

Figure 6: A conditional inertia encoding of the painting domain (PDcipaint)

5.2.3 Ring

Imagine a robot moving in a ring of n rooms which are all connected. There are
two actions fwd and back to move to the previous and next room, respectively.
Each room has a window and the robot can close and lock any window, where
locking is only possible if the window is closed. The goal is to lock all windows.
However, gusts of wind (which are obviously not under the control of the robot)
may change the state of a window from being closed to being open and vice versa.
The robot therefore cannot be sure that a window remains closed after he has
closed it. In the initial situation the position of the robot is unknown and all
windows are open. This domain has been described in (Cimatti & Roveri, 1999)
and is referred to as RING(n). Figure 7 shows an instance with eight rooms.
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Figure 7: RING(8)

The background knowledge models the room layout:

next(r1, r2). . . . next(r7, r8). next(r8, r1).
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room(R):-next(R, R1).

Let us first consider what kind of knowledge is crucial in this domain. The
robot does not have knowledge about its position, but it also has no means of
gaining knowledge in this respect (a similar situation as in the Square domain).
Concerning the closed-state of a window, the robot knows that a window is closed
immediately after having closed it. The robot also knows that a closed window
stays closed after being locking, but nothing else is known about the closed-state
of a window.

According to this analysis, we present an encoding in Figure 8, which uses
a world view for position and a knowledge view for closed. We use fluents
closed and locked to encode whether the window in a room is closed or locked,
respectively. The robot’s position is expressed using position. Fluent unlocked
should hold whenever some windows are not locked, and anywhere is an auxiliary
fluent used for determining legal initial states.

The actions fwd and back represent forward and backward moves by the robot,
close and lock are robot actions for closing and locking the window in the cur-
rent room. Executability of fwd, back, and close is always given, while for lock
the window at the current position must be closed. unlocked holds whenever
some window is not known to be locked. The actions close and lock cause the
window at the current position to be closed and locked, respectively, immedi-
ately after the respective action, and fwd and back cause the respective position
changes.

Fluents locked and position are inertial. The exception for position in-
ertia occurs whenever the robot moves to another position, while for locked no
exception can occur. The fluent closed is not inertial until the respective window
is locked, accounting for the lack and gain of knowledge we have discussed above
by means of forgetting via conditional inertia.

Finally, the initial state is described. As discussed, a knowledge approach
is not feasible for positional information, so we use the nondeterministic macro
total together with appropriate restricting rules to form all initial states contain-
ing exactly one instance of position, similar to the Square encoding. We also
represent the knowledge about all windows being open initially. Finally, the goal
is reached whenever unlocked does not hold after l steps.

The secure plans of this domain for RING(2) and plan-length 5 are

Pf = 〈{close}, {lock}, {fwd}, {close}, {lock}〉
Pb = 〈 {close}, {lock}, {back}, {close}, {lock}〉
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fluents : closed(R) requires room(R).
locked(R) requires room(R).
position(R) requires room(R).
unlocked. anywhere.

actions : fwd. back. close. lock.

always : executable fwd. executable back. executable close.

executable lock if position(R), closed(R).
caused unlocked if not locked(W).
caused closed(R) after close, position(R).
caused locked(R) after lock, position(R).
caused position(R1) after fwd, position(R), next(R, R1).
caused position(R1) after back, position(R), next(R1, R).
inertial locked(R). inertial position(R).
inertial closed(R) if locked(R).
caused –position(R) after fwd, position(R).
caused –position(R) after back, position(R).
noConcurrency.

initially : total position(R).
forbidden position(R), position(R1), R<> R1.

caused anywhere if position(R).
forbidden not anywhere.

caused –closed(R).
goal : not unlocked?(l)

Figure 8: Ring domain (PDring)
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and for RING(n) and plan-length 3n − 1 two analogous plans exist.
It is possible to easily switch from a knowledge view to a world view on

closed by adding a causal rule

total closed(R).

to the always-section, creating nondeterminism for each step in which some
closed state is not known.

5.3 Action Costs

In (Eiter, Faber, Leone, Pfeifer, & Polleres, 2003b) we have defined an extension
of the language K called Kc which allows to assign costs to actions. For instance,
in Kc one can assign a cost of 1 (representing e.g. energy resources consumed by
the action) to each move action by modifying the declaration of move in PDbw2 of
Figure 3 to read

actions : move(B, L) requires block(B), location(L) costs 1.

The plans for a Kc planning problem are defined as those plans which min-
imize the sum of the respective costs of all actions in the plan. For the Blocks
World planning problem from Section 4 and plan length 3, we obtain two plans
with five actions, but none of the plans with six actions considered originally.

Pa = 〈{move(3, table)}, {move(1, 3), move(5, table)}, {move(2, 4), move(6, 5)}〉
Pb = 〈{move(3, table), move(5, table)}, {move(1, 3)}, {move(2, 4), move(6, 5)}〉

Cost statements may contain integer arithmetics supported by the underlying
DLV system. They may also contain the designated constant time, allowing for
dynamic cost assignment: time will evaluate to the time-step in which the par-
ticular action instance occurs. This provides a flexible framework for performing
qualitative optimization planning.

Using this machinery, it is possible to solve several generic problems (Eiter
et al., 2003b): finding (α) plans with minimal cost for a given number of steps
(cheapest plan), (β) plans with minimal time steps (shortest plan), (γ) plans which
are the shortest among the cheapest, and (δ) plans which are the cheapest among
the shortest.

One might think that assigning costs to fluents in a similar manner would be
useful as well. However, this would trigger semantic issues, since plans may have
more than one supporting trajectory, i.e., sequences of states serving as a witness
for the viability of the plan. These different trajectories could then have differ-
ent fluent costs assigned, and one would have to apply some sort of aggregation
(maximum, arithmetic mean,...).
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5.4 Features and Pitfalls

After having presented multiple aspects of knowledge representation in K by
means of several examples, we now summarize and discuss the features (and pit-
falls) of encoding domains in this language in more detail.

5.4.1 Knowledge States

We have seen that default negation and the concepts of K provide a flexible tool
for knowledge representation in the field of planning, but using negation as fail-
ure also involves some subtleties via the full freedom of normal logic programs
to describe state constraints. In analogy to the term “Planning as Satisfiability”
(coined by Kautz and Selman) our approach may well be conceived as “Planning
as Answer Set Programming” or even “Answer Set Programming as Planning”, to
some extent.

K and Kc provide more than classical action languages where transitions are
defined between completely defined world states or sets of such states (i.e., belief
states). In fact, the knowledge state view implicit to the semantics of K requires
the user to know about basic principles of logic programming and especially how
to deal with non-monotonic (default) negation.

In this context we can state two major modeling principles:

Representation Principle 1: Exploit Closed World Assumption.

Representation Principle 2: Forget unnecessary information rather than keep
complete state information.

Both of these principles should also be viewed in the light of “elaboration
tolerance” in the sense of (McCarthy, 1999). Flexible frameworks such as K leave
much of the responsibility how far domain- and problem-specific knowledge is
exploited up to the user.

Knowledge state encodings somehow relieve the user from encoding every
possible constraint on legal states of a particular domain by simply leaving “irrel-
evant” information open. We have discussed the applicability of the knowledge
state view vs. the world state view and the concept of forgetting about fluents with
illustrative examples in the Paint and Ring domains.

In order to design planning domains in K, one has to be aware of the inherent
non-monotonicity of the knowledge state view. Informally, a transition 〈s, A, s′〉
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in K can be viewed as a transition between (answer sets of) normal logic programs
where causation rules of the form

caused f if b1, . . . , bk, not bk+1, . . . , not bl

after a1, . . . , am, not am+1, . . . , not an.

form a logic program Πs′ consisting of all rules r

f :- b1, . . . , bk, not bk+1, . . . , not bl.

such that {a1, . . . , am} ∈ s ∪ A and {am+1, . . . , an} ∩ (s ∪ A) = ∅. Πs′ then has
all legal successor states for s and A as its answer sets.

Another example shows the strength of this logic programming view in plan-
ning: Modeling transitive closure in K is more concise and, in our opinion, more
natural than in similar formalisms.

5.4.2 Transitive Closure

Expressing transitive closure in language K is straightforward because of its logic
programming-based semantics. Let us assume there is a fluent on(B, L) which
represents whether a block B resides on location L in the Blocks World.

Now, we want to define causation rules for a fluent above(B, L) which states
that block B resides somewhere above location L. This can be modeled by static
rules as follows:

caused above(B, L) if on(B, L).
caused above(B, L) if on(B, B1), above(B1, L).

In K these two rules sufficiently describe the values of fluent above, while in the
action language C we would need to explicitly add negative information on above.

5.4.3 “Hidden” Default Negation in Macros

As we have already seen in the previous examples, default negation (not) allows
a great degree of freedom and flexibility in the encoding of planning domains.
However, default negation and nondeterminism might sometimes not be obvious
when dealing with K macros. For instance, inertial statements can interfere
with other rules using default negation. Consider for instance the rules

caused –f if not f.

inertial f.
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in a state s = {f}, with the empty action set A = ∅. Here, there are two legal
transitions 〈s, A, {f}〉 and 〈s, A, {–f}〉.

Indeed, both statements encode default reasoning, and after a state containing
f these defaults are in conflict. Since no further priority information is available,
this gives rise to two alternatives. Priorities can be added in different ways; a sim-
ple method to prefer the alternative in which –f is selected, follows (Lukaszewicz,
1990): We introduce a fluent –f

a
, add a rule

caused –f
a
if not f.

and replace the original inertial rule with conditional inertia

inertial f if not –f
a
.

More sophisticated incorporation of priorities and preferences in general is a sub-
ject for further research. In particular, it might be possible to employ defeasible
logic (Antoniou, Billington, Governatori, & Maher, 2001) or logic programs with
preferences (Brewka & Eiter, 1999) for representing such concepts.

6 Comparison to STRIPS, ADL, and PDDL

In this section, we briefly compare K to STRIPS, ADL, and PDDL; a detailed com-
parison of K to many action languages can be found in (Eiter et al., 2004; Polleres,
2003).

As for STRIPS (Fikes & Nilsson, 1971), it is not hard to see that this formalism
can be embedded into K, as discussed in (Eiter et al., 2004). The same is possible
for ADL (Pednault, 1989), since an extension by conditional effects is straightfor-
ward. We remind that propositional ADL has the same expressiveness as action
language A.

PDDL (Ghallab et al., 1998) emerged as a de-facto standard modeling language
for classical planning, fostered by the variety of planning tools and algorithms that
have been developed in the last decade. PDDL significantly differs from STRIPS

and ADL; it stands for a modular family of languages rather than a single language,
defined by so called requirements. Any planning system accepting PDDL might or
might not implement these requirements. STRIPS and ADL amount to particular
fragments of PDDL, which as discussed are expressible in K.

PDDL version 1.2 comprises a number of requirements including value ranges
comparable to typing in K, domain axioms, disjunctive preconditions of actions,
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and quantified preconditions, which can be emulated in K like further ones. Eval-
uation of arithmetic expressions in PDDL can, to some extent, also be emulated in
K within the restrictions of DLVK integer arithmetics.

Noticeable for the concern of K are the PDDL requirements :open-world
and :true-negation, by which the user can flexibly decide whether CWA
should be applied or not for a particular fluent. These requirements can be eas-
ily realized in K, given the logic programming flavored semantics of K and the
totalization construct.

However, other requirements such as compound tasks, which are definable
with :action-expansions in PDDL, are beyond the scope of K. The tech-
niques of Dix et al. (2002) to encode Hierarchical Task Network (HTN) Planning
in Answer Set Programs might serve as a starting point for providing similar ca-
pabilities.

Actions are first-class citizens in PDDL and syntactically tightly coupled with
their preconditions and effects. Here, preconditions can be modeled as formulae
over fluents and effects can be modeled as conjunctions of fluent literals. Note that
disjunctive effects are prohibited since in its basic form, PDDL does not deal with
nondeterminism. For instance, the move action of Example 3 could be written as
a PDDL operator as follows:

(:action move
(:parameters ?b - block ?from ?to - loc)
(:preconditions (and (not (blocked ?b))

(not (blocked ?to))
(on ?b ?from)
(not (= from? to?))))

(:effect (and (not (blocked ?from))
(on ?b ?to)
(when (not (= ?to table))

(blocked ?to)))))

This description, however, does not contain information about constraints on
parallel move actions. An important note here is that the majority of PDDL plan-
ners only deal with sequential planning and do not consider parallel actions. Since
operator preconditions are not allowed to include action predicates, constraints on
parallel actions can not be expressed directly, as with the (non)executable state-
ments in K. Still, some PDDL based planners deal with parallel actions by auto-
matically determining pairs of “mutex” actions: they automatically detect actions
with interfering preconditions/effects and do not allow these to occur in parallel.

31



In a formalism like PDDL, with only conjunctive effects, these “mutex” action
pairs can easily be determined. For instance, the Graphplan (Blum & Furst, 1997)
algorithm and its descendants make use of this to compute parallel plans for PDDL

domain descriptions.
However, mutex detection is not enough for the example above. In order to

state under which conditions parallel moves are allowed, one would need to add
state constraints which prohibit states where one block has two locations at once.
Such state constraints can be expressed in PDDL using the :safety-constraints
and :domain-axioms requirements. Prohibiting that a block resides at two dif-
ferent locations at once can be formulated as follows:

(:safety forall(?b - block ?l1 ?l2 - loc)
(or (= ?l1 ?l2)

(not (and (on ?b ?l1) (on ?b ?l1)))))

Our K formulation to avoid such states, by directly forbidding respective ac-
tions to occur in parallel, is somewhat orthogonal to this. However, K also allows
for expressing domain axioms and constraints as in PDDL by the use of static
causation rules and the forbidden statement.

Action languages like K offer a more flexible description of transitions than
the operator-based framework of PDDL. On the other hand, automatic determi-
nation of mutex pairs in K might not be as easy as in the Graphplan algorithm.
We consider the more flexible handling of concurrent actions in K as a language
feature.

PDDL has evolved to version 2.1 (Fox & Long, 2003) recently, which adds
additional levels introducing for instance durative actions, continuous and/or con-
ditional effects, etc. This is currently not expressible in K (or Kc) in a straightfor-
ward way. Interestingly, the requirements :open-world and :true-negation
from version 1.2 have been dropped; this may be explained by the lack of broad
support by current planning systems adhering to PDDL. Incomplete knowledge
and nondeterminism hence are not addressed in this version of PDDL. Thus,
for declarative planning in such settings, one has currently to resort to other for-
malisms and systems, such as K and DLVK. Noticeably, this shortcoming of PDDL

has been realized and steps towards extensions for incomplete initial state speci-
fications and nondeterminism have been made in the last “Workshop on PDDL”
held at the “International Conference on Automated Planning and Scheduling
(ICAPS’03)”. For instance, the language NPDDL (Bertoli et al., 2003) accepted
by the MBP planner (Bertoli et al., 2001) includes such extensions.
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From a general modeling perspective, we feel that action languages like K
are more versatile for describing actions and transitions than PDDL; they allow
to express relationships among actions and fluents in a rule based language with
natural reading, rather than in an operator-centric syntax. However, one has to
bear the different objectives of these languages in mind. PDDL originally has been
designed as a domain specification language for the International Planning Com-
petition (IPC) based on ADL, and is conceived as a generic language representing
the features of various special-purpose planners. Extensions to it are made very
cautiously to maintain a widely accepted standard. Furthermore, the strict set-
ting of an operator-based PDDL syntax is advantageous for a structural analysis
of planning domains, and provides a better handle for optimizations and tailor-
ing search heuristics, which is more of a concern for PDDL-based systems than
natural problem representation.

7 Summary and Perspectives

In this chapter, we have considered a logic-based approach to planning based on
action languages, which have been developed in the area of Knowledge Repre-
sentation and Reasoning. Various such languages have been proposed in the lit-
erature, offering different capabilities and expressiveness. Compared to familiar
planning formalisms like STRIPS or PDDL, which have an operator-centric view,
action languages take a broader perspective in describing the planning world in
terms of a theory, in which action execution and fluent values can be more flex-
ibly interrelated than in an action-precondition-effect setting. At the same time,
action languages have a clear formal semantics with a logical underpinning, which
is supportive to considering reasoning tasks on actions theories and also provides
a basis for implementations by exploiting efficient reductions to solvers for related
logic formalisms.

Advanced action languages, such as C or K, allow to deal with features like
non-determinism, qualifications, ramifications, concurrent action execution, and
incomplete information about states. The language K in particular, which we
have discussed in more detail, is semantically based on logic programming and
provides constructs from there such as negation by default, which allow for a
flexible and natural modeling of incomplete information and non-determinism in
planning domains. Exploiting these constructs, frame axioms, non-deterministic
action effects, and other concepts can be modeled easily. By defining suitable
macros for such concepts, one can allow for a more natural-language like, intuitive
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description of planning domains.
As a distinguishing feature with respect to similar languages, K supports a

knowledge state view of state descriptions, where the values of fluents also might
be unknown, rather than a classical world view, where each fluent must either
be true or false. This view can be fruitfully exploited to handle indeterminism
and nondeterminism in planning domains. In particular, we have identified three
main sources of these, all of which are beyond the modeling capabilities of clas-
sical planning languages: Incomplete initial knowledge, nondeterministic action
effects, and nondeterministic evolutions of the environment by uncontrollable, ex-
ogenous events.

We have exemplified the modeling of all these forms of non-determinism in K
by illustrative examples. As shown on them, we may achieve a beneficial model-
ing of the domain of discourse by adopting the knowledge state view, where only
a relevant “clipping” of the world is modeled. As discussed, conditional formu-
lations of frame axioms can be used in our language to model “forgetting” about
particular fluent values.

A fully operational implementation of K, the DLVK system, is available at

http://www.dbai.tuwien.ac.at/proj/dlv/K/

along with the examples in this text and many more, some of which are rather
intricate and show further capabilities of the language, e.g. computing optimal
plans. The reader is encouraged to browse them and to experiment with the sys-
tem, setting up also new domains.

As shown by the results on using action languages as a host for solving plan-
ning problems so far, this is an interesting direction towards semantically rich and
expressive formalisms for declarative planning. With the advent of solvers like
DLV (Eiter et al., 2000) or SMODELS (Niemelä & Simons, 1997), to which these
formalisms can be mapped in the spirit of satisfiability planning (Kautz & Sel-
man, 1992), implementations have become available (Eiter et al., 2003a; Ferraris
& Giunchiglia, 2000; McCain, 1999) which make experimentation and practical
problem solving possible. The strength of these systems is at this time their mod-
eling power rather than efficiency and scalability; improvements on these issues
remain subject for future research. Nevertheless, DLVK performs surprisingly well
already in its current implementation. Compared with other planning systems
tailored for conformant planning, DLVK outperforms several of them as shown
in (Eiter et al., 2003a; Cimatti, Roveri, & Bertoli, 2003), particularly when using
knowledge state encodings.
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For future development of planning systems based on action languages, we see
different perspectives. On the computational side, the current systems do not em-
ploy sophisticated, goal-oriented heuristics for pruning the search space. Rather,
the search is guided by built-in heuristics of the underlying logic solvers, which
are geared towards problem solving in general and thus not always work best on
the particular input to which planning problems are mapped. Hence, there is high
potential for improvements. It remains to research more efficient mappings of
action languages to logic solvers, which employ for the purpose of planning suit-
able heuristics to control the search at the level of the mapping, in reconciliation
with the heuristics employed by the underlying logic solver. The experimentation
with different heuristics for answer set solvers like DLV and SMODELS is still un-
der research, and input from planning applications may guide the development of
heuristics beneficial in practice.

Another perspective is further extension of action languages and resultant
planning frameworks to increase expressivity. While DLVK implements secure
plans (Eiter et al., 2003a; Polleres, 2003), it currently does not support sensing ac-
tions and conditional plans. Sensing actions may be emulated to some extent by
a suitable encoding of the action domain, but availability as first class citizens in
the language would be desirable. Conditional plans allow for respecting any con-
tingency by branching on conditions over the current state (Warren, 1976; Peot &
Smith, 1992), and thus are more general than secure plans. However, their size
can be exponential in general, and thus their generation is provably intractable.
Feasible restrictions must be identified in order to apply our logic-programming
approach to this kind of planning; (Son et al., 2001, 2004) present some results
in this direction. An extension in a different dimension, towards a very general
formalism for planning with uncertainty, is by probabilistic knowledge, such that
both qualitative and quantitative uncertainty can be orthogonally combined within
one language; (Eiter & Lukasiewicz, 2003) presents an approach for C, which can
be readily adapted to K.

A further interesting perspective for planning via action languages emerges
from their rooting in Knowledge Representation and Reasoning, which by their
logic-based underpinnings are amenable to problems studied in this area such as
Diagnosis, Belief Revision, or Knowledge Base Update. Methods which have
been developed for accomplishing these tasks may be applied in order to reason
about plan failures and for developing suitable recovery strategies, cf. (Giacomo,
Reiter, & Soutchanski, 1998). (Dix et al., 2003) is an initial step of using DLVK

to this end in an execution monitoring framework. An agent might be situated in
a dynamic environment, in which changes happen which are not reflected appro-
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priately in the domain theory. Here, methods and techniques from belief revision
and knowledge base update might be applied in order to revise the action theory
of the planning domain. The logic-based setting of action languages eases this,
while this would be much more involved for traditional planning approaches.

Finally, since most action languages have been conceived for reasoning about
actions and change in general, implementations may allow for expressing a broader
range of problems beyond traditional planning, like the CCALC system (McCain,
1999) implementing C. Also DLVK can, by the nature of its implementation, be
adapted to accept more general than traditional planning goals (e.g., that in ad-
dition to the goal, certain conditions never hold along an execution). This holds
potential for providing planning systems which can easily handle extended goals
whereas classical planning systems cannot.
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