| NF SY S
RESEARCH
REPORT

Institut fur Informationssysteme
Abtg. Wissensbasierte Systeme
Technische Universitat Wien
Favoritenstralle 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax; +43-1-58801-18493
sek@kr.tuwien.ac.at
www.kr.tuwien.ac.at

7 AT AR
. ﬁf.[if.l.‘._l_.’.]f.);i]".l".[ﬁ, Lk

INSTITUT FUR INFORMATIONSSYSTEME

ABTEILUNG WISSENSBASIERTESYSTEME

A LOGIC PROGRAMMING APPROACH TO
KNOWLEDGE-STATE PLANNING, Il: THE
DLV SYSTEM

Thomas Eiter Wolfgang Faber Nicola Leone

Gerald Pfeifer Axel Polleres

INFSYS RESEARCHREPORT1843-01-12
DECEMBER2001; OcTOBER2002; APRIL 2003

TU

TECHNISCHE UNIVERSITAT WIEN

INFSYS RESEARCHREPORT
INFSYS RESEARCHREPORT1843-01-12, BECEMBER2001; OCcTOBER2002; APRIL 2003

A LOGIC PROGRAMMING APPROACH TOKNOWLEDGE-
STATE PLANNING, II: THE DLV SYSTEM

Thomas Eitef, Wolfgang Fabér, Nicola Leoné, Gerald Pfeifet, Axel Polleres

Abstract. In Part | of this series of papers, we have proposed a new-lmaged planning language,
calledC. This language facilitates the description of transitibetwveen states of knowledge and
it is well suited for planning under incomplete knowledgexngthelessiC also supports the repre-
sentation of transitions between states of the world (iades of complete knowledge) as a special
case, proving to be very flexible. In the present Part Il, wecdbe theDLV® planning system,
which implementsC on top of the disjunctive logic programming systé&hV. This novel plan-
ning system allows for solving hard planning problems,udahg secure planning under incomplete
initial states (often calledonformant planningn the literature), which cannot be solved at all by
other logic-based planning systems such as traditioniafisdiility planners. We present a detailed
comparison of th®LV system to several state-of-the-art conformant plannistesys, both at the
level of system features and on benchmark problems. Oultsesdicate that, thanks to the power
of knowledge-state problem encoding, heV* system is competitive even with special purpose
conformant planning systems, and it often supplies a margalsand simple representation of the
planning problems.

Keywords: deductive planning system, disjunctive logic programmiagswer sets, knowledge-
states, incomplete information, conformant planninguseplanning.

nstitut fur Informationssysteme, Abteilung Wissensbes Systeme, Technische Universitat Wien,
FavoritenstraBe 9-11, A-1040 Vienna, Austria. E-médiiter, faber, axél@kr.tuwien.ac.at.

2Department of Mathematics, University of Calabria, 87020i&e (CS), Italy. E-mail: leone@unical.it.

SInstitut fir Informationssysteme, Abteilung Datenbamkead Al, Technische Universitat Wien,
Favoritenstrae 9-11, A-1040 Vienna, Austria. E-m§iffeifer} @dbai.tuwien.ac.at.

Acknowledgements This work was supported by FWF (Austrian Science Funds)eurtde projects
P14781-INF, and Z29-N04 and the European Commission undgrqh FET-2001-37004 WASP and IST-
2001-33570 INFOMIX.

Preliminary results of this paper appeared in “Planningeuridcomplete Knowledge Proceedings of the
First International Conference on Computational Logic (2000), London, UK, July 24-28.W. Lloyd et
al., editors, Lecture Notes in Computer Science 1861, §prir2000, pp. 807-821.

Copyright®© 2003 by the authors

INFSYS RR 1843-01-12

Contents

Introduction

The Planning SystenDL VX

2.1 Planning Problems iDLVE L

2.1.1 SecurePlanning e e
2.1.2 Knowledge-State vs. World-State Planningo
2.2 System Architecture. L e e e e
2.3 UsingDLVE

Transforming Optimistic Planning to Answer Set Programming
3.1 Disjunctive Logic Programming e e e
3.2 Transformatiofp(P)

Secure planning

4.1 false-committed Domains and Security CheSk'y
4.2 Serial Planning Domains and Security Ch&8€s o
4.3 Incomplete Security Checking L e

Comparison and Experiments

5.1 Overview of Compared SysStems L e e
5.1.1 CCALC e
5.1.2 CMBP . . . e
5.1.3 CPlan e
5.1.4 GPT . .
515 SGP . . e e
5.1.6 Specific systemfeatures e e

5.2 Benchmark ProblemsandEncodings @ e
5.2.1 Blocksworld e e
5.2.2 BombintheToilet e
5.2.3 Encodingsused e e e e

5.3 Benchmark Results and DiSCUSSION 0 e e e
5.3.1 Testenvironment e e e e e
5.3.2 Representation e
5.3.3 Performance e e
5.3.4 Effect of concurrent actions and defaultnegation
5.3.5 Summary of experimentalresults Lo

Further Related Work and Conclusion

6.1 FurtherRelated Work e e
6.2 SUMMAIY o e e e e e e e e
6.3 Furtherand Future Work e e

Appendix: Definition of Language K

Al BasiCSYyNntax
A.1.1 Planning Domains and Planning Problems

A2 SemMaNntiCS o e e e e
A.2.1 Statesand Transitions e e
A2.2 Plans e

A3 MaCroS o e

I INFSYS RR 1843-01-12

B Problem Encodings for Other Systems 46
B.1 Blocksworld problem P1forCMBP e 46
B.2 Blocksworld problem PLforGPT e 47

C DLVX Encodings of BMTUC(p,) 48
C.1 World-stateencoding e 48

C.2 Knowledge-state encoding e e 49

INFSYS RR 1843-01-12 1

1 Introduction

The need for modeling the behavior of robots in a formal wahttethe definition of logic-based languages
for reasoning about actions and planning, such as [33, 13,&45, 17, 26, 18, 20]. These languages allow
for specifying planning problems of the form “Find a sequen€ actions that leads from an initial state to
a goal state.”

A state is characterized by the truth values of a number ohffyelescribing relevant properties of the
domain of discourse. An action is applicable only if somecpraitions (formulas over the fluents) hold
in the current state; executing this action changes theoustate by modifying the truth values of some
fluents. Most of these languages are based on extensiorassial logics and describe transitions between
possible states of the worlathere every fluent necessarily is either true or false. Hewewbots usually
do not have a&omplete viewof the world. Even if their knowledge is incomplete (a numbgfluents may
be unknown, e.g., whether a door in front of the robot is optvdy must take decisions, execute actions,
and reason on the basis of their (incomplete) informatidmaad. For example, if it is not known whether a
door is open, the robot might do a sensing action, or decigeish back.

In [5, 6], we have proposed a new languadie(where K should remind of states dhowledge) for
planning under incomplete knowledge. This language is flexjble, and is capable of modeling transitions
between states of the world (i.e. states of complete knayeleand reasoning about them as a particular case.
Compared to similar planning languages, in particular Ghigflia and Lifschitz’ action language[17, 26,
29], K is closer in spirit to answer set semantics [12] than to @abtogics. It supports the explicit use of
default negation, and thus exploiting the power of answer wedeal with incomplete knowledge. In [6]
we have defined the syntax and semantick ofiscussed how it can be used for knowledge representation,
plus we have analyzed the computational complexity of ptanim /C.

In the present paper, which is Part Il of this series of papeesurn to thedL\ planning system, which
implementsk on top of theDLVanswer set programming system [7, DLV is a powerful planning system,
which is freely available at URL:http://www.dbai.tuwien.ac.at/proj/div/K/> and ready-
to-use for experiments. In comparison to similar logicdzhaglanning systems like CCALC [30, 31], CPlan
[15, 10], or CMBP [4]DLV* has the following key features:

e Explicit background knowledgelhe planning domain has a background (represented bytdistta
Datalog program) which describes static predicates.

¢ Type declarationsThe arguments of changeable predicates, c#lllehts and action atoms are typed.

¢ Strong and weak negatiormhe DLV® system provides two kinds of negation familiar from answer
set semantics, namely weak (or default) negatiost” and strong (or classical) negatiom " also
denoted by “—". Weak negation allows for a simple and infeitstatement of inertia rules for fluents,

or for the statement of default values for fluents in the domai

e Complete and incomplete stateBy default, states iDLV are consistent sets of ground literals, in
which not every atom must appear, and thus represees of knowledgeHowever, by suitable
constructspLV* also allows for representing transitions between possiaites of the world (which
can be seen as states of complete knowledge).

¢ Parallel/Sequential execution of actionSimultaneous execution of actions is possible, and in fact
the default mode. All actions to be executed must qualifgulgh an executability condition. Mutual
exclusion of actions can be enforced in a sequential plgnmiode.

2 INFSYS RR 1843-01-12

e Secure (conformant) plannin@LV* is able to computsecure plangoften calledconformant plans
in the literature [19, 42]). Informally, a plan is secureitifs applicable starting at any legal initial
state and enforces the goal, regardless of how the stateesvdlsing this feature, we can also model
possible-worlds planning with an incomplete initial statehere the initial world is only partially
known, and we are looking for a plan reaching the desired fgoal every possible world according
to the initial state.

Main Contributions The main contributions of the present paper are the follgwin

1. We reduce planning it to answer set programming by means of an efficient transfitomalJsing
this transformation, a planning problem Ahis translated into an “equivalent” disjunctive logic pro-
gram, which is then submitted LV for evaluation. The solutions of the original planning desb
are obtained from the answer sets producedby, which correspond to the optimistic plans. The
use of disjunctive rules in the transformation, which we fenatural problem modeling, can be
easily eliminated by using unstratified negation instead, thus an adapted transformation can be
implemented on systems such as Smodels [35].

2. We discuss the issue of secure planning, al@sformant planningand its realization in th®LV*
system. Briefly, the system imposes a “security check” oimagtic plans in order to assess whether
a plan is secure or not, which is transformed to a nestedaBllY itself. By the foundational results
in [6], finding a secure plan isE} -hard problem, and such a two-step approach for secure planning
(that is, first find an optimistic plan and then check its siéguis mandatory under polynomial re-
ductions to answer set programming, simtey can only solve problems with complexity ¥ with
polynomial overhead.

3. We compar®LV* with the following state-of-the-art (conformant) plangisystems: CCALC [30,
31], CMBP [4], CPlan [15, 10], GPT [3], and SGP [47].

In particular, we first provide an overview of these systemmgaring their main features. We then
consider a number of benchmark problems, namely problentseitlocksworld and “bomb in the
toilet” domains, and discuss their encodings in the difiesystems from the viewpoint of knowledge
representation. Having conducted extensive experinientatve report the execution times of the
systems on a number of planning-problem instances and gertip@aperformance of the systems. As
it turns out, thanks to the power of knowledge-state proleeodingsDLV* can compete even with
special purpose conformant planning systems in the expetsnand it often supplies a more elegant
and succinct representation of the planning problems. iiaig be taken as promising evidence for
the potential usefulness of knowledge-state problem eéngedor conformant planning.

To the best of our knowledg®LV* is the first declarative logic-programming based planniygjesn
which allows solving=? -hard planning problems like planning under incomplettidhstates.

The remainder of this paper is organized as follows: In the section, we introduce tHeLV* planning
system at the user and system architecture levels. Afterweaturn to the technical realization pLVC,
and discuss in Sections 3 and 4 the transformatioblof“ planning problems to answer set programs,
where the former section is devoted to optimistic planning the latter considers secure planning. After

1We use the common notion wheXd describes the class of problems solvable in polynomial bigna nondeterministic Turing
machine using an NP oracle, wheréa$ is the resp. problem class solvable polynomially by a ncerdeinistic Turing machine
using ax%’ oracle, and so on (cf. [36]).

INFSYS RR 1843-01-12 3

that, we compare thBLV® planning system to a number of other planning systems. @e6tidiscusses
further related work and presents an outlook to ongoing ahdd work.

In order to alleviate reading, relevant definitions and totafrom the foundational Part | [6] are pro-
vided in Appendix A of the present paper.

2 The Planning Systeno.v*

In this section, we describe theLV* planning system, which provides an implementation of the la
guageXk as a front-end of thé®LV system [7, 9]. We first describe how planning problems areispe
fied in DLVX, followed by the architecture of the system, and finally fiyi¢he usage oDLV®. In or-
der not to be abundant, we shall restrict ourselves to a shquosition in which we focus on the es-
sential facts. Further information can be found in the fatimhal paper [6] or on th®LV® web page
<URL:http://www.dbai.tuwien.ac.at/proj/dIv/K/>

2.1 Planning Problems inDLV*

In this section, we describe how planning problems can beesepted as “programs” in tHeE.V* system.
For this purpose, we shall consider an example in the wellisknblocksworld domainDLV* programs are
built using statements of the langualgeplus further optional control statements. We shall notestively
repeat all details ok here, and in particular we shall not formally define the sdinamf L. The details
and the formal definition of the semantics/6f which we include in abbreviated form in Appendix A, can
be found in [6].

A planning problemis a pairP = (PD, q) of a planning domain(informally, the world of discourse)
PD and a queryy, which specifies the goal. A planning problem is represemate@d combination of a
background knowledg#, which is a stratified Datalog program (cf. Section 3.1), armqtogram of the
following general form:

fluents : Fp

actions: Ap
initially: Ig
always : Cr
goal : q

where the sectiongluents throughalways are optional and may be omitted. They consist of statements,
described below, each of which is terminated by ‘“Together with the background knowleddg they
specify aKC planning domain of fornrPD = (I, (D, R)) (see Appendix A), where the declaratiohsare
given by Fp andAp. and the rule? by I andCp,.

The statements iR, andAp are fluent and action declarations, respectively, whick the fluents and
actions with respect to the (static) background predicathsy have the form

p(X1,...,X,) requires ty,...,tm @

wherep is a fluent or action predicate of arity > 0, and thet; are classical literals, i.e. an atomor its
negation—« (also denotede), over the predicates from the background knowledge, swattevery variable
X, occurs inty, ..., t, (@s common, upper case letters denote variables). Onlydrimstances of fluents
and actions which are “supported” by some ground instaneedetlaration, i.e., theequires part is true,
need to be considered.

4 INFSYS RR 1843-01-12

initial: goal:

BER

bl __a

Figure 1: Sussman’s blocksworld planning problem.

Theinitially-section specifies conditions that hold in an initial staiet¢ that, in general, the initial
state may not be unique). They have the form of causal ruleighware described next, without théter
part.

The always-section specifies the dynamics of the planning domain imd$esf causation rules of the
form

caused f if by,...,bg,not byyq,...,not b
after ay,...,aqp,not ayy1,..., 00t ay

(@)

where f is either a classical literal over a fluent fslse (representing absurdity), thHg’s are classical
literals over fluents and background predicates, andiflseare positive action atoms or classical literals
over fluent and background predicates. Informally, the (R)estates thaf is true in the new state reached
by executing (simultaneously) some actions, provided thatcondition of theafter part is true with
respect to the old state and the actions executed on it, arabtitition of theif part is true in the new state.

Both theif- andafter-parts are optional. Specifically, both can be omitted togretvith thecaused-
keyword to represent simple facts.

Thealways-section also containsxecutability conditiongor actions, i.e. expressions of the form

executable a if by,..., by, not byiq,...,n0t b 3)

whereaq is an action atom andl, . . ., b; are classical literals. Informally, such a condition sde & (well-
typed) action is eligible for execution in a statepif. .. by are known to hold whiléy_1,... b; are not
known to hold in that state.

Thegoal-section, finally, specifies the goal to be reached, and leafotm

gis--+39m,0n0t gmy1,...,n0t gn7(z) (4)

wheregy, ..., g, are ground fluent literalg; > m > 0, and: > 0 is the number of steps in which the plan
must reach the goal.

All rules in Ir andCr have to satisfy theafety requiremerfor default negated type literafsj.e., each
variable occurring in a default negated type literal hasdouo in at least one non negated type literal or
dynamic literal. Note that this safety restriction does aygply to action and fluent literals whose variables
are already range restricted by the respective declagation

Example 2.1 (Sussman’s blocksworld planning problem)An example of aDLV® program is given in
Figure 2. It represents Sussman’s famous planning prohtetihel blocksworld domain [44], depicted in
Figure 1, by which he showed anomalous behavior of STRIPSpig.

The blocksworld planning domaifRDy,, involves distinguishable blocks and a table. Blocks and the
table can serve as locations on which other blocks can beapbib¢k can hold at most one other block,
while the table can hold arbitrarily many blocks). The backmd knowledgdl,,, thus has predicates
block andlocation defined as follows:

2These are literals corresponding to predicates defineceibabkground knowledge.

INFSYS RR 1843-01-12 5

fluents: on(B,L) requires block(B), location(L).
occupied(B) requires location(B).

actions: move(B,L) requires block(B), location(L).
initially: on(a,table). on(b,table). on(c,a).
always : caused occupied(B) if on(B1,B), block(B).

executable move(B,L) if B <> L.
nonexecutable move(B,L) if occupied(B).
nonexecutable move(B,L) if occupied(L).
noConcurrency.
caused on(B,L) after move(B,L).
caused -on(B,L1) after move(B,L), on(B,L1), L <> L1.
inertial on(B,L).

goal : on(c,b), on(b,a), on(a,table) 7 (3)

Figure 2:DLV® program for Sussman’s problem in the blocksworld donain,,,

block(a). block(b). block(c).
location(table).
location(B) - block(B).

In the DLV program, two fluents are declared for representing staie¢, L), which states that some
block B resides on some locatidn, andoccupied(L), which is true for a locatior, if its capacity of
holding blocks is exhausted. Furthermore, there is a siaglien predicatenove(B, L), which represents
moving a blockB to some locatior. (and implicitly removes that block from its previous loat).

With this fluent and action repertoire, we can describe tlit@airstate and the causal rules as well as
executability conditions guarding state transitions. égthe initial state, the configuration of blocks shown
on the left in Figure 1 is expressed by the three faets, table), on(b, table), andon(c,a). Note that
only positive facts are stated fon; nevertheless the initial state is unique because the ftugstinterpreted
under the closed world assumption (CWA) [40], i.eof(B, L) does not hold, we assume that it is false.

The values of the fluericcupied in the initial state are not specified explicitly, rathentlaee obtained
from a general rule that applies to all states, and thus isgbaine always-section of the program (the first
rule there). It says that a blo&kis occupied if somethingd@) is on it. Note that the rule does not apply to
B = table, since the table is supposed to have unlimited capacitghéumore B1 must be a block, by the
declaration of the fluenin.

Next we specify when an actiamove (B, L) is executable. The first condition states that this is ptessib
if the blockB and the target locatioh are distinct (a block cannot be moved onto itself). The twgatige
conditionsnonexecutable... state that the move is not executable if either the bibokthe target location
L is occupied, respectively. These statements are shorthaeds for causation rules which interdict the
execution of an action (see Section A.3). Thus,nbee is executable, if the positive condition holds and
both negative conditions fail.

In the standard blocksworld setting, only one block can beedat a time. Another macrapConcurrency,
enforces this. This macro is convenient for compuseguential pland.e. plans under mutual exclusion of
parallel actions.

The effects of a move action are defined by two dynamic ruldee first states that a moved block is

6 INFSYS RR 1843-01-12

on the target location after the move, and the second thaick lid not on the location from which it was
moved, provided it was moved to a different location.

The last statement in tke. ways-section is an inertial statement for the fluent which is another macro
(see Appendix A.3) informally expressing that the fluentidtistay true, unless it explicitly becomes false
in the new state.

To solve Sussman’s problem, the query in goal-section contains the configuration on the right side
in Figure 1, and furthermore, prescribes a plan length oftddlis feasible). O

The semantics of planning domains is defined in terms of letgks and state transitions. Informally, a
stateis any consistent collection of ground fluent literals whiebpect the typing information. It islegal
initial state, if it satisfies all rules in thenitially-section and the rules in tk@ways-section with empty
after part under answer set semantics (cf. Section 3.1) if caukzd are read as logic programming rules.
A state transitions a triplet = (s, A, s’) wheres, s’ are states and is a set of legal action instancesib,
i.e., action instances that respect the typing informati®aocht is legal, if the action setd is executable
W.r.t. s, i.e., each actioa in A is the head of a clause (3) whose body is true, drsdtisfies all causal rules
(2) from thealways-section whosefter part is true with respect toand A under answer set semantics.

An optimistic planfor a goalg,...,gm,not gm+1,...,n0t g, IS NOW a sequence of action sets
(Ay,..., Ay), i > 0, such that a corresponding sequence
T = ((s0, A1,81), (81,A92,89), ..., (si—1,A;,8)) of legal state transitions
(sj—1,A;j,sj) exists that leads from a legal initial statg to a states; which establishes the goal, i.e.,
{91,---s9m} C s; and{gm41,---, gn} N s; = 0. This sequence of legal state transitions is caltafbc-
tory, and asolutionto aDLVX planning problem is an optimistic plan of lengtipecified in thgoal-section

(cf. (4)).

Example 2.2 (Sussman’s problem (cont'd))A well-known solution to Sussman’s problem consists of first
moving blockc onto the table, then movingon top ofa, and finally movingec on top ofb.
In the DLV* setting, this amounts to the optimistic plan

({move(c,table)}, {move(b,a)}, {move(c,b)})

We omit the description of the (unique) trajectory for thiarpat this point; it will be given in Section 2.3.

2.1.1 Secure Planning

DLV has a special statementécurePlan.” which may be specified before th@al-section. It instructs
the system to compute only secure plans, which are spediatispic plans. Note thatecurePlan isnota
macro, and is, by complexity arguments, not expressibleragao which can be expanded efficiently.
Informally, an optimistic plan(A4,..., A,) is secure if it is applicable under any evolution of the
system: starting from any legal initial statg, the first action seti; (: > 1) can always be done (i.e., some
legal transition(sg, A1, s1) exists), and for every such possible statethe next action seti;, can be done
etc., and eventually, after having performed all actioms,goal is always established. Secure plans are often
calledconformant planén the literature, and are considered in scenarios withnrgete information about
initial states or nondeterministic action effects.

Example 2.3 (blocksworld with incomplete initial state) Let us consider a different planning problem in
the blocksworld, illustrated in Figure 3. Here, a furthesdid is present, whose exact location is unknown,
but we know that it is not on top af.

INFSYS RR 1843-01-12 7

initial: 4] ?
.
EE

Figure 3: A Blocksworld planning problem with incompletétial state.

fluents: on(B,L) requires block(B), location(L).
occupied(B) requires location(B).
supported(B) requires block(B).
actions: move(B,L) requires block(B), location(L).
initially: on(a,table). on(b,table). on(c,a). -on(d,c).
total on(q,Y).
forbidden on(B,L), on(B,L1), L <>L1.
forbidden on(B1,B), on(B2,B), block(B), B1 <> B2.
caused supported(B) if on(B,table).
caused supported(B) if on(B,B1), supported(B1).
forbidden not supported(B).
always : caused occupied(B) if on(B1,B), block(B).
executable move(B,L) if B <> L.
nonexecutable move(B,L) if occupied(B).
nonexecutable move(B,L) if occupied(L).
noConcurrency.
caused on(B,L) after move(B,L).
caused -on(B,L1) after move(B,L), on(B,L1), L <>L1.
inertial on(B,L).
goal : on(a,c), on(c,d), on(d,b), on(b,table) 7 (4)

Figure 4:DLV® program for a variant of Sussman’s problem in an incompleigdy

The background knowledd#,,, and theDLV* program for Sussman’s problem from above are modified
as follows.

For introducing blocld to the planning domain, we add the fadtock(d) to I1,,, and the facten(d, c).
to theinitially-section of theDLV® program.

Let us first consider the necessary extensions for handéisgscin which the initial state description is
incorrect (e.g., when completing the partial initial ste&scription, incorrect initial states can arise). The
following conditions should hold for each block: (i) It is ¢op of a unique location, (ii) it does not have
more than one block on top of it, and (iii) it is supported bg thble (i.e., it is either on the table or on a
stack of blocks which is on the table) [27].

It is straightforward to incorporate conditions (i) and {iito theinitially-section:

initially: forbidden on(B,L), on(B,L1), L <> L1.
forbidden on(B1,B), on(B2,B), block(B), Bl <> B2.

Here,forbidden is a macro (cf. Section A.3) which amounts to a constraint.

8 INFSYS RR 1843-01-12

For condition (iii), we introduce a fluestupported, which should be true for any block in a legal initial
state:

fluents: supported(B) requires block(B).

We then describeupported and include a constraint that each block must be supported.

initially: caused supported(B) if on(B,table).
caused supported(B) if on(B,Bl), supported(B1).
forbidden not supported(B).

Now we modify thegoal-section to

goal: on(a,c), on(c,d), on(d,b), on(b,table) 7 (4)

and, finally, to obtain a plan that works under any possibtation of blockd in the beginning, we use the
total £ macro ofDLV® (defined in section A.3), which generates the two altereatior the value of a
fluentf:

initially: total on(d,Y).

In this way, all completions ofn which satisfy the initial state constraints lead to leg#lahstates; in fact,
there are two such states, correspondingri@, b) andon(d, table).

The rewrittenDLV program is depicted in Figure 4, and using this program wehbleto compute the
following solution, which is a secure plan:

({move(d, table)}, {move(d,b)}, {move(c,d)}, {move(a,c)})

2.1.2 Knowledge-State vs. World-State Planning

Knowledge state planning iit offers some features which are not available in other ptaptanguages.
Recall that a knowledge state is a set of consistent fluesralg, which describes the current knowledge
about the planning world. The negation as failure constalictvs for expressing defeasible rules and
default conclusions, by which a more natural modeling oioretl planning agents which have to deal
with incomplete information becomes possible at a qualédevel. In fact, a knowledge state describes
more accurately the belief set of an agent about the worldghwis formed by using strict and defeasible
causal laws. This is in particular relevant if we are intedsn “reasonable” plans for achieving a goal.
However, our framework is limited to an elementary level] does not directly allow for the representation
of disjunctive knowledge.

A useful feature of knowledge-state planning is that it miigmnafor an elegant encoding of conformant
planning problems with a world-state model in which the ealof certain fluents remain open. In particular,
this applies if world states are projected to subsets of ffuefinterest. This supportsrgettinginformation
and, to some extenfpcusingby restricting attention to those fluents whose value mayg laavinfluence on
the evolution of the world depending on the actions that akeri. The advantages of a knowledge-state
encoding over a world-state encoding of the well-known “boim toilet” problem [34] are discussed in
Appendix C. For further discussion of knowledge-state mpilag, see [6].

INFSYS RR 1843-01-12 9

2.2 System Architecture

The architecture of th®LV* system is outlined in Figure 5. It accepts files containing/" input and
background knowledge stored as plain Datalog files. Themdns of suitable transformations frdéto
disjunctive logic programming that we will describe in Sewt3, it uses the classibLV core to solve the
corresponding planning problem.

DLVK Core Controller

Back N :
5 Datalog Parsef ‘ Plan GeneratoHPlan CheckeH Plan Pnnter‘

i

DLV Core

—> Control Flow —H

,,,,,,,,,, > Data Flow 5

Figure 5:DLV® System Architecture

DLV® comes with two parsers: The first accerjls.\/C files, that is, files with a filename extension of
.plan that constitute @LV* program, while the second parser accepts optional backgrenowledge
specified as stratified Datalog. Both parsers are able totheadinput from an arbitrary number of files,
and both convert this input to an internal representatiahstore it in a common database.

The actuaDLV® front-end consists of four main modules, the Controlleg, fian Generator, the Plan
Checker, and the Plan Printer. TBentroller manages the other three modules; it performs user interecti
(where appropriate), and controls the execution of theefribnt-end.

To that end, the Controller first invokes tRéan Generator which translates the planning problem at
hand into a suitable program in the core languagblof (disjunctive logic programming under the answer
set semantics as described in Section 3.1) according taghsformation/p(P) provided in Section 3.2.
The Controller then invokes theLV kernel to solve the corresponding problem. The resultirgyvan sets
(if any) are fed back to the Controller, which extracts thiisons to the original planning problem from
these answer sets, transforms them back to the originahiplglomain, and saves them into the common
database.

The Controller then optionally (if the user specified #wurePlan command or invoked a secure
check interactively) invokes tHelan Checker Similarly to the Plan Generator, the Checker uses theraigi
problem description together with the optimistic plan canepl by the Generator to generate a disjunctive
logic program that solves the problem of verifying whethés {optimistic) plan is in fact also a secure plan
as intuitively introduced in 2.1.1 (Details and the actwahsformation employed by the Plan Checker will
be provided in Section 4).

ThePlan Printer, finally, translates the solutions found by the Generatod @ptionally verified by the
Checker) back into suitable output for the planning usergirds it.

2.3 UsingpLV®

DLV® is a command-line oriented system, which is realized ast-ad to theDLV logic programming
system. It accepts two types of input files: QLV* files, which carry the filename extensigrian and

10 INFSYS RR 1843-01-12

containDLV! code as described in Section 2.1; (ii) optional backgrourmikedge in the form of a stratified
Datalog program, which is kept in files without any filenam&sasion.

The planning front-end itself is invoked by means of tR® family of command-line options:FP,
-FPopt and-FPsec , followed by any number abLV* files and files containing background knowledge.

e -FP invokes theDLVX system in interactive mode, where an optimistic plan is asteg and the user
is then prompted whether to perform a security check for phet and whether to compute another
(optimistic) plan, respectively.

e -FPopt computes all optimistic plans in batch mode, without ustarirention, while

e -FPsec computes all secure plans (applying by default secure cBé¢kas defined in Section 4) in
batch mode.

In all these cases, by means of the command-line optisn: the number of plans computed and printed
can be limited to at most; by defaultall possible plans are computed.

FurtherbL\V* command-line options which affect the security checkinty bé introduced at the end of
Section 4.

As an example, assume that tbeV program for Sussman’s blocksworld planning problem from
Figure 2 in Section 2.1 resides in a fidocksworld.plan , While the background knowledge about
blocks andlocations is saved in a filackground . Invoking

div -FP blocksworld.plan background
results in the following output:
DLV [build DEV/Dec 17 2001 gcc 2.95.3 (release)]

STATE 0: occupied(a), on(a,table), on(b,table), on(c,a)

ACTIONS: move(c,table)

STATE 1. on(a,table), on(b,table), on(c,table), -on(c,a)

ACTIONS: move(b,a)

STATE 2: occupied(a), on(a,table), on(b,a), on(c,table),
-on(b,table)

ACTIONS: move(c,b)

STATE 3: on(a,table), on(b,a), on(c,b), -on(c,table),
occupied(a), occupied(b)

PLAN: move(c,table); move(b,a); move(c,b)

Check whether that plan is secure (y/n)? vy
The plan is secure.

Search for other plans (y/n)? vy

This describes a successful trajectdtyg, A1, s1), (s1, A2, s2), (s2, A3, s3)) wheresy, ..., s3 cor-
respond to the lines starting witBTATE O, ..., STATE 3in the output above, and;, A, and A3
correspond to the thre®CTIONIines; the entire plan is again printed at the end.

Now, let us consider the program from Figure 4, that is, théawh of the Sussman problem with an
incomplete initial state. Let us assume that we have addedattiblock(d) to the background knowl-
edge and modified the file blocksworld.plan accordingly. iAgavoking DLV® as above will produce the
following output:

INFSYS RR 1843-01-12 11

DLV [build DEV/Dec 17 2001 gcc 2.95.3 (release)]

STATE 0: occupied(a), on(a,table), on(b,table), on(c,a),
-on(d,c), supported(a), supported(b),
supported(c), -on(d,a), on(d,table), -on(d,b),
-on(d,d), supported(d)

ACTIONS: move(c,table)

STATE 1. on(a,table), on(b,table), on(c,table),
on(d,table), -on(c,a)

ACTIONS: move(d,b)

STATE 2: on(a,table), on(b,table), on(c,table), on(d,b),
-on(d,table), occupied(b)

ACTIONS: move(c,d)

STATE 3: on(a,table), on(b,table), on(c,d), on(d,b),
-on(c,table), occupied(b), occupied(d)

ACTIONS: move(a,c)

STATE 4: on(a,c), on(b,table), on(c,d), on(d,b),
-on(a,table), occupied(b), occupied(c),
occupied(d)

PLAN: move(c,table); move(d,b); move(c,d); move(a,c)

Check whether that plan is secure (y/n)? vy
The plan is NOT secure.

Search for other plans (y/n)? vy

The first plan we arrive at is not secure, so we answer the iquestether to search for other plans
positively, and indeed find a secure plan (Observe thatlrdtates $TATE 0) are larger here because of
thetotal statement foon(d, Y)):

STATE 0: occupied(a), on(a,table), on(b,table), on(c,a),
-on(d,c), supported(a), supported(b),
supported(c), -on(d,a), on(d,table), -on(d,b),
-on(d,d), supported(d)

ACTIONS: move(d,c)

STATE 1. on(a,table), on(b,table), on(c,a), on(d,c),
-on(d,table), occupied(a), occupied(c)

ACTIONS: move(d,b)

STATE 2: on(a,table), on(b,table), on(c,a), on(d,b),
-on(d,c), occupied(a), occupied(b)

ACTIONS: move(c,d)

STATE 3: on(a,table), on(b,table), on(c,d), on(d,b),
-on(c,a), occupied(b), occupied(d)

ACTIONS: move(a,c)

STATE 4: on(a,c), on(b,table), on(c,d), on(d,b),
-on(a,table), occupied(b), occupied(c),
occupied(d)

PLAN: move(d,c); move(d,b); move(c,d); move(a,c)

Check whether that plan is secure (y/n)? vy
The plan is secure.

Search for other plans (y/n)?

12 INFSYS RR 1843-01-12

While looking for further secure plans, we encounter sévegpimistic plans, none of which is secure,
so we change our strategy and invakeV® with the-FPsec option instead of using the interactive mode
enabled with-FP . This yield the following result:

DLV [build DEV/Dec 17 2001 gcc 2.95.3 (release)]

PLAN: move(d,c); move(d,b); move(c,d); move(a,c)
PLAN: move(d,table); move(d,b); move(c,d); move(a,c)

Indeed, while there are many optimistic plans, there is gy a single further secure plan in addition
to the one we already found. Note that, as secure plans y$wale many different trajectorieB.\V* only
prints the plans themselves, omitting the information erest

3 Transforming Optimistic Planning to Answer Set Programming

In this section, we discuss how planning problem®iv* are transformed into answer set programs. We
consider here optimistic planning, and deal with securaiptain the next section. As a preliminary, we
first recall some concepts of (disjunctive) logic programgni

3.1 Disjunctive Logic Programming

We consider extended disjunctive logic programs with twalkiof negation like in th& language, i.e. weak
negation hot” and strong negation-+", as introduced in [12] over a function-free first-order gamage.
Strings starting with uppercase (resp. lowercase) lettenste variables (resp. constants)pdsitive(resp.
negative classical literall is either an atona or a negated atoma, respectively; itcomplementdenoted
=l, is —a anda, respectively. Apositive (resp.negativé failure (NAF) literal £ is of the forml or not [,
wherel is a classical literal. Unless stated otherwiselitgyal we mean a classical literal.

A disjunctive rule(rule, for short) R is a formula

a1 vV -+ V G+ by,--- bk, not bgyq,- -, not by,. (5)

where alla; andb; are classical literals and > 0, m > k£ > 0. The part to the left (resp. right) of-*”
is thehead (resp.body) of R, where - " is omitted if m = 0. We letH(R) = {ay,..., a,} be the set
of head literals and3(R) = BT (R) U B~ (R) the set of body literals, wherB*(R) = {by,..., b} and
B~ (R) = {bk41, ...,bn }. A constraintis a rule with empty heady= 0).

A disjunctive logic program (DLP)Y (simply, progran) is a finite set of rules. It ipositive if it is
not-free (i.e.Vr € P : B~ (r) =), andnormal if itis v -free (i.e.VR € P : |H(R)| < 1). A normal
program is also called Ratalog program As usual, a term (atom, rule etc)gsound if no variables appear
in it. A ground program is also callgatopositional

Answer sets of DLPs are defined as consistent answer set®ldP€as in [12, 25]. That is, for any
programP, let Up be its Herbrand universe arér be the Herbrand base &f over Up (if no constant
appears inP, an arbitrary constant is added &&). Let ground(P) = Ugcp ground(R) denote the
grounding ofP, whereground(R) is the set of all ground instances Bf

Then, arinterpretationis any seff C Bp of ground literals. Aranswer sebf a positive ground program
P is any consistent interpretatidni.e.,IN{=l |l € I} =, such that is the least (w.r.t. set inclusion) set

INFSYS RR 1843-01-12 13

closed under the rules @, i.e., B(R) C I implies H(R) NI # () for everyR € P.2 An interpretation/
is an answer set of an arbitrary ground progrBnif it is an answer set of th&elfond-Lifschitz reducP’,
i.e. the program obtained froi by deleting

e allrulesR € P such thatB—(R) NI #), and
¢ all negative body literals from the remaining rules.

The answer sets of a non-ground progr&hare those of its ground instantiatigmound(P). We shall
denote byAS(P) the set of all answer sets of any progr&m

3.2 Transformation Ip(P)

The main building-block underlying the realization of theV* system is the translation ofiaV* planning
problemP, given by a background knowled@eand aDLV* program as in Section 2.1, into a logic program
Ip(P), whose answer sets represent the optimistic plarB. ofFor the sake of our translation, we extend
fluent and action literals by a timestamp paramé&tesuch that an answer sdtS of the translated program
Ip(’P) corresponds to a successful traject@ry= ((sg, A1, $1), - -« (Sn—_1, An, $n)) Of P in the following
sense:

e The fluent literals inAS having timestamp represent a (legal) initial statg of T'.

e The fluent literals inAS having timestamp > 0 represent the statg¢ obtained after executing
many action sets (i.e., they represent the evolution akerps).

e The action literals indS having timestamp represent the actions i, (i.e., those actions which
are executed at stept 1).

Moreover, trajectories encoded in the answer setp(@) are guaranteed to establish the goal of the plan-
ning problem, and the underlying sequence of action selteigefore an optimistic plan.

In the following, we incrementally describe a transformatfrom a planning probler® to a logic pro-
gramip(P). We will illustrate this transformation on the blockswogthnning problem from Section 2.1.

In what follows, leto?t, o/, and'%P be the sets of action, fluent and type names, respectivedy, an
let Loet, L7, L 71, and Ly, be the set of all action, positive action, fluent, and typerdils, respectively.

act?

Furthermore L 1yp = L1 U Liyp andLay,= L1 U L, (dyn stands fordynamic literal3.

act

Step 0 (Macro Expansion): In a preliminary step, replace all macros in tieV-program by their defi-
nitions (cf. Appendix A.3).
Example.ln the encoding of Sussman’s problem, among others the macro

always : nonexecutable move(B,L) if occupied(B).
inertial on(B,L).

are replaced by

caused false after move(B,L),occupied(B).
on(B,L) if not -on(B,L) after on(B,L).
% We only consideconsistent answer setwhile in [12, 25] also the (inconsistent) sBF may be an answer set. Technically,
we assume that negative classical literadsare viewed as new atomsa~and constraints a,—a are implicitly added. This is the
standard way how true negation is implemented in systera®JIkV or Smodels.

14 INFSYS RR 1843-01-12

Step 1 (Background Knowledge): The background knowledde is already given as a logic program; all
the rules inlI can be directly included itp(P), without further modification.

Step 2 (Auxiliary Predicates): To represent steps, we add the following factgi@)

time(0).,...,time(7).
next(0,1).,...,next(i — 1,1).

wherei is the plan length of the query= G7(i) € P at hand.

The predicatecime denotes all possible timestamps and the predicete describes a successor rela-
tion over the timestamps in our program.

Note that we refrain from using built-in predicates of a jaitar logic programming engine here. In the
DLV* implementation, all above auxiliary predicates are effitiehandled in a preprocessing step.
Example.For Sussman’s problem, wheye= on(c,b), on(b, a), on(a, table) 7 (3), we add the following
facts:

time(0). time(1). time(2). time(3).
next(0,1). mnext(1,2). mnext(2,3).

Step 3 (Causation Rules): For each causation rutecaused H if B after A in Cr, we include a rule
r’ into [p(P) as follows:

h(r') — 0, if H = false,
)=\ ram), itH=1@), feol,

whereT} is a new variable. To the body of, we add the following literals:
e each default type literal in, i.e.,(not)l € AU B wherel € Ly,,;
e (not) b(t,T1), where(not) b(t) € B andb(t) € Ly;
e (not) b(t,Ty), where(not) b(t) € A andb(t) € Ly, WhereTy is a new variable;
¢ for timing, we add

— time(Th), if A is empty;
— next(Tp,14), otherwise.

e To respect typing declarations and to establish standdedysaf v/, we add for any action/fluent
literal in H and default negated fluents/actions literals typing infation from the corresponding
action/fluent declarations. That is,if = (—)p(t) resp.not (—)p(t) € AU B such thaip(t) € Layn,

p(Y) requires t1(Y1),. .., tm(Ym)

is an action/fluent declaration (standardized apart) gaec substitution such thatY’) = %, then we
addf(t1(Y1)),...,0(tm(Yy)) to the body for’. If p has multiple action/fluent declarations, each of
them is considered separately, which gives rise to multiged versions of’.

Example.ln our encoding of Sussman’s problem, the statement

INFSYS RR 1843-01-12 15

always : caused occupied(B) if on(B1,B), block(B).

leads to the following rule ifp(P):

occupied(B,T1)- on(B1,B,T;),block(B),location(B), time(Ty).

Here, the timing atomime(T;) is added, and the type informati@acation(B) for the fluentoccupied(B)
in the H -part of the statement.

Step 4 (Executability Conditions): For each executability conditianof the formexecutable a(t) if B
in Cr, we introduce a rule’ in [p(P) as follows:

h(e') = a(t,To) v —a(t, Ty),
whereT} is a new variable. To the body ef, we add the following literals:
e Each default type literal ip, i.e., (not)l € B wherel € Lyy,;
e (not) b(t,Tp), where(not) b(t) € B andb(t) € Lgyn;
e next(Ty,T1) whereT; is a new variable;

e for typing and safety, type information literals foft) and every default literalot (—)p(¢) € B such
thatp(t) € Lagyn, similar as in Step 3 (which may lead to multiple rukés

Example.In our running example, the condition

executable move(B,L) if B <> L.

introduces irip(P) the rule

move(B,L,To) v —move(B,L,Tp)> B <> L,block(B),
location(L),next(To, T1).

Here, type informatiomlock(B), location(L) is added fomove(B,L).

Step 5 (Initial State Constraints): Initial state constraints idr are transformed like static causation
rulesr in Step 3 (i.e.,A is empty), but we use the constant 0 instead of the vari&bknd omit the literal
time(0).

Example.The facts inlp:

initially: on(a,table). on(b,table). on(c,a).

become:

on(a,table,0). on(b,table,0). on(c,a,0).

16 INFSYS RR 1843-01-12

block(a). block(b). block(c). location(table).
location(B) - block(B).
time(0). time(1). time(2). time(3). next(0,1). next(1,2). next(2,3).
on(a,table,0) - block(a),location(table).
on(b,table,0) - block(b),location(table).
on(c, a,0) - block(c),location(a).
move(B,L, Ty) v -move(B,L,To)- B <> L,block(B),
location(L),next(To, T1).

- move(B,L,Tp),occupied(B, Tp),next(To, T1).

- move(B,L,Ty),occupied(L, Tp),next(To, Ty).
occupied(B,T1) - on(B1,B,T;),block(B),location(B), time(Ty).
on(B,L, Ty) - on(B,L,Tp),not -on(B,L, T;),block(B),location(L),
next(To,Tl).
on(B,L, Ty) - move(B,L,Ty),block(B),location(L),next(To, T1).
-on(B,L1,T;) = move(B,L,Ty),on(B,L1),L <> L1,block(B),

location(L1),next(To, Ty).
= move(ty,ta, To),move(t], th, To). for t1,t} € {a,b,c}
to,t5 € {a,b, ¢, table}, (t1,t2) # (t4,t5)

goal reached - on(c,b,3),on(b,a,3),on(a,table,3).

- not goal_reached.

Figure 6: Transformation of Sussman’s planning probfgm from Section 2.1

Step 6 (Goal Query): Finally, the query:
goal: gi(t1),...,gm(tm)sn0t gmi1(Emgt1),...,n0t gn(tn) 7 (3).
is translated to:

goal—reaChed) (Ea IL)’ <+ 9m (ma 2)7 not gm+1(tm+1a IL)’ ...,not gn(ﬂa IL)
- not goal_reached.

wheregoal_reached is a new predicate symbol.

Example.g = on(c,b), on(b,a), on(a,table) ? (3), the goal for Sussman’s problem, leads to the follow-
ing rules inip(P):

goal reached - on(c,b,3), on(b,a,3), on(a,table,3).
- not goal_reached.

The complete transformation of Sussman’s blocksworld lprab?,,,, after expansion of all macros (see
Section A.3), is shown in Figure 6.

As the reader can easily verify, the above transformatiopleys disjunction only in Step 4 for translat-
ing executability conditions. Furthermore, negated actimms-a(t, T') occur only in the heads of the rules
of [p(P). Thus, the program is head-cycle-free, which is profitalijyl@ted by theDLV engine underlying

INFSYS RR 1843-01-12 17

our implementation. The disjunction, which informally edes a guess of whether the actig) is exe-
cuted or not at timd},, may equivalently be replaced by-free guessing rules. The adapted transformation
can then be used on engines for computing answer sets of hproggiams, such as Smodels.

The following result formally states the desired corresfmte between the solutions obaV* plan-
ning problemP and the answer sets of the logic progrgmiP) obtained by following the procedure de-
scribed above.

Theorem 3.1 (answer set correspondence)et P be a planning problem, given by a background knowl-
edgell and aDLV*-program, and letlp(P) the logic program generated by Steps 0-6 above. Define,
for any consistent set of literal§, the setsd? = { a(t) | a(t,j —1) € S, a € 0} ands§ = {
f@)| f(t,5) €S, f(t) € Ly}, forall j > 0. Then,

(i) for each optimistic planP = (A44,...,A;) of P and witnessing trajectonf’ = ((sq, 41, 1),
(s1,A2,82), ..., (si—1, Ai, 7)), there exists some answer sewof ip(P) such thatd; = AJS for
allj=1,...,iands; = s7,forall j = 0,...,4;

(i) for each answer se$ of ip(P), the sequenc® = (A, ..., A;) is a solution ofP, i.e. an optimistic
plan, witnessed by the trajectoly = ((so, A1, s1), (51, A2,52), ..., (si—1, As, s;)), whered; = A]S
andsy, = s forall j=1,...,5andk =0,... 1.

Proof. The proof is based on the well-known notiongmiitting of a logic program as defined in [28]. We
define the splitting sequenéé= (Upg, Uy, ..., U;,Ug) = (BG,BGUSy, ..., BGUSyU...US;, BGU
SoU...US; UG) of the programP’ = ground(lp(P)) as follows:

e BG@ is the set of type literals angime andnext literals occurring in?’;

e S;,0 < j <i,isthe setof literals it®’ of the formf (%, 7), wheref € o/, and of the formu(%, j —1),
whereq € 0%,

e G = {goal_reached}.

By the Splitting Sequence Theoresh[28], P’ (and thudp(P)) has some (consistent) answer Saff
S =XpgUXoU...UX;UX¢ for some solutionX = (Xpq, Xo, ..., X;, Xg) of P' w.r.t.U. We note
the following facts.

e Ppg = by, (P') (as defined in [28], intuitively the program correspondind/iz;) consists of the
background program and of the facts definirighe andnext.

e Py = epy,(bu, (P)\ buge (P'), XBe) (as defined in [28], intuitively the program correspondiag t
Up) consists of rules and constraints which are translatidmsitial state constraints and static rules
(i.e. causation rules with emp#fter), in which the argument ofime and the last argument of the
head predicates has been instantiated Qith

e Pj = ey, (by,(P')\ by,_,(P"),Xpa UXoU---X; 1), for1 < j < i (intuitively, the program
corresponding td/;), consists of rules and constraints which are translatafreausation rules and
executability conditions in thelways-section, in which the argument efme and the second argu-
ment ofnext is instantiated witty (thus, the last argument in head predicates of causaties ard
executability conditions ig andj — 1, respectively).

18 INFSYS RR 1843-01-12

e Pg = ey, (by,(P') \ by,(P'), Xpe U Xo U ---X;) (intuitively the program corresponding ;)
consists of the rule and the constraint which were genetatettep 6.

e XpoUXoU...UX;UX¢ is aconsistent set iff each of the séfg s, Xo, ..., X;, X¢ is consistent,
since no literal in any of the seB8G, Sy, ..., S;, G exists such that its complement is contained in
any other of these sets.

We now prove (i) and (ii) of the theorem.

(i) We show that for each optimistic plan a correspondingaamssetS of ip(P) as described exists. By
the Splitting Sequence Theorem, we must prove that a régpectiutionX = (Xpq, Xo,. .., X;, Xg) of
Ip(P) exists:

Xpa: Assgis alegal initial state, the background knowledge has aistamt answer set. Thus, by defini-
tion of Pg¢, it clearly has a consistent answer 38t .

Xo: s in the witnessing trajectory must be a legal initial statesgsatisfies all rules in thénitially-
section and the rules in thelways-section with emptyafter part, under answer set semantics if
causal rules are read as logic programming rules. These aneessentially identical (modulo the
time literals and the timestamp argumentsy}Q so X exists andsy = 305’7’.

X Forl < j <14, (sj—1,Aj,s;) must be a legal transition. We proceed inductively; has to be an
executable action set w.r4;_;, so each actioa € A; must occur in the head of an executability
condition whose body is true w.r4; ;. There must be a corresponding clausé’jrconstructed by
step 4 of the translation such that, the body is true wKi;t.;. If we chooseX; such thatAf’P = Aj,
then all these rules are satisfied. Each rul@jnvhich has an action literd), in the head such that
is notin A; either does not have a true bodyAf_;, or we include its negationl/, into X ;.

Furthermores; satisfies all causal rules from th@ways-section whosefter part is true w.r.ts;_;
andA; under answer set semantics. From the correspondence af cales from thealways-section
and rules inP;, we may thus conclude th&; has an answer séf; s.t.s; = s, and4; = A7, as
seen above.

X¢g: s, satisfiesthe goal @. Letgy, ..., gm,not gm+1,- - . ,not g,7(7) be the goal oP. Then{gi,...,gm} C
. X;,P . .
si and{gm+1,...,9n} Ns; = 0 hold. Sinces; = s;*", the body of the rule generated in step 6 is
true and therefor&(; = {goal_reached} exists.

In total, we have shown that for each optimistic plarfoé corresponding answer sgebf [p(P) exists,
which contains literals representing a withessing trajgct

(i) We must prove that for each answer sebf Ip(P), a corresponding optimistic plan @f exists. By
the Splitting Sequence Theorem, a solutidn= (Xpqg, Xo,...,X;, Xg) exists forip(P). SinceXy is

an answer set for the program corresponding to initial statestraints and static rules, a legal initial state
so = sy must exist as well.

For X;, 1 < j < 1, we proceed inductively. All rules corresponding to exability conditions w.r.t.
time j; — 1 must be satisfied, so for every litedglin X; which corresponds to a positive action literal, a rule
in P; whose body is true w.r.&{;_; and in which/, is the only true head literal, must exist. By construction,
an executability condition whose body is true w4,t.; and whose head is the corresponding action literal,
must exist inP, so an executable action séj = A" exists w.rts; ;.

INFSYS RR 1843-01-12 19

All rules in P; corresponding to causal rules from tiirays-section of P must be satisfied by; and
X1 (for literals translated fromafter-parts). So for each causal rule’it either itsafter-part is false
w.r.t. A; ands;_1, or the causal rule is satisfied by the stafe= sf’P.

Finally, sinceX exists,goal_reached must be true. Hence, the body of the rule generated in step 6
must be true, and therefosg must establish the goal @f.

In total, we have shown that for each answer$ef ip(P) an optimistic plan ofP exists, such that the
witnessing trajectory can be constructed frSms described. O

4 Secure planning

The translation in the previous section results in logigpams where the projections of the answer sets on
the positive actions correspond to optimistic plans.

As we have already mentioned above, tiev* system also provides the functionality of checking
whether a given optimistic plan is secure for certain plagrdomains. Thus, a secure plan may be found
in two steps as follows: (i) Find an optimistic pldh and (ii) check whetheP is secure. The test (ii)
informally amounts to testing the following three condito

1. the actions of? are executable in the respective stages of the execution;
2. at any stage, executing the respective actiori3 afivays leads to some legal successor state; and
3. the goal is true in every possible state reached if allstéphe plan are successfully executed.

In arbitrary planning domains, the security checKIi§-complete [6]%, and thus, by widely believed
complexity hypotheses, it is not polynomially reducibleatS AT solver or other computational logic system
with expressiveness bounded By or colNP. However, as shown in [6], a polynomial reduction is pos-
sible for the class of proper propositional planning protdewhere a planning proble® is proper, if the
underlying planning domaifD is proper, i.e., given any stateand any set of actiond, deciding whether
some legal state transitign, A, s’) exists is possible in polynomial time.

In the DLV system, we have focused on proper propositional plannimgaitts, and we have imple-
mented security checking by a polynomial reduction to lgmmgrams with complexity in cvP.

Note that for a proper planning domaktD, there is an algorithrd pp which, given an arbitrary state
s and a set of actiongl, decides in polynomial time whether some legal transiti@n4, s’) exists. The
existence of such an algorithmpp, given PD, is difficult to decide, even in the propositional case, and
App is not efficiently constructible under widely accepted ctenijy beliefs. We thus looked for suitable
semantic properties of planning domains which can be eddayeyntactic conditions and enable a simple
(or even trivial) check for the existence of a legal traosiffs, A, s’), which uniformly works for a class of
accepted planning domains.

4.1 false-committed Domains and Security CheckSC,

One such condition is when, informally, the existence ofgaléransition(s, A, s’) can only be blocked by
a causal rule with heathlse or by an (implicit) consistency constraint £,-f. That is, if such constraints
are disregarded, some legal transitian A, s’) always exists, otherwise, if some constraint is violated in

4i.e.co—XF -complete (cf. [36])

20 INFSYS RR 1843-01-12

any suchs’, then no legal transitiofs, A, s’) exists. This condition can be ensured by a syntactic camditi
which employs stratification on the causation rules.

With this in mind, we develop a security che§K,, which, given an optimistic pla® = (4;,..., 4,)
of lengthn > 0 for a planning problen®, rewrites the logic prograrip(P) in Section 3 to a logic program
IT; (P, P) and returns “yes” if this program has no answer set, and “tioérovise.

The modifications are as follows:
¢ In order to check condition (1) mentioned at the beginninghaf section, the rules resulting from exe-
cutability conditions are removed frofp(P). Instead, for an executability condition of the form

executable a(X) if B1(Y7),..., Bu(Yim),not Byy1 (Y1), - -.,not By(Yy)

in P, we generate the following rule for eaeltc) € A1 (j = 0,...,n — 1) of P, whereo is the
substitution mapping the variablégto :

oXof) s BiVid)os BnVd)
not By+1(Yim+1,7),---,n0t B,(Yy,), next(j,7 +1).)

This enforces that whenever an actig(@) in the planP is executable in the respective stagtehena(c,)
will be derived byII; (P, P); no further actions will be derived. To guarantee that theas of the planP
are always executable, we add a rule

notex - mnot a(G,).

for eacha(c) € Aj;1. Herenotex is a new auxiliary predicate which intuitively expressest tine planP
can not be properly executed,; its truth allows building aness for the insecurity aP.

e Concerning condition (2), in any situation where a causkl with headfalse is violated or a fluent
inconsistency arises, an answer set witnessing the irisecdirP should be generated. To this end, the
transformation is modified as follows:

Each constraint Body, time(T}). in Ip(P) derived from a causal rule of the forcaused false.. .,
is rewritten to

notex - Body, time(T}), Ty > 0.
- o(Body).

whereo is a substitution mappin@; to 0. Observe that violation of constraints referring to aniahistate
does not generate a counterexample.

Each constraint Body, next(7Ty,T1). inlp(P) which has been derived from a causal ied@sed false. . .,
is rewritten to

notex - Body, next(Ty,T1).

And for each fluenyf (X), the (implicit) consistency constraint (discussed in Rote 3) is transformed
to a rule for non-initial states

notex - f(X,Ty),—f(X,T1), time(Ty), T > O.

while those for the initial state remain unchanged:

INFSYS RR 1843-01-12 21

- f(Y,O), _f(ya 0)'

Constraint violations (explicit or implicit) in non-inal states therefore lead to a witnessing answer set
containingnotex.

e Finally, for condition 3, the goal constraint not goal_reached. is modified to

- goal_reached, not notex.

We can read the rewritten goal constraint as follows: Thestramt is satisfied, and thus the pl&nis not
secure, if (i) eithenotex is true, which means that some actiorfirtannot be executed or a constraint is vi-
olated when executing the actionsior (ii) if goal_reached is false, which means that after successfully
executing all actions i, the goal is not established.

Before we can state the informal conditions, under whictstwurity checkSC, works, more precisely,
we need some auxiliary concepts.

Definition 4.1 (constraint-free, constraint- & executabiity-condition-free shadow) For any planning do-
main PD = (I1, (D, R)), let ¢fs(PD) denote the planning domain which results fréth by dropping all
causal constraints with hea@lse and interpreting negative fluents as new (positive) fluesntsl call it
the constraint-free shadow aPD. Furthermore, letefs(PD) denote the planning domain derived from
¢fs(PD) by omitting all executability conditions and addiegecutable a. for each legal action instance
a, and call it theconstraint- and executability—condition-free shadowP6f .

Definition 4.2 (false-committed planning domains) We call a planning domai®D false-committed
if the following conditions hold:

() If sis alegal state ilPD and A is an action set which is executabledmw.r.t. PD, then either (i.1)
every legal transitio{s, A, ') in ¢fs(PD) is also a legal transition if*D, or (i.2) no(s, A, s") is a
legal transition inPD, for all statess” in PD.

(i) For any states and action se#l in cefs(PD), there exists some legal transiti¢sn A, s') in cefs(PD).

Example 4.1 (blocksworld with incomplete initial state (cot'd)) Let us reconsider the blocksworld plan-

ning problem of Example 2.3. It is easily seen that our foatiah of the respective planning domain,

PDy,;, is false-committed. Indeed, it contains a single occurrence of efaegationnot , via the

statementinertial on(B,L)., which is not critical for the existence of a successor statefs(PD), so

condition (i) is guaranteed. As for condition (i), for easffates and action setl, which is executable iR,

there is a single legal transitidn, A, s’) in ¢fs(PDy,;), and thus one of the cases (i.1) and (i.2) must apply.
Consider first the optimistic plaR which is secure, as we have seen:

({move(d, table)}, {move(d,b)}, {move(c,d)}, {move(a,c)})

Indeed, an attempt to build an answer Seif I1; (P, P) fails: starting from any initial state, the actions
in A; are always executable and no constraint is violated, flotiex cannot be included it¥. To satisfy
the rewritten goal constraint goal_reached,not notex. thusgoal_reached must not be included if.
However, as easily seen, the atomson(a,c,?2), on(c,d, 2), on(d, b, 2),
on(b, table, 2) must be included irf. This, however, means thgbal reached has to be included in
S, which is a contradiction. Thus, no answer Segxists, which means that the pl&his secure.

Let us now modify the number of steps in the goal te 2, and consider the optimistic plah

22 INFSYS RR 1843-01-12

({move(c,d)}, {move(a,c)})

In this case we can build an answer selle{Py,,,;, P) starting from an initial state in which bloekis on the
table, by including at each stage the literals that are eatbrThen, both actions in the plan can be executed,
and we end up in a state in which the goal is not satisfied. Bedh_reached andnotex cannot be derived,
and thus the constraint goal reached, not notex. in IT; (Py,,;, P) is satisfied, admitting an answer set
which witnesses the insecurity #f. Hence, the check outputs “no”, i.e., the plan is not secure.

To show that the security checkC, works properly for allfalse-committed planning domains, we
need the notions of soundness and completeness for secheitks.

Definition 4.3 (security check) A security checkor a class of planning domairBD is any algorithm
which takes as input a planning problépin a planning domain from the clag¥D and an optimistic plan
P for P, and outputs “yes” or “no.” A security check $ound if it reports “yes” only if P is a secure plan
for PP, and iscompletef it reports “yes” in caseP is a secure plan fgP.

In other words, for a sound security check only “yes” can bsted, while for a complete security check
“no” can be trusted.

Theorem 4.1 The security checl§C; is sound and complete for the classfafl se-committed planning
domains.

Proof We outline the proof, but omit the details. L& = (4,,...,A4,) be an optimistic plan for a
planning problemP in afalse-committed planning domaikD.

(Soundness) Suppose thatis not secure. This means that an initial stajeand a trajectoryl’ =
((s0,A1,81),...,(sj—1,4;,s5)) In PD (where0 < j < n) exist, such that one of the conditions (1)-(3) for
plan security stated at the beginning of this section isavea. We then can build an answer Setf the
programll; (P, P), in which, starting fromsg, respective literals are included which correspond toelell
transitions inT" as inlp(P). We consider the three cases:

Suppose first that condition (1) is violated, i.e., someomwii(¢) in the action se#; of P is not exe-
cutable. Then, no rule with headg, j) fires, and thus we may addtex to S, as it can be derived from
the rulenotex - not a(c,j). By (ii) of false-committedness foPD, we can add literals for the stages
j+1,...,n modeling transitions irefs(PD) to S such that we obtain an answer sefbf(P, P).

Suppose next that condition (2) is violated, i.e., no susmestate exists. By (i) adfalse-committedness
for PD, we can add literals t§ modeling a legal transition
(sj, Ajt1,854+1) in ¢fs(PD), and by (i) offalse-committedness fof’D, notex will be derived, as inPD
some rule with headalse fires or opposite fluent literals, - — £ are inS. Using (ii) again, we can add
literals for the remaining stages+ 2, ..., n modeling transitions ircefs(PD), such that we obtain an
answer seb of II; (P, P).

Suppose finally that condition (3) is violated. Thatjs= n and the goal is not satisfied By,. Then,
the rule with heagoal_reached is not applicable, the modified goal constraint is satisfeed| an answer
setS exists. Note that this also includes the case 0.

In any of these three cases, an answeSseftII, (P, P) exists, andSC, (P, P) outputs “no.”

(Completeness) Suppos¥ (P, P) outputs “no,” i.e.,IT; (P, P) has some answer sét Then, ei-
ther notex € S or goal reached ¢ S must hold. In the former casaotex must be derived ei-
ther (a) from some rule : notex - not a(c, 7)., or (b) from some rulemotex - ... time(j). corre-
sponding to a rewritten constraint with hefidllse or a consistency constraint for strong negation. Let

INFSYS RR 1843-01-12 23

r be such thag is minimal. ThenS encodes with respect to the stages..,j — 1 a trajectoryT’ =

((s0, A1,51),...,(sj-1,4j,55)), such thatd;; is not executable is; w.r.t. PD. In case (a), we im-
mediately obtain that condition (1) of security is violatadd hence thaP is not secure. In case (b), a
trajectoryT” = ((so, A1,51),---,(sj—2,4;_1,5j—1)) in PD exists such that executind; in s;_; W.r.t.

cfs(PD) as encoded irS leads to a state; which violates some constraint d?D with headfalse
or contains opposite literals. By item (i) dhlse-committedness foi’D, we can conclude that no le-
gal transition(s;_1, A;, s;) exists inPD, which violates condition (2) of security. On the other haifid
goal_reached ¢ S while notex ¢ S, then S encodes a trajectory
T = ((so, A1,51),---,{Sn—1, 4n, sp)) W.r.t. PD such that in the final statg, the goal is false, i.e., condi-
tion (3) of security is violated. That is, in all casBds not secure. O

Now that we have introduced the classfafl se-committed planning domains, we look for syntactic
conditions on planning domains which can be efficiently &kdand guarantegalse-committedness. One
such condition can be obtained by imposing stratificatiorcaumsation rules as follows: For any causation
rue r of the form (7) let Ip(r) be the corresponding logic programming rule
f= bi,...,bg,not by11,...,not b which emerges by skipping the ter-part.

Definition 4.4 (stratified planning domain) A planning domainPD = (II, (D, R)) is stratified if the
logic programllpp consisting of all rulegp(r), wherer € Cr hash(r) # false and a nonemptyf-part,
is stratified in the usual sense (and strongly negated atogrtsemted as new atoms).

For example, the blocksworld planning dom&tb,,,; described above is stratified.

It is easy to see that stratified planning domainsfafese-committed. Indeed, since any stratified logic
program is guaranteed to have an answer set, item (ii) of Giefird.2 holds. Furthermore, for each legal
states and action sefl which is executable in w.r.t. PD, there exists a single candidate stetéor a legal
transition(s, A, s’} in ¢fs(PD), which is computed by evaluating a subset of the ruld$g§; this transition
is not legal inPD if s’ violates some constraint ifiy with headfalse or introduces inconsistency. Note
that stratified planning domairf3D are proper.

Corollary 4.2 The security checKC, is sound and complete for the class of stratified planningalom

A possible extension of Corollary 4.2 allows for limited geaof unstratified causation rules. For exam-
ple, pairs

inertial f.
inertial —f.

of positive and negative inertia rules for the same grounehtil, which amount to the rules

r;{: caused f if not -f after f£.
7“]7: caused -f if not f after -f.

violate stratification. Nevertheless, pairwise inertinddluentf can be allowed safely, if each of the two
rules together with the remainder of the planning domaitriatified. That is, we check for stratification of
the two subdomains that result from the planning donfdihby omitting the positive and negative inertia
rules for f, denoted byPD~f and PD*7, respectively. If bothPD—f and PD*/ are stratified, theC; is
sound and complete fdPD. This holds because in any stateonly one of the rules}r andr]? can be active
with respect tos.

24 INFSYS RR 1843-01-12

We can further extend this to multiple pairs of ground irgertiles, where combinations for positive and
negative inertia rules have to be checked. We go one stapefuaind extend it to mux-stratified planning
domains, which we define next.

Two causation rulesy, 1 in PD are amutually exclusive paifmux-pai), if their after-parts are not
simultaneously satisfiable in any statand for any executable action sétw.r.t. s in PD.

Definition 4.5 (mux-stratified planning domains) Let PD be a planning domain antl = {(r;0,7,1) |
1 <i < n},n >0, asetof mux-pairs ilPD. Then,PD is calledmux-stratifiedw.r.t. F, if each planning
domainPD’ that results fromPD by removing one of the rules , andr; ; forall i = 1,...,n is stratified.

Notice thatF does not necessarily contain all mux-pairs occurring?iin we may even choosg = (),
where mux-stratified coincides with stratified planning ddm

Note thatZ induces a bipartite grapfd ;, whose vertices are the rules occurringfirand whose edges
are the pairs irfy. The removal sets for buildingD’ which need to be considered are given by the maximal
independent sets @fr. There may be exponentially many such sets, and thus thdarqsimple) mux-
stratification testing grows fast.

We now establish the following result.

Theorem 4.3 Every planning domai®D which is mux-stratified w.r.t. some set of mux-pdirés false-
committed.

Proof. Consider any stateand executable action sdtw.r.t. s in PD. Denote byactive(s, A, PD) the set
of all ground rules iyround(I1pp) which correspond to instancesof causation rules i?D such that the
after-part ofr’ is true w.r.t.s, A and the answer sét/ of the background knowledge.

Then, we claim thatctive(s, A, PD) is stratified, i.e., its (ground) dependency graph does aot c
tain a negative cycle. Indeed, towards a contradiction rassthat the (ground) dependency graph of
active(s, A, PD) contains a negative cycle. Then,C involves only rules which correspond to instances
of causation rules not occurring iff, and rules which correspond to instances of causation fues
Tty -« sTnyin, WhereE = {(r;0,7;1) | 1 < i < n}andi; € {0,1}, forallj =1,...,n. (Arule Ris
involved in all edges; — [, of the dependency graph, whdkec H(R) andls € B(R).) This means
that C' is also present in the ground dependency grapH gf: for somePD’ which results fromPD by
removing the causation rules; 1, r1,1-2;, ---,Tn,1-n;- Consequently, the (non-ground) dependency
graph oflIpp contains a negative cycle. This, however, contradicts Biais mux-stratified w.r.tE; the
claim is proved.

Since the ground programxtive (s, A, PD) is stratified, it is easily seen that conditions (i) and (fi) o
false-committedness hold for. Sinces was arbitrary, it follows thaPD is false-committed. O

By combining Theorems 4.1 and 4.3, we obtain the followingptary.

Corollary 4.4 The security checlC, is sound and complete for the class of mux-stratified plaqolio-
mains, and in particular if! consists of opposite groundchertial-rules.

The DLV system provides limited support for testing mux-stratifaa which currently works for
the setE consisting of all opposite ground inertia rules; an extemso larger classes is planned for future
DLV* releases. Notice, however, that deciding whether a giver{(far;) is a mux-pair in a given planning
domain is intractable in general.

A generalization of the result in Corollary 4.4 to sdisof non-ground opposite inertial rules fails.
The reason is that in this case, multiple transition candglg, A, s’) exist in ¢fs(PD) in general, which

INFSYS RR 1843-01-12 25

correspond to multiple answer sets of the progrartive(s, A, PD). However, some of them might not be
legal in PD, and condition (i) offalse-committedness may be violated. Preliminary results ssigthat
under further restrictions, like excluding constraintsl @ausation rules with opposite unifiable heais;
may be applied. We leave this for further work.

4.2 Serial Planning Domains and Security CheclsC,

BesidesSC;, the DLV' system provides an alternative security chéak for handling other classes of
proper planning domains, and the system design easily sitloevincorporation of further security checks.

The checkSCy, is obtained by a slight modification of the program clauseli\PD, P), resulting in
a programlly(PD, P) as follows: the headotex of each rule which stems from a causal rulsuch that
h(r) = false and theif-part is not empty, is shifted to the negative body, i.e.,

notex - Body.
is rewritten to

- Body, not notex.

Informally, this shift means that the violation of a consttaon the successor statéis tolerated, and
we eliminates’ as a counterexample to the security of the plan.
We will see that this check works for the following class adiqhing domains.

Definition 4.6 (serial planning domains) A planning domainPD is serial, if it has the following proper-
ties:

(i) if sis a state inPD and A is executable i w.r.t. PD, then some legal transitiofs, A, s') is guaran-
teed to exist, and, moreover,

(i) for any states and set of actiondl in cefs(PD), some legal transitiofs, A, s') exists w.r.t.cefs(PD).

Obviously, serial planning domaii2D are proper, as the checkpp for telling whether a legal transi-
tion exists fors and executablel is trivial (just always return “yes”). The following can bégerved:

Theorem 4.5 The security checKC, is sound and complete for serial planning domains.

The proof of this result is similar to the proof of Theorem,4fid we thus omit it.

A syntactical restriction guaranteeing seriality aretdteal planning domaing®D which contain no
rulesr such thath(r) = false and employ no strong negation. The serial property is pvegeif we we
also allow arbitrary totalization statements and limitest wf strong negation, e.g. either all occurrences
of a fluent are strongly negated or none is. Note that suchisigrdomains are natalse-committed in
general.

The security checl§C, also works for generalizations of serial planning domaks.example, we may
safely add rules of the formcaused false after B. FurthermoreSCs may also be profitably combined
with SC in order to enlarge classes for which security checking fgpetted.

26 INFSYS RR 1843-01-12

4.3 Incomplete Security Checking

We may combine (fast) security checks which are sound anttisechecks which are complete to obtain
checks which return the correct answer if possible, andelélg answer open otherwise. This is similar
to the use of incomplete constraint solvers in constraiog@amming, which return either “yes,” “no,” or
“unknown” if queried about satisfiability of a constrairtigtobvious requirement is that the answer returned
does not contradict the correct result.

Suppose that we have a suite of security che®&s, ..., SC,,, whereSCy, ..., SC;, for somej < n,
are known to be sound for a class of planning dom@#sandSCy, ..., SC,, for somek < n, are known
to be complete foPD. Then, we can combine them to the following tést

“yes”, if SC;(P, P) ="yes,” forsomei € {1,...,7};
T(P,P) =< “no”, if SC;(P, P) =*“no,” for somei € {k,...,n};
“unknown”, otherwise

Observe that in the “yes” case ®f SC;(P, P) = “yes” must hold for alk € {k,...,n}, and symmetrically
in the “no” case thasC;(P, P) ="“no,” forall 7 € {1, ..., }; this can be used for checking integrity of the
sound resp. complete security checks involved.

Note that we can always use a dummy complete security cheihwiports “yes” on every input. By
merging the “unknown” case into the “no” case, we thus canlmoesound security check’, ..., SC;
to another, more powerful sound security che&k for the classPD. In particular, ifSCy,...,SC; are
known to exhaust all secure plans, th&f is a sound and complete security check/Rip.

To account for the results in this section, in addition to teenmand-line optionsFP, -FPopt
and-FPsec that we have seen in Section 23,V provides three further options controlling the se-
curity checking:-FPcheck= n wheren € {1,2} (which correspond t&C; andSCs in the current im-
plementation) selects a security check, whi®soundcheck= n and-FPcompletecheck= n where
n € {1,2}, as above, can be used to specify a security check known tounel ind complete, respectively,
for the input domain. The incorporation of further built$ecurity checks and support for user-defined
security checks is planned for the future.

5 Comparison and Experiments

In the following, we will compareDLV* with several state-of-the-art conformant planning systeamd
report about experimental results about the performantieeafystem. The results presented here are mainly
intended to give a momentary view on the state of the curraptémentation obLV* and its capabilities.

To that end, we present extensive benchmark results, anadefspare the expressive power and flexibility
of the various systems.

5.1 Overview of Compared Systems
5.1.1 CCALC

The Causal CalculatofCCALQ is a model checker for the languages of causal theories [BOhnslates
programs in the action languageinto the language of causal theories which are in turn toanséd into
SAT problems using literal completion as described in [FHis approach is based on Satisfiability Planning
[22], where planning problems are reduced to SAT problemisiwdre then solved by means of an efficient
SAT solver likeSATQO[48] or relsat[1].

INFSYS RR 1843-01-12 27

Though its input language allows nondeterminism in thaahgtate and also nondeterministic action
effects, CCALC as such is not capable of conformant planaimgjonly computes “optimistic plans” (ac-
cording toDLV® terminology). Plan length is fixed, and both sequential atarrent planning are sup-
ported.

CCALC is written in Prolog. For our tests, we used version01d® CCALC which we obtained
from <URL:http://www.cs.utexas.edu/users/tag/cc/> and a trial version of SICStus Pro-
log 3.8.6; we tested the system with SATO 3.2.1 and relsa21.0n the instances SATO could solve it
was significantly faster than relsat; relsat was used omiytHe instances SATO could not solve in our
experiments.

5.1.2 CMBP

The Conformant Model Based Plann@t] is based on the model checking paradigm as well and relies
on symbolic techniques such as BDDs. CMBP only allows setiplguianning. Its input language is an
extension ofAR [16]. Unlike action languages such@sr K [6], this language only supports propositional
actions. Nondeterminism is allowed in the initial state &rdaction effects. The length of computed plans
is always minimal, but the user has to declare an upper bosind stommand-line optiospl . If -pl is set
equal to the minimal plan length for the specific problens ttan be used to fix the plan length in advance.
We used this method to be comparable viith/“ which currently can only deal with fixed plan length.

For our tests, we used CMBP 1.0, available<&kRL:http://sra.itc.it/people/roveri/
cmbp/> .

5.1.3 CPlan

Introduced in [15, 10]CPlanis a conformant planner based on CCALC and ¢haction language [17,
26, 29]. This language is similar #6 in many respects, but close to classical logic, wiiles more “logic
programming oriented” by the use default negation (seedfirther discussion). CPlan uses CCALC only
to generate a SAT instance and replaces the optional SAErsolised by CCALC with an own procedure
that extracts conformant plans from these SAT instancesardmplements full conformant planning and
supports the computation of both minimal length plans ad asplans of fixed length, by incrementing
plan length from a given lower bound until a plan is found oriveey upper bound is reached. We set the
upper and lower bound equal to the minimal plan length of geiic problems for our experiments to be
comparable witlDLV®. Sequential and concurrent planning are possible; nordetism is allowed in the
initial state as well as for action effects.

For our tests, we used CPlan 1.3.0, which is availabid R L :http://frege.mrg.dist.unige.
it/“otto/cplan.html> , together with CCALC 1.90 to produce the input for CPlan.

514 GPT

The General Planning TooJ3] employs heuristic search techniques Iketo search the belief space. Its
input language is a subset BDDL. Nondeterminism is allowed in the initial state as well asdotion
effects. GPT only supports sequential planning and catesijalans of minimal length.

We used version GPT 1.14 obtained fretdRL:http://www.cs.ucla.edu/"bonet/software/
>,

28 INFSYS RR 1843-01-12

5.1.5 SGP

In addition to conformant planningensory Graphpla(SGR, [47]) can also deal with sensing actions. SGP
is an extension of the Graphplan algorithm [2]. Its inpublaage is an extension of PDDL [14]. Nondeter-
minism is allowed only in the initial state. The program apsaalculates plans of minimal lengthSGP
does not support sequential planning, but computes cartystans automatically recognizing mutually ex-
clusive actions. That means, minimal length plans in terh®&P are not plans with a minimal number of
actions but with a minimal number of steps needed. At eaghastearbitrary number of parallel actions are
allowed, as long as the preconditions or effects are not atlytexclusive which is automatically detected
by the algorithm.

SGP is written in LISP and available atURL:http://www.cs.washington.edu/ai/sgp.
html> . For our tests, we used a trial version of Allegro Common lagp

5.1.6 Specific system features
We would also like to point out further specific features ahgoof these special purpose planning systems:

e SGP automatically recognizes mutually exclusive actionsancurrent plans. It is possible to en-
code concurrent plans DLV by explicitly describing the mutually exclusive actions,done in our
encodings of the “bomb in the toilet” benchmark problemsrfaritiple toilets (see Section 5.2.2).
However, the languagk is more complex than PDDL, which makes automatic recogmitiopossi-
ble conflicts of actions much harder in our framework. On ttiephand, our notions of executability
and nonexecutability allow more flexible encodings of gdafalctions than SGP.

e GPT and SGP always compute minimal plans, which is not plessilthe current version dbLV*.

e CMBP and CPlan optionally compute minimal plans, where #&r may specify upper and/or lower
bounds for the plan length.

Table 1 provides a comparison BEV* and all the systems introduced above. Note that CCALC is not
capable of conformant planning, and thus we cannot use th@mespective benchmark problems. On the
other hand, CPlan showed slow performance on the detetiniplanning benchmarks that we considered.
Therefore, we considered these two systems in combina@li@A[LC for deterministic planning benchmarks
and CPlan for conformant planning benchmarks).

Table 1. Overview of System Features

DLV | CCALC | CPlan| CMBP | SGP | GPT
Input Language K C C AR | PDDL | PDDL
Sequential plans yes yes yes yes no yes
Concurrent plans yes yes yes no yes no
Optimistic plans yes yes no no no no
Conformant plans yes no yes yes yes yes
Minimal plan length no no yes yes yes yes
Fixed plan length yes yes yes no’ no no

@ An upper bound can be specified, but computed plans are alwiysal.

5SGP comprises the functionality of another system by Snmithvleld called CGP (Conformant Graphplan, [42]), but is slow
in general. As CGP is no longer maintained and not availablia®, we nevertheless decided to choose SGP for our expetin

INFSYS RR 1843-01-12 29

5.2 Benchmark Problems and Encodings
5.2.1 Blocksworld

For benchmarking we have chosen some blocks world instandéastrate the performance ofLV* on
deterministic domains. Problems P1-P4 are due to [8], aptolgmn P5 is a slight maodification of P4, which
needs two moves more. The initial configurations and theatse goal configurations of P1-P5 together
with the minimum number of moves (steps) needed to solvethesblems are shown in Figure 7.

P2

Bk
— 1 R I — 3] [a] [e] . [3] [2] [0
015 L1

Problem | blocks | moves

P4 P5
P1 q q
10 o] P2 5 6
L L B P3 8 8
o B P4 11 9
| | P5 11 11

Figure 7: Blocksworld planning instances

]

H
o
[o]5]
o
[~]e]

EIEIFNE

[o]~[n]
]~ [o]5]
EIEINIEY
BEE

5.2.2 Bomb in the Toilet

To show the capabilities dLV* on planning under incomplete information, and in particaenformant
planning, we have chosen the well-known “bomb in the toif@tiblem [34] and variations thereof, where
we employ a naming convention due to [4]. The respectivenitgndomain comprises actions with non-
deterministic effects, the initial state is incomplete aimdmore elaborated versions, several actions are
available that can be done in parallel.

BT(p) - Bomb in the toilet with p packages. The basic scenario of the “bomb in the toilet” problem is
as follows. We have been alarmed that there is a bomb (exawdyin a lavatory. There agesuspicious
packages which could contain the bomb. There is one toilet,lznd it is possible to dunk a package into
it. If the dunked package contained the bomb, then the bordisésmed and a safe state is reached. The
obvious goal is to reach a safe state via a secure plan.

BTC(p) - Bomb in the toilet with certain clogging. In a slightly more elaborated version, dunking a
package clogs the toilet, making further dunking impossifiihe toilet can be unclogged by flushing it. The
toilet is assumed to be unclogged initially. Note that thasnain still comprises only deterministic action
effects.

BTUC(p) - Bomb in the toilet with uncertain clogging. In a further elaboration of the domain, dunk-
ing a package has a nondeterministic effect on the statusilef, twhich is either clogged or not clogged
afterwards.

BMTC(p,t), BMTUC(p,t) - Bomb in the toilet with multiple toilets. Yet another elaboration is that
several toilet bowls#(> 1, rather than just one) are available in the lavatory.

30 INFSYS RR 1843-01-12

5.2.3 Encodings used

As far as possible, we used the original encodings which caorey with the distributions of the respective
systems.

CCALC/CPlan: CCALC is not capable of conformant planning, while CPlanverbvery slow on de-

terministic domains. Thus, for the blocksworld problems-P3 we used thé encoding provided by Esra
Erdem with pure CCALC [8], while we used CPlan for the “bombtie toilet” problems, with slight mod-
ifications of theC encodings provided with the current CPlan distribution.

CMBP: For CMBP, we used the “bomb in the toilet” encodings which iamuded in the distribution.
BMTUC(p, t) is not included, but only a trivial modification of BMT@(t) is needed to obtain an encoding
for BMTUC. Because only propositional actions are allowedhie input language of CMBP, an encoding
of blocks world where many different moves are possible itedarge. As no encoding is included in the
examples, a (straightforward) encoding of P1 which we useddmparison can be found in Section B.1 of
the appendix.

GPT: Thedistribution of GPT provides encodings for various “limimthe toilet” problems; BMTUGCK, ¢)
was not included, but the respective extension of BT trivial. For blocksworld, we used an adapted
version of the SGP encoding, as the PDDL dialects of the twtesys slightly differ. The encoding for P1
can be found in the appendix.

SGP: For SGP we used the blocks world and bomb in toilet encodimgsirg with the distribution.
BTUC(p) and BMTUC, t) cannot be encoded in SGP which only allows nondeterminisitiné initial
state.

SGP generates concurrent plans, so we did not compare thergied versions of BT) and BMTC, t).
Furthermore, for the blocks world problems, this meanstti@minimal plan lengths differ from the€ en-
codings, and we provide them in an extra column of Table 2XeNat the number of actions in the plans
computed by SGP is not necessarily minimal. For exampleP®a plan with 4 steps and 9 moves exists
whereas SGP finds a plan with 4 steps and 12 moves.

DLVX: We have tested for the “bomb in the toilet” problems two difet encodings iDLV*, developed in
[6]. The first one, labeledss in the results, mimics world-state planning, in which thiéeglent completions
of the states (“totalizations”) to world-states are coastdl. The second one, labeled uses the power of
knowledge-state planning providedy"; it does not complete the states right away, but leaves tlue va
of unknown fluents open in accordance with the real knowleafgihe planning agent about the state of
affairs. In both encodings, we first consider concurrenbastand then one action at time.

Since the blocksworld problems are not conformant planimstances, we use optimistic planning for
them. For the knowledge-state encoding of the “bomb in tiett@roblems, the applicability of the security
checkSC, is straightforward even for BTU@] and BMTUC, t), as the domains are mux-stratified w.r.t.
the inertia rules foelogged and <clogged, as these fluents do not occur in any bodies of other causation
rules. Furthermore, thanks to the knowledge-state reptatien, the domains are deterministic and have
unique initial states, so the security check is trivial ardligible for timing.

The world-state encodings of B); BTC(p), and BMTCp, t) are stratified, so the security cheSk
is guaranteed to be sound and complete for these problemsiofay 4.2. In the case of BTU@) and

INFSYS RR 1843-01-12 31

BMTUC(p, t) in the world-state programs, the maaretal violates stratification. However, both BTUG)(
and BMTUC, t) arefalse-committed domains, and thus the security ch8€k is sound and complete for
these problems by Theorem 4.5. Indeed, the respectivegmsgnave no cycle with an odd number of nega-
tive arcs in their dependency graphs (cf. BMTWG{] in Appendix C.1; BTUCf, t) and BMTUCp, t) have
the same dependency graph, since the only difference isdhad fluents get an additional argument [6]), so
by well-known results at least one answer set is guaransgetithus condition (ii) of alse-committedness
holds. Furthermore, the only constraints are those reguftom expanding th@onexecutable state-
ments. Since these constraints refer only to actions,regthe’ in a transition(s, A, s’) satisfy them or no

s’ does. Therefore, condition (i) da1se-committedness is enforced as well. The world-state engsdbf
“bomb in the toilet” are not deterministic, so the securityeck is responsible for a considerable portion of
the timings.

5.3 Benchmark Results and Discussion

In this section, we compare the various systems in termspoésentation capabilities and run-time bench-
marks.

5.3.1 Test environment

All tests were performed on a Pentium Il 733MHz machine v@86MB of main memory running SUSE
Linux 6.4. The results for the blocks world problems are sarped in Table 2. Tables 3—9 show the results
for the various “bomb in the toilet” problems. The minimahpllength is reported in the second column of
each table. Note that for CCALC the results include 1.23gwgiadime for SICStus Prolog, while for SGP
0.27s startup time is included. Run-times longer than 12B0 Geconds were omitted, which is indicated
by a dash in the tables.

5.3.2 Representation

From the viewpoint of expressiveness, the langudggten allows a more compact and readable encoding
than AR or PDDL dialects: CMBP allows only propositional actions (see Apgie B.1 for a blocks world
encoding in4R), whereas languages likeand K allow a much more elegant encoding of complex actions.
PDDL dialects as used by GPT or SGP, on the other hand, do loat ekpressing ramifications which
makes the encoding of action effects less readable andretadotolerant (see Appendix B.2 for a GPT
encoding of blocksworld).

Similar remarks apply also to the “bomb in the toilet” prabke whereC allows for very compact and
at the same time intuitive encodings.

5.3.3 Performance

The running times on blocksworld instances in Table 2 shawhV* is significantly faster than the other
systems if there are many action instances.

Under the world-state encodings of the different “bomb mtiilet” instancesDLV is not competitive
except for BTH) with concurrent dunks, where plan length is always 1, andlBXp). This indicates that
DLV*’s performance is quite sensitive to (increasing) plan fiengspecially for sequential planning. Still,
DLV® outperforms SGP, a special purpose planning system, ommiparable instances, and also CPlan

32 INFSYS RR 1843-01-12

(which is the system most comparableDtbV* in terms of expressiveness and similar in nature) seems to
be within reach.

Under the knowledge-state encodin@s\V* outperforms its competitors in many of the chosen exam-
ples. The sensitivity to increasing plan length/searclespan, however, also partly be observed here, where
execution times seem to grow drastically from one instandbe next. This can be partly explained by the
general heuristics of the underlyimy.V system, which which might not scale up well in some cases. For
instance DLV as a general purpose problem solver does not include spextiaibtics towards plan search.

In particular, during the answer set generation processlsimction is made between actions and fluents,
which might be useful for planning tasks to control the gatien of answer sets resp. plans; this may be
part of further investigations.

5.3.4 Effect of concurrent actions and default negation

Once we also consider concurrent actions (which are notstggpby GPT and CMBPDLVC performs
better than CPlan on some larger instances of BMiT§@nd BMTUC, t) (see Tables 7 and 9).

Using the expressive power of default negation to exprekaawn fluents with the knowledge-state
encodings of “bomb in the toilet” iC pays off well: DLV® outperforms all other systems, including the
special purpose conformant planners GPT and CMBP, excegequrential BMTGC4, t) and BMTUCp, t)
with more than two toilets (see Tables 8 and 10), where CMB&si®st.

5.3.5 Summary of experimental results

Overall, the results indicate thBLV* is competitive with state of the art conformant plannerpeelly
when exploiting thelC language features in terms of knowledge-state problemdimge. Recall, how-
ever, that some of the systems compute minimal plans, wii¢burrently) not supported tyLV*. The
comparison oDLV* to CCALC/CPlan is particularly relevant, since these systare closest in spirit to
DLV*. As we can see, the advanced features of knowledge-stadeliagdead to significant performance
improvements.

6 Further Related Work and Conclusion

We have discussed the relationmfV* to a number of planning systems in Section 5 already, and eemp
ment this by briefly addressing further approaches andmgshere.

6.1 Further Related Work

The idea to employ declarative logic programming systemslamning finds its roots in the seminal paper
Subrahmanian and Zaniolo [43], which carried out the idesatifiability planning [22] to the framework
of declarative logic programming.

Planning under incomplete knowledge has been widely iipegsid in the Al literature. Most works ex-
tend algorithms/systems for classical planning, rathan ising deduction techniques for solving planning
tasks as proposed in this paper. The systems Buridan [23T,RIIP [37], Conformant Graphplan [42],
CNLP [38] and CASSANDRA [39] fall in this class. In particulaBuridan, UDTPOP, and Conformant
Graphplan can solve secure planning (also called confdrplanning), likeDLV*. On the other hand,

INFSYS RR 1843-01-12

Table 2: Experimental results for blocksworld problems P3—

Problem | steps| blocks [[DLV® [CCALC | CMBP | GPT SGP
steps/action$ time
P1 4 4 0.04s 1.73s 0.18s | 1.13s 374 9.69s
P2 6 5 0.11s 2.18s 7.95s | 2.52s 5/7 43.85s
P3 8 8 8.81s 5.42s - - 4/12 248.45s
P4 9 11 || 8.91s 15.83s - - - -
P5 11 11 || 21.14s | 350.43¢ - - - -

33

@ As SGP supports only concurrent planning, the number obstad number of actions for the solutions found are displayed extra
column. Note that the number of actions is not necessarilymail.

b With CCALCand SATO no solution for P5 could be found, the timing for PSwanerated using relsat, which is significantly slower
on the other problem instances.

Table 3: Experimental results for B with concurrent dunks

BT(p) | steps DLW CPlan | SGP
ws ks
BT(2) 1 0.0Is] 0.01s| 1.38s | 0.69s
BT(3) 1 0.02s | 0.01s 1.38s 0.80s
BT(4) 1| 0.01s| 0.01s| 1.39s | 0.95s
BT(5) 1 0.02s | 0.01s 1.42s 1.21s
BT(6) 1|l 0.02s| 0.01s| 1.47s | 1.55s
BT(7) 1| 0.02s| 0.01s| 1.56s 2.00s
BT(8) 1 0.02s | 0.01s 1.79s 2.56s
BT(9) 1] 0.01s| 0.02s| 2.29s | 3.32s
BT(10) 1 0.02s | 0.02s 3.41s 4.27s
BT(11) 1] 0.02s| 0.02s| 6.04s | 5.34s
BT(12) 1 0.02s| 0.02s| 11.98s | 6.66s
BT(13) 1| 0.03s| 0.02s| 25.28s | 8.16s
BT(14) 1| 0.03s| 0.01s| 57.71s | 9.98s
BT(15) 1 0.03s| 0.01s| 127.75s| 12.11s
BT(16) 1 0.03s | 0.01s | 294.44s| 14.57s
BT(17) 1 0.03s| 0.02s| 678.19s| 17.43s
BT(18) 1| 0.03s| 0.02s - 20.74s
BT(19) 1 0.03s | 0.02s - 24.47s
BT(20) 1 || 0.04s| 0.02s - 28.78s

Table 4: Experimental results for B)sequential

T(p) steps DLW CPlan | CMBP GPT
ws ks
BT(2) 2 0.02s | 0.02s| 1.37s | 0.03s 0.56s
BT(3) 3 0.03s | 0.02s| 1.39s | 0.04s 0.55s
BT(4) 4 0.11s | 0.02s| 1.39s | 0.04s 0.61s
BT(5) 5 1.50s | 0.03s| 1.45s | 0.04s 0.61s
BT(6) 6 || 28.78s | 0.03s| 1.81s | 0.04s 0.63s
BT(7) 7 || 593.15s| 0.03s| 5.12s | 0.05s 0.67s
BT(8) 8 0.05s | 65.85s| 0.06s 0.68s
BT(9) 9 0.06s - 0.07s 0.78s
BT(10) 10 0.08s - 0.10s 0.95s
BT(11) 11 0.10s - 0.19s 1.27s
BT(12) 12 0.13s - 0.39s 2.12s
BT(13) 13 0.16s - 0.82s 3.89s
BT(14) 14 0.21s - 1.76s 8.87s
BT(15) 15 0.28s - 4.00s | 19.13s
BT(16) 16 0.35s - 8.82s | 42.17s
BT(17) 17 0.47s - 19.03s | 93.69s
BT(18) 18 0.61s - 38.95s | 208.00s
BT(19) 19 0.78s - 91.89s | 496.95s
BT(20) 20 0.98s - 199.63s | 546.43s

34

Table 5: Experimental results for BT&)(

INFSYS RR 1843-01-12

BTC(p) | steps DLW CPlan | CMBP GPT SGP
ws ks
BTC(2) 3 || 0.02s] 0.01s| 1.37s | 0.04s | 059s | 0.92s
BTC(@3) 51| 0.08s | 002s| 1.39s | 0.04s | 0.60s | 3.30s
BTC(4) 7 || 1.56s | 0.02s| 1.39s | 0.05s | 0.60s | 191.60s
BTC(5) 9 || 36.28s| 0.03s| 2.36s | 0.05s | 0.62s -
BTC(6) 11 - 0.04s| 28.95s | 0.06s | 0.66s -
BTC(7) 13 - 0.06s | 178.97s| 0.07s | 0.68s -
BTC(8) 15 - 0.08s - 0.12s | 0.74s -
BTC(9) 17 - 0.11s - 0.21s | 0.8i1s -
BTC(10) 19 - 0.14s - 0.39s | 1.04s -
BTC(11) 21 - 0.20s - 0.81s | 1.48s -
BTC(12) 23 - 0.26s - 1.72s | 251s -
BTC(13) 25 - 0.34s - 3.79s | 4.68s -
BTC(14) 27 - 0.45s - 8.82s | 10.84s -
BTC(15) 29 - 0.58s - 16.92s | 23.31s -
BTC(16) 31 - 0.74s - 42.92s | 51.40s -
BTC(17) 33 - 0.94s - 92.03s | 114.21s -
BTC(18) 35 - 1.17s - 197.85s| 273.25s -
BTC(19) 38 - 1.46s - - 374.00s -
BTC(20) 39 - 1.80s - - - -
Table 6: Experimental results for BTUR)(
BTUC(p) | steps DLV* CPlan | CMBP GPT
ws ks
BTUC(2) 3 || 0.03s | 0.02s| 1.35s | 0.03s | 0.59s
BTUC(3) 5 || 0.61s | 0.02s| 1.45s | 0.04s | 0.60s
BTUC(4) 7 || 87.54s| 0.03s| 1.93s | 0.04s | 0.61s
BTUC(5) 9 . 0.03s| 2.48s | 0.06s | 0.66s
BTUC(6) 11 . 0.04s 0.06s | 0.65s
BTUC(7) 13 - 0.05s | 51.72s| 0.07s | 0.74s
BTUC() 15 . 0.08s 0.12s | 0.75s
BTUC(9) 17 . 0.10s 0.20s | 0.88s
BTUC(10) 19 - 0.14s 0.39s | 1.18s
BTUC(11) 21 . 0.19s 0.80s | 1.81s
BTUC(12) 23 . 0.25s 1.72s | 3.18s
BTUC(13) 25 - 0.33s 3.79s | 6.42s
BTUC(14) 27 - 0.43s 8.81s | 14.43s
BTUC(15) 29 . 0.55s 16.94s | 32.25s
BTUC(16) 31 - 0.71s 42.93s | 71.10s
BTUC(17) 33 - 0.90s 92.02s | 159.53s
BTUC(18) 35 . 1.15s 197.84s| 368.12s
BTUC(19) 38 - 1.41s
BTUC(20) 39 - 1.74s

Table 7: Experimental results for BMTg)with concurrent dunks

Table 8: Experimental results for BMTg)Ysequential

BMTC(p,t) | steps DLV CPlan SGP
ws ks

BMTC(2,2) 1] 002s | 001s | 1.41s | 0.95s
BMTC(3,2) 3 0.04s 0.02s 1.50s 3.40s
BMTC(4, 2) 3 0.11s 0.03s 1.72s 7.17s
BMTC(5,2) 51| 279s | 0.04s | 3.37s -
BMTC(6, 2) 5| 37.04s | 0.07s | 13.04s -
BMTC(7,2) 7 - 0.52s 71.50s -
BMTC(8,2) 7 - 10.66s - -
BMTC(9, 2) 9 - 206.27s - -
BMTC(10, 2) 9 - - - -
BMTC(2, 3) 1 0.02s 0.02s 1.62s 1.15s
BMTC(3, 3) 1 0.02s 0.02s 2.31s 1.76s
BMTC(4, 3) 3 0.08s 0.03s 4.81s 15.01s
BMTC(5, 3) 3| 0.35s | 0.03s | 13.55s | 76.28s
BMTC(6, 3) 3| 17.81s | 0.06s | 43.34s | 592.41s
BMTC(7, 3) 5 223.31s| 0.13s 210.71s -
BMTC(8, 3) 5 - 0.74s | 417.62s -
BMTC(9, 3) 5 - 5.90s - -
BMTC(10, 3) 7 - 389.08s - -
BMTC(2, 4) 1 0.02s 0.02s 2.89s 1.52s
BMTC(3, 4) 1| 002s | 002s | 9.19s | 2.34s
BMTC(4, 4) 1 0.03s 0.02s 37.55s 3.71s
BMTC(5, 4) 3 0.18s 0.04s 158.74s| 372.74s
BMTC(6, 4) 3| 529s | 0.05s | 571.77s -
BMTC(7, 4) 3 61.73s 0.09s - -
BMTC(8, 4) 3 668.74s| 0.41s - -
BMTC(9, 4) 5 - 1.06s - -
BMTC(10, 4) 5 - 12.14s - -

BMTC(p, t) steps DLW CPlan | CMBP | GPT
ws ks
BMTC(2,2) 2 0.02s 0.02s 1.41s 0.04s | 0.76s
BMTC(3,2) 4 0.07s 0.02s 1.50s 0.05s | 0.78s
BMTC(4, 2) 6 2.47s 0.04s 1.64s 0.06s 0.81s
BMTC(5, 2) 8 || 208.52s| 0.05s 2.66s 0.06s | 0.82s
BMTC(6, 2) 10 - 0.07s | 32.77s | 0.09s | 0.86s
BMTC(7,2) 12 - 0.10s 12.46s 0.12s 0.96s
BMTC(8, 2) 14 - 0.13s - 0.23s | 1.11s
BMTC(9, 2) 16 - 0.20s - 0.48s | 1.48s
BMTC(10,2) 18 - 0.28s - 0.96s 2.26s
BMTC(2, 3) 2 0.02s 0.02s 1.50s 0.04s | 0.76s
BMTC(3, 3) 3 0.03s 0.02s 1.85s 0.04s | 0.81s
BMTC(4, 3) 5 1.84s 0.03s 2.86s 0.06s 0.84s
BMTC(5, 3) 7 || 291.24s| 0.06s 5.92s 0.09s | 0.90s
BMTC(6, 3) 9 - 0.09s | 14.50s | 0.14s | 0.99s
BMTC(7, 3) 11 - 0.25s 40.41s 0.30s 1.17s
BMTC(8, 3) 13 - 15.42s - 0.62s | 1.66s
BMTC(9, 3) 15 - - - 1.44s | 2.79s
BMTC(10, 3) 17 - - - 3.31s | 5.64s
BMTC(2,4) 2 0.02s 0.02s 2.02s 0.04s 0.81s
BMTC(3,4) 3 0.41s 0.02s 3.67s 0.05s | 0.83s
BMTC(4,4) 4 0.60s 0.03s 9.03s 0.07s 0.92s
BMTC(5,4) 6 149.65s| 0.06s 30.55s 0.13s 1.01s
BMTC(6,4) 8 - 0.10s - 0.23s | 1.27s
BMTC(7,4) 10 - 0.15s | 199.73s| 0.51s 1.85s
BMTC(8,4) 12 - 0.47s - 1.13s 3.34s
BMTC(9, 4) 14 - 67.07s - 2.94s | 7.18s
BMTC(10, 4) 16 - - - 6.38s | 17.34s

C¢T-TO-€V8T 4d SASANI

1

INFSYS RR 1843-01-12

Table 9: Experimental results for BMTUg)with concurrent dunks Table 10: Experimental results for BMTUg)(sequential

BMTUC(p, t) steps DLVE CPlan BMTUC(p, t) steps DLVE CPlan | CMBP | GPT
ws ks ws ks

BMTUC(2, 2) 1] 002s [002s | 1.40s BMTUC(2, 2) 2 || 002s | 0.02s| 1.39s | 0.04s | 0.78s
BMTUC(3, 2) 3| o011s | 003s | 2.06s BMTUC(3, 2) 4| 052s | 0.02s| 1.96s | 0.04s | 0.80s
BMTUC(4, 2) 3 || 7.39s | 0.03s | 3.54s BMTUC(4, 2) 6 || 264.20s| 0.04s | 3.37s | 0.05s | 0.81s
BMTUC(5, 2) 5 - 0.04s | 8.18s BMTUC(5, 2) 8 - 0.05s | 361.64s| 0.06s | 0.85s
BMTUC(6, 2) 5 - 0.07s | 787.58s BMTUC(6, 2) 10 - 0.07s - 0.08s | 0.92s
BMTUC(7, 2) 7 - 0.80s - BMTUC(7, 2) 12 - 0.10s - 0.12s | 1.04s
BMTUC(S, 2) 7 - 23.57s - BMTUC(S, 2) 14 - 0.14s - 0.23s | 1.34s
BMTUC(9, 2) 9 - 818.23s| - BMTUC(9, 2) 16 - 0.21s - 0.47s | 2.00s
BMTUC(10, 2) 9 - - - BMTUC(10,2) | 18 - 0.27s - 0.96s | 3.71s
BMTUC(2, 3) 1] o0o02s | 002s | 1.55s BMTUC(2, 3) 2 || 002s | 0.02s| 149s | 0.04s | 0.79s
BMTUC(3, 3) 1| o002s | 002s | 10.27s BMTUC(3, 3) 3| 004s | 003s| 6.47s | 0.05s | 0.81s
BMTUC(4, 3) 3 || 0.28s | 0.03s | 41.03s BMTUC(4, 3) 5 || 71.03s | 0.04s | 22.07s | 0.06s | 0.86s
BMTUC(5, 3) 3 || 34.09s | 0.03s | 181.45s BMTUC(5, 3) 7 - 0.05s | 150.72s| 0.09s | 0.98s
BMTUC(6, 3) 3 - 0.05s | 600.66s BMTUC(6, 3) 9 - 0.08s - 0.14s | 1.19s
BMTUC(7, 3) 5 - 0.10s - BMTUC(7, 3) 11 - 0.21s - 0.29s | 1.74s
BMTUC(S, 3) 5 - 0.74s - BMTUC(S, 3) 13 - 13.39s| - 0.61s | 3.15s
BMTUC(9, 3) 5 - 9.55s - BMTUC(9, 3) 15 - - - 1.45s | 6.69s
BMTUC(10, 3) 7 - 693.99s| - BMTUC(10,3) | 17 - - - 3.31s | 1557s
BMTUC(2, 4) 1]| 002s | 002s | 2.54s BMTUC(2, 4) 2 || 001s | 002s| 1.93s | 0.04s | 0.79s
BMTUC(3, 4) 1| o002s | 002s | 119.18s BMTUC(3, 4) 3| 078s | 0.02s| 41.70s | 0.05s | 0.86s
BMTUC(4, 4) 1| 003s | 002s | 582.84s BMTUC(4, 4) 4 || 5.81s | 0.04s | 182.92s| 0.07s | 0.97s
BMTUC(5, 4) 3 || 0.84s | 0.04s - BMTUC(5, 4) 6 - 0.06s | 837.33s| 0.12s | 1.33s
BMTUC(6, 4) 3 || 748.90s| 0.05s - BMTUC(6, 4) 8 - 0.09s - 0.23s | 2.23s
BMTUC(7, 4) 3 - 0.08s - BMTUC(7, 4) 10 - 0.13s - 0.51s | 4.79s
BMTUC(8, 4) 3 - 0.55s - BMTUC(S, 4) 12 - 0.42s - 1.13s | 11.37s
BMTUC(9, 4) 5 - 0.98s - BMTUC(9, 4) 14 - 64.02s| - 2.94s | 28.07s
BMTUC(10, 4) 5 - 17.89s - BMTUC(10,4) | 16 - - - 6.37s | 68.26s

36

INFSYS RR 1843-01-12 37

the systems CNLP and CASSANDRA deal with conditional plagriwhere the sequence of actions to be
executed depends on dynamic conditions).

More recent works propose the use of automated reasonihgitees for planning under incomplete
knowledge. In [41] a technique for encoding conditionahplag problems in terms of 2-QBF formulas is
proposed. The work in [11] proposes a technique based oassign for solving secure planning problems
in the framework of the Situation Calculus, and presentsaoBrimplementation of such a technique.
In [31], sufficient syntactic conditions ensuring secunfyevery (optimistic) plan are singled out. While
sharing their logic-based nature, our work presented gghper differs considerably from such proposals,
since it is based on a different formalism.

6.2 Summary

In this paper, we have presented theVC planning system, which implements tli& action and plan-
ning language, introduced and discussed in the companijoer j@], on top of thebLVlogic programming
system. In the course of this, we have shown a transformafiplanning problems i into logic program-
ming. In particular, we have given such a transformationofatimistic planning, which is planning in the
traditional sense, and we have discussed how secure ptanmginconformant planning, can be realized for
certain classes of planning problems via a transformati@ecurity checking into logic programming. Our
transformations use disjunctions in rule heads supporéal i, but can be easily adapted to be disjunction-
free, and thus become available for other logic programrysiems such as Smodels [35]. Furthermore,
we have compared our system on some standard benchmarkmotd similar logic-based planning sys-
tems, namely CCALC [30, 31], CPlan [15, 10], CMBP [4]), GPT, @xd SGP [47]. We obtained promising
performance results for secure planning exploiting thegyavf knowledge-state problem encodings, which
are a distinguishing feature of théplanning language. As we believe, the results of the pressgrer show
that knowledge-state encoding of planning problems hasgdés it conceptual conciseness and natural ap-
peal, potential also from a computational perspective.

6.3 Further and Future Work

Enhancing and further improving tiELV* planning system is an ongoing effort. There are severaésssu
which we address in our current and future research. One,igsiscussed more in detail in the companion
paper [6], is the development of a methodology for profitalding the knowledge-state planning approach.

Another issue concerns improvements and enhanced cdieabftir secure planning. We have per-
formed further experiments with a different approach offoomant answer set planning presented in [24].
In contrast to the plan security checking described heed,thper sketches an integrated encoding of con-
formant planning domains. In that approach, all answer setiespond to secure plans and no further
checking is necessary. These results seem to be very egaomyraut it is only possible to encode a rather
restricted class of domains BLV. In fact, since secure planningX’-complete [6], complexity arguments
show that this method can not be efficiently extended to alhpihg domains. On the other hand, security
checking for all planning domains is in the cld$§, and thus can be polynomially encodedtoV. How-
ever, such a transformation remains to be designed in fukkigdity. Besides these issues, also extended
handling of incomplete security checking, as describedigpaper, is part of our research, and we consider
further built-in as well as support for user-defined seguritecks.

Finally, the use of th®LVengine as a computational backbone suggests to use itslt@sato enhance
theDLV® planning system by further features. In particular, by the of weak constraints, it is possible to

38 INFSYS RR 1843-01-12

compute irDLVoptimal answer sets of a logic program. This provides a caatignal basis for determining
optimal plans of a planning problem, which are plans thatimize a given objective function, such as
cost of actions, or execution time. To our knowledge, curfegic-based planning systems do not offer
comprehensive such capabilities. Enhancingithlanguage and thBLV* system for optimal planning is
on our agenda, and such features will be included in fubure releases.

Acknowledgments This work has greatly benefited from interesting discussimith and comments of
Michael Gelfond, Vladimir Lifschitz, Riccardo Rosati, ahtlidson Turner. Furthermore, we are grateful
to Claudio Castellini, Alessandro Cimatti, Esra Erdem,i@&nfiunchiglia, David E. Smith, and Dan Weld
for kindly supplying explanations, support, and commentsie systems that we used for comparison.
Furthermore, we appreciate the review comments which detpanprove this paper.

This work was supported by FWF (Austrian Science Funds) uheegorojects P14781-INF and Z29-N04
and the European Commission under projects FET-2001-3W¥HP and IST-2001-33570 INFOMIX.

References

[1] Bayardo, R., Schrag, R., 1997. Using CSP look-back teghes to solve real-world SAT instances. In:
Proceedings of the 15th National Conference on Artificiglligence (AAAI-97). pp. 203-208.

[2] Blum, A. L., Furst, M. L., 1997. Fast Planning Through mting Graph Analysis. Atrtificial Intelli-
gence 90, 281-300.

[3] Bonet, B., Geffner, H., April 2000. Planning with Incotege Information as Heuristic Search in Belief
Space. In; Chien, S., Kambhampati, S., Knoblock, C. A. (EddPS’00. Breckenridge, Colorado,
USA, pp. 52-61.

[4] Cimatti, A., Roveri, M., 2000. Conformant Planning vigr8bolic Model Checking. Journal of Artifi-
cial Intelligence Research 13, 305-338.

[5] Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, Jul. 2000. Planning under incomplete knowl-
edge. In: Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau;K, Palamidessi, C., Pereira, L. M.,
Sagiv, Y., Stuckey, P. J. (Eds.), CL2000. No. 1861 in Lectdotes in Al (LNAI). Springer Verlag,
London, UK, pp. 807-821.

[6] Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, Bec. 2001. A Logic Programming Approach
to Knowledge-State Planning: Semantics and ComplexitghTRep. INFSYS RR-1843-01-11, TU
Wien.

[7] Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcelig 1998. The KR Systenllv : Progress Report,
Comparisons and Benchmarks. In: Cohn, A. G., Schubert,Hapi®o, S. C. (Eds.), KR'98. Morgan
Kaufmann Publishers, pp. 406—417.

[8] Erdem, E., 1999. Applications of Logic Programming t@afing: Computational Experiments, un-
published dratft.
http://www.cs.utexas.edu/users/esra/papers.html

INFSYS RR 1843-01-12 39

[9] Faber, W., Leone, N., Pfeifer, G., December 1999. Pyshkinal Derivation in DLP Computations. In:
Gelfond, M., Leone, N., Pfeifer, G. (Eds.), LPNMR’99. No.30/in Lecture Notes in Al (LNAI). El
Paso, Texas, USA, pp. 177-191.

[10] Ferraris, P., Giunchiglia, E., 2000. Planning as $atifity in Nondeterministic Domains. In:
AAAI'00. AAAI Press / The MIT Press, pp. 748-753.

[11] Finzi, A., Pirri, F., Reiter, R., 2000. Open world plang in the situation calculus. In: AAAI'00. AAAI
Press / The MIT Press, pp. 754—760.

[12] Gelfond, M., Lifschitz, V., 1991. Classical Negatiom Logic Programs and Disjunctive Databases.
New Generation Computing 9, 365-385.

[13] Gelfond, M., Lifschitz, V., 1993. Representing Actiamd Change by Logic Programs. Journal of
Logic Programming 17, 301-321.

[14] Ghallab, M., Howe, A., Knoblock, C., McDermott, D., RamA., \Veloso, M., Weld,
D., Wilkins, D., October 1998. PDDL — The Planning Domain Défon lan-
guage. Tech. rep., Yale Center for Computational Vision a@dntrol, available at
http://www.cs.yale.edu/pub/mcdermott/software/padigz.

[15] Giunchiglia, E., 2000. Planning as Satisfiability wilxpressive Action Languages: Concurrency,
Constraints and Nondeterminism. In: Cohn, A. G., Giundgajdt., Selman, B. (Eds.), KR 2000, April
12-15. Morgan Kaufmann, pp. 657—666.

[16] Giunchiglia, E., Kartha, G. N., Lifschitz, V., 1997. Peesenting action: Indeterminacy and ramifica-
tions. Artificial Intelligence 95, 409-443.

[17] Giunchiglia, E., Lifschitz, V., 1998. An Action Langge Based on Causal Explanation: Preliminary
Report. In: AAAI'98. pp. 623-630.

[18] Giunchiglia, E., Lifschitz, V., 1999. Action languagiegemporal action logics and the situation calcu-
lus. In: Working Notes of the IJCAI'99 Workshop on NonmomuitoReasoning, Action, and Change.

[19] Goldman, R., Boddy, M., 1996. Expressive planning axyplieit knowledge. In: Proceedings AIPS-
96. AAAI Press, pp. 110-117.

[20] locchi, L., Nardi, D., Rosati, R., 2000. Planning witkr$sing, Concurrency, and Exogenous Events:
Logical Framework and Implementation. In: Cohn, A. G., Gloiglia, F., Selman, B. (Eds.), KR 2000,
April 12-15. Morgan Kaufmann Publishers, Inc., pp. 678-689

[21] Kartha, G. N., Lifschitz, V., 1994. Actions with Indice Effects (Preliminary Report). In: Proceedings
of the Fourth International Conference on Principles of Kisalge Representation and Reasoning (KR
94). pp. 341-350.

[22] Kautz, H., Selman, B., 1992. Planning as Satisfiability ECAI'92. pp. 359—-363.

[23] Kushmerick, N., Hanks, S., Weld, D. S., 1995. An Algbnt for Probabilistic Planning. Artificial
Intelligence 76 (1-2), 239-286.

40

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]
[38]

[39]

[40]

INFSYS RR 1843-01-12

Leone, N., Rosati, R., Scarcello, F., Aug. 2001. Enivam@nswer Set Planning. In: Cimatti, A.,
Geffner, H., Giunchiglia, E., Rintanen, J. (Eds.), IJCAl®/orkshop on Planning under Uncertainty
and Incomplete Information. pp. 33—42.

Lifschitz, V., 1996. Foundations of Logic Programmitg; Brewka, G. (Ed.), Principles of Knowledge
Representation. CSLI Publications, Stanford, pp. 69-127.

Lifschitz, V., 1999a. Action Languages, Answer Setsl &lanning. In: Apt, K., Marek, V. W.,
Truszczynski, M., Warren, D. S. (Eds.), The Logic PrograngrParadigm — A 25-Year Perspective.
Springer Verlag, pp. 357-373.

Lifschitz, V., Nov. 1999h. Answer Set Planning. In. $eye, D. D. (Ed.), ICLP’99. The MIT Press,
Las Cruces, New Mexico, USA, pp. 23-37.

Lifschitz, V., Turner, H., June 1994. Splitting a Lod¥cogram. In: Van Hentenryck, P. (Ed.), ICLP’94.
MIT Press, pp. 23-37.

Lifschitz, V., Turner, H., December 1999. Represemtiransition systems by logic programs. In: Gel-
fond, M., Leone, N., Pfeifer, G. (Eds.), LPNMR’99. No. 1730Lecture Notes in Al (LNAI). El Paso,
Texas, USA, pp. 92-106.

McCain, N., Turner, H., 1997. Causal Theories of Actiaand Change. In: Proceedings of the 15th
National Conference on Atrtificial Intelligence (AAAI-9Rp. 460-465.

McCain, N., Turner, H., 1998. Satisfiability PlanningthvCausal Theories. In: Cohn, A. G., Schubert,
L., Shapiro, S. C. (Eds.), KR'98. Morgan Kaufmann Publishep. 212—-223.

McCarthy, J., 1990. Formalization of common senseepapy John McCarthy edited by V. Lifschitz.
Ablex.

McCarthy, J., Hayes, P. J., 1969. Some Philosophicablems from the Standpoint of Artificial In-
telligence. In: Meltzer, B., Michie, D. (Eds.), Machineéfligence 4. Edinburgh University Press, pp.
463-502, reprinted in [32].

McDermott, D., 1987. A critique of pure reason. Compiotaal Intelligence 3, 151-237, cited in [4].

Niemela, 1., 1999. Logic programming with stable mbdemantics as constraint programming
paradigm. Annals of Mathematics and Artificial Intelligen25 (3—4), 241-273.

Papadimitriou, C. H., 1994. Computational Complexftgdison-Wesley.
Peot, M. A., 1998. Decision-Theoretic Planning. Phti2sis, Stanford University, Stanford, CA, USA.

Peot, M. A, Smith, D. E., 1992. Conditional Nonlinedafhing. In: Proceedings of the First Interna-
tional Conference on Atrtificial Intelligence Planning Syrets. AAAI Press, pp. 189-197.

Pryor, L., Collins, G., 1996. Planning for Contingeei A Decision-based Approach. Journal of
Artificial Intelligence Research 4, 287-3309.

Reiter, R., 1978. On Closed World Data Bases. In: GalaH., Minker, J. (Eds.), Logic and Data
Bases. Plenum Press, New York, pp. 55-76.

INFSYS RR 1843-01-12 41

[41] Rintanen, J., 1999. Constructing Conditional Plans[fjheorem-Prover. Journal of Artificial Intelli-
gence Research 10, 323-352.

[42] Smith, D. E., Weld, D. S., July 1998. Conformant Grajmlin: Proceedings of the Fifteenth National
Conference on Atrtificial Intelligence, (AAAI'98). AAAI Piss / The MIT Press, pp. 889-896.

[43] Subrahmanian, V., Zaniolo, C., Jun. 1995. RelatingoetaModels and Al Planning Domains. In:
Sterling, L. (Ed.), Proceedings of the *t2nternational Conference on Logic Programming. MIT
Press, Tokyo, Japan, pp. 233-247.

[44] Sussman, G. J., 1990. The Virtuous Nature of Bugs. lterAlJ., Hendler, J., Tate, A. (Eds.), Readings
in Planning. Morgan Kaufmann Publishers, Inc., Ch. 3, pd-i7, originally written 1974.

[45] Turner, H., 1997. Representing Actions in Logic Progseand Default Theories: A Situation Calculus
Approach. Journal of Logic Programming 31 (1-3), 245—-298.

[46] Ullman, J. D., 1989. Principles of Database and KnogteBase Systems. Vol. 1. Computer Science
Press.

[47] Weld, D. S., Anderson, C. R., Smith, D. E., July 1998.dixting Graphplan to Handle Uncertainty
& Sensing Actions. In: Proceedings of the Fifteenth Natidbanference on Atrtificial Intelligence,
(AAAI'98). AAAI Press / The MIT Press, pp. 897-904.

[48] Zhang, H., 1997. SATO: An Efficient Propositional Provie: Proceedings of the International Con-
ference on Automated Deduction (CADE’1997). pp. 272-275.

A Appendix: Definition of Language X

This appendix contains, in shortened form, the definitiotheflanguageC; see [6] for more details and
examples.

A.1 Basic Syntax

We assumer®t, of!, ando*? disjoint sets of action, fluent and type names, respectivay, predicate
symbols of arity> 0, and disjoint sets“°" ando¥%" of constant and variable symbols. Heed!, o¢t
describedynamic knowledgando?¥? describesstatic background knowledgén action (resp. fluent, type)
atomis of form p(t1, ... ,t,), wherep € 0% (resp.o’!, o™P) has arityn andti,...,t, € 0" U o,
An action (resp. fluent, type) literalis an action (resp. fluent, type) atairor its negatiorn-a, where "
(alternatively, “=") is the true negation symbol. We definé = a if | = —a and—.l = —a if | = a, wherea
is an atom. A sef of literals isconsistentif L N —.L = (. FurthermoreL™ (resp.L™) is the set of positive
(resp. negative) literals ifi. The set of all action (resp. fluent, type) literals is deda@sL,.; (resp.Ly;,
Liyp). FurthermoreL sy 1yp = L1 U Liyp, Layn= LU LL,, andL = L4, U L],
All actions and fluents must be declared using statementdlaw$.

Definition A.1 (action, fluent declaration) Anaction(resp.fluenf) declarationis of the form:
p(X1,...,X,) requires ty,...,tm (6)
wherep € L., (resp.p € L}), X1,..., Xn € 0" wheren > 0 is the arity ofp, t1,...,tm € Ly,

act

m > 0, and everyX; occurs intq, ..., ty,.

42 INFSYS RR 1843-01-12

If m = 0, the keywordrequires may be omitted. Causation rules specify dependencies aoftfiumn
other fluents and actions.

Definition A.2 (causation rule) A causation rulérule, for short) is an expression of the form

caused f if by,...,bg,not byyq,...,not b 7)
after ay,...,am,,not ayy1,..., 00t ay

wheref € Ly U{false}, bi,..., b€ Lf1yp, a1,-..,0,L,1>k>0,andn>m> 0.

Rules wheren = 0 arestatic rules all othersdynamic rules When! = 0 (resp.n = 0), “if” (resp.
“after”) is omitted; if bothl = n = 0,“caused” is optional.

We access parts of a causation milgy h(r) = {f}, post™(r) = {b1,..., b}, post™ () = {bgsi1,-.., b},
pret(r) = {a1,...,am}, pre (1) = {ams1,...,an}, andlit(r) = {f, b1, ..., b, a1,...,a,}. Intuitively,
pre(r) = pre™ (r) U pre™(r) (resp.post(r) = post™(r) U post™(r)) accesses the state before (resp. after)
some action(s) happen.

Special static rules may be specified for the initial states.

Definition A.3 (initial state constraint) Aninitial state constrainis a static rule of the form (7) preceded
by “initially”

The languageC allows conditional execution of actions, where severarakttive executability condi-
tions may be specified.

Definition A.4 (executability condition) Anexecutability conditiore is an expression of the form

executable a if by,..., by, not byiq,...,not b (8)

wherea € £, andb;,...,b € £,andl > k > 0.

act

If I = 0 (i.e., executability is unconditional),if” is skipped. The parts of are accessed ye) = {a},
pret(e) = {by,...,b;}, pre (e) = {bgy1, --.,b}, andlit(e) = {a,by,...,b}. Intuitively, pre(e) =
pre™ (e) U pre™ (e) refers to the state at which some action’s suitability idestad. The state after action
execution is not involved; for convenience, we defiost™ (¢) = post™(e) = 0.

All causal rules and executability conditions must satify following condition, which is similar to
safety in logic programs [46]: Each variable in a defaulffated type literal must also occur in some literal
which is not a default-negated type literal. No safety isuesied for variables appearing in other literals.
The reason is that variables appearing in fluent and actierals are implicitly safe by the respective type
declarations.

Notation For any causal rule, initial state constraint, and exdslitacondition » andv € {post, pre, b},
we definev(r) = v (r) Uv~(r), whereb®(r) = post®(r) U pres(r).

INFSYS RR 1843-01-12 43

A.1.1 Planning Domains and Planning Problems

Definition A.5 (action description, planning domain) An action description
(D, R) consists of a finite seb of action and fluent declarations and a finite detof safe causation
rules, safe initial state constraints, and safe execuitgtdbnditions which do not contain positive cyclic de-
pendencies among actions.kAplanning domains a pair PD = (II, AD), wherell is a stratified Datalog
program (thebackground knowledgevhich is safe (cf. [46]), andiD is an action description. We caitD
positive if no default negation occurs iAD.

Note that we do not allow positive cyclic interdependena&actions. However, this restriction does
not limit the expressive power. We could even be more restion what we allow in the bodies of ex-
ecutability conditions, as any executability conditiorttwa non-empty body can be “emulated” by use of
nonexecutable statements as follows: Any executability condition:

executable a if aj,...,0ap,b01,...,05,n0t bpyq,...,n0t by

wherea, ay,...,a, € L}, andby,... by € L4y, andbyyy,...,b € £, andn > 0, > k > 0. can be
substituted by

executable a.
caused exec, after aj,...,an,b1,...,0g,n0t bpyy,...,not b
caused false if not exec, after a.

where for the new fluertzec, a declaration with the samequires part as for actiom is added.

The restriction to acyclic executability conditions hasb@dded in order to keep the translatip(iP)
simple. However, pushing down the method proposed abovertwtate” executability conditions by
nonexecutable Statements tép(P) is straightforward.

Definition A.6 (planning problem) A planning problen? = (PD, q) is a pair of a planning domaiD
and aqueryyq, i.e.,

J1s-->9m, 00t gmi1,-..,00t gy 7 (4) 9)

wheregy,. .., g, € Ly are variable-freenp > m > 0, and: > 0 denotes the plan length.

A.2 Semantics

We start with the preliminary definition of the typed insfation of a planning domain. This is similar to the
grounding of a logic program, with the difference being tbialy correctly typed fluent and action literals
are generated.

Let PD = (II, (D, R)) be a planning domain, and |18f be the (unique) answer set 0f[12]. Then,
0(p(X1,...,X,)) is alegal action(resp.fluen) instanceof an action (resp. fluent) declaratidne D of
the form (6), ifé is a substitution defined oveéX,, ..., X,, such thaf{d(¢y),...,0(t,n)} € M. By Lpp we
denote the set of all legal action and fluent instances. Ttartiation of a planning domain respecting type
information is as follows.

Definition A.7 (typed instantiation) For any planning domai®’D = (I1, (D, R)), its typed instantiation
is given byPD| = (11|, (D, R|)), wherell] is the grounding ofl (overoc®"™) andR| = {6(r) | r €
R, 0 € ©,}, whereB, is the set of all substitution® of the variables in- usingo“”, such thatit(6(r)) N
Edyn CLppU(=LppN ,Cﬁ).

44 INFSYS RR 1843-01-12

In other words, inPD| we replacell and R by their ground versions, but keep of the latter only
rules where the atoms of all fluent and action literals agrite their declarations. We say thatfaD =
(IT, (D, R)) is ground if IT and R are ground, and moreover that iviell-typed if PD andPD| coincide.

A.2.1 States and Transitions

Definition A.8 (state, state transition) A statew.r.t a planning domairPD is any consistent setC Ly, N
(lit(PD)Ulit(PD)~) of legal fluent instances and their negationsstéte transitioris any tuplet = (s, A,)
wheres, s’ are states andl C L, N lit(PD) is a set of legal action instances i?D.

Observe that a state does not necessarily contain eftioer-f for each legal instancé of a fluent,
and may even be empty & (). State transitions are not constrained; this will be donghé definition of
legal state transitionbelow. We proceed in analogy to the definition of answer seftbd], considering first
positive (i.e., involving a positive planning domain) aheén general planning problems.

In what follows, we assume th&D = (II, (D, R)) is a well-typed ground planning domain and that
M is the unique answer set of. For any otherPD, the respective concepts are defined through its typed
groundingPD].

Definition A.9 (legal initial state) A statesq is alegal initial statefor a positive PD, if sg is the least set
(w.r.t. C) such thatpost(c) C so U M impliesh(c) C sg, for all initial state constraints and static rules
c€ R.

For a positivePD and a states, a setA C L, is calledexecutable action set.r.t. s, if for each
a € A there exists an executability conditienc R such thath(e) = {a}, pre™(e) N L4y C s UM,
pret(e) N L, C A, andpre™(e)cap(L),, Us U M) = (. Note that this definition allows for modeling

act = act

dependent actions, i.e. actions which depend on the erecoftiother actions.

Definition A.10 (legal state transition) Given a positivePD, a state transitiont = (s, A, s') is called
legal if A is an executable action set w.stand s’ is the minimal consistent set that satisfies all causation
rules w.r.t.sUAUM. Thatis, for every causation rutec R, if (i) post(r) C s'"UM, (i) pre(r) N L uyp C

s U M, and (iii) pre(r) N Lqee € A all hold, thenh(r) # {false} andh(r) C s'.

This is now extended to general a well-typed groutid containing default negation using a Gelfond-
Lifschitz type reduction to a positive planning domain [12]

Definition A.11 (reduction) Let PD be a ground and well-typed planning domain, andtlet (s, A, s’)
be a state transition. Then, tmeductionPD? = (II, (D, R*)) of PD byt is the planning domain wher&’
is obtained fromR by deleting

1. eachr € R, where eithepost™(r)N(s' U M) # 0 or pre™ (r)N(sUAUM) # 0, and
2. all default literalsnot L (L € L) from the remaining: € R.
Note thatPD! is positive and ground. We extend further definitions aofod.

Definition A.12 (legal initial state, executable action setegal state transition) For any planning domain
PD, a states, is alegal initial stateif s is a legal initial state forPD{-?:50): a setA is anexecutable action
setw.r.t. a states, if A is executable w.r.t in PD(40): and, a state transition = (s, A, s') is legal if it is
legal in PD".

INFSYS RR 1843-01-12 45

A.2.2 Plans

Definition A.13 (trajectory) A sequence of state transitiofis= ((sg, A1, 1), (s1, A9,592), ..., (Sn—1, Ans Sn)),
n > 0, is atrajectoryfor PD, if sq is a legal initial state ofPD and all (s;_1, 4;,s;), 1 <1i < n, are legal
state transitions of°D.

If n =0, thenT = () is empty and has, associated explicitly.

Definition A.14 (optimistic plan) A sequence of action setd;, ..., A;), 7 > 0, is anoptimistic planfor
a planning problemP = (PD, q), if a trajectoryT = ({sg, A1, 51), (81, A2,89), ..., (Si—1, Aj, 8;)) exists
in PD which establishes the goal, i.€g1,... gn} C s; and{gm+t1,---,gn} Ns; = 0.

Optimistic plans amount to “plans”, “valid plans” etc as defi in the literature. The term “optimistic”
should stress the credulous view in this definition, withpees to incomplete fluent information and nonde-
terministic action effects. In such cases, the executicenadptimistic plan” might fail to reach the goal.
We thus resort to secure plans.

Definition A.15 (secure plans (alias conformant plans))An optimistic plan
(Aq,...,A,) is a secure planif for every legal initial statesy and trajectoryT = ((so, A1,81), --.,

(sj—1,Aj,s;)) such that) < j < n, it holds that (i) ifj = n thenT" establishes the goal, and (ii) jf < =,

thenA; ., is executable i3; w.r.t. PD, i.e., some legal transitiofs;, A; 1, sj+1) €Xists.

Note that plans admit in general the concurrent executioactibns. We call a plafAq, ..., Ay)
sequentialor non-concurren;, if |[A;| < 1,foralll <j <mn.

A.3 Macros " ,
K includes several macros as shorthands for frequently usedepts. Leta € L., denote an action

act

atom,f € Ly a fluent literal, B a (possibly empty) sequenég, ..., by, not by 1,..., not b where each
bi € Lyityp,t = 1,...,1, andA a (possibly empty) sequenes, ..., a,,, not am1,...,not a, where
eachaj € £,5=1,...,n.

Inertia To allow for an easy representation of fluent inertiaprovides

inertial f if B after A. =1 caused f if not —.f, B after f, A.

Defaults A default value of a fluent can be expressed by the shortcut
default f£. & caused f if not —.f.

Itis in effect unless some other causation rule providedesge to the opposite value.
Totality For reasoning under incomplete, but total knowledigperovides £ positive):

caused f if not —f, B after A.

total £ if B after A.
ora * arter caused —f if not f, B after A.

State Integrity For integrity constraints that refer to the preceding stitprovides

forbidden B after A. & caused false if B after A.

46 INFSYS RR 1843-01-12

Nonexecutability For specifying that some action®t executable/C provides
nonexecutable a if B. =1 caused false after a, B.

By this definition,nonexecutable overridesexecutable in case of conflicts.

Non-concurrent Plans To exclude simultaneous execution of actioksprovides
noConcurrency. & caused false after aj, as.

wherea; anda, range over all possible actions such thata; € Lpp N Lo anda; # a,.

In all macros, 1f B” (resp., “after A”) can be omitted, i (resp.A) is empty.

B Problem Encodings for Other Systems

B.1 Blocksworld problem P1 for CMBP

DOMAIN blocks _P1

ACTIONS

act { move_1_4, move _1.3, move _1_2, move _.1.0, move _2_4, move _2_3,
move_2_1, move 2.0, move 3.4, move .32, move 3.1, move 3.0,
move_4_3, move 4.2, move 4.1, move 40 };

FLUENTS
onl: 0.4o0on 2: 0.40n 3: 0.4o0on 4: 0.4
blocked _1 : boolean; blocked 2 : boolean;
blocked _3 : boolean; blocked 4 : boolean;

INERTIAL on _1, blocked _1, on _2, blocked 2, on _3, blocked _3, on _4, blocked _4;

CAUSES act = move.1 4 FALSE IF blocked _1 | blocked _4;
CAUSES act = move_.1.3 FALSE IF blocked _1 | blocked _3;
CAUSES act = move.l 2 FALSE IF blocked _1 | blocked _2;
CAUSES act = move.1 0 FALSE IF blocked _1;

CAUSES act = move.l4 on_1 = 4 & blocked 4 IF 1;
CAUSES act = move_.1.4 'blocked 2 IF on .1 = 2;

CAUSES act = move_.1l 4 'blocked 3 IF on _1 = 3;

CAUSES act = move.1.3 on_1 = 3 & blocked 3 IF 1;
CAUSES act = move_1_3 'blocked 2 IF on .1 = 2;

CAUSES act = move_.1_3 'blocked 4 IF on .1 = 4;

CAUSES act = move.l2 on_.1 = 2 & blocked 2 IF 1;
CAUSES act = move_.12 lblocked 3 IF on .1 = 3;

CAUSES act = move_.1.2 'blocked 4 IF on .1 = 4;

CAUSES act = move.1 0 on.1 = 0 IF 1;

CAUSES act = move_.1.0 'blocked 2 IF on .1 = 2;

CAUSES act = move.1 0 'blocked 3 IF on .1 = 3;

CAUSES act = move_.1.0 'blocked 4 IF on .1 = 4;

CAUSES act = move.2 4 FALSE IF blocked _2 | blocked _4;
CAUSES act = move_2_.3 FALSE IF blocked _2 | blocked _3;
CAUSES act = move.2_.1 FALSE IF blocked _2 | blocked _1;
CAUSES act = move.2 0 FALSE IF blocked _2;

CAUSES act = move24 on_2 = 4 & blocked 4 IF 1;
CAUSES act = move2.4 'blocked _1 IF on 2 = 1;

CAUSES act = move2. 4 lblocked 3 IF on 2 = 3;

CAUSES act = move2.3 on_2 = 3 & blocked 3 IF 1;
CAUSES act = move_2_3 'blocked _1 IF on .2 = 1;

CAUSES act = move_2_3 'blocked 4 IF on 2 = 4;

CAUSES act move2.1 on_2 = 1 & blocked _1 IF 1;

CAUSES act move_2_1 'blocked 3 IF on 2 = 3;

INFSYS RR 1843-01-12

CAUSES act = move2_1 'blocked 4 IF on 2 = 4;

CAUSES act = move2 0 on2 = 0 IF 1;

CAUSES act = move2.0 'blocked _1 IF on 2 = 1;

CAUSES act = move2 0 'blocked 3 IF on 2 = 3;

CAUSES act = move2.0 'blocked 4 IF on 2 = 4;

CAUSES act = move.3.4 FALSE IF blocked _3 | blocked _4;
CAUSES act = move_3.2 FALSE IF blocked _3 | blocked _2;
CAUSES act = move3_.1 FALSE IF blocked _3 | blocked _1;
CAUSES act = move.3.0 FALSE IF blocked _3;

CAUSES act = move3.4 on_.3 = 4 & blocked 4 IF 1;
CAUSES act = move3.4 'blocked _1 IF on .3 = 1;

CAUSES act = move.3.4 'blocked 2 IF on .3 = 2;

CAUSES act = move3.2 on_.3 = 2 & blocked 2 IF 1;
CAUSES act = move3_2 'blocked _1 IF on .3 = 1;

CAUSES act = move3_2 'blocked 4 IF on .3 = 4;

CAUSES act = move3.1 on.3 = 1 & blocked _1 IF 1;
CAUSES act = move3_1 'blocked 2 IF on .3 = 2;

CAUSES act = move 3.1 !blocked 4 IF on .3 = 4;

CAUSES act = move3.0 on.3 = 0 IF 1;

CAUSES act = move3.0 'blocked _1 IF on .3 = 1;

CAUSES act = move3.0 'blocked 2 IF on .3 = 2;

CAUSES act = move_3.0 blocked 4 IF on .3 = 4;

CAUSES act = move4_3 FALSE IF blocked 4 | blocked _3;
CAUSES act = move4_2 FALSE IF blocked 4 | blocked _2;
CAUSES act = move4.1 FALSE IF blocked 4 | blocked _1;
CAUSES act = move4_0 FALSE IF blocked _4;

CAUSES act = move4.3 on4 = 3 & blocked 3 IF 1;
CAUSES act = move4_3 'blocked _1 IF on 4 = 1,

CAUSES act = move4_3 'blocked 2 IF on 4 = 2;

CAUSES act = move4.2 on4 = 2 & blocked 2 IF 1;
CAUSES act = move4_2 'blocked _1 IF on 4 = 1,

CAUSES act = move4_2 'blocked 3 IF on 4 = 3;

CAUSES act = move4.1 on4 = 1 & blocked _1 IF 1;
CAUSES act = move4_1 'blocked 2 IF on 4 = 2;

CAUSES act = move4_1 'blocked 3 IF on 4 = 3;

CAUSES act = move4 0 on4 = 0 IF 1;

CAUSES act = move4.0 !blocked -1 IF on 4 = 1;

CAUSES act = move4.0 !blocked 2 IF on 4 = 2;

CAUSES act = move4.0 !blocked _3 IF on 4 = 3;

INITIALLY on .1 =0 & on2 =0&on3=0&on4=32~&
blocked 3 & !'blocked _1 & !blocked _2 & !blocked _4;

CONFORMANT och =0 & on2 =1 & on3 =2 & onA4d = 3;

B.2 Blocks world problem P1 for GPT

(define (domain bw)
(:model SEARCH)
(:types BLOCK)
(:functions (on BLOCK BLOCK)
(clear BLOCK :boolean))
(:objects table - BLOCK)
(:action puton
parameters ?X - BLOCK ?Y - BLOCK ?Z - BLOCK
:precondition (:and (= (on ?X) ?2)
(= (clear ?X) true)
(tor (= (clear ?Y) true) (= ?Y table))
(tnot (= ?Y ?2))
(tnot (= ?X ?2))
(:not (= ?X table)))
-effect
(:set (on ?X) ?Y)

48 INFSYS RR 1843-01-12

(:set (clear ?Z) true)
(:set (clear ?Y) false)))

(define (problem p1)

(:domain bw)

(:objects b0 bl b2 b3 - BLOCK)

(:init
(:set (on b0) table)
(:set (on bl) table)
(:set (on b2) table)
(:set (on b3) b2)
(:set (clear bO) true)
(:set (clear bl) true)
(:set (clear b2) false)
(:set (clear b3) true)
(:set (clear table) false))

(:goal (:and (= (on b3) b2)
(= (on b2) bl)
(= (on bl) bO)
(= (on b0) table))))

C o' Encodings of BMTUC(p, t)

C.1 World-state encoding
Background Knowledge:

package(1l). package(2). ... package(p).
toilet(1). toilet(2). ... toilet(t).

DLV* Program:

fluents : clogged(T) requires toilet(T).
armed(P) requires package(P).
unsafe.

actions : dunk(P,T) requires package(P), toilet(T).
flush(T) requires toilet(T).

always : inertial armed(P).

inertial clogged(T).
caused -clogged(T) after flush(T).
caused -armed(P) after dunk(P,T).
total clogged(T) after dunk(P,T).
caused unsafe if armed(P).
executable flush(T).
executable dunk(P,T
nonexecutable dunk(P,

) if not clogged(T).

(P, T
nonexecutable dunk(P,T

(P, T

£

) if f£lush(T).

) if dunk(P1,T), P <> P1.
nonexecutable dunk) if dunk(P,T1), T <> T1.
initially: total armed(P).

forbidden armed(P), armed(P1), P <> P1.
forbidden not unsafe.

b

In this encoding, weak negation of the fluentogged is a CWA representation of the negated fluent
-clogged, which relieves us from storing negative information esitlly.

The possible world-states are encoded (1) viatital-statement for the flueatrmed in theinitially
section, which generates all possible initial states, 2y)d¢ié thetotal-statement for the fluentlogged
in thealways section, which specifies the effect of dunking a package.

INFSYS RR 1843-01-12 49

C.2 Knowledge-state encoding
Background Knowledge:

package(1). package(2). ... package(p).
toilet(1). toilet(2). ... toilet(t).

DLV® Program:

fluents : clogged(T) requires toilet(T).
armed(P) requires package(
dunked(T) requires toilet(
unsafe.
actions : dunk(P,T) requires package(P), toilet(T).
flush(T) requires toilet(T).
always : inertial -armed(P).
inertial clogged(T) if not dunked(T).
inertial -clogged(T) if not dunked(T).
caused dunked(T) after dunk(P,T).
caused -clogged(T) after flush(T).
caused -armed(P) after dunk(P,T).
caused unsafe if not -armed(P).
executable flush(T).
executable dunk(P,T) if -clogged(T).
nonexecutable dunk(P,T) if flush(T).
nonexecutable dunk(P,T) if dunk(P1,T), P <> P1.
nonexecutable dunk(P,T) if dunk(P,T1), T <> T1.
initially : -clogged(T).

P).
T).

b

In this encoding, the fluentsrmed and clogged are treated as three-valued. Instead of encoding all
possible initial world states by cases, we have a singlalirstate in which we only know that all toilets are
not clogged, while the values of the fluemtsned are open. We may gain, on the one hand, knowledge on
fluentarmed by executing an actiofilush, while on the other hand, we may lose (“forget”) informatimm
fluentclogged, if we know that something has been dunked into the resgetdilet (for his projection, we
use the auxiliary fluerdunked).

An advantage of this encoding is that optimistic and seclaespcoincide on this encoding, since non-
deterministic effects of actioslunk are treated by “forgetting” the value of the respective ftugiogged.

We point out that the “bomb in toilet problem” is per se congianally easy; so it seems that encodings
based on world-states artificially bloat this problem, lseeof their lack of a natural statement about fluents
being unknown in some state. For further discussion, we tefgs].

