
1

Planning with Action Languages

Wolfgang Faber

Institute for Information Systems

Vienna University of Technology

wf@wfaber.com

http://www.wfaber.com

VO Wissensbasierte Systeme

Overview 2

Overview

• What is planning?

• Formalising planning

• Tour of Language K

• Special features of K

• Conclusions

Planning 3

What is Planning?

• Starting from a situation

• Try to reach a goal

• By executing some actions

Given the initial situation, a goal, and some actions, choose the actions such

that the goal is achieved.

Planning 4

Planning – Example

• I am at the university at Linz at 12:00

• And have to give a talk at TU Vienna at 16:00

• I can exit the university, take the tram to the train station, enter the train to

Vienna, exit the train at Westbahnhof, enter U3 to Simmering, exit at

Stephansplatz, enter U1 to Reumannplatz, exit at Taubstummengasse

and enter TU Vienna to achieve the goal.

Obviously, there could also be other plans (e.g. going by car if one is

available to me), taking a taxi from Westbahnhof to the university, etc.

Note also that the plan need not always work (the train could have a delay,

the car could break down etc).

Planning 5

Planning – How to formalize?

We can identify 2 main elements:

• Static statements “I am at the train station in Linz.”

• Action statements “Enter the train to Vienna.”

Planning 6

Planning – How to formalize?

Observations:

• In general, action statements need a precondition (which is a static

statement), e.g. I can board a train in Linz only if I am currently in Linz.

• Action statements usually have effects (which are static statements)

e.g. exiting the train at Westbahnhof has the effect that I am at

Westbahnhof.

• Often, static statements remain true even if they are not affected by

actions

e.g. if I am at the Linz station and do an action “drink coffee”, I am still at

Linz afterwards.

Such static statements are called inertial.

Planning 7

Planning

Input: Fluents (static statements), e.g. “I am in Linz.” “It is 15:05.”

Initial state I, described by fluents

Goal (desired) state G, described by fluents

Actions, e.g. “Enter the train to Vienna.”

Description of the action effects and inertial fluents

Problem: Find a sequence of action sets 〈A0,A1,. . . ,An〉

transforming the initial state into the goal state

Planning 8

Example: Blocksworld Planning

initial:

b
c
a

c
b
a

goal:

Fluents: on(B,L) (block B is on top of location L)

Initial state: on(b, table), on(c, a), on(a, table).

Goal: on(c,b), on(b, a), on(a, table).

Actions: move(B,L) (move block B to location L).

System Description: source and destination locations must be clear,

no concurrent actions,

Language K 9

K– a declarative (logic-based) planning language

• high expressiveness

• nonmonotonic negation, strong negation

• causation rules

• inertia

• conditional executability

• initial state constraints

• representation of incomplete knowledge (conformant plans)

• Implementation of planning with K on top of DLV

Tour of K 10

Language K: Background Knowledge

We assume that an Answer Set Program (the background knowledge) exists,

which admits exactly one answer set which is computable in polynomial time.

In the blocksworld example, it is

block(a). block(b). block(c).

location(table).

location(L) :- block(L).

It admits one answer set:

{block(a), block(b), block(c), location(table),

location(a), location(b), location(c)}

Tour of K 11

Language K: Type Declarations

Specify the ranges of the arguments of the fluents and actions, using the

background knowledge.

For fluents on and occupied:

on(B,L) requires block(B), location(L).

occupied(B) requires location(B).

For action move:

move(B,L) requires block(B), location(L).

Tour of K 12

Language K: Causation Rules

Causation rules are used to specify action effects and effects within states.

If some block B1 is on another block B, then B is occupied in the same

moment:

caused occupied(B) if block(B), on(B1,B).

Moving a block to a location causes the block to be on the location

afterwards:

caused on(B,L) after move(B,L).

One causation rule can also have both if and after conditions.

Tour of K 13

Language K: Causation Rules

Default negation (not)

caused clear(B) if not occupied(B).

Strong negation (-)

caused -on(B,L) after move(B,L1), L 6= L1.

Difference between default negation and strong negation:

Default negation: not a holds if a cannot be proved

Strong negation: −a holds only if −a can be proved explicitly

Tour of K 14

Language K: Constraints

Constraints are special causation rules:

forbidden a after b.

Any state satisfying a after b is illegal. Such constraints can also be

written as

caused false if a after b.

Tour of K 15

Language K: Conditional Executability

Executability conditions state preconditions which must hold for an action to

be applicable in some state.

For example, move is applicable if neither the moved block nor the

destination block are occupied and if the moved block and the destination

block are not the same.

executable move(X,Y) if not occupied(X),

not occupied(Y), X6=Y.

An executability condition can have both if and after conditions.

Tour of K 16

Language K: Initial State Constraints

It is sometimes useful to have causation rules which only apply to the initial

state.

These rules cannot have an after condition, and they are grouped into a

block preceded by initially:, while causation rules applying to all

states are gruped into another block preceded by always:.

initially: forbidden block(B), not

supported(B).

Tour of K 17

Language K: Goal

A goal is a conjunction of fluents, plus a planlength.

on(c,b), on(b,a), on(a,table) ? (3)

A goal may also contain default negated fluents.

Tour of K 18

Language K: Inertia

A fluent may be declared to be inertial:

inertial on(B,L).

An inertial fluent a continues to hold, unless -a is the consequence of a

preceding action.

Tour of K 19

Language K: Parallel vs. Sequential Plans

Can actions be executed in parallel or only one at a time?

In K, parallel actions are allowed by default. Sequential plans can be

enforced by the keyword:

noConcurrency.

A Sample Encoding 20

Blocksworld in K

(Domain Description)

fluents: on(B,L) requires block(B), location(L).

occupied(B) requires location(B).

actions: move(B,L) requires block(B), location(L).

always: executable move(B,L) if not occupied(B),

not occupied(L), B<>L.

inertial on(B,L).

caused occupied(B) if on(B1,B), block(B).

caused on(B,L) after move(B,L).

caused -on(B,L1) after move(B,L), on(B,L1), L<>L1.

noConcurrency.

A Sample Encoding 21

Blocksworld in K (cont’d)

(Planning Instance)

initially: on(a,table). on(b,table). on(c,a).

goal: on(c,b),on(b,a),on(a,table)? (3)

initial:

b
c
a

c
b
a

goal:

Result of the execution

PLAN: move(c,table); move(b,a); move(c,b)

Special Features of K 22

Special Features of K

• Handling of complete and incomplete knowledge.

• Secure Plans.

For some state and some fluent f, neither f nor -f needs to hold. The

fluent is then “unknown”.

Special Features of K 23

Special Features of K– Totality

If nothing is unknown about a fluent or in a state, it is called total.

Check totality for the fluent on:

forbidden not on(B,L), not -on(B,L).

“Totalize” a fluent:

total on(X,Y).

Special Features of K 24

Special Features of K– Security

There may be multiple initial states, or multiple successor states.

Secure Plans or Conformant Plans

A plan is secure, if it always reaches the goal and if its actions are always

applicable.

In K, this planning mode is activated by including the keyword

securePlan.

Special Features of K 25

Checking correctness of the initial state

fluents:

supported(B) requires block(B).

initially:....

caused false if on(B,L), on(B,L1), L <> L1.

caused false if on(B1,B), on(B2,B), block(B), B1<>B2.

caused supported(B) if on(B,table).

caused supported(B) if on(B,B1), supported(B1).

caused false if not supported(B).

Conformant Plans 26

Reasoning under Incomplete Knowledge

The exact location of d is unknown, but we know that it is not on top of c.

b

d

d c
ainitial: goal:

c
a

?

d
b

initially:....

-on(d,c).

total on(X,Y).

goal: on(a,c), on(c,d), on(d,b), on(b,table)? (4)

securePlan.

Result of the execution

PLAN: move(d,table,0),move(d,b,1),move(c,d,2),move(a,c,3)

Complexity 27

Complexity Results

Proper domain: given a state s and an action sequence A, the existence of

a legal state transition 〈s, a, s′〉 is polynomially decidable.

Theorem Deciding whether a given proper ground planning problem

〈PD, q〉 has an optimistic plan is PSPACE-complete, and NP -complete if

the number of steps in q is fixed.

Theorem Given an optimistic plan P and a given proper ground planning

problem 〈PD, q〉, deciding whether P is secure is coNP-complete.

Hardness holds even if the number of steps in q is fixed.

Complexity 28

Complexity Results (cont’d)

Theorem Deciding whether a given proper ground planning problem

〈PD, q〉 has a secure plan is NEXPTIME-complete in general and

ΣP

2
-complete, if the number of steps in q is fixed.

Theorem Deciding whether a given proper ground planning problem

〈PD, q〉 has a secure sequential plan is DP -complete, if the number of

steps in q is fixed. (DP is the conjunction of NP and coNP.)

Remark: The complexity increases if the domain is not proper!

Implementation 29

Implementation

• Rewriting to DLP programs.

• Prototype (DLVK) implemented on top of DLV.

• Freely available in standard DLV distribution.

• Run DLV with option -FP (Front-end Planning).

Implementation 30

Action Costs

Associate a cost of 1 to action move :

move(B,L) requires block(B), location(L) costs

1.

Time-dependent costs for action move:

move(B,L) requires block(B), location(L) costs

time.

Implementation 31

Other Action Languages

• A

• B

• C

• C+

• . . .

Conclusion 32

Conclusion

• K — an expressive declarative planning language.

– More “logic programming” oriented, than other similar languages.

– Reasoning under Incomplete Knowledge.

• Complexity Analysis.

• Fully operational prototype available at

http://www.dlvsystem.com/K/

