
I N F S Y S

R E S E A R C H

R E P O R T

Institut für Informationssysteme

Abtg. Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG WISSENSBASIERTESYSTEME

A L OGIC PROGRAMMING APPROACH TO

KNOWLEDGE-STATE PLANNING , II: T HE

DLV
�

SYSTEM

Thomas Eiter Wolfgang Faber Nicola Leone

Gerald Pfeifer Axel Polleres

INFSYS RESEARCHREPORT1843-01-12

DECEMBER 2001; OCTOBER 2002; APRIL 2003

INFSYS RESEARCH REPORT

INFSYS RESEARCHREPORT1843-01-12, DECEMBER 2001; OCTOBER 2002; APRIL 2003

A L OGIC PROGRAMMING APPROACH TOKNOWLEDGE-
STATE PLANNING , II: T HE DLV

�
SYSTEM

Thomas Eiter1, Wolfgang Faber1, Nicola Leone2, Gerald Pfeifer3, Axel Polleres1

Abstract. In Part I of this series of papers, we have proposed a new logic-based planning language,
called

�
. This language facilitates the description of transitionsbetween states of knowledge and

it is well suited for planning under incomplete knowledge. Nonetheless,
�

also supports the repre-
sentation of transitions between states of the world (i.e. states of complete knowledge) as a special
case, proving to be very flexible. In the present Part II, we describe theDLV� planning system,
which implements

�
on top of the disjunctive logic programming systemDLV. This novel plan-

ning system allows for solving hard planning problems, including secure planning under incomplete
initial states (often calledconformant planningin the literature), which cannot be solved at all by
other logic-based planning systems such as traditional satisfiability planners. We present a detailed
comparison of theDLV� system to several state-of-the-art conformant planning systems, both at the
level of system features and on benchmark problems. Our results indicate that, thanks to the power
of knowledge-state problem encoding, theDLV� system is competitive even with special purpose
conformant planning systems, and it often supplies a more natural and simple representation of the
planning problems.

Keywords: deductive planning system, disjunctive logic programming, answer sets, knowledge-
states, incomplete information, conformant planning, secure planning.

1Institut für Informationssysteme, Abteilung Wissensbasierte Systeme, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria. E-mail:�eiter, faber, axel�@kr.tuwien.ac.at.

2Department of Mathematics, University of Calabria, 87030 Rende (CS), Italy. E-mail: leone@unical.it.
3Institut für Informationssysteme, Abteilung Datenbanken und AI, Technische Universität Wien,

Favoritenstraße 9-11, A-1040 Vienna, Austria. E-mail:�pfeifer�@dbai.tuwien.ac.at.

Acknowledgements: This work was supported by FWF (Austrian Science Funds) under the projects
P14781-INF, and Z29-N04 and the European Commission under project FET-2001-37004 WASP and IST-
2001-33570 INFOMIX.

Preliminary results of this paper appeared in “Planning under Incomplete Knowledge,”Proceedings of the
First International Conference on Computational Logic (CL2000), London, UK, July 24–28, J.W. Lloyd et
al., editors, Lecture Notes in Computer Science 1861, Springer, 2000, pp. 807–821.

Copyright c
�

2003 by the authors

INFSYS RR 1843-01-12 I

Contents

1 Introduction 1

2 The Planning SystemDLV� 3
2.1 Planning Problems inDLV� . 3

2.1.1 Secure Planning 6
2.1.2 Knowledge-State vs. World-State Planning 8

2.2 System Architecture 9
2.3 UsingDLV� . 9

3 Transforming Optimistic Planning to Answer Set Programming 12
3.1 Disjunctive Logic Programming 12
3.2 Transformation�� ���

. 13

4 Secure planning 19
4.1 ����	-committed Domains and Security Check
�� . 19
4.2 Serial Planning Domains and Security Check
� . 25
4.3 Incomplete Security Checking 26

5 Comparison and Experiments 26
5.1 Overview of Compared Systems 26

5.1.1 CCALC 26
5.1.2 CMBP 27
5.1.3 CPlan 27
5.1.4 GPT 27
5.1.5 SGP 28
5.1.6 Specific system features 28

5.2 Benchmark Problems and Encodings 29
5.2.1 Blocksworld 29
5.2.2 Bomb in the Toilet 29
5.2.3 Encodings used 30

5.3 Benchmark Results and Discussion 31
5.3.1 Test environment 31
5.3.2 Representation 31
5.3.3 Performance 31
5.3.4 Effect of concurrent actions and default negation 32
5.3.5 Summary of experimental results 32

6 Further Related Work and Conclusion 32
6.1 Further Related Work 32
6.2 Summary 37
6.3 Further and Future Work 37

A Appendix: Definition of Language
�

41
A.1 Basic Syntax 41

A.1.1 Planning Domains and Planning Problems 43
A.2 Semantics 43

A.2.1 States and Transitions 44
A.2.2 Plans 45

A.3 Macros 45

II INFSYS RR 1843-01-12

B Problem Encodings for Other Systems 46
B.1 Blocksworld problem P1 for CMBP 46
B.2 Blocks world problem P1 for GPT 47

C DLV� Encodings of BMTUC(� � �) 48
C.1 World-state encoding 48
C.2 Knowledge-state encoding 49

INFSYS RR 1843-01-12 1

1 Introduction

The need for modeling the behavior of robots in a formal way led to the definition of logic-based languages
for reasoning about actions and planning, such as [33, 13, 21, 16, 45, 17, 26, 18, 20]. These languages allow
for specifying planning problems of the form “Find a sequence of actions that leads from an initial state to
a goal state.”

A state is characterized by the truth values of a number of fluents, describing relevant properties of the
domain of discourse. An action is applicable only if some preconditions (formulas over the fluents) hold
in the current state; executing this action changes the current state by modifying the truth values of some
fluents. Most of these languages are based on extensions of classical logics and describe transitions between
possible states of the worldwhere every fluent necessarily is either true or false. However, robots usually
do not have acomplete viewof the world. Even if their knowledge is incomplete (a numberof fluents may
be unknown, e.g., whether a door in front of the robot is open), they must take decisions, execute actions,
and reason on the basis of their (incomplete) information athand. For example, if it is not known whether a
door is open, the robot might do a sensing action, or decide topush back.

In [5, 6], we have proposed a new language,� (where� should remind of states ofknowledge) for
planning under incomplete knowledge. This language is veryflexible, and is capable of modeling transitions
between states of the world (i.e. states of complete knowledge) and reasoning about them as a particular case.
Compared to similar planning languages, in particular Giunchiglia and Lifschitz’ action language� [17, 26,
29], � is closer in spirit to answer set semantics [12] than to classical logics. It supports the explicit use of
default negation, and thus exploiting the power of answer sets to deal with incomplete knowledge. In [6]
we have defined the syntax and semantics of�, discussed how it can be used for knowledge representation,
plus we have analyzed the computational complexity of planning in �.

In the present paper, which is Part II of this series of papers, we turn to theDLV� planning system, which
implements� on top of theDLVanswer set programming system [7, 9].DLV� is a powerful planning system,
which is freely available at<URL:http://www.dbai.tuwien.ac.at/proj/dlv/K/> and ready-
to-use for experiments. In comparison to similar logic-based planning systems like CCALC [30, 31], CPlan
[15, 10], or CMBP [4]DLV� has the following key features:

� Explicit background knowledge: The planning domain has a background (represented by a stratified
Datalog program) which describes static predicates.

� Type declarations: The arguments of changeable predicates, calledfluents, and action atoms are typed.

� Strong and weak negation: The DLV� system provides two kinds of negation familiar from answer
set semantics, namely weak (or default) negation “���” and strong (or classical) negation “� ,” also
denoted by “–”. Weak negation allows for a simple and intuitive statement of inertia rules for fluents,
or for the statement of default values for fluents in the domain.

� Complete and incomplete states: By default, states inDLV� are consistent sets of ground literals, in
which not every atom must appear, and thus representstates of knowledge. However, by suitable
constructs,DLV� also allows for representing transitions between possiblestates of the world (which
can be seen as states of complete knowledge).

� Parallel/Sequential execution of actions: Simultaneous execution of actions is possible, and in fact
the default mode. All actions to be executed must qualify through an executability condition. Mutual
exclusion of actions can be enforced in a sequential planning mode.

2 INFSYS RR 1843-01-12

� Secure (conformant) planning: DLV� is able to computesecure plans(often calledconformant plans
in the literature [19, 42]). Informally, a plan is secure, ifit is applicable starting at any legal initial
state and enforces the goal, regardless of how the state evolves. Using this feature, we can also model
possible-worlds planning with an incomplete initial state, where the initial world is only partially
known, and we are looking for a plan reaching the desired goalfrom every possible world according
to the initial state.

Main Contributions The main contributions of the present paper are the following:

1. We reduce planning in� to answer set programming by means of an efficient transformation. Using
this transformation, a planning problem in� is translated into an “equivalent” disjunctive logic pro-
gram, which is then submitted toDLV for evaluation. The solutions of the original planning problem
are obtained from the answer sets produced byDLV, which correspond to the optimistic plans. The
use of disjunctive rules in the transformation, which we usefor natural problem modeling, can be
easily eliminated by using unstratified negation instead, and thus an adapted transformation can be
implemented on systems such as Smodels [35].

2. We discuss the issue of secure planning, aliasconformant planningand its realization in theDLV�
system. Briefly, the system imposes a “security check” on optimistic plans in order to assess whether
a plan is secure or not, which is transformed to a nested call to DLV itself. By the foundational results
in [6], finding a secure plan is a�

�� -hard1 problem, and such a two-step approach for secure planning
(that is, first find an optimistic plan and then check its security) is mandatory under polynomial re-
ductions to answer set programming, sinceDLVcan only solve problems with complexity in�

�� with
polynomial overhead.

3. We compareDLV� with the following state-of-the-art (conformant) planning systems: CCALC [30,
31], CMBP [4], CPlan [15, 10], GPT [3], and SGP [47].

In particular, we first provide an overview of these systems comparing their main features. We then
consider a number of benchmark problems, namely problems inthe blocksworld and “bomb in the
toilet” domains, and discuss their encodings in the different systems from the viewpoint of knowledge
representation. Having conducted extensive experimentation, we report the execution times of the
systems on a number of planning-problem instances and compare the performance of the systems. As
it turns out, thanks to the power of knowledge-state problemencodingsDLV� can compete even with
special purpose conformant planning systems in the experiments, and it often supplies a more elegant
and succinct representation of the planning problems. Thismay be taken as promising evidence for
the potential usefulness of knowledge-state problem encodings for conformant planning.

To the best of our knowledge,DLV� is the first declarative logic-programming based planning system
which allows solving�

�� -hard planning problems like planning under incomplete initial states.
The remainder of this paper is organized as follows: In the next section, we introduce theDLV� planning

system at the user and system architecture levels. After that, we turn to the technical realization ofDLV�,
and discuss in Sections 3 and 4 the transformation ofDLV� planning problems to answer set programs,
where the former section is devoted to optimistic planning and the latter considers secure planning. After

1We use the common notion where��� describes the class of problems solvable in polynomial timeby a nondeterministic Turing
machine using an NP oracle, whereas��� is the resp. problem class solvable polynomially by a nondeterministic Turing machine
using a��� oracle, and so on (cf. [36]).

INFSYS RR 1843-01-12 3

that, we compare theDLV� planning system to a number of other planning systems. Section 6 discusses
further related work and presents an outlook to ongoing and future work.

In order to alleviate reading, relevant definitions and notation from the foundational Part I [6] are pro-
vided in Appendix A of the present paper.

2 The Planning SystemDLV
�

In this section, we describe theDLV� planning system, which provides an implementation of the lan-
guage� as a front-end of theDLV system [7, 9]. We first describe how planning problems are speci-
fied in DLV�, followed by the architecture of the system, and finally briefly the usage ofDLV�. In or-
der not to be abundant, we shall restrict ourselves to a shortexposition in which we focus on the es-
sential facts. Further information can be found in the foundational paper [6] or on theDLV� web page
<URL:http://www.dbai.tuwien.ac.at/proj/dlv/K/> .

2.1 Planning Problems inDLV�

In this section, we describe how planning problems can be represented as “programs” in theDLV� system.
For this purpose, we shall consider an example in the well-known blocksworld domain.DLV� programs are
built using statements of the language�, plus further optional control statements. We shall not exhaustively
repeat all details of� here, and in particular we shall not formally define the semantics of �. The details
and the formal definition of the semantics of�, which we include in abbreviated form in Appendix A, can
be found in [6].

A planning problemis a pair� � ������
of a planning domain(informally, the world of discourse)��

and a query
�
, which specifies the goal. A planning problem is representedas a combination of a

background knowledge�, which is a stratified Datalog program (cf. Section 3.1), anda program of the
following general form:

	
���� � ��
������ � ��
������

� � ��
�
��� � ��
���
 � �

where the sections
	
���� through�
���are optional and may be omitted. They consist of statements,

described below, each of which is terminated by “�”. Together with the background knowledge�, they
specify a� planning domain of form

�� � ��� ������
(see Appendix A), where the declarations

�
are

given by�� and��. and the rules
�

by �� and��.
The statements in�� and�� are fluent and action declarations, respectively, which type the fluents and

actions with respect to the (static) background predicates. They have the form

� �� � � � � ��!" #�$��#� % � � � � � %& (1)

where� is a fluent or action predicate of arity' (), and the%* are classical literals, i.e. an atom+ or its
negation�+ (also denoted –+), over the predicates from the background knowledge, such that every variable�* occurs in% � � � � � %& (as common, upper case letters denote variables). Only ground instances of fluents
and actions which are “supported” by some ground instance ofa declaration, i.e., the

#�$��#�part is true,
need to be considered.

4 INFSYS RR 1843-01-12

initial:

b
c
a

c
b
a

goal:

Figure 1: Sussman’s blocksworld planning problem.

The������

�-section specifies conditions that hold in an initial state (note that, in general, the initial
state may not be unique). They have the form of causal rules, which are described next, without the�	��#
part.

The �
���-section specifies the dynamics of the planning domain in terms of causation rules of the
form

����� � �	 � � � � � � �� ���� ��� � � � � ���� ���	��# � � � � � ��&���� �&� � � � � ���� �! (2)

where
�

is either a classical literal over a fluent or
	�
� (representing absurdity), the

�*’s are classical
literals over fluents and background predicates, and the

�� ’s are positive action atoms or classical literals
over fluent and background predicates. Informally, the rule(2) states that

�
is true in the new state reached

by executing (simultaneously) some actions, provided thatthe condition of the�	��# part is true with
respect to the old state and the actions executed on it, and the condition of the�	 part is true in the new state.

Both the�	- and�	��#-parts are optional. Specifically, both can be omitted together with the�����-
keyword to represent simple facts.

The�
���-section also containsexecutability conditionsfor actions, i.e. expressions of the form

�������	
� � �	 � � � � � � �� ���� ��� � � � � ���� �� (3)

where
�

is an action atom and
� � � � � � �� are classical literals. Informally, such a condition says that a (well-

typed) action is eligible for execution in a state, if
�

,. . . ,
�� are known to hold while

���
,. . . ,

�� are not
known to hold in that state.

The���
-section, finally, specifies the goal to be reached, and has the form

 � � � � �
&����
&� � � � � ����
! � ��" (4)

where

 � � � � �
! are ground fluent literals,' ((), and

� () is the number of steps in which the plan
must reach the goal.

All rules in �� and�� have to satisfy thesafety requirementfor default negated type literals,2, i.e., each
variable occurring in a default negated type literal has to occur in at least one non negated type literal or
dynamic literal. Note that this safety restriction does notapply to action and fluent literals whose variables
are already range restricted by the respective declarations.

Example 2.1 (Sussman’s blocksworld planning problem)An example of aDLV� program is given in
Figure 2. It represents Sussman’s famous planning problem in the blocksworld domain [44], depicted in
Figure 1, by which he showed anomalous behavior of STRIPS planning.

The blocksworld planning domain
���� involves distinguishable blocks and a table. Blocks and the

table can serve as locations on which other blocks can be put (a block can hold at most one other block,
while the table can hold arbitrarily many blocks). The background knowledge��� thus has predicates	
��� and

������� defined as follows:
2These are literals corresponding to predicates defined in the background knowledge.

INFSYS RR 1843-01-12 5

	
���� � ������" #�$��#� 	
�����"�
���������"�
����������" #�$��#�
���������"������� � ��������" #�$��#� 	
�����"�
���������"�������

� � �������	
�"� ���	���	
�"� ����� �"��
��� � ����� ����������" �	 �������"� 	
�����"��������	
� ��������" �	 � �� ��
����������	
� ��������" �	 ����������"�
����������	
� ��������" �	 ����������"�
�������##���������� ������" �	��# ��������"������ -�������" �	��# ��������"� �������"� � �� ������#���
 ������"����
 � �����	"� ���	� �"� �������	
�" � �	"

Figure 2:DLV� program for Sussman’s problem in the blocksworld domain
����

	
�����"� 	
����	"� 	
�����"�
����������	
�"�
���������" :-
	
�����"�

In the DLV� program, two fluents are declared for representing states:������", which states that some
block

�
resides on some location

�
, and ����������", which is true for a location

�
, if its capacity of

holding blocks is exhausted. Furthermore, there is a singleaction predicate��������", which represents
moving a block

�
to some location

�
(and implicitly removes that block from its previous location).

With this fluent and action repertoire, we can describe the initial state and the causal rules as well as
executability conditions guarding state transitions. As for the initial state, the configuration of blocks shown
on the left in Figure 1 is expressed by the three facts�������	
�", ���	���	
�", and����� �". Note that
only positive facts are stated for��; nevertheless the initial state is unique because the fluent�� is interpreted
under the closed world assumption (CWA) [40], i.e. if������" does not hold, we assume that it is false.

The values of the fluent�������� in the initial state are not specified explicitly, rather they are obtained
from a general rule that applies to all states, and thus is part of the�
���-section of the program (the first
rule there). It says that a block

�
is occupied if something (

��
) is on it. Note that the rule does not apply to� � ��	
�, since the table is supposed to have unlimited capacity. Furthermore,

��
must be a block, by the

declaration of the fluent��.
Next we specify when an action��������" is executable. The first condition states that this is possible

if the block
�

and the target location
�

are distinct (a block cannot be moved onto itself). The two negative
conditions����������	
����state that the move is not executable if either the block

�
or the target location�

is occupied, respectively. These statements are shorthandmacros for causation rules which interdict the
execution of an action (see Section A.3). Thus, the���� is executable, if the positive condition holds and
both negative conditions fail.

In the standard blocksworld setting, only one block can be moved at a time. Another macro,�������##����,
enforces this. This macro is convenient for computingsequential plans, i.e. plans under mutual exclusion of
parallel actions.

The effects of a move action are defined by two dynamic rules. The first states that a moved block is

6 INFSYS RR 1843-01-12

on the target location after the move, and the second that a block is not on the location from which it was
moved, provided it was moved to a different location.

The last statement in the�
���-section is an inertial statement for the fluent��, which is another macro
(see Appendix A.3) informally expressing that the fluent should stay true, unless it explicitly becomes false
in the new state.

To solve Sussman’s problem, the query in the���
-section contains the configuration on the right side
in Figure 1, and furthermore, prescribes a plan length of 3 (which is feasible). �

The semantics of planning domains is defined in terms of legalstates and state transitions. Informally, a
stateis any consistent collection of ground fluent literals whichrespect the typing information. It is alegal
initial state, if it satisfies all rules in the������

�-section and the rules in the�
���-section with empty�	��# part under answer set semantics (cf. Section 3.1) if causal rules are read as logic programming rules.
A state transitionis a triple% � ��������where���� are states and� is a set of legal action instances in

��
,

i.e., action instances that respect the typing information. Such% is legal, if the action set� is executable
w.r.t. �, i.e., each action� in � is the head of a clause (3) whose body is true, and�� satisfies all causal rules
(2) from the�
���-section whose�	��# part is true with respect to� and� under answer set semantics.

An optimistic plan for a goal

 � � � � �
&����
&� � � � � ����
! is now a sequence of action sets

�� � � � � ��*�, � (), such that a corresponding sequence� � ���� �� �� �, �� ��� ����� . . . , ��*� ��* ��*�� of legal state transitions
���� ��� ��� � exists that leads from a legal initial state�� to a state�* which establishes the goal, i.e.,�
 � � � � �
&� � �* and

�
&� � � � � �
!� 	 �* �
. This sequence of legal state transitions is calledtrajec-
tory, and asolutionto aDLV� planning problem is an optimistic plan of length

�
specified in the���
-section

(cf. (4)).

Example 2.2 (Sussman’s problem (cont’d))A well-known solution to Sussman’s problem consists of first
moving block� onto the table, then moving

	
on top of�, and finally moving� on top of

	
.

In theDLV� setting, this amounts to the optimistic plan

�����������	
�"�� ������	� �"�� ��������	"��
We omit the description of the (unique) trajectory for this plan at this point; it will be given in Section 2.3.

2.1.1 Secure Planning

DLV� has a special statement “���#��
���” which may be specified before the���
-section. It instructs
the system to compute only secure plans, which are special optimistic plans. Note that���#��
�� is nota
macro, and is, by complexity arguments, not expressible as amacro which can be expanded efficiently.

Informally, an optimistic plan�� � � � � ��!�
is secure, if it is applicable under any evolution of the

system: starting from any legal initial state��, the first action set�
(
� (�) can always be done (i.e., some

legal transition��� �� �� � exists), and for every such possible state� , the next action set�� can be done
etc., and eventually, after having performed all actions, the goal is always established. Secure plans are often
calledconformant plansin the literature, and are considered in scenarios with incomplete information about
initial states or nondeterministic action effects.

Example 2.3 (blocksworld with incomplete initial state) Let us consider a different planning problem in
the blocksworld, illustrated in Figure 3. Here, a further block

�
is present, whose exact location is unknown,

but we know that it is not on top of�.

INFSYS RR 1843-01-12 7

b

d

d c
ainitial: goal:

c
a

?

d
b

Figure 3: A Blocksworld planning problem with incomplete initial state.

	
���� � ������" #�$��#� 	
�����"�
���������"�
����������" #�$��#�
���������"�����#�����" #�$��#� 	
�����"������� � ��������" #�$��#� 	
�����"�
���������"�������

� � �������	
�"� ���	���	
�"� ����� �"� -����� �"�����
 ������"�	�#	����� ������"� �������"� � �� ���	�#	����� �������"� �������"� 	
�����"� �� �� �������� ����#�����" �	 �������	
�"������ ����#�����" �	 �������"� ����#������"�	�#	����� ��� ����#�����"��
��� � ����� ����������" �	 �������"� 	
�����"��������	
� ��������" �	 � �� ��
����������	
� ��������" �	 ����������"�
����������	
� ��������" �	 ����������"�
�������##���������� ������" �	��# ��������"������ -�������" �	��# ��������"� �������"� � �� ������#���
 ������"����
 � ����� �"� ������"� �����	"� ���	���	
�" � �4"

Figure 4:DLV� program for a variant of Sussman’s problem in an incomplete world

The background knowledge��� and theDLV� program for Sussman’s problem from above are modified
as follows.

For introducing block
�

to the planning domain, we add the fact
	
�����" to ��� and the fact -����� �"�

to the������

�-section of theDLV� program.
Let us first consider the necessary extensions for handling cases in which the initial state description is

incorrect (e.g., when completing the partial initial statedescription, incorrect initial states can arise). The
following conditions should hold for each block: (i) It is ontop of a unique location, (ii) it does not have
more than one block on top of it, and (iii) it is supported by the table (i.e., it is either on the table or on a
stack of blocks which is on the table) [27].

It is straightforward to incorporate conditions (i) and (ii) into the������

�-section:

������

� � 	�#	����� ������"� �������"� � �� ���	�#	����� �������"� �������"� 	
�����"� �� �� ���
Here,

	�#	����� is a macro (cf. Section A.3) which amounts to a constraint.

8 INFSYS RR 1843-01-12

For condition (iii), we introduce a fluent����#���, which should be true for any block in a legal initial
state:

	
���� � ����#�����" #�$��#� 	
�����"�
We then describe����#��� and include a constraint that each block must be supported.

������

� � ����� ����#�����" �	 �������	
�"������ ����#�����" �	 �������"� ����#������"�	�#	����� ��� ����#�����"�
Now we modify the���
-section to

���
 � ����� �"� ������"� �����	"� ���	���	
�" � �4"

and, finally, to obtain a plan that works under any possible location of block
�

in the beginning, we use the����
 	
macro ofDLV� (defined in section A.3), which generates the two alternatives for the value of a

fluent
	
:

������

� � ����
 ������"�
In this way, all completions of�� which satisfy the initial state constraints lead to legal initial states; in fact,
there are two such states, corresponding to�����	" and�������	
�".

The rewrittenDLV� program is depicted in Figure 4, and using this program we areable to compute the
following solution, which is a secure plan:

�����������	
�"�� ��������	"�� ���������"�� �������� �"��

2.1.2 Knowledge-State vs. World-State Planning

Knowledge state planning in� offers some features which are not available in other planning languages.
Recall that a knowledge state is a set of consistent fluent literals, which describes the current knowledge
about the planning world. The negation as failure constructallows for expressing defeasible rules and
default conclusions, by which a more natural modeling of rational planning agents which have to deal
with incomplete information becomes possible at a qualitative level. In fact, a knowledge state describes
more accurately the belief set of an agent about the world, which is formed by using strict and defeasible
causal laws. This is in particular relevant if we are interested in “reasonable” plans for achieving a goal.
However, our framework is limited to an elementary level, and does not directly allow for the representation
of disjunctive knowledge.

A useful feature of knowledge-state planning is that it may allow for an elegant encoding of conformant
planning problems with a world-state model in which the values of certain fluents remain open. In particular,
this applies if world states are projected to subsets of fluents of interest. This supportsforgettinginformation
and, to some extent,focusingby restricting attention to those fluents whose value may have an influence on
the evolution of the world depending on the actions that are taken. The advantages of a knowledge-state
encoding over a world-state encoding of the well-known “bomb in toilet” problem [34] are discussed in
Appendix C. For further discussion of knowledge-state planning, see [6].

INFSYS RR 1843-01-12 9

2.2 System Architecture

The architecture of theDLV� system is outlined in Figure 5. It accepts files containingDLV� input and
background knowledge stored as plain Datalog files. Then, bymeans of suitable transformations from� to
disjunctive logic programming that we will describe in Section 3, it uses the classicDLV core to solve the
corresponding planning problem.

Control Flow
Data Flow

Plan Printer

Controller

Datalog Parser

�
Parser

Plan Generator

DLV Core

DLV� Core

Plan Checker

�
input

Knowledge
Background

Figure 5:DLV� System Architecture

DLV� comes with two parsers: The first acceptsDLV� files, that is, files with a filename extension of
.plan that constitute aDLV� program, while the second parser accepts optional background knowledge
specified as stratified Datalog. Both parsers are able to readtheir input from an arbitrary number of files,
and both convert this input to an internal representation and store it in a common database.

The actualDLV� front-end consists of four main modules, the Controller, the Plan Generator, the Plan
Checker, and the Plan Printer. TheController manages the other three modules; it performs user interactions
(where appropriate), and controls the execution of the entire front-end.

To that end, the Controller first invokes thePlan Generator, which translates the planning problem at
hand into a suitable program in the core language ofDLV (disjunctive logic programming under the answer
set semantics as described in Section 3.1) according to the transformation�� ��"

provided in Section 3.2.
The Controller then invokes theDLV kernel to solve the corresponding problem. The resulting answer sets
(if any) are fed back to the Controller, which extracts the solutions to the original planning problem from
these answer sets, transforms them back to the original planning domain, and saves them into the common
database.

The Controller then optionally (if the user specified the���#��
�� command or invoked a secure
check interactively) invokes thePlan Checker. Similarly to the Plan Generator, the Checker uses the original
problem description together with the optimistic plan computed by the Generator to generate a disjunctive
logic program that solves the problem of verifying whether this (optimistic) plan is in fact also a secure plan
as intuitively introduced in 2.1.1 (Details and the actual transformation employed by the Plan Checker will
be provided in Section 4).

ThePlan Printer, finally, translates the solutions found by the Generator (and optionally verified by the
Checker) back into suitable output for the planning user andprints it.

2.3 UsingDLV�

DLV� is a command-line oriented system, which is realized as front-end to theDLV logic programming
system. It accepts two types of input files: (i)DLV� files, which carry the filename extension.plan and

10 INFSYS RR 1843-01-12

containDLV� code as described in Section 2.1; (ii) optional background knowledge in the form of a stratified
Datalog program, which is kept in files without any filename extension.

The planning front-end itself is invoked by means of the-FP family of command-line options:-FP ,
-FPopt and-FPsec , followed by any number ofDLV� files and files containing background knowledge.

� -FP invokes theDLV� system in interactive mode, where an optimistic plan is computed and the user
is then prompted whether to perform a security check for thatplan and whether to compute another
(optimistic) plan, respectively.

� -FPopt computes all optimistic plans in batch mode, without user intervention, while

� -FPsec computes all secure plans (applying by default secure check��
, as defined in Section 4) in

batch mode.

In all these cases, by means of the command-line option-n= � the number of plans computed and printed
can be limited to at most�; by defaultall possible plans are computed.

FurtherDLV� command-line options which affect the security checking will be introduced at the end of
Section 4.

As an example, assume that theDLV� program for Sussman’s blocksworld planning problem from
Figure 2 in Section 2.1 resides in a fileblocksworld.plan , while the background knowledge about	
���s and

�������s is saved in a filebackground . Invoking

dlv -FP blocksworld.plan background

results in the following output:

DLV [build DEV/Dec 17 2001 gcc 2.95.3 (release)]

STATE 0: occupied(a), on(a,table), on(b,table), on(c,a)
ACTIONS: move(c,table)
STATE 1: on(a,table), on(b,table), on(c,table), -on(c,a)
ACTIONS: move(b,a)
STATE 2: occupied(a), on(a,table), on(b,a), on(c,table),

-on(b,table)
ACTIONS: move(c,b)
STATE 3: on(a,table), on(b,a), on(c,b), -on(c,table),

occupied(a), occupied(b)
PLAN: move(c,table); move(b,a); move(c,b)

Check whether that plan is secure (y/n)? y
The plan is secure.

Search for other plans (y/n)? y

This describes a successful trajectory����, �
, � �, �� , ��, ���, ���, ��, ���� where��, ..., �� cor-

respond to the lines starting withSTATE 0, � � �, STATE 3 in the output above, and�
, ��, and ��

correspond to the threeACTIONlines; the entire plan is again printed at the end.
Now, let us consider the program from Figure 4, that is, the variant of the Sussman problem with an

incomplete initial state. Let us assume that we have added the fact
	
�����" to the background knowl-

edge and modified the file blocksworld.plan accordingly. Again invoking DLV� as above will produce the
following output:

INFSYS RR 1843-01-12 11

DLV [build DEV/Dec 17 2001 gcc 2.95.3 (release)]

STATE 0: occupied(a), on(a,table), on(b,table), on(c,a),
-on(d,c), supported(a), supported(b),
supported(c), -on(d,a), on(d,table), -on(d,b),
-on(d,d), supported(d)

ACTIONS: move(c,table)
STATE 1: on(a,table), on(b,table), on(c,table),

on(d,table), -on(c,a)
ACTIONS: move(d,b)
STATE 2: on(a,table), on(b,table), on(c,table), on(d,b),

-on(d,table), occupied(b)
ACTIONS: move(c,d)
STATE 3: on(a,table), on(b,table), on(c,d), on(d,b),

-on(c,table), occupied(b), occupied(d)
ACTIONS: move(a,c)
STATE 4: on(a,c), on(b,table), on(c,d), on(d,b),

-on(a,table), occupied(b), occupied(c),
occupied(d)

PLAN: move(c,table); move(d,b); move(c,d); move(a,c)

Check whether that plan is secure (y/n)? y
The plan is NOT secure.

Search for other plans (y/n)? y

The first plan we arrive at is not secure, so we answer the question whether to search for other plans
positively, and indeed find a secure plan (Observe that initial states (STATE 0) are larger here because of
the����
 statement for������"):

STATE 0: occupied(a), on(a,table), on(b,table), on(c,a),
-on(d,c), supported(a), supported(b),
supported(c), -on(d,a), on(d,table), -on(d,b),
-on(d,d), supported(d)

ACTIONS: move(d,c)
STATE 1: on(a,table), on(b,table), on(c,a), on(d,c),

-on(d,table), occupied(a), occupied(c)
ACTIONS: move(d,b)
STATE 2: on(a,table), on(b,table), on(c,a), on(d,b),

-on(d,c), occupied(a), occupied(b)
ACTIONS: move(c,d)
STATE 3: on(a,table), on(b,table), on(c,d), on(d,b),

-on(c,a), occupied(b), occupied(d)
ACTIONS: move(a,c)
STATE 4: on(a,c), on(b,table), on(c,d), on(d,b),

-on(a,table), occupied(b), occupied(c),
occupied(d)

PLAN: move(d,c); move(d,b); move(c,d); move(a,c)

Check whether that plan is secure (y/n)? y
The plan is secure.

Search for other plans (y/n)?

12 INFSYS RR 1843-01-12

While looking for further secure plans, we encounter several optimistic plans, none of which is secure,
so we change our strategy and invokeDLV� with the -FPsec option instead of using the interactive mode
enabled with-FP . This yield the following result:

DLV [build DEV/Dec 17 2001 gcc 2.95.3 (release)]

PLAN: move(d,c); move(d,b); move(c,d); move(a,c)
PLAN: move(d,table); move(d,b); move(c,d); move(a,c)

Indeed, while there are many optimistic plans, there is onlyjust a single further secure plan in addition
to the one we already found. Note that, as secure plans usually have many different trajectories,DLV� only
prints the plans themselves, omitting the information on states.

3 Transforming Optimistic Planning to Answer Set Programming

In this section, we discuss how planning problems inDLV� are transformed into answer set programs. We
consider here optimistic planning, and deal with secure planing in the next section. As a preliminary, we
first recall some concepts of (disjunctive) logic programming.

3.1 Disjunctive Logic Programming

We consider extended disjunctive logic programs with two kinds of negation like in the� language, i.e. weak
negation “���” and strong negation “�”, as introduced in [12] over a function-free first-order language.
Strings starting with uppercase (resp. lowercase) lettersdenote variables (resp. constants). Apositive(resp.
negative) classical literal � is either an atom

�
or a negated atom��, respectively; itscomplement, denoted

��, is �� and
�
, respectively. Apositive(resp.negative) failure (NAF) literal � is of the form� or ��� �,

where� is a classical literal. Unless stated otherwise, byliteral we mean a classical literal.
A disjunctive rule(rule, for short)

�
is a formula

� � � � � � �!
:-

� � � � � � �� � ��� ��� � � � � � ��� �&� (5)

where all
�* and

�� are classical literals and' ()� (� (). The part to the left (resp. right) of “:- ”
is thehead, (resp.body) of

�
, where “:- ” is omitted if �). We let� ��" � �� � � � �, �!� be the set

of head literals and� ��" � ����" ��
���"

the set of body literals, where����" � �� �
. . . ,

��� and
�
���" � ���� �

. . . ,
�&�. A constraintis a rule with empty head (' �)).

A disjunctive logic program (DLP)
�

(simply, program) is a finite set of rules. It ispositive, if it is
���-free (i.e.�� � � � ����" �
), andnormal, if it is � -free (i.e.�� � � � 	� ��"	
 �). A normal
program is also called aDatalog program. As usual, a term (atom, rule etc) isground, if no variables appear
in it. A ground program is also calledpropositional.

Answer sets of DLPs are defined as consistent answer sets for EDLPs as in [12, 25]. That is, for any
program

�
, let �� be its Herbrand universe and�� be the Herbrand base of

�
over �� (if no constant

appears in
�

, an arbitrary constant is added to��). Let
��'��� " � ����
��'���"
denote the

grounding of
�

, where
��'���"
is the set of all ground instances of

�
.

Then, aninterpretationis any set� ��� of ground literals. Ananswer setof a positive ground program�
is any consistent interpretation�, i.e.,� 	�

�� 	 � � �� �
, such that� is the least (w.r.t. set inclusion) set

INFSYS RR 1843-01-12 13

closed under the rules of
�

, i.e.,� ��" � � implies� ��" 	 � ��
 for every
� � �

.3 An interpretation�
is an answer set of an arbitrary ground program

�
, if it is an answer set of theGelfond-Lifschitz reduct

� �
,

i.e. the program obtained from
�

by deleting

� all rules
� � �

such that�
���" 	 � ��
, and

� all negative body literals from the remaining rules.

The answer sets of a non-ground program
�

are those of its ground instantiation
��'��� "
. We shall

denote by�� �� "
the set of all answer sets of any program

�
.

3.2 Transformation �� ���

The main building-block underlying the realization of theDLV� system is the translation of aDLV� planning
problem�, given by a background knowledge� and aDLV� program as in Section 2.1, into a logic program
�� ��"

, whose answer sets represent the optimistic plans of�. For the sake of our translation, we extend
fluent and action literals by a timestamp parameter

�
such that an answer set�� of the translated program

�� ��"
corresponds to a successful trajectory

� � ���� �� �� �� � � �, ��!� ��!��!�� of � in the following
sense:

� The fluent literals in�� having timestamp) represent a (legal) initial state�� of
�

.

� The fluent literals in�� having timestamp
� �) represent the state�* obtained after executing

�

many action sets (i.e., they represent the evolution after
�

steps).

� The action literals in�� having timestamp
�

represent the actions in�*�
(i.e., those actions which

are executed at step
� 	 �).

Moreover, trajectories encoded in the answer sets of�� ��"
are guaranteed to establish the goal of the plan-

ning problem, and the underlying sequence of action sets is therefore an optimistic plan.
In the following, we incrementally describe a transformation from a planning problem� to a logic pro-

gram�� ��"
. We will illustrate this transformation on the blocksworldplanning problem from Section 2.1.

In what follows, let
��,
��, and
�� be the sets of action, fluent and type names, respectively, and
let ���, �

�
��, ���, and��� be the set of all action, positive action, fluent, and type literals, respectively.

Furthermore,������ � ���
���� and���!� ���

����� (��' stands fordynamic literals).

Step 0 (Macro Expansion): In a preliminary step, replace all macros in theDLV�-program by their defi-
nitions (cf. Appendix A.3).

Example.In the encoding of Sussman’s problem, among others the macros

�
��� � ����������	
� ��������" �	 ����������"����#���
 ������"�
are replaced by

����� 	�
� �	��# ��������"�����������"�
������" �	 ��� -������" �	��# ������"�

3 We only considerconsistent answer sets, while in [12, 25] also the (inconsistent) set�� may be an answer set. Technically,
we assume that negative classical literals�� are viewed as new atoms –�, and constraints:- ��–� are implicitly added. This is the
standard way how true negation is implemented in systems likeDLVor Smodels.

14 INFSYS RR 1843-01-12

Step 1 (Background Knowledge): The background knowledge� is already given as a logic program; all
the rules in� can be directly included in�� ��"

, without further modification.

Step 2 (Auxiliary Predicates): To represent steps, we add the following facts to�� ��"
������"�� � � � �������"�
������� �"�� � � � ������� � �� �"�

where
�

is the plan length of the query
� � ����" � � at hand.

The predicate���� denotes all possible timestamps and the predicate���� describes a successor rela-
tion over the timestamps in our program.

Note that we refrain from using built-in predicates of a particular logic programming engine here. In the
DLV� implementation, all above auxiliary predicates are efficiently handled in a preprocessing step.
Example.For Sussman’s problem, where

� � �����	"� ���	� �"� �������	
�" � �	", we add the following
facts:

������"� ������"� ������"� �����	"�
������� �"� ��������"� �������	"�

Step 3 (Causation Rules): For each causation rule�:������ �	 � �	��# � in ��, we include a rule
�� into �� ��"

as follows:

����" �
�
� if � � 	�
��

� �%�� "�
if � � � �%"� � �
�� �

where
�

is a new variable. To the body of��, we add the following literals:

� each default type literal in�, i.e., ����"� �� �� where� � ���;
� ����" ��%�� "

, where����" ��%" � � and
��%" � ���;

� ����" ��%���", where����" ��%" �� and
��%" � ���!, where

�� is a new variable;

� for timing, we add

– ����(
�

), if � is empty;

– ����(��,�
), otherwise.

� To respect typing declarations and to establish standard safety of ��, we add for any action/fluent
literal in � and default negated fluents/actions literals typing information from the corresponding
action/fluent declarations. That is, if� � ��"� �%" resp.��� ��"� �%" �� �� such that� �%" � ���!,

� �� " #�$��#� % �� "� � � � � %&��&"
is an action/fluent declaration (standardized apart), and� is a substitution such that��� " � %, then we
add��% �� ""� � � � ���%&��&""

to the body for��. If � has multiple action/fluent declarations, each of
them is considered separately, which gives rise to multipletyped versions of��.

Example.In our encoding of Sussman’s problem, the statement

INFSYS RR 1843-01-12 15

�
��� � ����� ����������" �	 �������"� 	
�����"�
leads to the following rule in�� ��"

:

�������������":- ����������"�	
�����"�
���������"��������"�
Here, the timing atom�������" is added, and the type information

���������" for the fluent����������"
in the�-part of the statement.

Step 4 (Executability Conditions): For each executability condition�of the form�������	
� ��%" �	�
in ��, we introduce a rule�

�
in �� ��"

as follows:

����" � ��%���" � ���%���"�

where
�� is a new variable. To the body of�

�
, we add the following literals:

� Each default type literal in�, i.e., ����"� � � where� � ���;
� ����" ��%���", where����" ��%" � � and

��%" � ���!;

� ����(
��,�

) where
�

is a new variable;

� for typing and safety, type information literals for
��%" and every default literal��� ��"� �%" � � such

that� �%" � ���!, similar as in Step 3 (which may lead to multiple rules�
�
).

Example.In our running example, the condition

�������	
� ��������" �	 � �� ��
introduces in�� ��"

the rule

�����������" � ������������":- � �� ��	
�����"�
���������"�����������"�
Here, type information

	
�����"�
���������" is added for��������".
Step 5 (Initial State Constraints): Initial state constraints in��� are transformed like static causation
rules� in Step 3 (i.e.,� is empty), but we use the constant 0 instead of the variable

�
and omit the literal������".

Example.The facts in��:

������

� � �������	
�"� ���	���	
�"� ����� �"�
become:

�������	
���"� ���	���	
���"� ����� ���"�

16 INFSYS RR 1843-01-12

	
�����"� 	
����	"� 	
�����"�
����������	
�"�
���������" :-
	
�����"�������"� ������"� ������"� �����	"� ������� �"� ��������"� �������	"�

�������	
���" :-
	
�����"�
����������	
�"�

���	���	
���" :-
	
����	"�
����������	
�"�

����� ���" :-
	
�����"�
���������"�

�����������" � -�����������":- � �� ��	
�����"�
���������"�����������"�
:-

�����������"��������������"�������� ���"�
:-

�����������"��������������"�������� ���"�
�������������" :- ����������"�	
�����"�
���������"��������"�
���������" :- ���������"���� -���������"�	
�����"�
���������"�

������� ���"�
���������" :-

�����������"�	
�����"�
���������"�����������"�
-����������" :-

�����������"��������"�� �� ���	
�����"�
����������"�����������"�
:-

���������� ���"������������� ���"� for ������ � ���	� ��
�� ���� � ���	� ����	
��� ������" �� ��������"

���
 #������ :- �����	�	"����	� ��	"��������	
��	"�
:- ��� ���
 #�������

Figure 6: Transformation of Sussman’s planning problem��� from Section 2.1

Step 6 (Goal Query): Finally, the query
�
:

���
 �
 �% "� � � � �
&�%&"����
&� �%&� "� � � � ����
!�%!" � ��"�
is translated to:

���
 #������ :-
 �% � �"� � � � �
&�%&� �"����
&� �%&� � �"� � � � ����
!�%!� �".
:- ��� ���
 #������.

where���
 #������ is a new predicate symbol.

Example.
� � �����	"� ���	� �"� �������	
�" � �	", the goal for Sussman’s problem, leads to the follow-

ing rules in�� ��"
:

���
 #������ :- �����	�	"� ���	� ��	"� �������	
��	"�
:- ��� ���
 #�������

The complete transformation of Sussman’s blocksworld problem, ���, after expansion of all macros (see
Section A.3), is shown in Figure 6.

As the reader can easily verify, the above transformation employs disjunction only in Step 4 for translat-
ing executability conditions. Furthermore, negated action atoms���%�� "

occur only in the heads of the rules
of �� ��"

. Thus, the program is head-cycle-free, which is profitably exploited by theDLVengine underlying

INFSYS RR 1843-01-12 17

our implementation. The disjunction, which informally encodes a guess of whether the action
��%" is exe-

cuted or not at time
��, may equivalently be replaced by� -free guessing rules. The adapted transformation

can then be used on engines for computing answer sets of normal programs, such as Smodels.

The following result formally states the desired correspondence between the solutions of aDLV� plan-
ning problem� and the answer sets of the logic program�� ��"

obtained by following the procedure de-
scribed above.

Theorem 3.1 (answer set correspondence)Let � be a planning problem, given by a background knowl-
edge� and aDLV�-program, and let�� ��"

the logic program generated by Steps 0–6 above. Define,
for any consistent set of literals�, the sets��� � � ��%" 	 ��%�� � �" � �,

� �
��� and ��� � �
� �%" 	 � �%�� " � �� � �%" � ���

�
, for all

� (). Then,

(i) for each optimistic plan
� � �� � � � � ��*� of � and witnessing trajectory

� � ���� �� �� �,
�� ��� ����� . . . , ��*� ��*��*��, there exists some answer set� of �� ��"

such that�� � ��� for
all

� � �� � � � � � and�� � ��� , for all
� �)� � � � � �;

(ii) for each answer set� of �� ��"
, the sequence

� � �� � � � � ��*� is a solution of�, i.e. an optimistic
plan, witnessed by the trajectory

� � ���� �� �� �, �� ��� ����� . . . , ��*� ��* ��*��, where�� � ���
and�� � ��� for all

� � �� � � � � � and� �)� � � � � �.
Proof. The proof is based on the well-known notion ofsplitting of a logic program as defined in [28]. We
define the splitting sequence� � ���� ��� � � � � ��* ���� � ��������� � � � � ������� � � ���* ����
�� � � � � � �* ���

of the program
� � �
��'���� ��""

as follows:

� �� is the set of type literals and���� and���� literals occurring in
� �

;

� �� ,)
 �
 �
, is the set of literals in

� �
of the form

� �%�� ", where
� �
��, and of the form

��%�� ��",
where

� �
��;
� � � ����
 #�������.
By theSplitting Sequence Theoremof [28],

� �
(and thus�� ��"

) has some (consistent) answer set� iff� � ��� ��� � � � � ��* ��� for some solution
� � ���� ��� � � � � ��* ����

of
� �

w.r.t. �. We note
the following facts.

� ��� � ���� �� �"
(as defined in [28], intuitively the program corresponding to ���) consists of the

background program and of the facts defining���� and����.

� �� � ���� ���� �� �" � ���� �� �"����"
(as defined in [28], intuitively the program corresponding to

��) consists of rules and constraints which are translations of initial state constraints and static rules
(i.e. causation rules with empty�	��#), in which the argument of���� and the last argument of the
head predicates has been instantiated with).

� �� � ��	
� ���	 �� �" � ��	
� �� �"���� ��� � � � ���� ", for �
 �
 �
(intuitively, the program

corresponding to��), consists of rules and constraints which are translationsof causation rules and
executability conditions in the�
���-section, in which the argument of���� and the second argu-
ment of���� is instantiated with

�
(thus, the last argument in head predicates of causation rules and

executability conditions is
�

and
� � �, respectively).

18 INFSYS RR 1843-01-12

� �� � ��� ���� �� �" � ��
�
�� �"� ��� � �� � � � ��*" (intuitively the program corresponding to��)

consists of the rule and the constraint which were generatedby Step 6.

� ��� ��� � � � ���* ��� is a consistent set iff each of the sets
��� ��� � � � � � �*��� is consistent,

since no literal in any of the sets����� � � � � ��* �� exists such that its complement is contained in
any other of these sets.

We now prove (i) and (ii) of the theorem.

(i) We show that for each optimistic plan a corresponding answer set� of �� ��"
as described exists. By

the Splitting Sequence Theorem, we must prove that a respective solution
� � ���� ��� � � � � ��* ����

of
�� ��"

exists:
���: As �� is a legal initial state, the background knowledge has a consistent answer set. Thus, by defini-

tion of
���, it clearly has a consistent answer set

���.
��: �� in the witnessing trajectory must be a legal initial state, so �� satisfies all rules in the������

�-

section and the rules in the�
���-section with empty�	��# part, under answer set semantics if
causal rules are read as logic programming rules. These rules are essentially identical (modulo the���� literals and the timestamp arguments) to

��, so
�� exists and�� � ����� .

�� : For �
 �
 �
, ���� ��� ��� � must be a legal transition. We proceed inductively.�� has to be an

executable action set w.r.t.��� , so each action
� � �� must occur in the head of an executability

condition whose body is true w.r.t.��� . There must be a corresponding clause in
�� constructed by

step 4 of the translation such that, the body is true w.r.t.
��� . If we choose

�� such that����� � �� ,
then all these rules are satisfied. Each rule in

�� which has an action literal�� in the head such that��
is not in�� either does not have a true body in

��� , or we include its negation��� into
�� .

Furthermore,�� satisfies all causal rules from the�
���-section whose�	��# part is true w.r.t.���
and�� under answer set semantics. From the correspondence of causal rules from the�
���-section
and rules in

�� , we may thus conclude that
�� has an answer set

�� s.t.�� � ����� and�� � ����� , as
seen above.

��: �* satisfies the goal of�. Let

 � � � � �
&����
&� � � � � ����
!���"be the goal of�. Then

�
 � � � � �
&� �
�* and

�
&� � � � � �
!� 	 �* �
 hold. Since�* � ��� ��* , the body of the rule generated in step 6 is
true and therefore

�� � ����
 #������� exists.

In total, we have shown that for each optimistic plan of� a corresponding answer set� of �� ��"
exists,

which contains literals representing a witnessing trajectory.

(ii) We must prove that for each answer set� of �� ��"
, a corresponding optimistic plan of� exists. By

the Splitting Sequence Theorem, a solution
� � ���� � �� � � � � ��* ����

exists for �� ��"
. Since

�� is
an answer set for the program corresponding to initial stateconstraints and static rules, a legal initial state�� � ����� must exist as well.

For
�� , �
 �
 �

, we proceed inductively. All rules corresponding to executability conditions w.r.t.
time

� � �must be satisfied, so for every literal�� in
�� which corresponds to a positive action literal, a rule

in
�� whose body is true w.r.t.

��� and in which�� is the only true head literal, must exist. By construction,
an executability condition whose body is true w.r.t.��� and whose head is the corresponding action literal,
must exist in�, so an executable action set�� � ����� exists w.r.t.��� .

INFSYS RR 1843-01-12 19

All rules in
�� corresponding to causal rules from the�
���-section of� must be satisfied by

�� and��� (for literals translated from�	��#-parts). So for each causal rule in�, either its�	��#-part is false
w.r.t. �� and��� , or the causal rule is satisfied by the state�� � ����� .

Finally, since
�� exists,���
 #������ must be true. Hence, the body of the rule generated in step 6

must be true, and therefore�* must establish the goal of�.
In total, we have shown that for each answer set� of �� ��"

an optimistic plan of� exists, such that the
witnessing trajectory can be constructed from� as described. �

4 Secure planning

The translation in the previous section results in logic programs where the projections of the answer sets on
the positive actions correspond to optimistic plans.

As we have already mentioned above, theDLV� system also provides the functionality of checking
whether a given optimistic plan is secure for certain planning domains. Thus, a secure plan may be found
in two steps as follows: (i) Find an optimistic plan

�
, and (ii) check whether

�
is secure. The test (ii)

informally amounts to testing the following three conditions:

1. the actions of
�

are executable in the respective stages of the execution;

2. at any stage, executing the respective actions of
�

always leads to some legal successor state; and

3. the goal is true in every possible state reached if all steps of the plan are successfully executed.

In arbitrary planning domains, the security check is��� -complete [6]4, and thus, by widely believed
complexity hypotheses, it is not polynomially reducible toa SAT solver or other computational logic system
with expressiveness bounded by

��
or co-

��
. However, as shown in [6], a polynomial reduction is pos-

sible for the class of proper propositional planning problems, where a planning problem� is proper, if the
underlying planning domain

��
is proper, i.e., given any state� and any set of actions�, deciding whether

some legal state transition�������� exists is possible in polynomial time.
In the DLV� system, we have focused on proper propositional planning domains, and we have imple-

mented security checking by a polynomial reduction to logicprograms with complexity in co-
��

.
Note that for a proper planning domain

��
, there is an algorithm��� which, given an arbitrary state� and a set of actions�, decides in polynomial time whether some legal transition�������� exists. The

existence of such an algorithm���, given
��

, is difficult to decide, even in the propositional case, and
��� is not efficiently constructible under widely accepted complexity beliefs. We thus looked for suitable
semantic properties of planning domains which can be ensured by syntactic conditions and enable a simple
(or even trivial) check for the existence of a legal transition ��������, which uniformly works for a class of
accepted planning domains.

4.1 �����-committed Domains and Security Check��
One such condition is when, informally, the existence of a legal transition�������� can only be blocked by
a causal rule with head

	�
� or by an (implicit) consistency constraint:-
	�

-
	
. That is, if such constraints

are disregarded, some legal transition�������� always exists, otherwise, if some constraint is violated in

4i.e. 	
���� -complete (cf. [36])

20 INFSYS RR 1843-01-12

any such��, then no legal transition�������� exists. This condition can be ensured by a syntactic condition
which employs stratification on the causation rules.

With this in mind, we develop a security check��
, which, given an optimistic plan

� � �� � � � � ��!�
of length' () for a planning problem�, rewrites the logic program�� ��"

in Section 3 to a logic program
� ���� "

and returns “yes” if this program has no answer set, and “no” otherwise.
The modifications are as follows:

� In order to check condition (1) mentioned at the beginning ofthis section, the rules resulting from exe-
cutability conditions are removed from�� ��"

. Instead, for an executability condition of the form

�������	
� ���" �	 � �� "� � � � ��&��&"���� �&� ��&� "� � � � ���� �!��!"
in �, we generate the following rule for each

���" � ���
(
� �)� � � � �' � �) of

�
, where
 is the

substitution mapping the variables
�

to �:

���� �� "
:- � �� �� "� � � � ��&��&�� "�

��� �&� ��&� �� "� � � � ���� �!��!�� "� ������ �� 	 �"�"

This enforces that whenever an action
���" in the plan

�
is executable in the respective state

�
, then

����� "
will be derived by� ���� "

; no further actions will be derived. To guarantee that the actions of the plan
�

are always executable, we add a rule

����� :- ��� ����� "�
for each

���" � ���
. Here,����� is a new auxiliary predicate which intuitively expresses that the plan

�
can not be properly executed; its truth allows building a witness for the insecurity of

�
.

� Concerning condition (2), in any situation where a causal rule with head
	�
� is violated or a fluent

inconsistency arises, an answer set witnessing the insecurity of
�

should be generated. To this end, the
transformation is modified as follows:

Each constraint:- ���� � ������ "� in �� ��"
derived from a causal rule of the form����� 	�
� � � �,

is rewritten to

����� :- ���� � ������ "�� �)�
:-
�����"�

where
 is a substitution mapping
�

to). Observe that violation of constraints referring to an initial state
does not generate a counterexample.

Each constraint:- ���� � ������� �� "� in �� ��"
which has been derived from a causal rule����� 	�
� � � �,

is rewritten to

����� :- ���� � ������� �� "�
And for each fluent

� ��"
, the (implicit) consistency constraint (discussed in Footnote 3) is transformed

to a rule for non-initial states

����� :-
� ���� "

, –
� �� �� "� ������ "� � � ��

while those for the initial state remain unchanged:

INFSYS RR 1843-01-12 21

:-
� �� �)"� –

� ���)"�
Constraint violations (explicit or implicit) in non-initial states therefore lead to a witnessing answer set
containing�����.
� Finally, for condition 3, the goal constraint:- ��� ���
 #������� is modified to

:- ���
 #������� ��� ������
We can read the rewritten goal constraint as follows: The constraint is satisfied, and thus the plan

�
is not

secure, if (i) either����� is true, which means that some action in
�

cannot be executed or a constraint is vi-
olated when executing the actions in

�
, or (ii) if ���
 #������ is false, which means that after successfully

executing all actions in
�

, the goal is not established.
Before we can state the informal conditions, under which thesecurity check��

works, more precisely,
we need some auxiliary concepts.

Definition 4.1 (constraint-free, constraint- & executability-condition-free shadow) For any planning do-
main

�� � ��� ������
, let ��� ���"

denote the planning domain which results from
��

by dropping all
causal constraints with head

	�
� and interpreting negative fluents as new (positive) fluents,and call it
the constraint-free shadow of

��
. Furthermore, let�������"

denote the planning domain derived from
������"

by omitting all executability conditions and adding�������	
� �� for each legal action instance�, and call it theconstraint- and executability–condition-free shadow of
��

.

Definition 4.2 (
	�
�-committed planning domains) We call a planning domain

�� 	�
�-committed,
if the following conditions hold:

(i) If � is a legal state in
��

and� is an action set which is executable in� w.r.t.
��

, then either (i.1)
every legal transition�������� in ������"

is also a legal transition in
��

, or (i.2) no ��������� is a
legal transition in

��
, for all states��� in

��
.

(ii) For any state� and action set� in ���� ���"
, there exists some legal transition�������� in �������"

.

Example 4.1 (blocksworld with incomplete initial state (cont’d)) Let us reconsider the blocksworld plan-
ning problem of Example 2.3. It is easily seen that our formulation of the respective planning domain,����*, is

	�
�-committed. Indeed, it contains a single occurrence of default negation��� , via the
statement���#���
 ������"�, which is not critical for the existence of a successor statein ���� ���"

, so
condition (ii) is guaranteed. As for condition (i), for eachstate� and action set�, which is executable in�,
there is a single legal transition�������� in ��������*", and thus one of the cases (i.1) and (i.2) must apply.

Consider first the optimistic plan
�

which is secure, as we have seen:

�����������	
�"�� ��������	"�� ���������"�� �������� �"��
Indeed, an attempt to build an answer set� of � ����* �� "

fails: starting from any initial state, the actions
in �* are always executable and no constraint is violated, thus����� cannot be included in�. To satisfy
the rewritten goal constraint:- ���
 #���������� ������ thus���
 #������must not be included in�.
However, as easily seen, the atoms ����� ���", ��������", �����	��"

,
���	���	
���" must be included in�. This, however, means that���
 #������ has to be included in�, which is a contradiction. Thus, no answer set� exists, which means that the plan

�
is secure.

Let us now modify the number of steps in the goal to
� � �, and consider the optimistic plan

�

22 INFSYS RR 1843-01-12

����������"�� �������� �"��
In this case we can build an answer set of� ����* �� "

starting from an initial state in which block
�

is on the
table, by including at each stage the literals that are enforced. Then, both actions in the plan can be executed,
and we end up in a state in which the goal is not satisfied. Both���
 #������and����� cannot be derived,
and thus the constraint:- ���
 #���������� ������ in � ����* �� "

is satisfied, admitting an answer set
which witnesses the insecurity of

�
. Hence, the check outputs “no”, i.e., the plan is not secure.�

To show that the security check��
works properly for all

	�
�-committed planning domains, we
need the notions of soundness and completeness for securitychecks.

Definition 4.3 (security check) A security checkfor a class of planning domains�� is any algorithm
which takes as input a planning problem� in a planning domain from the class�� and an optimistic plan�

for �, and outputs “yes” or “no.” A security check issound, if it reports “yes” only if
�

is a secure plan
for �, and iscompleteif it reports “yes” in case

�
is a secure plan for�.

In other words, for a sound security check only “yes” can be trusted, while for a complete security check
“no” can be trusted.

Theorem 4.1 The security check��
is sound and complete for the class of

	�
�-committed planning
domains.

Proof We outline the proof, but omit the details. Let
� � �� � � � � ��!�

be an optimistic plan for a
planning problem� in a

	�
�-committed planning domain
��

.
(Soundness) Suppose that

�
is not secure. This means that an initial state�� and a trajectory

� �
���� �� �� �� � � � � ���� ��� ��� �� in

��
(where)
 �
 ') exist, such that one of the conditions (1)-(3) for

plan security stated at the beginning of this section is violated. We then can build an answer set� of the
program� ���� "

, in which, starting from��, respective literals are included which correspond to the legal
transitions in

�
as in�� ��"

. We consider the three cases:
Suppose first that condition (1) is violated, i.e., some action

���" in the action set�� of
�

is not exe-
cutable. Then, no rule with head

����� " fires, and thus we may add����� to �, as it can be derived from
the rule����� :- ��� ����� ". By (ii) of

	�
�-committedness for
��

, we can add literals for the stages� 	 �, . . . ,' modeling transitions in�������"
to � such that we obtain an answer set of� ���� "

.
Suppose next that condition (2) is violated, i.e., no successor state exists. By (ii) of

	�
�-committedness
for

��
, we can add literals to� modeling a legal transition

��� ���� ���� �
in ��� ���"

, and by (i) of
	�
�-committedness for

��
, ����� will be derived, as in

��
some rule with head

	�
� fires or opposite fluent literals
	
, -
� 	

are in�. Using (ii) again, we can add
literals for the remaining stages

� 	 �, . . . , ' modeling transitions in���� ���"
, such that we obtain an

answer set� of � ���� "
.

Suppose finally that condition (3) is violated. That is,
� � ' and the goal is not satisfied by�!. Then,

the rule with head���
 #������ is not applicable, the modified goal constraint is satisfied,and an answer
set� exists. Note that this also includes the case' �).

In any of these three cases, an answer set� of � ���� "
exists, and�� ���� "

outputs “no.”
(Completeness) Suppose�� ���� "

outputs “no,” i.e.,� ���� "
has some answer set�. Then, ei-

ther ����� � � or ���
 #������ �� � must hold. In the former case,����� must be derived ei-
ther (a) from some rule� � ����� :- ��� ����� "�, or (b) from some rule����� :- � � � ������"� corre-
sponding to a rewritten constraint with head

	�
� or a consistency constraint for strong negation. Let

INFSYS RR 1843-01-12 23

� be such that
�

is minimal. Then� encodes with respect to the stages)� � � � �� � � a trajectory
� �

���� �� �� �� � � � � ���� ��� ��� ��, such that���
is not executable in�� w.r.t.

��
. In case (a), we im-

mediately obtain that condition (1) of security is violatedand hence that
�

is not secure. In case (b), a
trajectory

� � ���� �� �� �� � � � � ����� ���� ���� �� in
��

exists such that executing�� in ��� w.r.t.
������"

as encoded in� leads to a state�� which violates some constraint of
��

with head
	�
�

or contains opposite literals. By item (i) of
	�
�-committedness for

��
, we can conclude that no le-

gal transition���� ��� ��� � exists in
��

, which violates condition (2) of security. On the other hand, if���
 #������ �� � while ����� �� �, then � encodes a trajectory� � ���� �� �� �� � � � � ��!� ��!��!�� w.r.t.
��

such that in the final state�! the goal is false, i.e., condi-
tion (3) of security is violated. That is, in all cases

�
is not secure. �

Now that we have introduced the class of
	�
�-committed planning domains, we look for syntactic

conditions on planning domains which can be efficiently checked and guarantee
	�
�-committedness. One

such condition can be obtained by imposing stratification oncausation rules as follows: For any causation
rule � of the form (7) let �� ��" be the corresponding logic programming rule�

:-
� � � � � � �� ���� ��� � � � � ���� �� which emerges by skipping the�	��#-part.

Definition 4.4 (stratified planning domain) A planning domain
�� � ��� ������

is stratified, if the
logic program��� consisting of all rules�� ��", where� � �� has

���" �� 	�
� and a nonempty�	-part,
is stratified in the usual sense (and strongly negated atoms are treated as new atoms).

For example, the blocksworld planning domain
����* described above is stratified.

It is easy to see that stratified planning domains are
	�
�-committed. Indeed, since any stratified logic

program is guaranteed to have an answer set, item (ii) of Definition 4.2 holds. Furthermore, for each legal
state� and action set� which is executable in�w.r.t.

��
, there exists a single candidate state�� for a legal

transition�������� in ��� ���"
, which is computed by evaluating a subset of the rules of���; this transition

is not legal in
��

if �� violates some constraint in�� with head
	�
� or introduces inconsistency. Note

that stratified planning domains
��

are proper.

Corollary 4.2 The security check��
is sound and complete for the class of stratified planning domains.

A possible extension of Corollary 4.2 allows for limited usage of unstratified causation rules. For exam-
ple, pairs

���#���
 	����#���
 � 	�
of positive and negative inertia rules for the same ground fluent

	
, which amount to the rules

���
� ����� 	 �	 ��� -

	 �	��# 	�
�
�
�

� ����� -
	 �	 ��� 	 �	��# -

	�
violate stratification. Nevertheless, pairwise inertia for a fluent

	
can be allowed safely, if each of the two

rules together with the remainder of the planning domain is stratified. That is, we check for stratification of
the two subdomains that result from the planning domain

��
by omitting the positive and negative inertia

rules for
�

, denoted by
���

� and
����, respectively. If both

���
� and

���� are stratified, then��
is

sound and complete for
��

. This holds because in any state�, only one of the rules��� and�
�
� can be active

with respect to�.

24 INFSYS RR 1843-01-12

We can further extend this to multiple pairs of ground inertia rules, where combinations for positive and
negative inertia rules have to be checked. We go one step further and extend it to mux-stratified planning
domains, which we define next.

Two causation rules��, � in
��

are amutually exclusive pair(mux-pair), if their �	��#-parts are not
simultaneously satisfiable in any state� and for any executable action set� w.r.t. � in

��
.

Definition 4.5 (mux-stratified planning domains) Let
��

be a planning domain and� � ���*�� ��*� " 	
�
 �
 '�, ' (), a set of mux-pairs in

��
. Then,

��
is calledmux-stratifiedw.r.t. �, if each planning

domain
���

that results from
��

by removing one of the rules�*�� and�*� for all
� � �� � � � �' is stratified.

Notice that� does not necessarily contain all mux-pairs occurring in
��

; we may even choose� �
,
where mux-stratified coincides with stratified planning domain.

Note that� induces a bipartite graph��, whose vertices are the rules occurring in� and whose edges
are the pairs in�. The removal sets for building

���
which need to be considered are given by the maximal

independent sets of��. There may be exponentially many such sets, and thus the costfor (simple) mux-
stratification testing grows fast.

We now establish the following result.

Theorem 4.3 Every planning domain
��

which is mux-stratified w.r.t. some set of mux-pairs� is
	�
�-

committed.

Proof. Consider any state� and executable action set� w.r.t. � in
��

. Denote by�������������"
the set

of all ground rules in
��'�����"
which correspond to instances�� of causation rules in

��
such that the�	��#-part of�� is true w.r.t.�, � and the answer set� of the background knowledge.

Then, we claim that�������������"
is stratified, i.e., its (ground) dependency graph does not con-

tain a negative cycle. Indeed, towards a contradiction assume that the (ground) dependency graph of
�������������"

contains a negative cycle�. Then,� involves only rules which correspond to instances
of causation rules not occurring in�, and rules which correspond to instances of causation rulesfrom
� �*� � � � � ��!�*�, where� � ���*�� ��*� " 	 �
 �
 '� and

�� � �)� ��, for all
� � �� � � � �'. (A rule

�
is

involved in all edges� � �� of the dependency graph, where� � � ��"
and �� � � ��"

.) This means
that � is also present in the ground dependency graph of���� for some

���
which results from

��
by

removing the causation rules� � � 	 , � � ��	 , . . . , �!� �!	 . Consequently, the (non-ground) dependency
graph of���� contains a negative cycle. This, however, contradicts that

��
is mux-stratified w.r.t.�; the

claim is proved.
Since the ground program�������������"

is stratified, it is easily seen that conditions (i) and (ii) of	�
�-committedness hold for�. Since�was arbitrary, it follows that
��

is
	�
�-committed. �

By combining Theorems 4.1 and 4.3, we obtain the following corollary.

Corollary 4.4 The security check��
is sound and complete for the class of mux-stratified planning do-

mains, and in particular if� consists of opposite ground���#���
-rules.

The DLV� system provides limited support for testing mux-stratification, which currently works for
the set� consisting of all opposite ground inertia rules; an extension to larger classes is planned for future
DLV� releases. Notice, however, that deciding whether a given pair ��� �� " is a mux-pair in a given planning
domain is intractable in general.

A generalization of the result in Corollary 4.4 to sets� of non-ground opposite inertial rules fails.
The reason is that in this case, multiple transition candidates �������� exist in ������"

in general, which

INFSYS RR 1843-01-12 25

correspond to multiple answer sets of the program�������������"
. However, some of them might not be

legal in
��

, and condition (i) of
	�
�-committedness may be violated. Preliminary results suggest that

under further restrictions, like excluding constraints and causation rules with opposite unifiable heads,��
may be applied. We leave this for further work.

4.2 Serial Planning Domains and Security Check���

Besides��
, the DLV� system provides an alternative security check��� for handling other classes of

proper planning domains, and the system design easily allows the incorporation of further security checks.
The check��� is obtained by a slight modification of the program clauses in� ����� "

, resulting in
a program�� ����� "

as follows: the head����� of each rule which stems from a causal rule� such that���" � 	�
� and the�	-part is not empty, is shifted to the negative body, i.e.,

����� :-
�����

is rewritten to

:-
����� ��� ������

Informally, this shift means that the violation of a constraint on the successor state�� is tolerated, and
we eliminate�� as a counterexample to the security of the plan.

We will see that this check works for the following class of planning domains.

Definition 4.6 (serial planning domains) A planning domain
��

is serial, if it has the following proper-
ties:

(i) if � is a state in
��

and� is executable in� w.r.t.
��

, then some legal transition�������� is guaran-
teed to exist, and, moreover,

(ii) for any state�and set of actions� in �������"
, some legal transition�������� exists w.r.t.�������"

.

Obviously, serial planning domains
��

are proper, as the check��� for telling whether a legal transi-
tion exists for� and executable� is trivial (just always return “yes”). The following can be observed:

Theorem 4.5 The security check��� is sound and complete for serial planning domains.

The proof of this result is similar to the proof of Theorem 4.1, and we thus omit it.
A syntactical restriction guaranteeing seriality are stratified planning domains

��
which contain no

rules� such that
���" � 	�
� and employ no strong negation. The serial property is preserved if we we

also allow arbitrary totalization statements and limited use of strong negation, e.g. either all occurrences
of a fluent are strongly negated or none is. Note that such planning domains are not

	�
�-committed in
general.

The security check��� also works for generalizations of serial planning domains.For example, we may
safely add rules� of the form����� 	�
� �	��# �. Furthermore,��� may also be profitably combined
with ��

in order to enlarge classes for which security checking is supported.

26 INFSYS RR 1843-01-12

4.3 Incomplete Security Checking

We may combine (fast) security checks which are sound and security checks which are complete to obtain
checks which return the correct answer if possible, and leave the answer open otherwise. This is similar
to the use of incomplete constraint solvers in constraint programming, which return either “yes,” “no,” or
“unknown” if queried about satisfiability of a constraint; the obvious requirement is that the answer returned
does not contradict the correct result.

Suppose that we have a suite of security checks�� � � � � ���!, where�� � � � � � ��� , for some
�
 ',

are known to be sound for a class of planning domains�� and��� � � � � ���!, for some�
 ', are known
to be complete for��. Then, we can combine them to the following test� :

� ���� " �
���
��

“yes”
�

if ��* ���� " � “yes,” for some
� � ��� � � � ����

“no”
�

if ��* ���� " � “no,” for some
� � ��� � � � �'��

“unknown”
�

otherwise�
Observe that in the “yes” case of� , ��* ���� " � “yes” must hold for all

� � ��� � � � �'�, and symmetrically
in the “no” case that��* ���� " � “no,” for all

� � ��� � � � ���; this can be used for checking integrity of the
sound resp. complete security checks involved.

Note that we can always use a dummy complete security check which reports “yes” on every input. By
merging the “unknown” case into the “no” case, we thus can combine sound security checks�� � � � � ����
to another, more powerful sound security check�� for the class��. In particular, if�� � � � � ���� are
known to exhaust all secure plans, then�� is a sound and complete security check for��.

To account for the results in this section, in addition to thecommand-line options-FP , -FPopt ,
and -FPsec that we have seen in Section 2.3,DLV� provides three further options controlling the se-
curity checking:-FPcheck= ' where' � ����� (which correspond to��

and��� in the current im-
plementation) selects a security check, while-FPsoundcheck= ' and-FPcompletecheck= ' where
' � �����, as above, can be used to specify a security check known to be sound and complete, respectively,
for the input domain. The incorporation of further built-insecurity checks and support for user-defined
security checks is planned for the future.

5 Comparison and Experiments

In the following, we will compareDLV� with several state-of-the-art conformant planning systems, and
report about experimental results about the performance ofthe system. The results presented here are mainly
intended to give a momentary view on the state of the current implementation ofDLV� and its capabilities.
To that end, we present extensive benchmark results, and also compare the expressive power and flexibility
of the various systems.

5.1 Overview of Compared Systems

5.1.1 CCALC

TheCausal Calculator(CCALC) is a model checker for the languages of causal theories [30]. It translates
programs in the action language� into the language of causal theories which are in turn transformed into
SAT problems using literal completion as described in [31].This approach is based on Satisfiability Planning
[22], where planning problems are reduced to SAT problems which are then solved by means of an efficient
SAT solver likeSATO[48] or relsat [1].

INFSYS RR 1843-01-12 27

Though its input language allows nondeterminism in the initial state and also nondeterministic action
effects, CCALC as such is not capable of conformant planningand only computes “optimistic plans” (ac-
cording toDLV� terminology). Plan length is fixed, and both sequential and concurrent planning are sup-
ported.

CCALC is written in Prolog. For our tests, we used version 1.90 of CCALC which we obtained
from <URL:http://www.cs.utexas.edu/users/tag/cc/> and a trial version of SICStus Pro-
log 3.8.6; we tested the system with SATO 3.2.1 and relsat 1.1.2. On the instances SATO could solve it
was significantly faster than relsat; relsat was used only for the instances SATO could not solve in our
experiments.

5.1.2 CMBP

The Conformant Model Based Planner[4] is based on the model checking paradigm as well and relies
on symbolic techniques such as BDDs. CMBP only allows sequential planning. Its input language is an
extension of�� [16]. Unlike action languages such as� or� [6], this language only supports propositional
actions. Nondeterminism is allowed in the initial state andfor action effects. The length of computed plans
is always minimal, but the user has to declare an upper bound using command-line option-pl . If -pl is set
equal to the minimal plan length for the specific problem, this can be used to fix the plan length in advance.
We used this method to be comparable withDLV� which currently can only deal with fixed plan length.

For our tests, we used CMBP 1.0, available at<URL:http://sra.itc.it/people/roveri/
cmbp/> .

5.1.3 CPlan

Introduced in [15, 10],CPlan is a conformant planner based on CCALC and the� action language [17,
26, 29]. This language is similar to� in many respects, but close to classical logic, while� is more “logic
programming oriented” by the use default negation (see [6] for further discussion). CPlan uses CCALC only
to generate a SAT instance and replaces the optional SAT-solvers used by CCALC with an own procedure
that extracts conformant plans from these SAT instances. CPlan implements full conformant planning and
supports the computation of both minimal length plans as well as plans of fixed length, by incrementing
plan length from a given lower bound until a plan is found or a given upper bound is reached. We set the
upper and lower bound equal to the minimal plan length of the specific problems for our experiments to be
comparable withDLV�. Sequential and concurrent planning are possible; nondeterminism is allowed in the
initial state as well as for action effects.

For our tests, we used CPlan 1.3.0, which is available at<URL:http://frege.mrg.dist.unige.
it/˜otto/cplan.html> , together with CCALC 1.90 to produce the input for CPlan.

5.1.4 GPT

TheGeneral Planning Tool[3] employs heuristic search techniques likeA� to search the belief space. Its
input language is a subset ofPDDL. Nondeterminism is allowed in the initial state as well as for action
effects. GPT only supports sequential planning and calculates plans of minimal length.

We used version GPT 1.14 obtained from<URL:http://www.cs.ucla.edu/˜bonet/software/
>.

28 INFSYS RR 1843-01-12

5.1.5 SGP

In addition to conformant planning,Sensory Graphplan(SGP, [47]) can also deal with sensing actions. SGP
is an extension of the Graphplan algorithm [2]. Its input language is an extension of PDDL [14]. Nondeter-
minism is allowed only in the initial state. The program always calculates plans of minimal length.5 SGP
does not support sequential planning, but computes concurrent plans automatically recognizing mutually ex-
clusive actions. That means, minimal length plans in terms of SGP are not plans with a minimal number of
actions but with a minimal number of steps needed. At each step an arbitrary number of parallel actions are
allowed, as long as the preconditions or effects are not mutually exclusive which is automatically detected
by the algorithm.

SGP is written in LISP and available at<URL:http://www.cs.washington.edu/ai/sgp.
html> . For our tests, we used a trial version of Allegro Common Lisp6.0.

5.1.6 Specific system features

We would also like to point out further specific features of some of these special purpose planning systems:

� SGP automatically recognizes mutually exclusive actions in concurrent plans. It is possible to en-
code concurrent plans inDLV� by explicitly describing the mutually exclusive actions, as done in our
encodings of the “bomb in the toilet” benchmark problems formultiple toilets (see Section 5.2.2).
However, the language� is more complex than PDDL, which makes automatic recognition of possi-
ble conflicts of actions much harder in our framework. On the other hand, our notions of executability
and nonexecutability allow more flexible encodings of parallel actions than SGP.

� GPT and SGP always compute minimal plans, which is not possible in the current version ofDLV�.

� CMBP and CPlan optionally compute minimal plans, where the user may specify upper and/or lower
bounds for the plan length.

Table 1 provides a comparison ofDLV� and all the systems introduced above. Note that CCALC is not
capable of conformant planning, and thus we cannot use it on the respective benchmark problems. On the
other hand, CPlan showed slow performance on the deterministic planning benchmarks that we considered.
Therefore, we considered these two systems in combination (CCALC for deterministic planning benchmarks
and CPlan for conformant planning benchmarks).

Table 1: Overview of System Features

DLV� CCALC CPlan CMBP SGP GPT
Input Language

� �� PDDL PDDL
Sequential plans yes yes yes yes no yes
Concurrent plans yes yes yes no yes no
Optimistic plans yes yes no no no no
Conformant plans yes no yes yes yes yes
Minimal plan length no no yes yes yes yes
Fixed plan length yes yes yes no� no no

� An upper bound can be specified, but computed plans are alwaysminimal.

5SGP comprises the functionality of another system by Smith and Weld called CGP (Conformant Graphplan, [42]), but is slower
in general. As CGP is no longer maintained and not available online, we nevertheless decided to choose SGP for our experiments.

INFSYS RR 1843-01-12 29

5.2 Benchmark Problems and Encodings

5.2.1 Blocksworld

For benchmarking we have chosen some blocks world instancesto illustrate the performance ofDLV� on
deterministic domains. Problems P1–P4 are due to [8], and problem P5 is a slight modification of P4, which
needs two moves more. The initial configurations and the respective goal configurations of P1–P5 together
with the minimum number of moves (steps) needed to solve these problems are shown in Figure 7.

P1

1 2
4
3 1

2
3
4

P2

1
2
3
4

3
24

1

5

5

P3

0 1

4
7
6
5 16

7
0
5

2
4
33

2

P4

0
6
53

10

9 3
4 8

10

2

1
2 9

4

707
8

6
5

1 P5

0
6
53

10

3
8

2

1
2 9

4

707
8

1

10
5
6

4
9

Problem blocks moves
P1 4 4
P2 5 6
P3 8 8
P4 11 9
P5 11 11

Figure 7: Blocksworld planning instances

5.2.2 Bomb in the Toilet

To show the capabilities ofDLV� on planning under incomplete information, and in particular conformant
planning, we have chosen the well-known “bomb in the toilet”problem [34] and variations thereof, where
we employ a naming convention due to [4]. The respective planning domain comprises actions with non-
deterministic effects, the initial state is incomplete and, in more elaborated versions, several actions are
available that can be done in parallel.

BT(�) - Bomb in the toilet with � packages. The basic scenario of the “bomb in the toilet” problem is
as follows. We have been alarmed that there is a bomb (exactlyone) in a lavatory. There are� suspicious
packages which could contain the bomb. There is one toilet bowl, and it is possible to dunk a package into
it. If the dunked package contained the bomb, then the bomb isdisarmed and a safe state is reached. The
obvious goal is to reach a safe state via a secure plan.

BTC(�) - Bomb in the toilet with certain clogging. In a slightly more elaborated version, dunking a
package clogs the toilet, making further dunking impossible. The toilet can be unclogged by flushing it. The
toilet is assumed to be unclogged initially. Note that this domain still comprises only deterministic action
effects.

BTUC(�) - Bomb in the toilet with uncertain clogging. In a further elaboration of the domain, dunk-
ing a package has a nondeterministic effect on the status of toilet, which is either clogged or not clogged
afterwards.

BMTC(�,%), BMTUC(�,%) - Bomb in the toilet with multiple toilets. Yet another elaboration is that
several toilet bowls (% (�, rather than just one) are available in the lavatory.

30 INFSYS RR 1843-01-12

5.2.3 Encodings used

As far as possible, we used the original encodings which comealong with the distributions of the respective
systems.

CCALC/CPlan: CCALC is not capable of conformant planning, while CPlan proved very slow on de-
terministic domains. Thus, for the blocksworld problems P1–P5 we used the� encoding provided by Esra
Erdem with pure CCALC [8], while we used CPlan for the “bomb inthe toilet” problems, with slight mod-
ifications of the� encodings provided with the current CPlan distribution.

CMBP: For CMBP, we used the “bomb in the toilet” encodings which areincluded in the distribution.
BMTUC(� �%) is not included, but only a trivial modification of BMTC(� �%) is needed to obtain an encoding
for BMTUC. Because only propositional actions are allowed in the input language of CMBP, an encoding
of blocks world where many different moves are possible is quite large. As no encoding is included in the
examples, a (straightforward) encoding of P1 which we used for comparison can be found in Section B.1 of
the appendix.

GPT: The distribution of GPT provides encodings for various “bomb in the toilet” problems; BMTUC(� �%)
was not included, but the respective extension of BTUC(�) is trivial. For blocksworld, we used an adapted
version of the SGP encoding, as the PDDL dialects of the two systems slightly differ. The encoding for P1
can be found in the appendix.

SGP: For SGP we used the blocks world and bomb in toilet encodings coming with the distribution.
BTUC(�) and BMTUC(� �%) cannot be encoded in SGP which only allows nondeterminism in the initial
state.

SGP generates concurrent plans, so we did not compare the sequential versions of BT(�) and BMTC(� �%).
Furthermore, for the blocks world problems, this means thatthe minimal plan lengths differ from the� en-
codings, and we provide them in an extra column of Table 2). Note that the number of actions in the plans
computed by SGP is not necessarily minimal. For example, forP3 a plan with 4 steps and 9 moves exists
whereas SGP finds a plan with 4 steps and 12 moves.

DLV�: We have tested for the “bomb in the toilet” problems two different encodings inDLV�, developed in
[6]. The first one, labeled�� in the results, mimics world-state planning, in which the different completions
of the states (“totalizations”) to world-states are considered. The second one, labeled��, uses the power of
knowledge-state planning provided byDLV�; it does not complete the states right away, but leaves the value
of unknown fluents open in accordance with the real knowledgeof the planning agent about the state of
affairs. In both encodings, we first consider concurrent actions and then one action at time.

Since the blocksworld problems are not conformant planninginstances, we use optimistic planning for
them. For the knowledge-state encoding of the “bomb in the toilet” problems, the applicability of the security
check��

is straightforward even for BTUC(�) and BMTUC(� �%), as the domains are mux-stratified w.r.t.
the inertia rules for�
����� and -�
�����, as these fluents do not occur in any bodies of other causation
rules. Furthermore, thanks to the knowledge-state representation, the domains are deterministic and have
unique initial states, so the security check is trivial and negligible for timing.

The world-state encodings of BT(�), BTC(�), and BMTC(� �%) are stratified, so the security check��
is guaranteed to be sound and complete for these problems by Corollary 4.2. In the case of BTUC(�) and

INFSYS RR 1843-01-12 31

BMTUC(� �%) in the world-state programs, the macro����
 violates stratification. However, both BTUC(�)
and BMTUC(� �%) are

	�
�-committed domains, and thus the security check��
is sound and complete for

these problems by Theorem 4.5. Indeed, the respective programs have no cycle with an odd number of nega-
tive arcs in their dependency graphs (cf. BMTUC(� �%) in Appendix C.1; BTUC(� �%) and BMTUC(� �%) have
the same dependency graph, since the only difference is thatsome fluents get an additional argument [6]), so
by well-known results at least one answer set is guaranteed,and thus condition (ii) of

	�
�-committedness
holds. Furthermore, the only constraints are those resulting from expanding the����������	
� state-
ments. Since these constraints refer only to actions, either all �� in a transition�������� satisfy them or no�� does. Therefore, condition (i) of

	�
�-committedness is enforced as well. The world-state encodings of
“bomb in the toilet” are not deterministic, so the security check is responsible for a considerable portion of
the timings.

5.3 Benchmark Results and Discussion

In this section, we compare the various systems in terms of representation capabilities and run-time bench-
marks.

5.3.1 Test environment

All tests were performed on a Pentium III 733MHz machine with256MB of main memory running SuSE
Linux 6.4. The results for the blocks world problems are summarized in Table 2. Tables 3–9 show the results
for the various “bomb in the toilet” problems. The minimal plan length is reported in the second column of
each table. Note that for CCALC the results include 1.23s startup time for SICStus Prolog, while for SGP
0.27s startup time is included. Run-times longer than 1200 CPU seconds were omitted, which is indicated
by a dash in the tables.

5.3.2 Representation

From the viewpoint of expressiveness, the language� often allows a more compact and readable encoding
than�� or PDDL dialects: CMBP allows only propositional actions (see Appendix B.1 for a blocks world
encoding in��), whereas languages like� and� allow a much more elegant encoding of complex actions.
PDDL dialects as used by GPT or SGP, on the other hand, do not allow expressing ramifications which
makes the encoding of action effects less readable and elaboration tolerant (see Appendix B.2 for a GPT
encoding of blocksworld).

Similar remarks apply also to the “bomb in the toilet” problems, where� allows for very compact and
at the same time intuitive encodings.

5.3.3 Performance

The running times on blocksworld instances in Table 2 show that DLV� is significantly faster than the other
systems if there are many action instances.

Under the world-state encodings of the different “bomb in the toilet” instances,DLV� is not competitive
except for BT(�) with concurrent dunks, where plan length is always 1, and BMTC(�). This indicates that
DLV�’s performance is quite sensitive to (increasing) plan length, especially for sequential planning. Still,
DLV� outperforms SGP, a special purpose planning system, on all comparable instances, and also CPlan

32 INFSYS RR 1843-01-12

(which is the system most comparable toDLV� in terms of expressiveness and similar in nature) seems to
be within reach.

Under the knowledge-state encodings,DLV� outperforms its competitors in many of the chosen exam-
ples. The sensitivity to increasing plan length/search space can, however, also partly be observed here, where
execution times seem to grow drastically from one instance to the next. This can be partly explained by the
general heuristics of the underlyingDLV system, which which might not scale up well in some cases. For
instance,DLV as a general purpose problem solver does not include specialheuristics towards plan search.
In particular, during the answer set generation process, nodistinction is made between actions and fluents,
which might be useful for planning tasks to control the generation of answer sets resp. plans; this may be
part of further investigations.

5.3.4 Effect of concurrent actions and default negation

Once we also consider concurrent actions (which are not supported by GPT and CMBP),DLV� performs
better than CPlan on some larger instances of BMTC(� �%) and BMTUC(� �%) (see Tables 7 and 9).

Using the expressive power of default negation to express unknown fluents with the knowledge-state
encodings of “bomb in the toilet” in� pays off well: DLV� outperforms all other systems, including the
special purpose conformant planners GPT and CMBP, except onsequential BMTC(� �%) and BMTUC(� �%)
with more than two toilets (see Tables 8 and 10), where CMBP isfastest.

5.3.5 Summary of experimental results

Overall, the results indicate thatDLV� is competitive with state of the art conformant planners, especially
when exploiting the� language features in terms of knowledge-state problem encodings. Recall, how-
ever, that some of the systems compute minimal plans, which is (currently) not supported byDLV�. The
comparison ofDLV� to CCALC/CPlan is particularly relevant, since these systems are closest in spirit to
DLV�. As we can see, the advanced features of knowledge-state encoding lead to significant performance
improvements.

6 Further Related Work and Conclusion

We have discussed the relation ofDLV� to a number of planning systems in Section 5 already, and comple-
ment this by briefly addressing further approaches and systems here.

6.1 Further Related Work

The idea to employ declarative logic programming systems for planning finds its roots in the seminal paper
Subrahmanian and Zaniolo [43], which carried out the idea ofsatisfiability planning [22] to the framework
of declarative logic programming.

Planning under incomplete knowledge has been widely investigated in the AI literature. Most works ex-
tend algorithms/systems for classical planning, rather than using deduction techniques for solving planning
tasks as proposed in this paper. The systems Buridan [23], UDTPOP [37], Conformant Graphplan [42],
CNLP [38] and CASSANDRA [39] fall in this class. In particular, Buridan, UDTPOP, and Conformant
Graphplan can solve secure planning (also called conformant planning), likeDLV�. On the other hand,

INFSYS RR 1843-01-12 33

Table 2: Experimental results for blocksworld problems P1–P5

Problem steps blocks DLV
�

CCALC CMBP GPT SGP
steps/actions

�
time

P1 4 4 0.04s 1.73s 0.18s 1.13s 3/4 9.69s
P2 6 5 0.11s 2.18s 7.95s 2.52s 5/7 43.85s
P3 8 8 8.81s 5.42s - - 4/12 248.45s
P4 9 11 8.91s 15.83s - - - -
P5 11 11 21.14s 350.43s

�
- - - -

�
As SGP supports only concurrent planning, the number of steps and number of actions for the solutions found are displayedin an extra

column. Note that the number of actions is not necessarily minimal.�
With CCALCand SATO no solution for P5 could be found, the timing for P5 was generated using relsat, which is significantly slower

on the other problem instances.

Table 3: Experimental results for BT(�) with concurrent dunks

BT(�) steps DLV
�

CPlan SGP�� ��
BT(

�
) 1 0.01s 0.01s 1.38s 0.69s

BT(
�
) 1 0.02s 0.01s 1.38s 0.80s

BT(�) 1 0.01s 0.01s 1.39s 0.95s
BT(�) 1 0.02s 0.01s 1.42s 1.21s
BT(�) 1 0.02s 0.01s 1.47s 1.55s
BT(�) 1 0.02s 0.01s 1.56s 2.00s
BT(�) 1 0.02s 0.01s 1.79s 2.56s
BT() 1 0.01s 0.02s 2.29s 3.32s
BT(

 �
) 1 0.02s 0.02s 3.41s 4.27s

BT(

) 1 0.02s 0.02s 6.04s 5.34s
BT(

 �
) 1 0.02s 0.02s 11.98s 6.66s

BT(
 �

) 1 0.03s 0.02s 25.28s 8.16s
BT(

�) 1 0.03s 0.01s 57.71s 9.98s

BT(

�) 1 0.03s 0.01s 127.75s 12.11s

BT(

�) 1 0.03s 0.01s 294.44s 14.57s

BT(

�) 1 0.03s 0.02s 678.19s 17.43s

BT(

�) 1 0.03s 0.02s - 20.74s

BT(

) 1 0.03s 0.02s - 24.47s

BT(
��

) 1 0.04s 0.02s - 28.78s

Table 4: Experimental results for BT(�) sequential

T(�) steps DLV
�

CPlan CMBP GPT�� ��
BT(

�
) 2 0.02s 0.02s 1.37s 0.03s 0.56s

BT(
�
) 3 0.03s 0.02s 1.39s 0.04s 0.55s

BT(�) 4 0.11s 0.02s 1.39s 0.04s 0.61s
BT(�) 5 1.50s 0.03s 1.45s 0.04s 0.61s
BT(�) 6 28.78s 0.03s 1.81s 0.04s 0.63s
BT(�) 7 593.15s 0.03s 5.12s 0.05s 0.67s
BT(�) 8 - 0.05s 65.85s 0.06s 0.68s
BT() 9 - 0.06s - 0.07s 0.78s
BT(

 �
) 10 - 0.08s - 0.10s 0.95s

BT(

) 11 - 0.10s - 0.19s 1.27s
BT(

 �
) 12 - 0.13s - 0.39s 2.12s

BT(
 �

) 13 - 0.16s - 0.82s 3.89s
BT(

�) 14 - 0.21s - 1.76s 8.87s

BT(

�) 15 - 0.28s - 4.00s 19.13s

BT(

�) 16 - 0.35s - 8.82s 42.17s

BT(

�) 17 - 0.47s - 19.03s 93.69s

BT(

�) 18 - 0.61s - 38.95s 208.00s

BT(

) 19 - 0.78s - 91.89s 496.95s

BT(
��

) 20 - 0.98s - 199.63s 546.43s

34 INFSYS RR 1843-01-12

Table 5: Experimental results for BTC(�)

BTC(�) steps DLV
�

CPlan CMBP GPT SGP
�� ��

BTC(
�
) 3 0.02s 0.01s 1.37s 0.04s 0.59s 0.92s

BTC(
�
) 5 0.08s 0.02s 1.39s 0.04s 0.60s 3.30s

BTC(�) 7 1.56s 0.02s 1.39s 0.05s 0.60s 191.60s

BTC(�) 9 36.28s 0.03s 2.36s 0.05s 0.62s -

BTC(�) 11 - 0.04s 28.95s 0.06s 0.66s -

BTC(�) 13 - 0.06s 178.97s 0.07s 0.68s -

BTC(�) 15 - 0.08s - 0.12s 0.74s -

BTC() 17 - 0.11s - 0.21s 0.81s -

BTC(
 �

) 19 - 0.14s - 0.39s 1.04s -

BTC(

) 21 - 0.20s - 0.81s 1.48s -

BTC(
 �

) 23 - 0.26s - 1.72s 2.51s -

BTC(
 �

) 25 - 0.34s - 3.79s 4.68s -

BTC(

�) 27 - 0.45s - 8.82s 10.84s -

BTC(

�) 29 - 0.58s - 16.92s 23.31s -

BTC(

�) 31 - 0.74s - 42.92s 51.40s -

BTC(

�) 33 - 0.94s - 92.03s 114.21s -

BTC(

�) 35 - 1.17s - 197.85s 273.25s -

BTC(

) 38 - 1.46s - - 374.00s -

BTC(
��

) 39 - 1.80s - - - -

Table 6: Experimental results for BTUC(�)

BTUC(�) steps DLV
�

CPlan CMBP GPT
�� ��

BTUC(
�
) 3 0.03s 0.02s 1.35s 0.03s 0.59s

BTUC(
�
) 5 0.61s 0.02s 1.45s 0.04s 0.60s

BTUC(�) 7 87.54s 0.03s 1.93s 0.04s 0.61s

BTUC(�) 9 - 0.03s 2.48s 0.06s 0.66s

BTUC(�) 11 - 0.04s - 0.06s 0.65s

BTUC(�) 13 - 0.05s 51.72s 0.07s 0.74s

BTUC(�) 15 - 0.08s - 0.12s 0.75s

BTUC() 17 - 0.10s - 0.20s 0.88s

BTUC(
 �

) 19 - 0.14s - 0.39s 1.18s

BTUC(

) 21 - 0.19s - 0.80s 1.81s

BTUC(
 �

) 23 - 0.25s - 1.72s 3.18s

BTUC(
 �

) 25 - 0.33s - 3.79s 6.42s

BTUC(

�) 27 - 0.43s - 8.81s 14.43s

BTUC(

�) 29 - 0.55s - 16.94s 32.25s

BTUC(

�) 31 - 0.71s - 42.93s 71.10s

BTUC(

�) 33 - 0.90s - 92.02s 159.53s

BTUC(

�) 35 - 1.15s - 197.84s 368.12s

BTUC(

) 38 - 1.41s - - -

BTUC(
��

) 39 - 1.74s - - -

IN
F

S
Y

S
R

R
1843-01-12

3
5

Table 7: Experimental results for BMTC(�) with concurrent dunks

BMTC(� �
�

) steps DLV

�

CPlan SGP

� � � �

BMTC(

�
�

�

) 1 0.02s 0.01s 1.41s 0.95s

BMTC(

	
�

�

) 3 0.04s 0.02s 1.50s 3.40s

BMTC(

�

�

) 3 0.11s 0.03s 1.72s 7.17s

BMTC(

�
�

�

) 5 2.79s 0.04s 3.37s -

BMTC(

�
�

�

) 5 37.04s 0.07s 13.04s -

BMTC(

�

�

) 7 - 0.52s 71.50s -

BMTC(

�
�

�

) 7 - 10.66s - -

BMTC(

�
�

�

) 9 - 206.27s - -

BMTC(

� �
�

�

) 9 - - - -

BMTC(

�
�

	

) 1 0.02s 0.02s 1.62s 1.15s

BMTC(

	
�

	

) 1 0.02s 0.02s 2.31s 1.76s

BMTC(

�

	

) 3 0.08s 0.03s 4.81s 15.01s

BMTC(

�
�

	

) 3 0.35s 0.03s 13.55s 76.28s

BMTC(

�
�

	

) 3 17.81s 0.06s 43.34s 592.41s

BMTC(

�

	

) 5 223.31s 0.13s 210.71s -

BMTC(

�
�

	

) 5 - 0.74s 417.62s -

BMTC(

�
�

	

) 5 - 5.90s - -

BMTC(

� �
�

	

) 7 - 389.08s - -

BMTC(

�
�

) 1 0.02s 0.02s 2.89s 1.52s

BMTC(

	
�

) 1 0.02s 0.02s 9.19s 2.34s

BMTC(

�

) 1 0.03s 0.02s 37.55s 3.71s

BMTC(

�
�

) 3 0.18s 0.04s 158.74s 372.74s

BMTC(

�
�

) 3 5.29s 0.05s 571.77s -

BMTC(

�

) 3 61.73s 0.09s - -

BMTC(

�
�

) 3 668.74s 0.41s - -

BMTC(

�
�

) 5 - 1.06s - -

BMTC(

� �
�

) 5 - 12.14s - -

Table 8: Experimental results for BMTC(�) sequential

BMTC(� �
�

) steps DLV

�

CPlan CMBP GPT

� � � �

BMTC(

�
�

�

) 2 0.02s 0.02s 1.41s 0.04s 0.76s

BMTC(

	
�

�

) 4 0.07s 0.02s 1.50s 0.05s 0.78s

BMTC(

�

�

) 6 2.47s 0.04s 1.64s 0.06s 0.81s

BMTC(

�
�

�

) 8 208.52s 0.05s 2.66s 0.06s 0.82s

BMTC(

�
�

�

) 10 - 0.07s 32.77s 0.09s 0.86s

BMTC(

�

�

) 12 - 0.10s 12.46s 0.12s 0.96s

BMTC(

�
�

�

) 14 - 0.13s - 0.23s 1.11s

BMTC(

�
�

�

) 16 - 0.20s - 0.48s 1.48s

BMTC(

� �
�

�

) 18 - 0.28s - 0.96s 2.26s

BMTC(

�
�

	

) 2 0.02s 0.02s 1.50s 0.04s 0.76s

BMTC(

	
�

	

) 3 0.03s 0.02s 1.85s 0.04s 0.81s

BMTC(

�

	

) 5 1.84s 0.03s 2.86s 0.06s 0.84s

BMTC(

�
�

	

) 7 291.24s 0.06s 5.92s 0.09s 0.90s

BMTC(

�
�

	

) 9 - 0.09s 14.50s 0.14s 0.99s

BMTC(

�

	

) 11 - 0.25s 40.41s 0.30s 1.17s

BMTC(

�
�

	

) 13 - 15.42s - 0.62s 1.66s

BMTC(

�
�

	

) 15 - - - 1.44s 2.79s

BMTC(

� �
�

	
) 17 - - - 3.31s 5.64s

BMTC(
�
�

) 2 0.02s 0.02s 2.02s 0.04s 0.81s

BMTC(

	
�

) 3 0.41s 0.02s 3.67s 0.05s 0.83s

BMTC(

�

) 4 0.60s 0.03s 9.03s 0.07s 0.92s

BMTC(

�
�

) 6 149.65s 0.06s 30.55s 0.13s 1.01s

BMTC(

�
�

) 8 - 0.10s - 0.23s 1.27s

BMTC(

�

) 10 - 0.15s 199.73s 0.51s 1.85s

BMTC(

�
�

) 12 - 0.47s - 1.13s 3.34s

BMTC(

�
�

) 14 - 67.07s - 2.94s 7.18s

BMTC(

� �
�

) 16 - - - 6.38s 17.34s

3
6

IN
F

S
Y

S
R

R
18

43
-0

1-
12

Table 9: Experimental results for BMTUC(�) with concurrent dunks

BMTUC(� � �) steps DLV� CPlan

� � � �

BMTUC(� � �) 1 0.02s 0.02s 1.40s

BMTUC(� �) 3 0.11s 0.03s 2.06s

BMTUC(
 � �) 3 7.39s 0.03s 3.54s

BMTUC(� � �) 5 - 0.04s 8.18s

BMTUC(� � �) 5 - 0.07s 787.58s

BMTUC(� �) 7 - 0.80s -

BMTUC(� � �) 7 - 23.57s -

BMTUC(� � �) 9 - 818.23s -

BMTUC(� � � �) 9 - - -

BMTUC(� �) 1 0.02s 0.02s 1.55s

BMTUC(�) 1 0.02s 0.02s 10.27s

BMTUC(
 �) 3 0.28s 0.03s 41.03s

BMTUC(� �) 3 34.09s 0.03s 181.45s

BMTUC(� �) 3 - 0.05s 600.66s

BMTUC(�) 5 - 0.10s -

BMTUC(� �) 5 - 0.74s -

BMTUC(� �) 5 - 9.55s -

BMTUC(� � �) 7 - 693.99s -

BMTUC(� �
) 1 0.02s 0.02s 2.54s

BMTUC(�
) 1 0.02s 0.02s 119.18s

BMTUC(
 �
) 1 0.03s 0.02s 582.84s

BMTUC(� �
) 3 0.84s 0.04s -

BMTUC(� �
) 3 748.90s 0.05s -

BMTUC(�
) 3 - 0.08s -

BMTUC(� �
) 3 - 0.55s -

BMTUC(� �
) 5 - 0.98s -

BMTUC(� � �
) 5 - 17.89s -

Table 10: Experimental results for BMTUC(�) sequential

BMTUC(� � �) steps DLV� CPlan CMBP GPT

� � � �

BMTUC(� � �) 2 0.02s 0.02s 1.39s 0.04s 0.78s

BMTUC(� �) 4 0.52s 0.02s 1.96s 0.04s 0.80s

BMTUC(
 � �) 6 264.20s 0.04s 3.37s 0.05s 0.81s

BMTUC(� � �) 8 - 0.05s 361.64s 0.06s 0.85s

BMTUC(� � �) 10 - 0.07s - 0.08s 0.92s

BMTUC(� �) 12 - 0.10s - 0.12s 1.04s

BMTUC(� � �) 14 - 0.14s - 0.23s 1.34s

BMTUC(� � �) 16 - 0.21s - 0.47s 2.00s

BMTUC(� � � �) 18 - 0.27s - 0.96s 3.71s

BMTUC(� �) 2 0.02s 0.02s 1.49s 0.04s 0.79s

BMTUC(�) 3 0.04s 0.03s 6.47s 0.05s 0.81s

BMTUC(
 �) 5 71.03s 0.04s 22.07s 0.06s 0.86s

BMTUC(� �) 7 - 0.05s 150.72s 0.09s 0.98s

BMTUC(� �) 9 - 0.08s - 0.14s 1.19s

BMTUC(�) 11 - 0.21s - 0.29s 1.74s

BMTUC(� �) 13 - 13.39s - 0.61s 3.15s

BMTUC(� �) 15 - - - 1.45s 6.69s

BMTUC(� � �) 17 - - - 3.31s 15.57s

BMTUC(� �
) 2 0.01s 0.02s 1.93s 0.04s 0.79s

BMTUC(�
) 3 0.78s 0.02s 41.70s 0.05s 0.86s

BMTUC(
 �
) 4 5.81s 0.04s 182.92s 0.07s 0.97s

BMTUC(� �
) 6 - 0.06s 837.33s 0.12s 1.33s

BMTUC(� �
) 8 - 0.09s - 0.23s 2.23s

BMTUC(�
) 10 - 0.13s - 0.51s 4.79s

BMTUC(� �
) 12 - 0.42s - 1.13s 11.37s

BMTUC(� �
) 14 - 64.02s - 2.94s 28.07s

BMTUC(� � �
) 16 - - - 6.37s 68.26s

INFSYS RR 1843-01-12 37

the systems CNLP and CASSANDRA deal with conditional planning (where the sequence of actions to be
executed depends on dynamic conditions).

More recent works propose the use of automated reasoning techniques for planning under incomplete
knowledge. In [41] a technique for encoding conditional planning problems in terms of 2-QBF formulas is
proposed. The work in [11] proposes a technique based on regression for solving secure planning problems
in the framework of the Situation Calculus, and presents a Prolog implementation of such a technique.
In [31], sufficient syntactic conditions ensuring securityof every (optimistic) plan are singled out. While
sharing their logic-based nature, our work presented in this paper differs considerably from such proposals,
since it is based on a different formalism.

6.2 Summary

In this paper, we have presented theDLV� planning system, which implements the� action and plan-
ning language, introduced and discussed in the companion paper [6], on top of theDLV logic programming
system. In the course of this, we have shown a transformationof planning problems in� into logic program-
ming. In particular, we have given such a transformation foroptimistic planning, which is planning in the
traditional sense, and we have discussed how secure planning, i.e. conformant planning, can be realized for
certain classes of planning problems via a transformation of security checking into logic programming. Our
transformations use disjunctions in rule heads supported by DLV, but can be easily adapted to be disjunction-
free, and thus become available for other logic programmingsystems such as Smodels [35]. Furthermore,
we have compared our system on some standard benchmark problems to similar logic-based planning sys-
tems, namely CCALC [30, 31], CPlan [15, 10], CMBP [4]), GPT [3], and SGP [47]. We obtained promising
performance results for secure planning exploiting the power of knowledge-state problem encodings, which
are a distinguishing feature of the� planning language. As we believe, the results of the presentpaper show
that knowledge-state encoding of planning problems has, besides it conceptual conciseness and natural ap-
peal, potential also from a computational perspective.

6.3 Further and Future Work

Enhancing and further improving theDLV� planning system is an ongoing effort. There are several issues
which we address in our current and future research. One issue, discussed more in detail in the companion
paper [6], is the development of a methodology for profitablyusing the knowledge-state planning approach.

Another issue concerns improvements and enhanced capabilities for secure planning. We have per-
formed further experiments with a different approach of conformant answer set planning presented in [24].
In contrast to the plan security checking described here, that paper sketches an integrated encoding of con-
formant planning domains. In that approach, all answer setscorrespond to secure plans and no further
checking is necessary. These results seem to be very encouraging, but it is only possible to encode a rather
restricted class of domains inDLV. In fact, since secure planning is�

�� -complete [6], complexity arguments
show that this method can not be efficiently extended to all planning domains. On the other hand, security
checking for all planning domains is in the class��� , and thus can be polynomially encoded toDLV. How-
ever, such a transformation remains to be designed in full generality. Besides these issues, also extended
handling of incomplete security checking, as described in this paper, is part of our research, and we consider
further built-in as well as support for user-defined security checks.

Finally, the use of theDLVengine as a computational backbone suggests to use its capabilities to enhance
theDLV� planning system by further features. In particular, by the use of weak constraints, it is possible to

38 INFSYS RR 1843-01-12

compute inDLVoptimal answer sets of a logic program. This provides a computational basis for determining
optimal plans of a planning problem, which are plans that minimize a given objective function, such as
cost of actions, or execution time. To our knowledge, current logic-based planning systems do not offer
comprehensive such capabilities. Enhancing the� language and theDLV� system for optimal planning is
on our agenda, and such features will be included in futureDLV� releases.

Acknowledgments This work has greatly benefited from interesting discussions with and comments of
Michael Gelfond, Vladimir Lifschitz, Riccardo Rosati, andHudson Turner. Furthermore, we are grateful
to Claudio Castellini, Alessandro Cimatti, Esra Erdem, Enrico Giunchiglia, David E. Smith, and Dan Weld
for kindly supplying explanations, support, and comments on the systems that we used for comparison.
Furthermore, we appreciate the review comments which helped to improve this paper.

This work was supported by FWF (Austrian Science Funds) under the projects P14781-INF and Z29-N04
and the European Commission under projects FET-2001-37004WASP and IST-2001-33570 INFOMIX.

References

[1] Bayardo, R., Schrag, R., 1997. Using CSP look-back techniques to solve real-world SAT instances. In:
Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-97). pp. 203–208.

[2] Blum, A. L., Furst, M. L., 1997. Fast Planning Through Planning Graph Analysis. Artificial Intelli-
gence 90, 281–300.

[3] Bonet, B., Geffner, H., April 2000. Planning with Incomplete Information as Heuristic Search in Belief
Space. In: Chien, S., Kambhampati, S., Knoblock, C. A. (Eds.), AIPS’00. Breckenridge, Colorado,
USA, pp. 52–61.

[4] Cimatti, A., Roveri, M., 2000. Conformant Planning via Symbolic Model Checking. Journal of Artifi-
cial Intelligence Research 13, 305–338.

[5] Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A., Jul. 2000. Planning under incomplete knowl-
edge. In: Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Palamidessi, C., Pereira, L. M.,
Sagiv, Y., Stuckey, P. J. (Eds.), CL2000. No. 1861 in LectureNotes in AI (LNAI). Springer Verlag,
London, UK, pp. 807–821.

[6] Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A., Dec. 2001. A Logic Programming Approach
to Knowledge-State Planning: Semantics and Complexity. Tech. Rep. INFSYS RR-1843-01-11, TU
Wien.

[7] Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F., 1998. The KR Systemdlv : Progress Report,
Comparisons and Benchmarks. In: Cohn, A. G., Schubert, L., Shapiro, S. C. (Eds.), KR’98. Morgan
Kaufmann Publishers, pp. 406–417.

[8] Erdem, E., 1999. Applications of Logic Programming to Planning: Computational Experiments, un-
published draft.
http://www.cs.utexas.edu/users/esra/papers.html .

INFSYS RR 1843-01-12 39

[9] Faber, W., Leone, N., Pfeifer, G., December 1999. Pushing Goal Derivation in DLP Computations. In:
Gelfond, M., Leone, N., Pfeifer, G. (Eds.), LPNMR’99. No. 1730 in Lecture Notes in AI (LNAI). El
Paso, Texas, USA, pp. 177–191.

[10] Ferraris, P., Giunchiglia, E., 2000. Planning as Satisfiability in Nondeterministic Domains. In:
AAAI’00. AAAI Press / The MIT Press, pp. 748–753.

[11] Finzi, A., Pirri, F., Reiter, R., 2000. Open world planning in the situation calculus. In: AAAI’00. AAAI
Press / The MIT Press, pp. 754–760.

[12] Gelfond, M., Lifschitz, V., 1991. Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9, 365–385.

[13] Gelfond, M., Lifschitz, V., 1993. Representing Actionand Change by Logic Programs. Journal of
Logic Programming 17, 301–321.

[14] Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld,
D., Wilkins, D., October 1998. PDDL — The Planning Domain Definition lan-
guage. Tech. rep., Yale Center for Computational Vision andControl, available at
http://www.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz.

[15] Giunchiglia, E., 2000. Planning as Satisfiability withExpressive Action Languages: Concurrency,
Constraints and Nondeterminism. In: Cohn, A. G., Giunchiglia, F., Selman, B. (Eds.), KR 2000, April
12-15. Morgan Kaufmann, pp. 657–666.

[16] Giunchiglia, E., Kartha, G. N., Lifschitz, V., 1997. Representing action: Indeterminacy and ramifica-
tions. Artificial Intelligence 95, 409–443.

[17] Giunchiglia, E., Lifschitz, V., 1998. An Action Language Based on Causal Explanation: Preliminary
Report. In: AAAI ’98. pp. 623–630.

[18] Giunchiglia, E., Lifschitz, V., 1999. Action languages, temporal action logics and the situation calcu-
lus. In: Working Notes of the IJCAI’99 Workshop on Nonmonotonic Reasoning, Action, and Change.

[19] Goldman, R., Boddy, M., 1996. Expressive planning and explicit knowledge. In: Proceedings AIPS-
96. AAAI Press, pp. 110–117.

[20] Iocchi, L., Nardi, D., Rosati, R., 2000. Planning with Sensing, Concurrency, and Exogenous Events:
Logical Framework and Implementation. In: Cohn, A. G., Giunchiglia, F., Selman, B. (Eds.), KR 2000,
April 12-15. Morgan Kaufmann Publishers, Inc., pp. 678–689.

[21] Kartha, G. N., Lifschitz, V., 1994. Actions with Indirect Effects (Preliminary Report). In: Proceedings
of the Fourth International Conference on Principles of Knowledge Representation and Reasoning (KR
94). pp. 341–350.

[22] Kautz, H., Selman, B., 1992. Planning as Satisfiability. In: ECAI’92. pp. 359–363.

[23] Kushmerick, N., Hanks, S., Weld, D. S., 1995. An Algorithm for Probabilistic Planning. Artificial
Intelligence 76 (1–2), 239–286.

40 INFSYS RR 1843-01-12

[24] Leone, N., Rosati, R., Scarcello, F., Aug. 2001. Enhancing Answer Set Planning. In: Cimatti, A.,
Geffner, H., Giunchiglia, E., Rintanen, J. (Eds.), IJCAI-01 Workshop on Planning under Uncertainty
and Incomplete Information. pp. 33–42.

[25] Lifschitz, V., 1996. Foundations of Logic Programming. In: Brewka, G. (Ed.), Principles of Knowledge
Representation. CSLI Publications, Stanford, pp. 69–127.

[26] Lifschitz, V., 1999a. Action Languages, Answer Sets and Planning. In: Apt, K., Marek, V. W.,
Truszczyński, M., Warren, D. S. (Eds.), The Logic Programming Paradigm – A 25-Year Perspective.
Springer Verlag, pp. 357–373.

[27] Lifschitz, V., Nov. 1999b. Answer Set Planning. In: Schreye, D. D. (Ed.), ICLP’99. The MIT Press,
Las Cruces, New Mexico, USA, pp. 23–37.

[28] Lifschitz, V., Turner, H., June 1994. Splitting a LogicProgram. In: Van Hentenryck, P. (Ed.), ICLP’94.
MIT Press, pp. 23–37.

[29] Lifschitz, V., Turner, H., December 1999. Representing transition systems by logic programs. In: Gel-
fond, M., Leone, N., Pfeifer, G. (Eds.), LPNMR’99. No. 1730 in Lecture Notes in AI (LNAI). El Paso,
Texas, USA, pp. 92–106.

[30] McCain, N., Turner, H., 1997. Causal Theories of Actions and Change. In: Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI-97).pp. 460–465.

[31] McCain, N., Turner, H., 1998. Satisfiability Planning with Causal Theories. In: Cohn, A. G., Schubert,
L., Shapiro, S. C. (Eds.), KR’98. Morgan Kaufmann Publishers, pp. 212–223.

[32] McCarthy, J., 1990. Formalization of common sense, papers by John McCarthy edited by V. Lifschitz.
Ablex.

[33] McCarthy, J., Hayes, P. J., 1969. Some Philosophical Problems from the Standpoint of Artificial In-
telligence. In: Meltzer, B., Michie, D. (Eds.), Machine Intelligence 4. Edinburgh University Press, pp.
463–502, reprinted in [32].

[34] McDermott, D., 1987. A critique of pure reason. Computational Intelligence 3, 151–237, cited in [4].

[35] Niemelä, I., 1999. Logic programming with stable model semantics as constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25 (3–4), 241–273.

[36] Papadimitriou, C. H., 1994. Computational Complexity. Addison-Wesley.

[37] Peot, M. A., 1998. Decision-Theoretic Planning. Ph.D.thesis, Stanford University, Stanford, CA, USA.

[38] Peot, M. A., Smith, D. E., 1992. Conditional Nonlinear Planning. In: Proceedings of the First Interna-
tional Conference on Artificial Intelligence Planning Systems. AAAI Press, pp. 189–197.

[39] Pryor, L., Collins, G., 1996. Planning for Contingencies: A Decision-based Approach. Journal of
Artificial Intelligence Research 4, 287–339.

[40] Reiter, R., 1978. On Closed World Data Bases. In: Gallaire, H., Minker, J. (Eds.), Logic and Data
Bases. Plenum Press, New York, pp. 55–76.

INFSYS RR 1843-01-12 41

[41] Rintanen, J., 1999. Constructing Conditional Plans bya Theorem-Prover. Journal of Artificial Intelli-
gence Research 10, 323–352.

[42] Smith, D. E., Weld, D. S., July 1998. Conformant Graphplan. In: Proceedings of the Fifteenth National
Conference on Artificial Intelligence, (AAAI’98). AAAI Press / The MIT Press, pp. 889–896.

[43] Subrahmanian, V., Zaniolo, C., Jun. 1995. Relating Stable Models and AI Planning Domains. In:
Sterling, L. (Ed.), Proceedings of the 12

�
International Conference on Logic Programming. MIT

Press, Tokyo, Japan, pp. 233–247.

[44] Sussman, G. J., 1990. The Virtuous Nature of Bugs. In: Allen, J., Hendler, J., Tate, A. (Eds.), Readings
in Planning. Morgan Kaufmann Publishers, Inc., Ch. 3, pp. 111–117, originally written 1974.

[45] Turner, H., 1997. Representing Actions in Logic Programs and Default Theories: A Situation Calculus
Approach. Journal of Logic Programming 31 (1–3), 245–298.

[46] Ullman, J. D., 1989. Principles of Database and Knowledge Base Systems. Vol. 1. Computer Science
Press.

[47] Weld, D. S., Anderson, C. R., Smith, D. E., July 1998. Extending Graphplan to Handle Uncertainty
& Sensing Actions. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence,
(AAAI’98). AAAI Press / The MIT Press, pp. 897–904.

[48] Zhang, H., 1997. SATO: An Efficient Propositional Prover. In: Proceedings of the International Con-
ference on Automated Deduction (CADE’1997). pp. 272–275.

A Appendix: Definition of Language
�

This appendix contains, in shortened form, the definition ofthe language�; see [6] for more details and
examples.

A.1 Basic Syntax

We assume
��,
��, and
�� disjoint sets of action, fluent and type names, respectively, i.e., predicate
symbols of arity(), and disjoint sets
��

!
and
��� of constant and variable symbols. Here,
��,
��

describedynamic knowledgeand
�� describesstatic background knowledge. An action (resp. fluent, type)
atom is of form � �% � � � � � %!", where� �
�� (resp.
��,
��) has arity' and % � � � � � %! �
��

! �
���.
An action (resp. fluent, type) literal� is an action (resp. fluent, type) atom

�
or its negation��, where “�”

(alternatively, “–”) is the true negation symbol. We define��� � �
if � � �� and��� � �� if � � �

, where
�

is an atom. A set� of literals isconsistent, if �	��� �
. Furthermore,�
�

(resp.�
�

) is the set of positive
(resp. negative) literals in�. The set of all action (resp. fluent, type) literals is denoted as��� (resp.���,���). Furthermore,������ � ���

����, ���!� ���
�����, and� � ������

�����.
All actions and fluents must be declared using statements as follows.

Definition A.1 (action, fluent declaration) Anaction(resp.fluent) declaration, is of the form:
� �� � � � � ��!" #�$��#� % � � � � � %& (6)

where� � ���� (resp.� � ����),
� � � � � ��! �
��� where' () is the arity of�, % � � � � � %& � ���,

 (), and every
�* occurs in% � � � � � %&.

42 INFSYS RR 1843-01-12

If �), the keyword
#�$��#� may be omitted. Causation rules specify dependencies of fluents on

other fluents and actions.

Definition A.2 (causation rule) A causation rule(rule, for short) is an expression of the form

����� � �	 � � � � � � �� ���� ��� � � � � ���� ���	��# � � � � � ��&���� �&� � � � � ���� �! (7)

where
� ����

��	�
��, � � � � � � �� �������,
� � � � � ��!�, �(�(), and'(().

Rules where' �) arestatic rules, all othersdynamic rules. When � �) (resp.' �)), “�	” (resp.
“ �	��#”) is omitted; if both� � ' �),“�����” is optional.

We access parts of a causation rule� by
���" � ���, �������" � �� � � � � � ���, �������" � ���� � � � � � ���,

���
���" � �� � � � � ��&�, ���

���" � ��&� � � � � ��!�, and �����" � �� � � � � � � � �� �� � � � � ��!�. Intuitively,
�����" � ���

���" � ���
���" (resp.������" � ����

���" � ����
���") accesses the state before (resp. after)

some action(s) happen.
Special static rules may be specified for the initial states.

Definition A.3 (initial state constraint) An initial state constraintis a static rule of the form (7) preceded
by “ ������

�.”

The language� allows conditional execution of actions, where several alternative executability condi-
tions may be specified.

Definition A.4 (executability condition) Anexecutability condition� is an expression of the form

�������	
� � �	 � � � � � � �� ���� ��� � � � � ���� �� (8)

where
� � ���� and

� � � � � � �� � �, and � (� ().

If � �) (i.e., executability is unconditional), “�	” is skipped. The parts of� are accessed by
���" � ���,

���
���" � �� � � � � � ���, ���

���" � ���� � � � � � ���, and �����" � ��� � � � � � � ���. Intuitively, �����" �
���

���" � ���
���" refers to the state at which some action’s suitability is evaluated. The state after action

execution is not involved; for convenience, we define����
���" � ����

���" �
.
All causal rules and executability conditions must satisfythe following condition, which is similar to

safety in logic programs [46]: Each variable in a default-negated type literal must also occur in some literal
which is not a default-negated type literal. No safety is requested for variables appearing in other literals.
The reason is that variables appearing in fluent and action literals are implicitly safe by the respective type
declarations.

Notation. For any causal rule, initial state constraint, and executability condition � and� � �
����� ���� 	�,

we define� ��" � �
���" � �

���", where
	���" � �������" � ���

���".

INFSYS RR 1843-01-12 43

A.1.1 Planning Domains and Planning Problems

Definition A.5 (action description, planning domain) An action description
�����

consists of a finite set
�

of action and fluent declarations and a finite set
�

of safe causation
rules, safe initial state constraints, and safe executability conditions which do not contain positive cyclic de-
pendencies among actions. A� planning domainis a pair

�� � ������
, where� is a stratified Datalog

program (thebackground knowledge) which is safe (cf. [46]), and��
is an action description. We call

��
positive, if no default negation occurs in��

.

Note that we do not allow positive cyclic interdependenciesof actions. However, this restriction does
not limit the expressive power. We could even be more restrictive on what we allow in the bodies of ex-
ecutability conditions, as any executability condition with a non-empty body can be “emulated” by use of
����������	
� statements as follows: Any executability condition:

�������	
� � �	 � � � � � ��!� � � � � � � �� ���� ��� � � � � ���� �� �
where

��� � � � � ��! � ���� and
� � � � � � �� � ������ and

��� � � � � � �� � �, and' �)� � (� (). can be
substituted by

�������	
� ������� ����� �	��# � � � � � ��!� � � � � � � �� ���� ��� � � � � ���� �� ������ 	�
� �	 ��� ����� �	��# ��
where for the new fluent����� a declaration with the same

#�$��#�part as for action
�

is added.
The restriction to acyclic executability conditions has been added in order to keep the translation�� ��"

simple. However, pushing down the method proposed above to “emulate” executability conditions by
����������	
� statements to�� ��"

is straightforward.

Definition A.6 (planning problem) A planning problem� � ������
is a pair of a planning domain

��
and aquery

�
, i.e.,

 � � � � �
&����
&� � � � � ����
! � ��" (9)

where

 � � � � �
! � ��� are variable-free,' ((), and

� () denotes the plan length.

A.2 Semantics

We start with the preliminary definition of the typed instantiation of a planning domain. This is similar to the
grounding of a logic program, with the difference being thatonly correctly typed fluent and action literals
are generated.

Let
�� � ��� ������

be a planning domain, and let� be the (unique) answer set of� [12]. Then,��� �� � � � � ��!""
is a legal action(resp.fluent) instanceof an action (resp. fluent) declaration� � �

of
the form (6), if� is a substitution defined over

� � � � � ��!
such that

���% "� � � � ���%&"� ��. By ��� we
denote the set of all legal action and fluent instances. The instantiation of a planning domain respecting type
information is as follows.

Definition A.7 (typed instantiation) For any planning domain
�� � ��� ������

, its typed instantiation
is given by

��� � ���� �������
, where�� is the grounding of� (over
��

!
) and

�� � ����" 	 � ��� � � ���, where�� is the set of all substitutions� of the variables in� using
��
!
, such that�������"" 	

���! � ��� � ������ 	�
�
��
"�

44 INFSYS RR 1843-01-12

In other words, in
���

we replace� and
�

by their ground versions, but keep of the latter only
rules where the atoms of all fluent and action literals agree with their declarations. We say that a

�� �
��� ������

is ground, if � and
�

are ground, and moreover that it iswell-typed, if
��

and
���

coincide.

A.2.1 States and Transitions

Definition A.8 (state, state transition) A statew.r.t a planning domain
��

is any consistent set� � ���
	

�������"�������"�"
of legal fluent instances and their negations. Astate transitionis any tuple% � ��������

where���� are states and� � ���
	 ������"

is a set of legal action instances in
��

.

Observe that a state does not necessarily contain either
�

or �� for each legal instance
�

of a fluent,
and may even be empty (� �
). State transitions are not constrained; this will be done in the definition of
legal state transitionsbelow. We proceed in analogy to the definition of answer sets in [12], considering first
positive (i.e., involving a positive planning domain) and then general planning problems.

In what follows, we assume that
�� � ��� ������

is a well-typed ground planning domain and that
� is the unique answer set of�. For any other

��
, the respective concepts are defined through its typed

grounding
���

.

Definition A.9 (legal initial state) A state�� is a legal initial statefor a positive
��

, if �� is the least set
(w.r.t. �) such that������" � �� �� implies

���" � ��, for all initial state constraints and static rules
� ��

.

For a positive
��

and a state�, a set� � ���� is calledexecutable action setw.r.t. �, if for each� � � there exists an executability condition� � �
such that

���" � ���, ���
���" 	 ������

� � ��,
���

���" 	 ����
� �, and���

���"��� �����
� � �� " �
. Note that this definition allows for modeling

dependent actions, i.e. actions which depend on the execution of other actions.

Definition A.10 (legal state transition) Given a positive
��

, a state transition% � �������� is called
legal, if � is an executable action set w.r.t.� and �� is the minimal consistent set that satisfies all causation
rules w.r.t.�����. That is, for every causation rule� ��

, if (i) ������" � ����, (ii) �����"	������
�

� ��, and (iii) �����" 	���
��

all hold, then
���" �� �	�
�� and

���" � ��.
This is now extended to general a well-typed ground

��
containing default negation using a Gelfond-

Lifschitz type reduction to a positive planning domain [12].

Definition A.11 (reduction) Let
��

be a ground and well-typed planning domain, and let% � ��������
be a state transition. Then, thereduction

�� � ��� ������
of

��
by % is the planning domain where

�
is obtained from

�
by deleting

1. each� ��
, where either����

���"	��� �� " ��
 or ���
���"	������ " ��
, and

2. all default literals��� � (� � �) from the remaining� ��
.

Note that
��

is positive and ground. We extend further definitions as follows.

Definition A.12 (legal initial state, executable action set, legal state transition) For any planning domain��
, a state�� is a legal initial state, if �� is a legal initial state for

����������
; a set� is anexecutable action

setw.r.t. a state�, if � is executable w.r.t.� in
���������

; and, a state transition% � �������� is legal, if it is
legal in

��
.

INFSYS RR 1843-01-12 45

A.2.2 Plans

Definition A.13 (trajectory) A sequence of state transitions
� � ���� �� �� �� �� ��� ����� � � �, ��!� ��!��!��,

' (), is a trajectoryfor
��

, if �� is a legal initial state of
��

and all ��*� ��* ��*�, �
 �
 ', are legal
state transitions of

��
.

If ' �), then
� � �� is empty and has�� associated explicitly.

Definition A.14 (optimistic plan) A sequence of action sets�� � � � � ��*�, � (), is anoptimistic planfor
a planning problem� � ������

, if a trajectory
� � ���� �� �� �, �� ��� ����� . . . , ��*� ��* ��*�� exists

in
��

which establishes the goal, i.e.,
�
 � � � �
&� � �* and

�
&� � � � � �
!� 	 �* �
.
Optimistic plans amount to “plans”, “valid plans” etc as defined in the literature. The term “optimistic”

should stress the credulous view in this definition, with respect to incomplete fluent information and nonde-
terministic action effects. In such cases, the execution ofan optimistic plan

�
might fail to reach the goal.

We thus resort to secure plans.

Definition A.15 (secure plans (alias conformant plans))An optimistic plan
�� � � � � ��!�

is a secure plan, if for every legal initial state�� and trajectory
� � ���� �� �� �, . . . ,

���� ��� ��� �� such that)
 �
 ', it holds that (i) if
� � ' then

�
establishes the goal, and (ii) if

� � ',
then���

is executable in�� w.r.t.
��

, i.e., some legal transition��� ���� ���� �
exists.

Note that plans admit in general the concurrent execution ofactions. We call a plan�� � � � � ��!�
sequential(or non-concurrent), if 	�� 	
 �, for all �
 �
 '.

A.3 Macros
� includes several macros as shorthands for frequently used concepts. Let� � ���� denote an action
atom,

	 � ��� a fluent literal,
�

a (possibly empty) sequence
� � � � � � �� � ��� ��� � � � � � ��� �� where each�* � ������

� � � �� � � � � �, and� a (possibly empty) sequence
� � � � � ��&� ��� �&� � � � � ���� �!

where
each

�� � � �� � �� � � � �'.

Inertia To allow for an easy representation of fluent inertia,� provides

���#���
 	 �	 � �	��# �� � ����� 	 �	 ��� ��	� � �	��# 	� ��
Defaults A default value of a fluent can be expressed by the shortcut

��	��
� 	� � ����� 	 �	 ��� ��	�
It is in effect unless some other causation rule provides evidence to the opposite value.

Totality For reasoning under incomplete, but total knowledge� provides (
	

positive):

����
 	 �	 � �	��# �� �
����� 	 �	 ��� �	� � �	��# ������� �	 �	 ��� 	� � �	��# ��

State Integrity For integrity constraints that refer to the preceding state, � provides

	�#	����� � �	��# �� � ����� 	�
� �	 � �	��# ��

46 INFSYS RR 1843-01-12

Nonexecutability For specifying that some action isnot executable,� provides

����������	
� � �	 �� � ����� 	�
� �	��# �� ��
By this definition,����������	
�overrides�������	
� in case of conflicts.

Non-concurrent Plans To exclude simultaneous execution of actions,� provides

�������##����� � ����� 	�
� �	��# ��� �� �
where�� and�� range over all possible actions such that��� �� � ��� 	��� and�� �� ��.

In all macros, “�	 �” (resp., “�	��# �”) can be omitted, if
�

(resp.�) is empty.

B Problem Encodings for Other Systems

B.1 Blocksworld problem P1 for CMBP
DOMAIN blocks P1

ACTIONS
act : � move 1 4, move 1 3, move 1 2, move 1 0, move 2 4, move 2 3,

move 2 1, move 2 0, move 3 4, move 3 2, move 3 1, move 3 0,
move 4 3, move 4 2, move 4 1, move 4 0 �;

FLUENTS
on 1 : 0..4; on 2 : 0..4; on 3 : 0..4; on 4 : 0..4;
blocked 1 : boolean; blocked 2 : boolean;
blocked 3 : boolean; blocked 4 : boolean;

INERTIAL on 1, blocked 1, on 2, blocked 2, on 3, blocked 3, on 4, blocked 4;

CAUSES act = move 1 4 FALSE IF blocked 1 | blocked 4;
CAUSES act = move 1 3 FALSE IF blocked 1 | blocked 3;
CAUSES act = move 1 2 FALSE IF blocked 1 | blocked 2;

CAUSES act = move 1 0 FALSE IF blocked 1;
CAUSES act = move 1 4 on 1 = 4 & blocked 4 IF 1;
CAUSES act = move 1 4 !blocked 2 IF on 1 = 2;
CAUSES act = move 1 4 !blocked 3 IF on 1 = 3;

CAUSES act = move 1 3 on 1 = 3 & blocked 3 IF 1;
CAUSES act = move 1 3 !blocked 2 IF on 1 = 2;
CAUSES act = move 1 3 !blocked 4 IF on 1 = 4;

CAUSES act = move 1 2 on 1 = 2 & blocked 2 IF 1;
CAUSES act = move 1 2 !blocked 3 IF on 1 = 3;
CAUSES act = move 1 2 !blocked 4 IF on 1 = 4;

CAUSES act = move 1 0 on 1 = 0 IF 1;
CAUSES act = move 1 0 !blocked 2 IF on 1 = 2;
CAUSES act = move 1 0 !blocked 3 IF on 1 = 3;
CAUSES act = move 1 0 !blocked 4 IF on 1 = 4;

CAUSES act = move 2 4 FALSE IF blocked 2 | blocked 4;
CAUSES act = move 2 3 FALSE IF blocked 2 | blocked 3;
CAUSES act = move 2 1 FALSE IF blocked 2 | blocked 1;
CAUSES act = move 2 0 FALSE IF blocked 2;

CAUSES act = move 2 4 on 2 = 4 & blocked 4 IF 1;
CAUSES act = move 2 4 !blocked 1 IF on 2 = 1;
CAUSES act = move 2 4 !blocked 3 IF on 2 = 3;

CAUSES act = move 2 3 on 2 = 3 & blocked 3 IF 1;
CAUSES act = move 2 3 !blocked 1 IF on 2 = 1;
CAUSES act = move 2 3 !blocked 4 IF on 2 = 4;

CAUSES act = move 2 1 on 2 = 1 & blocked 1 IF 1;
CAUSES act = move 2 1 !blocked 3 IF on 2 = 3;

INFSYS RR 1843-01-12 47

CAUSES act = move 2 1 !blocked 4 IF on 2 = 4;

CAUSES act = move 2 0 on 2 = 0 IF 1;
CAUSES act = move 2 0 !blocked 1 IF on 2 = 1;
CAUSES act = move 2 0 !blocked 3 IF on 2 = 3;
CAUSES act = move 2 0 !blocked 4 IF on 2 = 4;

CAUSES act = move 3 4 FALSE IF blocked 3 | blocked 4;
CAUSES act = move 3 2 FALSE IF blocked 3 | blocked 2;
CAUSES act = move 3 1 FALSE IF blocked 3 | blocked 1;
CAUSES act = move 3 0 FALSE IF blocked 3;

CAUSES act = move 3 4 on 3 = 4 & blocked 4 IF 1;
CAUSES act = move 3 4 !blocked 1 IF on 3 = 1;
CAUSES act = move 3 4 !blocked 2 IF on 3 = 2;

CAUSES act = move 3 2 on 3 = 2 & blocked 2 IF 1;
CAUSES act = move 3 2 !blocked 1 IF on 3 = 1;
CAUSES act = move 3 2 !blocked 4 IF on 3 = 4;

CAUSES act = move 3 1 on 3 = 1 & blocked 1 IF 1;
CAUSES act = move 3 1 !blocked 2 IF on 3 = 2;
CAUSES act = move 3 1 !blocked 4 IF on 3 = 4;

CAUSES act = move 3 0 on 3 = 0 IF 1;
CAUSES act = move 3 0 !blocked 1 IF on 3 = 1;
CAUSES act = move 3 0 !blocked 2 IF on 3 = 2;
CAUSES act = move 3 0 !blocked 4 IF on 3 = 4;

CAUSES act = move 4 3 FALSE IF blocked 4 | blocked 3;
CAUSES act = move 4 2 FALSE IF blocked 4 | blocked 2;
CAUSES act = move 4 1 FALSE IF blocked 4 | blocked 1;
CAUSES act = move 4 0 FALSE IF blocked 4;

CAUSES act = move 4 3 on 4 = 3 & blocked 3 IF 1;
CAUSES act = move 4 3 !blocked 1 IF on 4 = 1;
CAUSES act = move 4 3 !blocked 2 IF on 4 = 2;

CAUSES act = move 4 2 on 4 = 2 & blocked 2 IF 1;
CAUSES act = move 4 2 !blocked 1 IF on 4 = 1;
CAUSES act = move 4 2 !blocked 3 IF on 4 = 3;

CAUSES act = move 4 1 on 4 = 1 & blocked 1 IF 1;
CAUSES act = move 4 1 !blocked 2 IF on 4 = 2;
CAUSES act = move 4 1 !blocked 3 IF on 4 = 3;

CAUSES act = move 4 0 on 4 = 0 IF 1;
CAUSES act = move 4 0 !blocked 1 IF on 4 = 1;
CAUSES act = move 4 0 !blocked 2 IF on 4 = 2;
CAUSES act = move 4 0 !blocked 3 IF on 4 = 3;

INITIALLY on 1 = 0 & on 2 = 0 & on 3 = 0 & on 4 = 3 &
blocked 3 & !blocked 1 & !blocked 2 & !blocked 4;

CONFORMANT on1 = 0 & on 2 = 1 & on 3 = 2 & on 4 = 3;

B.2 Blocks world problem P1 for GPT

(define (domain bw)
(:model SEARCH)
(:types BLOCK)
(:functions (on BLOCK BLOCK)
(clear BLOCK :boolean))
(:objects table - BLOCK)
(:action puton

:parameters ?X - BLOCK ?Y - BLOCK ?Z - BLOCK
:precondition (:and (= (on ?X) ?Z)

(= (clear ?X) true)
(:or (= (clear ?Y) true) (= ?Y table))
(:not (= ?Y ?Z))
(:not (= ?X ?Z))
(:not (= ?X table)))

:effect
(:set (on ?X) ?Y)

48 INFSYS RR 1843-01-12

(:set (clear ?Z) true)
(:set (clear ?Y) false)))

(define (problem p1)
(:domain bw)
(:objects b0 b1 b2 b3 - BLOCK)
(:init

(:set (on b0) table)
(:set (on b1) table)
(:set (on b2) table)
(:set (on b3) b2)
(:set (clear b0) true)
(:set (clear b1) true)
(:set (clear b2) false)
(:set (clear b3) true)
(:set (clear table) false))

(:goal (:and (= (on b3) b2)
(= (on b2) b1)
(= (on b1) b0)
(= (on b0) table))))

C DLV
�

Encodings of BMTUC(� ��)

C.1 World-state encoding

Background Knowledge:

�������	
�� �������	�� � � � �������	���
������	
�� ������	�� � � � ������	���

DLV� Program:

������� � �������	�� �������� ������	���
�����	�� �������� �������	���
�������

������� � ����	���� �������� �������	��� ������	��������	�� �������� ������	���
�� �!� � �������� �����	����������� �������	���

������ -�������	�� ����� �����	���
������ -�����	�� ����� ����	���������� �������	�� ����� ����	�����
������ ������ �� �����	���
�"�����#�� �����	���
�"�����#�� ����	���� �� ��� �������	���
����"�����#�� ����	���� �� �����	���
����"�����#�� ����	���� �� ����	�
���� � $% �
�
����"�����#�� ����	���� �� ����	���
�� � $% �
�

��������! � ����� �����	������#����� �����	��� �����	�
�� � $% �
����#����� ��� �������

In this encoding, weak negation of the fluent�
����� is a CWA representation of the negated fluent
-�
�����, which relieves us from storing negative information explicitly.

The possible world-states are encoded (1) via the����
-statement for the fluent�#��� in the������

�
section, which generates all possible initial states, and (2) via the����
-statement for the fluent�
�����
in the�
��� section, which specifies the effect of dunking a package.

INFSYS RR 1843-01-12 49

C.2 Knowledge-state encoding

Background Knowledge:

�������	
�� �������	�� � � � �������	���
������	
�� ������	�� � � � ������	���

DLV� Program:

������� � �������	�� �������� ������	���
�����	�� �������� �������	���������	�� �������� ������	���
�������

������� � ����	���� �������� �������	��� ������	��������	�� �������� ������	���
�� �!� � �������� -�����	����������� �������	�� �� ��� ������	����������� -�������	�� �� ��� ������	���

������ ������	�� ����� ����	�����
������ -�������	�� ����� �����	���
������ -�����	�� ����� ����	�����
������ ������ �� ��� -�����	����"�����#�� �����	���
�"�����#�� ����	���� �� -�������	�������"�����#�� ����	���� �� �����	���
����"�����#�� ����	���� �� ����	�
���� � $% �
�
����"�����#�� ����	���� �� ����	���
�� � $% �
�

��������! � -�������	���

In this encoding, the fluents�#��� and �
����� are treated as three-valued. Instead of encoding all
possible initial world states by cases, we have a single initial state in which we only know that all toilets are
not clogged, while the values of the fluents�#��� are open. We may gain, on the one hand, knowledge on
fluent�#��� by executing an action

	
��, while on the other hand, we may lose (“forget”) informationon
fluent�
�����, if we know that something has been dunked into the respective toilet (for his projection, we
use the auxiliary fluent

������).
An advantage of this encoding is that optimistic and secure plans coincide on this encoding, since non-

deterministic effects of action
���� are treated by “forgetting” the value of the respective fluent �
�����.

We point out that the “bomb in toilet problem” is per se computationally easy; so it seems that encodings
based on world-states artificially bloat this problem, because of their lack of a natural statement about fluents
being unknown in some state. For further discussion, we refer to [6].

