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Disjunctive Logic Programming (DLP) is an advanced formalism for knowledge representation
and reasoning, which is very expressive in a precise mathematical sense: it allows to express every

property of finite structures that is decidable in the complexity class ΣP

2
(NPNP). Thus, under

widely believed assumptions, DLP is strictly more expressive than normal (disjunction-free) logic
programming, whose expressiveness is limited to properties decidable in NP. Importantly, apart
from enlarging the class of applications which can be encoded in the language, disjunction often
allows for representing problems of lower complexity in a simpler and more natural fashion.

This paper presents the DLV system, which is widely considered the state-of-the-art implemen-
tation of disjunctive logic programming, and addresses several aspects. As for problem solving,
we provide a formal definition of its kernel language, function-free disjunctive logic programs (also
known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express
optimization problems. We then illustrate the usage of DLV as a tool for knowledge representa-
tion and reasoning, describing a new declarative programming methodology which allows one to
encode complex problems (up to ∆P

3
-complete problems) in a declarative fashion. On the foun-

dational side, we provide a detailed analysis of the computational complexity of the language of
DLV, and by deriving new complexity results we chart a complete picture of the complexity of
this language and important fragments thereof.

Furthermore, we illustrate the general architecture of the DLV system which has been influenced
by these results. As for applications, we overview application front-ends which have been developed
on top of DLV to solve specific knowledge representation tasks, and we briefly describe the main
international projects investigating the potential of the system for industrial exploitation. Finally,
we report about thorough experimentation and benchmarking, which has been carried out to assess
the efficiency of the system. The experimental results confirm the solidity of DLV and highlight its
potential for emerging application areas like knowledge management and information integration.
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1. INTRODUCTION

The need for representing and manipulating complex knowledge arising in Artificial Intel-
ligence and in other emerging areas, like Knowledge Management and Information Inte-
gration (see also Section 8), has renewed the interest in advanced logic-based formalisms
for Knowledge Representation and Reasoning (KR&R), which started in the early 1980s.
Among them, Disjunctive Logic Programming (DLP), which has first been considered by
Minker [Minker 1982] in the deductive database context, is one of the most expressive
KR&R formalisms.

Disjunctive logic programs are logic programs where disjunction is allowed in the heads
of the rules and negation may occur in the bodies of the rules. Such programs are now
widely recognized as a valuable tool for knowledge representation and commonsense rea-
soning [Baral and Gelfond 1994; Lobo et al. 1992; Wolfinger 1994; Eiter et al. 1999;
Gelfond and Lifschitz 1991; Lifschitz 1996; Minker 1994; Baral 2002]. One of the at-
tractions of disjunctive logic programming (DLP) is its capability of allowing the natural
modeling of incomplete knowledge [Baral and Gelfond 1994; Lobo et al. 1992]. Much
research has been spent on the semantics of disjunctive logic programs, and several alter-
native semantics have been proposed [Brass and Dix 1995; Eiter et al. 1997c; Gelfond and
Lifschitz 1991; Minker 1982; Przymusinski 1990; 1991; 1995; Ross 1990; Sakama 1989]
(see [Apt and Bol 1994; Dix 1995; Lobo et al. 1992; Minker 1994; 1996] for comprehen-
sive surveys). The most widely accepted semantics is the answer sets semantics proposed
by Gelfond and Lifschitz [1991] as an extension of the stable model semantics of normal
logic programs [Gelfond and Lifschitz 1988]. According to this semantics, a disjunctive
logic program may have several alternative models (but possibly none), called answer sets,
each corresponding to a possible view of the world.

Disjunctive logic programs under answer sets semantics are very expressive. It was
shown in [Eiter et al. 1997b; Gottlob 1994] that, under this semantics, disjunctive logic
programs capture the complexity class ΣP

2 (i.e., they allow us to express, in a precise math-
ematical sense, every property of finite structures over a function-free first-order structure
that is decidable in nondeterministic polynomial time with an oracle in NP). As Eiter et al.
[1997b] showed, the expressiveness of disjunctive logic programming has practical impli-
cations, since relevant practical problems can be represented by disjunctive logic programs,
while they cannot be expressed by logic programs without disjunctions, given current com-
plexity beliefs. The high expressiveness of disjunctive logic programming comes at the
price of a higher computational cost in the worst case: The typical reasoning tasks, brave
reasoning and cautious reasoning, on disjunctive logic programs are complete problems
for the complexity class ΣP

2 and ΠP
2 , respectively [Eiter et al. 1997b; Eiter and Gottlob

1995], while non-disjunctive logic programs are complete for NP and co-NP, respectively
(cf. [Marek and Truszczyński 1991; Dantsin et al. 2001]).

The hardness of the evaluation of DLP programs has discouraged the implementation
of DLP engines for quite some time. Only in the 1990s, more systematic implementation
efforts have been launched, including [Fernández and Minker 1992; Lobo et al. 1992;
Seipel and Th öne 1994; Dix and Furbach 1996], but the systems created did not reach a
level of maturity such that they could be used beyond toy examples.

A first solid, efficiency-geared implementation of a DLP system, called DLV, became
available only in 1997, after 15 years of theoretical research on DLP. The development of
DLV started at the end of 1996, in a research project funded by the Austrian Science Funds
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(FWF) and led by Nicola Leone at the Vienna University of Technology; at present, DLV
is the subject of an international cooperation between the University of Calabria and the
Vienna University of Technology, and its extension and application is supported also by
the European Commission through IST projects (see Section 8).

After its first release, the DLV system has been significantly improved over and over in
the last years, and its language has been enriched in several ways (see, e.g., [Buccafurri
et al. 2000; Buccafurri et al. 2002]). Relevant optimization techniques have been incor-
porated in all modules of the DLV engine, including database techniques for efficient in-
stantiation [Faber et al. 1999; Leone et al. 2001], novel techniques for answer-set checking
[Koch and Leone 1999; Koch et al. 2003; Pfeifer 2004], heuristics and advanced pruning
operators for model generation [Faber et al. 2001; Calimeri et al. 2002].A s a result, at
the time being, DLV is generally recognized to be the state-of-the-art implementation of
disjunctive logic programming, it is widely used by researchers all over the world, and it is
competitive, also from the viewpoint of efficiency, with the most advanced systems in the
area of Answer Set Programming (ASP).1

This paper focuses on the DLV system, one of the most successful and widely used DLP
engines, and provides an in-depth description of several important aspects of the system;
it is the first such article, since previous papers focused only on particular issues of the
system. The main contributions of this paper are the following.

(1) We provide a formal definition of the kernel language of DLV: disjunctive datalog
(i.e., function-free disjunctive logic programs) under the consistent answer sets se-
mantics, extended by weak constraints. The concept of weak constraints presented
here generalizes previous work on weak constraints in [Buccafurri et al. 2000], as it
allows us to specify both weights and priorities over weak constraints.

(2) We illustrate the usage of DLV as a tool for knowledge representation and reasoning.
We describe a declarative “Guess/Check/Optimize” (GCO) programming methodol-
ogy which allows us to encode complex queries and, more generally, search problems
in a simple and highly declarative fashion in the DLV language; even some optimiza-
tion problems of rather high computational complexity (up to ∆P

3 ) can be declaratively
encoded by using this methodology. We illustrate the usage of the GCO methodology
on a number of computationally hard problems from various application domains.

(3) We analyze the computational complexity of the language of DLV. The analysis pays
attention to the impact of syntactic restrictions on the complexity of the reasoning
tasks. We derive new complexity results, which allow for providing a full picture of
the complexity of the relevant fragments of the DLV language, and we identify syn-
tactic subclasses which have lower complexity than the whole class. The complexity
analysis is in fact the theoretical basis on which the DLV implementation has been
founded, and its exploitation is one of the key factors of DLV’s efficiency.

(4) We overview application front-ends which have been developed on top of DLV to
solve specific KR tasks, and we briefly describe the main international projects aimed
at investigating the potential of DLV for industrial exploitation in the areas of Infor-
mation Integration and Knowledge Management.

1The term “Answer Set Programming” was coined by Vladimir Lifschitz in his invited talk at ICLP’99, to denote
a declarative programming methodology, similar to SAT-based programming, but using more expressive logic
programming languages with disjunction or nonmonotonic negation to encode the problems.
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(5) We illustrate the general architecture of DLV, explaining the inspiring principles un-
derlying the DLV engine, and we overview the main techniques employed in DLV’s
implementation, describing how simpler language-fragments are recognized and eval-
uated by tailored algorithms, exploiting the information coming from the complexity
analysis.

(6) We perform a thorough experimentation activity. The main goal of the experiments
is to assess the efficiency of DLV among the DLP systems. To this end, we compare
DLV with another robust DLP system, named GnT [Janhunen et al. 2000; Janhunen
et al. 2003]. We conduct some experiments also in the more general context of Answer
Set Programming, comparing DLV and GnT against non-disjunctive ASP systems
(such experiments are performed on a smaller set of benchmark problems, since non-
disjunctive systems are more limited in power, and they are not capable of solving
ΣP

2 -hard problems). In particular, we compare the performance of DLV with two
state-of-the-art ASP systems, namely, Smodels [Simons et al. 2002; Niemel ä et al.
2000; Niemel ä and Simons 1997] and ASSAT [Lin and Zhao 2002].
The entire experimentation activity is conducted on an ample set of benchmarks, cov-
ering different application areas, and comprising problems of very different complex-
ities. We provide an in-depth discussion on the benchmark results, highlighting the
major strengths and weaknesses of the compared systems, and identifying the best-
suited systems for different application and problem (complexity) classes.

The results of the experiments provide evidence for the wide range of applicability of
DLV, and confirm that it is the best-suited ASP system for applications which require
dealing with large amounts of data. The latter result is very important, also in the light
of the emerging applications of ASP systems in the area of Information Integration in
Databases (see Section 8).

The remainder of this paper is structured as follows. In the next section, we describe
the core language of DLV. After that, we consider in Section 3 knowledge representation
and problem solving in DLV, where we present the GCO methodology and illustrate it on
many examples. Section 4 is devoted to the complexity analysis of the DLV language.
Section 5 surveys the DLV front-ends, while Section 6 gives an overview of the architec-
ture and implementation of the DLV system. In Section 7 we then report about extensive
experiments and benchmarking. The final Section 8 contains some conclusions, mentions
current DLV applications, and gives an outlook to future work.

2. CORE LANGUAGE

In this section, we provide a formal definition of the syntax and the semantics of the kernel
language of DLV, which is disjunctive datalog under the answer sets semantics [Gelfond
and Lifschitz 1991]2 (which involves two kinds of negation), extended with weak con-
straints. For further background, see [Lobo et al. 1992; Eiter et al. 1997b; Gelfond and
Lifschitz 1991].

2.1 Syntax

Following Prolog’s convention, strings starting with uppercase letters denote variables,
while those starting with lower case letters denote constants. In addition, DLV also sup-

2See footnote 4.
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ports positive integer constants and arbitrary string constants, which are embedded in dou-
ble quotes. A term is either a variable or a constant.

An atom is an expression p(t1, . . .,tn), where p is a predicate of arity n and t1,. . . ,tn
are terms. A classical literal l is either an atom p (in this case, it is positive), or a negated
atom ¬p (in this case, it is negative). A negation as failure (NAF) literal ` is of the form l
or not l, where l is a classical literal; in the former case ` is positive, and in the latter case
negative. Unless stated otherwise, by literal we mean a classical literal.

Given a classical literal l, its complementary literal ¬l is defined as ¬p if l = p and
p if l = ¬p. A set L of literals is said to be consistent if, for every literal l ∈ L, its
complementary literal is not contained in L.

Moreover, DLV provides built-in predicates such as the comparative predicates equality,
less-than, and greater-than (=, <, >) and arithmetic predicates like addition or multiplica-
tion. For details, we refer to [Faber and Pfeifer 1996].

A disjunctive rule (rule, for short) r is a formula

a1 v · · · v an :- b1, · · · , bk, not bk+1, · · · , not bm. (1)

where a1, · · · , an, b1, · · · , bm are classical literals and n ≥ 0, m ≥ k ≥ 0. The disjunction
a1 v · · · v an is the head of r, while the conjunction b1, ..., bk, not bk+1, ..., not bm is
the body of r. A rule without head literals (i.e. n = 0) is usually referred to as an integrity
constraint. A rule having precisely one head literal (i.e. n = 1) is called a normal rule. If
the body is empty (i.e. k = m = 0), it is called a fact, and we usually omit the “ :- ” sign.

The following notation will be useful for further discussion. If r is a rule of form (1),
thenH(r) = {a1, . . ., an} is the set of the literals in the head andB(r) = B+(r)∪B−(r)
is the set of the body literals, where B+(r) (the positive body) is {b1,. . . , bk} and B−(r)
(the negative body) is {bk+1, . . . , bm}.

A disjunctive datalog program (alternatively, disjunctive logic program, disjunctive de-
ductive database) P is a finite set of rules. A not-free program P (i.e., such that ∀r ∈ P :
B−(r) = ∅) is called positive,3 and a v-free program P (i.e., such that ∀r ∈ P : |H(r)| ≤
1) is called datalog program (or normal logic program, deductive database).

The language of DLV extends disjunctive datalog by another construct, which is called
weak constraint [Buccafurri et al. 2000]. We define weak constraints as a variant of in-
tegrity constraints. In order to differentiate clearly between them, we use for weak con-
straints the symbol ‘:∼’ instead of ‘ :- ’. Additionally, a weight and a priority level of the
weak constraint are specified explicitly.

Formally, a weak constraint wc is an expression of the form

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w : l]

where for m ≥ k ≥ 0, b1, . . . , bm are classical literals, while w (the weight) and l (the
level, or layer) are positive integer constants or variables. For convenience, w and/or l
might be omitted and are set to 1 in this case. The sets B(wc), B+(wc), and B−(wc) of a
weak constraint wc are defined in the same way as for regular integrity constraints.

A DLV program P (program, for short) is a finite set of rules (possibly including in-
tegrity constraints) and weak constraints. In other words, a DLV programP is a disjunctive
datalog program possibly containing weak constraints. For a program P , let WC(P) de-
note the set of weak constraints in P , and let Rules(P) denote the set of rules (including

3In positive programs negation as failure (not) does not occur, while strong negation (¬) may be present.
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integrity constraints) in P .
A rule is safe if each variable in that rule also appears in at least one positive literal in

the body of that rule which is not a comparative built-in. A program is safe, if each of its
rules is safe, and in the following we will only consider safe programs.

As usual, a term (an atom, a rule, a program, etc.) is called ground, if no variable appears
in it. A ground program is also called a propositional program.

2.2 Semantics

The semantics of DLV programs extends the (consistent) answer sets semantics of dis-
junctive datalog programs, originally defined in [Gelfond and Lifschitz 1991], to deal with
weak constraints. The semantics provided in this section is a slight generalization of the
original semantics proposed for weak constraints in [Buccafurri et al. 2000]. In particular,
the original language allowed only “prioritized weak constraints”, while the DLV language
allows both priority levels (layers) and weights for weak constraints.

Herbrand Universe. For any program P , let UP (the Herbrand Universe) be the set of
all constants appearing in P . In case no constant appears in P , an arbitrary constant ψ is
added to UP .

Herbrand Literal Base. For any program P , let BP be the set of all ground (classical)
literals constructible from the predicate symbols appearing in P and the constants of UP

(note that, for each atom p, BP contains also the strongly negated literal ¬p).

Ground Instantiation. For any rule r, Ground(r) denotes the set of rules obtained by
applying all possible substitutions σ from the variables in r to elements of UP . In a similar
way, given a weak constraint w, Ground(w) denotes the set of weak constraints obtained
by applying all possible substitutions σ from the variables in w to elements of UP . For any
program P , Ground(P) denotes the set GroundRules(P) ∪ GroundWC(P), where

GroundRules(P) =
⋃

r∈Rules(P)

Ground(r) and GroundWC(P) =
⋃

w∈WC(P)

Ground(w).

Note that for propositional programs, P = Ground(P) holds.

Answer Sets. For every program P , we define its answer sets using its ground instan-
tiation Ground(P) in three steps: First we define the answer sets of positive disjunctive
datalog programs, then we give a reduction of disjunctive datalog programs containing
negation as failure to positive ones and use it to define answer sets of arbitrary disjunctive
datalog programs, possibly containing negation as failure. Finally, we specify the way how
weak constraints affect the semantics, defining the semantics of general DLV programs.

An interpretation I is a set of ground classical literals, i.e. I ⊆ BP w.r.t. a program
P . A consistent interpretation X ⊆ BP is called closed under P (where P is a positive
disjunctive datalog program), if, for every r ∈ Ground(P), H(r) ∩ X 6= ∅ whenever
B(r) ⊆ X . An interpretation X ⊆ BP is an answer set for a positive disjunctive datalog
program P , if it is minimal (under set inclusion) among all (consistent) interpretations that
are closed under P .4

EXAMPLE 2.1. The positive program P1 = {a v¬b v c.} has the answer sets {a},

4Note that we only consider consistent answer sets, while in [Gelfond and Lifschitz 1991] also the inconsistent
set of all possible literals can be a valid answer set.
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{¬b}, and {c}. Its extension P2 = {a v¬b v c. ; :- a.} has the answer sets {¬b} and
{c}. Finally, the positive program P3 = {a v¬b v c. ; :-a. ; ¬b :- c. ; c :-¬b.} has the
single answer set {¬b, c}.

The reduct or Gelfond-Lifschitz transform of a ground program P w.r.t. a set X ⊆ BP

is the positive ground program PX , obtained from P by

—deleting all rules r ∈ P for which B −(r) ∩X 6= ∅ holds;

—deleting the negative body from the remaining rules.

An answer set of a programP is a setX⊆BP such thatX is an answer set ofGround(P)X .

EXAMPLE 2.2. Given the general program P4 = {a v¬b :- c. ; ¬b :- not a, not c. ;
a v c :-not ¬b.} and I = {¬b}, the reduct PI

4 is {a v¬b :- c. ; ¬b.}. It is easy to see that
I is an answer set of PI

4 , and for this reason it is also an answer set of P4.
Now consider J = {a}. The reduct PJ

4 is {a v¬b :- c. ; a v c.} and it can be easily
verified that J is an answer set of PJ

4 , so it is also an answer set of P4.
If, on the other hand, we take K = {c}, the reduct PK

4 is equal to PJ
4 , but K is not an

answer set of PK
4 : for the rule r : a v¬b :- c, B(r) ⊆ K holds, but H(r) ∩K 6= ∅ does

not. Indeed, it can be verified that I and J are the only answer sets of P4.

REMARK 2.3. In some cases, it is possible to emulate disjunction by unstratified nor-
mal rules by “shifting” the disjunction to the body [Ben-Eliyahu and Dechter 1994; Dix
et al. 1996; Leone et al. 1997], as shown in the following example. Consider P5 = {a v b.}
and its “shifted version” P ′

5 = {a :-not b. ; b :-not a.}. Both programs have the same
answer sets, namely {a} and {b}.

However, this is not possible in general. For example, considerP6 = {a v b. ; a :- b. ;
b :- a.}. It has {a, b} as its single answer set, while its “shifted version”P ′

6 ={a :-not b. ;
b :- not a. ; a :- b. ; b :-a. } has no answer set at all.

Note that these considerations prove that P5 and P ′
5 are not strongly equivalent [Lif-

schitz et al. 2001]. However, there is no deep relationship between “shifted” programs
and strong equivalence: They can be strongly equivalent (e.g. P5 ∪ { :- a, b.} and P ′

5 ∪
{ :- a, b.}), equivalent (e.g. P5 and P ′

5), or not equivalent at all (e.g. P6 and P ′
6).

Given a ground program P with weak constraints WC(P), we are interested in the
answer sets of Rules(P) which minimize the sum of weights of the violated (unsatisfied)
weak constraints in the highest priority level,5 and among them those which minimize the
sum of weights of the violated weak constraints in the next lower level, etc. Formally, this
is expressed by an objective function HP(A) for P and an answer set A as follows, using
an auxiliary function fP which maps leveled weights to weights without levels:

fP(1) = 1,
fP(n) = fP(n− 1) · |WC(P)| · wP

max + 1, n > 1,

HP(A) =
∑lP

max

i=1 (fP(i) ·
∑

w∈N
P

i
(A)weight(w)),

where wP
max and lPmax denote the maximum weight and maximum level over the weak

constraints in P, respectively; NP

i (A) denotes the set of the weak constraints in level i

5Higher values for weights and priority levels mark weak constraints of higher importance. E.g., the most impor-
tant constraints are those having the highest weight among those with the highest priority level.
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that are violated by A, and weight(w) denotes the weight of the weak constraint w. Note
that |WC(P)|·wP

max+1 is greater than the sum of all weights in the program, and therefore
guaranteed to be greater than the sum of weights of any single level.

Intuitively, the function fP handles priority levels. It guarantees that the violation of
a single constraint of priority level i is more “expensive” then the violation of all weak
constraints of the lower levels (i.e., all levels < i).

For a DLV program P (possibly with weak constraints), a set A is an (optimal) answer
set of P if and only if (1) A is an answer set of Rules(P) and (2) HP(A) is minimal over
all the answer sets of Rules(P).

EXAMPLE 2.4. Consider the following programPwc, which has three weak constraints:

a v b.
b v c.
d v¬d :- a, c.
:∼ b. [1 : 2]
:∼ a,¬d. [4 : 1]
:∼ c, d. [3 : 1]

Rules(Pwc) admits three answer sets: A1 = {a, c, d}, A2 = {a, c,¬d}, and A3 = {b}.
We have: HPwc(A1) = 3, HPwc(A2) = 4, HPwc(A3) = 13. Thus, the unique (optimal)
answer set is {a, c, d} with weight 3 in level 1 and weight 0 in level 2.

REMARK 2.5. In the ground case (actually, only in the ground case), weak constraints
can be mapped to Smodels “minimize” statements. A weak constraint

:∼ b1, . . . , bn. [w : l]

is replaced by the rule

γ :- b1, . . . , bn.

and the statement

minimize [γ = w].

where γ is a new atom. The priority level l of weak constraints is expressed by the order
of the minimize statements in Smodels program (the first minimize statement has highest
priority). For instance, the three weak constraints of Example 2.4 can be translated in
Smodels language as follows.

γ1 :- b.
γ2 :-a,¬d.
γ3 :- c, d.
minimize [γ1 = 1].
minimize [γ2 = 4, γ3 = 3].

However, in the general (non-ground) case, we do not see any uniform mapping from weak
constraints with variables to Smodels constructs.

3. KNOWLEDGE REPRESENTATION IN DLV

A main strength of DLV, compared to other answer set programming systems, is its wide
range of applicability. While other systems are somehow specialized on a particular class
of problems (e.g., NP-complete problems), DLV is more “general purpose” and is able to
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deal, with a reasonable degree of efficiency, with different kinds of applications, ranging
from more “database oriented” deductive database applications (where larger input data
have to be dealt with), to NP search and optimization problems, up to harder problems
whose complexity resides at the second layer of the Polynomial Hierarchy (more precisely,
in ΣP

2 and even in ∆P
3 ).

In this section, we illustrate the usage of DLV as a tool for knowledge representation
and reasoning. We first deal with a couple of classical deductive database applications.
Then, we present a new programming methodology, which allows us to encode also hard
queries and, more generally, search problems in a simple and highly declarative fashion;
even optimization problems of complexity up to ∆P

3 can be declaratively encoded using
this methodology. Finally, we illustrate this methodology on a number of computationally
hard problems.

3.1 Deductive Database Applications

First, we will present two problems motivated by classical deductive database applications,
namely Reachability and Same Generation. Both can be encoded by using only positive
datalog rules, thus just scratching the surface of DLV’s expressiveness for knowledge rep-
resentation.

3.1.1 Reachability. Given a finite directed graph G = (N,A), we want to compute
all pairs of nodes (a, b) ∈ N × N such that b is reachable from a through a nonempty
sequence of arcs in A. In different terms, the problem amounts to computing the transitive
closure of the relation A.

In the DLV encoding, we assume thatA is represented by the binary relation arc(X,Y ),
where a fact arc(a, b) means that G contains an arc from a to b, i.e., (a, b) ∈ A; the set of
nodes N is not explicitly represented, since the nodes appearing in the transitive closure
are implicitly given by these facts.

The following program then computes a relation reachable(X,Y ) containing all facts
reachable(a, b) such that b is reachable from a through the arcs of the input graph G:

reachable(X,Y ) :- arc(X,Y ).
reachable(X,Y ) :- arc(X,U), reachable(U, Y ).

3.1.2 Same Generation. Given a parent-child relationship (an acyclic directed graph),
we want to find all pairs of persons belonging to the same generation. Two persons are of
the same generation, if either (i) they are siblings, or (ii) they are children of two persons
of the same generation.

The input is provided by a relation parent(X,Y ) where a fact parent(thomas,moritz)
states that thomas is a parent of moritz.
This problem can be encoded by the following program, which computes a relation
samegeneration(X,Y ) containing all facts such that X is of the same generation as Y :

samegeneration(X,Y ) :- parent(P,X), parent(P, Y ).
samegeneration(X,Y ) :- parent(P1, X), parent(P2, Y ),

samegeneration(P1, P2).

Unlike Prolog, the order of the rules and the subgoals (literals) in rules bodies does not
matter and has no effect on the semantics. In particular, it does not affect the termination of
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program evaluation, which is not guaranteed under Prolog semantics if, e.g., the last literal
in the second rule is reordered to the first position. Like other ASP systems, DLV thus
supports a fully modular, rule-by-rule encoding of problems, where the semantics of each
rule is independent of its context.

3.2 The GCO Declarative Programming Methodology

The core language of DLV can be used to encode problems in a highly declarative fashion,
following a Guess/Check/Optimize (GCO) paradigm, which is an extension and refinement
of the “Guess&Check” methodology in [Eiter et al. 2000a]. We remark that [Lifschitz
2002] introduced a “Generate/Define/Test” methodology closely related to the latter.

In this section, we will first describe the GCO technique and we will then illustrate how
to apply it on a number of examples. Many problems, also problems of comparatively high
computational complexity (ΣP

2 -complete and ∆P
3 -complete problems), can be solved in a

natural manner by using this declarative programming technique. The power of disjunctive
rules allows for expressing problems which are more complex than NP, and the (optional)
separation of a fixed, non-ground program from an input database allows to do so in a
uniform way over varying instances.

Given a set FI of facts that specify an instance I of some problem P, a GCO program
P for P consists of the following three main parts:

Guessing Part. The guessing part G ⊆ P of the program defines the search space, such
that answer sets of G ∪ F I represent “solution candidates” for I .

Checking Part. The (optional) checking part C ⊆ P of the program filters the solution
candidates in such a way that the answer sets of G ∪ C ∪ F I represent the admissible
solutions for the problem instance I .

Optimization Part. The (optional) optimization part O ⊆ P of the program allows to
express a quantitative cost evaluation of solutions by using weak constraints. It implicitly
defines an objective function f : AS(G ∪ C ∪ FI) → N mapping the answer sets of
G ∪ C ∪FI to natural numbers. The semantics of G ∪ C ∪F I ∪O optimizes f by filtering
those answer sets having the minimum value; this way, the optimal (least cost) solutions
are computed.

Without imposing restrictions on which rules G and C may contain, in the extremal
case we might set G to the full program and let C be empty, i.e., checking is completely
integrated into the guessing part such that solution candidates are always solutions. Also,
in general, the generation of the search space may be guarded by some rules, and such rules
might be considered more appropriately placed in the guessing part than in the checking
part. We do not pursue this issue further here, and thus also refrain from giving a formal
definition of how to separate a program into a guessing and a checking part.

In general, both G and C may be arbitrary collections of rules (and, for the optimization
part, weak constraints), and it depends on the complexity of the problem at hand which
kinds of rules are needed to realize these parts (in particular, the checking part).

3.2.1 Problems in NP and ∆P
2 . For problems with complexity in NP or, in case of

optimization problems, ∆P
2 , often a natural GCO program can be designed with the three

parts clearly separated into the following simple layered structure:

—The guessing part G consists of disjunctive rules that “guess” a solution candidate S.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.



· 11

—The checking part C consists of integrity constraints that check the admissibility of S.

—The optimization part O consists of weak constraints.

Each layer may have further auxiliary predicates, defined by normal stratified rules (see
Section 4.2 for a definition of stratification), for local computations. This enables, e.g., a
more “educated guess” for certain predicates such that unnecessary guesses are eliminated,
as we will see in some examples of Subsection 3.3 (HAMPATH, TSP).

The disjunctive rules define the search space in which rule applications are branching
points, while the integrity constraints prune illegal branches. Apart from the point in Re-
mark 2.3 regarding the semantic difference between disjunctive rules and equivalent un-
stratified rules, disjunctive rules are more compact and usually have a more natural reading.
The weak constraints in O induce a modular ordering on the answer sets, allowing the user
to specify the best solutions according to an optimization function f . With normal strati-
fied rules and DLV’s built-in ordering, each function f computable in polynomial time on
a deterministic Turing machine can be expressed, encoded by a respective DLV program.

3.2.2 Problems beyond ∆P
2 . For problems which are beyond ∆P

2 , and in particular
for ΣP

2 -complete problems, the layered program schema above no longer applies. If G
has complexity in NP, which is the case if disjunction is just used for making the guess
and the layer is head-cycle free [Ben-Eliyahu and Dechter 1994], then an answer set A
of G ∪ FI can be guessed in polynomial time, i.e., nondeterministically created with a
polynomial number of steps. Hence, it can be shown easily that computing an answer set
of the whole program, G ∪ C ∪ F I ∪ O, is feasible in polynomial time with an NP oracle.
Thus, applicability of the same schema to ΣP

2 -hard problems would imply ΣP
2 ⊆ ∆P

2 ,
which is widely believed to be false.

Until now we tacitly assumed an intuitive layering of the program parts, such that the
checking part C has no “influence” or “feedback” on the guessing part G, in terms of literals
which are derived in C and invalidate the application of rules in G, or make further rules in
G applicable (and thus change the guess). This can be formalized in terms of a “potentially
uses” relation [Eiter et al. 1997b] or a “splitting set” condition [Lifschitz and Turner 1994].
Complexity-wise, this can be relaxed to the property that the union of the program parts is
head-cycle free.

In summary, if a program solves a ΣP
2 -complete problem and has guessing and check-

ing parts G and C, respectively, with complexities below ΣP
2 , then C must either contain

disjunctive rules or interfere with G (and in particular head-cycles must be present in G∪C).

We close this subsection with remarking that the GCO programming methodology has
also positive implications from the Software Engineering viewpoint. Indeed, the modular
program structure in GCO allows for developing programs incrementally, which is helpful
to simplify testing and debugging. One can start by writing the guessing part G and testing
that G ∪ FI correctly defines the search space. Then, one adds the checking part and
verifies that the answer sets of G ∪ C ∪ FI encode the admissible solutions. Finally, one
tests that G ∪ C ∪ FI ∪ O generates the optimal solutions of the problem at hand.

3.3 Applications of the GCO Programming Technique

In this section, we illustrate the declarative programming methodology described in Sec-
tion 3.2 by showing its application on a number of concrete examples.
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3.3.1 Exams Scheduling. Let us start by a simple scheduling problem. Here we have
to schedule the exams for several university courses in three time slots t1, t2, and t3 at the
end of the semester. In other words, each course should be assigned exactly one of these
three time slots. Specific instances I of this problem are provided by sets FI of facts spec-
ifying the exams to be scheduled. The predicate exam has four arguments representing,
respectively, the identifier of the exam, the professor who is responsible for the exam, the
curriculum to which the exam belongs, and the year in which the exam has to be given in
the curriculum.

Several exams can be assigned to the same time slot (the number of available rooms is
sufficiently high), but the scheduling has to respect the following specifications:

S1 Two exams given by the same professor cannot run in parallel, i.e., in the same time
slot.

S2 Exams of the same curriculum should be assigned to different time slots, if possible.
If S2 is unsatisfiable for all exams of a curriculum C, one should:
(S21) first of all, minimize the overlap between exams of the same year of C,
(S22) then, minimize the overlap between exams of different years of C.

This problem can be encoded in the DLV language by the following GCO program Psch:

assign(Id, t1) v assign(Id, t2) v assign(Id, t3) :- exam(Id, P, C, Y ).
}

Guess

:-assign(Id, T ), assign(Id′, T ),
Id <> Id′, exam(Id, P, C, Y ), exam(Id′, P, C ′, Y ′).

}
Check

:∼ assign(Id, T ), assign(Id′, T )
exam(Id, P, C, Y ), exam(Id′, P ′, C, Y ), Id <> Id′. [: 2]

:∼ assign(Id, T ), assign(Id′, T )
exam(Id, P, C, Y ), exam(Id′, P ′, C, Y ′), Y <> Y ′. [: 1]





Optimize

The guessing part G has a single disjunctive rule defining the search space. It is evident
that the answer sets of G ∪ F I are the possible assignments of exams to time slots.

The checking part C consists of one integrity constraint, discarding the assignments of
the same time slot to two exams of the same professor. The answer sets of G ∪ C ∪ F I

correspond precisely to the admissible solutions, that is, to all assignments which satisfy
the constraint S1.

Finally, the optimizing part O consists of two weak constraints with different priorities.
Both weak constraints state that exams of the same curriculum should possibly not be
assigned to the same time slot. However, the first one, which has higher priority (level
2), states this desire for the exams of the curriculum of the same year, while the second
one, which has lower priority (level 1) states it for the exams of the curriculum of different
years. The semantics of weak constraints, as given in Section 2.2, implies that O captures
precisely the constraints S2 of the scheduling problem specification. Thus, the answer sets
of G ∪ C ∪ FI ∪ O correspond precisely to the desired schedules.

3.3.2 Hamiltonian Path. Let us now consider a classical NP-complete problem in
graph theory, namely Hamiltonian Path.

DEFINITION 3.1 HAMPATH. Given a directed graph G = (V,E) and a node a ∈ V
of this graph, does there exist a path in G starting at a and passing through each node in
V exactly once?
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Suppose that the graph G is specified by using facts over predicates node (unary) and
arc (binary), and the starting node a is specified by the predicate start (unary). Then,
the following GCO program Php solves the problem HAMPATH (no optimization part is
needed here):

inPath(X,Y ) v outPath(X,Y ) :- start(X), arc(X,Y ).
inPath(X,Y ) v outPath(X,Y ) :- reached(X), arc(X,Y ).
reached(X) :- inPath(Y,X). (aux.)



 Guess

:- inPath(X,Y ), inPath(X,Y 1), Y <> Y 1.
:- inPath(X,Y ), inPath(X1, Y ), X <> X1.
:-node(X), not reached(X), not start(X).



 Check

The two disjunctive rules guess a subset S of the arcs to be in the path, while the rest of
the program checks whether S constitutes a Hamiltonian Path. Here, an auxiliary pred-
icate reached is used, which is associated with the guessed predicate inPath using the
last rule. Note that reached is completely determined by the guess for inPath, and
no further guessing is needed: from the outside, this assignment to reached is an “ed-
ucated guess” for this predicate, which is more appealing than a blind guess, using a rule
“reached(X) v¬reached(X) :-node(X).” and subsequently checking whether reached
is compatible with the guess for inPath.

In turn, through the second rule, the predicate reached influences the guess of inPath,
which is made somehow inductively: Initially, a guess on an arc leaving the starting node
is made by the first rule, followed by repeated guesses of arcs leaving from reached nodes
by the second rule, until all reached nodes have been handled.

In the checking part, the first two constraints ensure that the set of arcs S selected by
inPath meets the following requirements, which any Hamiltonian Path must satisfy: (i)
there must not be two arcs starting at the same node, and (ii) there must not be two arcs
ending in the same node. The third constraint enforces that all nodes in the graph are
reached from the starting node in the subgraph induced by S.

We remark that the above encoding may appear a bit advanced for the unexperienced
DLV user. A less sophisticated one guesses for each arc whether it is in the path (i.e., re-
place the guessing part with a single rule inPath(X,Y ) v outPath(X,Y ) :-arc(X,Y ).),
and defines the predicate reached in the checking part by rules reached(X) :- start(X).
and reached(X) :- reached(Y ), inPath(Y,X).. However, this encoding is less prefer-
able from a computational point of view, because it leads to a larger search space.

It is easy to see that any set of arcs S which satisfies all three constraints must contain
the arcs of a path v0, v1, . . . , vk in G that starts at node v0 = a, and passes through distinct
nodes until no further node is left, or it arrives at the starting node a again. In the latter
case, this means that the path is in fact a Hamiltonian Cycle (from which a Hamiltonian
path can be immediately computed, by dropping the last arc).

Thus, given a set of facts F for node, arc, and start, the program Php ∪ F has an
answer set if and only if the corresponding graph has a Hamiltonian Path. The above
program correctly encodes the decision problem of deciding whether a given graph admits
a Hamiltonian Path or not.

This encoding is very flexible, and can be easily adapted to solve the search problems
Hamiltonian Path and Hamiltonian Cycle (where the result has to be a tour, i.e., a closed
path). If we want to be sure that the computed result is an open path (i.e., it is not a cycle),
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we can easily impose openness by adding a further constraint :- start(Y ), inPath( , Y ).
to the program (like in Prolog, the symbol ‘ ’ stands for an anonymous variable whose
value is of no interest). Then, the set S of selected arcs in any answer set of Php ∪ F
constitutes a Hamiltonian Path starting at a. If, on the other hand, we want to compute the
Hamiltonian cycles, then we just have to strip off the literal not start(X) from the last
constraint of the program.

3.3.3 Traveling Salesperson. The Traveling Salesperson Problem (TSP) is a well-
known optimization problem, widely studied in Operation Research.

DEFINITION 3.2 TSP. Given a weighted directed graph G = (V,E,C) and a node
a ∈ V of this graph, find a minimum-cost cycle (closed path) in G starting at a and
passing through each node in V exactly once.

It is well-known that finding an optimal solution to the Traveling Salesperson Problem
(TSP) is intractable. Computing an optimal tour is both NP-hard and co-NP-hard. In fact,
in [Papadimitriou 1984] it was shown that deciding whether the cost of an optimal tour is
an even number is ∆P

2 -complete.
A DLV encoding for the Traveling Salesperson Problem (TSP) can be easily obtained

from an encoding of Hamiltonian Cycle by adding optimization: each arc in the graph
carries a weight, and a tour with minimum total weight is selected.

Suppose again that the graphG is specified by predicates node (unary) and arc (ternary),
and that the starting node is specified by the predicate start (unary).

We first modify the HAMPATH encoding Php in Section 3.3.2 to compute Hamiltonian
Cycles, by stripping off literal not start(X) from the last constraint of the program, as
explained above. We then add an optimization part consisting of a single weak constraint

:∼ inPath(X,Y,C). [C : 1]

which states the preference to avoid taking arcs with high cost in the path, and has the
effect of selecting those answer sets for which the total cost of arcs selected by inPath is
the minimum.

The full GCO program Ptsp solving the TSP problem is thus as follows:

inPath(X,Y,C) v outPath(X,Y,C) :- start(X), arc(X,Y,C).
inPath(X,Y,C) v outPath(X,Y,C) :- reached(X), arc(X,Y,C).
reached(X) :- inPath(Y,X,C). (aux.)



 Guess

:- inPath(X,Y, ), inPath(X,Y 1, ), Y <> Y 1.
:- inPath(X,Y, ), inPath(X1, Y, ), X <> X1.
:-node(X), not reached(X).



 Check

:∼ inPath(X,Y,C). [C : 1]
}

Optimize

Given a set of facts F for node, arc, and start which specifies the input instance, it is easy
to see that the (optimal) answer sets of Ptsp ∪ F are in a one-to-one correspondence with
the optimal tours of the input graph.

3.3.4 Ramsey Numbers. In the previous examples, we have seen how a search problem
can be encoded in a DLV program whose answer sets correspond to the problem solutions.
We next see another use of the GCO programming technique. We build a DLV program
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whose answer sets witness that a property does not hold, i.e., the property at hand holds
if and only if the DLV program has no answer set. Such a programming scheme is useful
to prove the validity of co-NP or ΠP

2 properties. We next apply the above programming
scheme to a well-known problem of number and graph theory.

DEFINITION 3.3 RAMSEY. The Ramsey number R(k,m) is the least integer n such
that, no matter how we color the arcs of the complete undirected graph (clique) with n
nodes using two colors, say red and blue, there is a red clique with k nodes (a red k-clique)
or a blue clique with m nodes (a blue m-clique).

Ramsey numbers exist for all pairs of positive integers k and m [Radziszowski 1994].
We next show a program Pramsey that allows us to decide whether a given integer n is not
the Ramsey Number R(3, 4). By varying the input number n, we can determine R(3, 4),
as described below. Let F be the collection of facts for input predicates node and arc
encoding a complete graph with n nodes. Pramsey is the following GCO program:

blue(X,Y ) v red(X,Y ) :-arc(X,Y ).
}

Guess

:- red(X,Y ), red(X,Z), red(Y, Z).

:- blue(X,Y ), blue(X,Z), blue(Y, Z),
blue(X,W ), blue(Y,W ), blue(Z,W ).



 Check

Intuitively, the disjunctive rule guesses a color for each edge. The first constraint eliminates
the colorings containing a red clique (i.e., a complete graph) with 3 nodes, and the second
constraint eliminates the colorings containing a blue clique with 4 nodes. The program
Pramsey∪F has an answer set if and only if there is a coloring of the edges of the complete
graph on n nodes containing no red clique of size 3 and no blue clique of size 4. Thus, if
there is an answer set for a particular n, then n is not R(3, 4), that is, n < R(3, 4). On the
other hand, if Pramsey ∪F has no answer set, then n ≥ R(3, 4). Thus, the smallest n such
that no answer set is found is the Ramsey numberR(3, 4).

The problems considered so far are at the first level of the Polynomial Hierarchy; their
complexities, in the ground case, do not exceed ∆P

2 , which is usually placed at the first
level, since it is computationally much closer to NP than to ΣP

2 ). We next show that also
problems located at the second level of the Polynomial Hierarchy can be encoded by the
GCO technique.

3.3.5 Quantified Boolean Formulas (2QBF). The first problem at the second level of
the Polynomial Hierarchy which we consider is the canonical ΣP

2 -complete problem 2QBF
[Papadimitriou 1994]. Here, we have to decide whether a quantified Boolean formula
(QBF) of the shape Φ = ∃X∀Y φ, where X and Y are disjoint sets of propositional vari-
ables and φ = C1 ∨ . . .∨Ck is a 3DNF formula overX ∪ Y , evaluates to true. Moreover,
in this case, we may want to have a witnessing assignment σ to the variables X , i.e., an
assignment σ such that φ[X/σ(X)] is a tautology, whereX/σ(X) denotes the substitution
of X by σ(X).6 This naturally leads to a Guess & Check disjunctive logic program, in
which the witness assignment σ is guessed by some rules, and the rest of the program is
devoted to checking whether φ[X/σ(X)] is a tautology.

6Note that such a witness does no exist for universally quantified formulas of shape ∀X∃Y φ.
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Our encoding is a variant of the reduction of 2QBF into a propositional DLP in [Eiter
and Gottlob 1995]. Here, a QBF Φ as above is encoded as a set of facts FΦ, which is
evaluated by a fixed program P2QBF . In detail, FΦ contains the following facts:

—exists(v), for each existential variable v ∈ X ;

—forall (v), for each universal variable v ∈ Y ; and

—term(p 1, p2, p3, q1, q2, q3), for each disjunct l1 ∧ l2 ∧ l3 in φ, where (i) if li is a pos-
itive atom vi, then pi = vi, otherwise pi= “true ”, and (ii) if l i is a negated atom ¬vi,
then qi = vi, otherwise qi=“false ”. For example, term(x 1, true, y4, false , y2, false),
encodes the term x1 ∧ ¬y2 ∧ y4.

The program P2QBF is then

t(true). f(false).
t(X) v f(X) :- exists(X).

}
Guess

t(Y ) v f(Y ) :- forall (Y ).
w :- term(X,Y, Z,Na,Nb,Nc),

t(X), t(Y ), t(Z), f(Na), f(Nb), f(Nc).
t(Y ) :- w, forall (Y ).
f(Y ) :- w, forall (Y ).

:- not w.





Check

The guessing part “initializes” the logical constants “true ” and “false ” and chooses a
witnessing assignment σ to the variables in X , which leads to an answer set MG for this
part. The more tricky checking part then tests whether φ[X/σ(X)] is a tautology, using
a saturation technique [Eiter and Gottlob 1995]: The constraint :- notw. enforces that w
must be true in any answer set of the program; the preceding two rules imply that such
an answer set M contains both t(y) and f(y) for every y ∈Y . Hence, M has a unique
extension with respect to w and all t(y) and f(y) where y∈Y . By the minimality of
answer sets, an extension of MG to the (uniquely determined) answer set M of the whole
program exists, if and only if for each possible assignment µ to the variables in Y , effected
by the disjunctive rule in the checking part, the atom w is derived. The latter holds iff there
is some disjunct in φ[X/σ(X), Y/µ(Y )] which is true. Hence, M is an answer set iff the
formula φ[X/σ(X)] is a tautology. In summary, we obtain that Φ is a Yes-instance, i.e., it
evaluates to true, if and only if P2QBF ∪ FΦ has some answer set. Moreover, the answer
sets of P2QBF ∪FΦ are in one-to-one correspondence with the witnesses σ for the truth of
Φ.

Since 2QBF is ΣP
2 -complete, as discussed in Section 3.2 the use of disjunction in the

checking part is not accidental but necessary: the guessing and checking parts are layered
hierarchically (and Splitting Sets [Lifschitz and Turner 1994] do exist).

3.3.6 Strategic Companies. A further problem located at the second level of the Poly-
nomial Hierarchy is the following, which is known under the name Strategic Companies
[Cadoli et al. 1997].

DEFINITION 3.4 STRATCOMP. Suppose there is a collection C = {c1, . . . , cm} of
companies ci owned by a holding, a set G = {g1, . . . , gn} of goods, and for each ci we
have a set Gi ⊆ G of goods produced by ci and a set Oi ⊆ C of companies controlling
(owning) ci. Oi is referred to as the controlling set of ci. This control can be thought
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of as a majority in shares; companies not in C, which we do not model here, might have
shares in companies as well. Note that, in general, a company might have more than one
controlling set. Let the holding produce all goods in G, i.e. G =

⋃
ci∈C Gi.

A subset of the companies C ′ ⊆ C is a production-preserving set if the following con-
ditions hold: (1) The companies in C ′ produce all goods in G, i.e.,

⋃
ci∈C′ Gi = G. (2)

The companies in C ′ are closed under the controlling relation, i.e. if Oi ⊆ C ′ for some
i = 1, . . . ,m then ci ∈ C ′ must hold.

A subset-minimal set C ′, which is production-preserving, is called a strategic set. A
company ci ∈ C is called strategic, if it belongs to some strategic set of C.

This notion is relevant when companies should be sold. Indeed, intuitively, selling any
non-strategic company does not reduce the economic power of the holding. Computing
strategic companies is ΣP

2 -hard in general [Cadoli et al. 1997]; reformulated as a decision
problem (“Given a particular company c in the input, is c strategic?”), it is Σ P

2 -complete.
To our knowledge, it is one of the rare KR problems from the business domain of this
complexity that have been considered so far.

In the following, we adopt the setting from [Cadoli et al. 1997] where each product is
produced by at most two companies (for each g ∈ G |{ci | g ∈ Gi}| ≤ 2) and each
company is jointly controlled by at most three other companies, i.e. |Oi| ≤ 3 for i =
1, . . . ,m (in this case, the problem is still ΣP

2 -hard). Assume that for a given instance of
STRATCOMP, F contains the following facts:

—company(c) for each c ∈ C,

—prod by(g, c j , ck), if {ci | g ∈ Gi} = {cj , ck}, where cj and ck may possibly coincide,

—contr by(c i, ck, cm, cn), if ci ∈ C and Oi = {ck, cm, cn}, where ck, cm, and cn are not
necessarily distinct.

We next present a program Pstrat, which solves this hard problem elegantly by only two
rules:

rs1 : strat(Y ) v strat(Z) :- prod by(X,Y, Z). } Guess

rs2 : strat(W ) :- contr by(W,X, Y, Z), strat(X), strat(Y ), strat(Z).
}

Check

Here strat(X) means that company X is a strategic company. The guessing part G of
the program consists of the disjunctive rule rs1, and the checking part C consists of the
normal rule rs2. The program Pstrat is surprisingly succinct, given that STRATCOMP
is a hard (ΣP

2 -hard) problem. To overcome the difficulty of the encoding, coming from
the intrinsic high complexity of the STRATCOMP problem, we next explain this encoding
more in-depth, compared with the previous GCO encodings.

The program Pstrat exploits the minimization which is inherent to the semantics of
answer sets for the check whether a candidate set C ′ of companies that produces all goods
and obeys company control is also minimal with respect to this property.

The guessing rule rs1 intuitively selects one of the companies c1 and c2 that produce
some item g, which is described by prod by(g, c1, c2). If there were no company control
information, minimality of answer sets would naturally ensure that the answer sets of F ∪
{rs1} correspond to the strategic sets; no further checking would be needed. However,
in case control information is available, the rule rs2 checks that no company is sold that
would be controlled by other companies in the strategic set, by simply requesting that this
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company must be strategic as well. The minimality of the strategic sets is automatically
ensured by the minimality of answer sets.

The answer sets of Pstrat∪F correspond one-to-one to the strategic sets of the holding
described in F; a company c is thus strategic iff strat(c) is in some answer set of Pstrat∪F .

An important note here is that the checking “constraint” r s2 interferes with the guessing
rule rs1: applying rs2 may “spoil” the minimal answer set generated by r s1. For example,
suppose the guessing part gives rise to a ground rule rsg1

strat(c1) v strat(c2) :- prod by(g, c1, c2).

and the fact prod by(g, c1, c2) is given in F . Now suppose the rule is satisfied in the
guessing part by making strat(c1) true. If, however, in the checking part an instance of
rule rs2 is applied which derives strat(c2), then the application of the rule rsg1 to derive
strat(c1) is invalidated, as the minimality of answer sets implies that strat(c1) cannot be
derived from the rule rsg1, if another atom in its head is true.

By the complexity considerations in Subsection 3.2, such interference is needed to solve
STRATCOMP in the above way (without disjunctive rules in the Check part), since de-
ciding whether a particular company is strategic is ΣP

2 -complete. If Pstrat is rewritten
to eliminate such interference and layer the parts hierarchically, then further disjunctive
rules must be added. An encoding which expresses the strategic sets in the generic GCO-
paradigm with clearly separated guessing and checking parts is given in [Eiter et al. 2000a].

Note that, as described in Remark 2.3, the program above cannot be replaced by a simple
normal (non-disjunctive) program. Intuitively, this is due to the fact that disjunction in the
head of rules is not exclusive, while at the same time answer sets are subset-minimal. Using
techniques like the ones in [Eiter et al. 2003],Pstrat can be extended to support an arbitrary
number of producers per product and controlling companies per company, respectively.

3.3.7 Preferred Strategic Companies. Let us consider an extension of Strategic Com-
panies which also deals with preferences. Suppose that the president of the holding desires,
in case of options given by multiple strategic sets, to discard those where certain compa-
nies are sold or kept, respectively, by expressing preferences among possible solutions. For
example, the president might give highest preference to discard solutions where company
a is sold; next important to him is to avoid selling company b while keeping c, and of equal
importance to avoid selling company d, and so on.

In presence of such preferences, the STRATCOMP problem becomes slightly harder, as
its complexity increases from ΣP

2 to ∆P
3 . Nevertheless, DLV still can handle this quite

naturally. Let us assume for simplicity that the president’s preferences are represented by
a single predicate avoid(csell, ckeep, pr), which intuitively states that selling csell while
keeping ckeep should be avoided with priority pr; in the above example, the preferences
would be avoid(a, c>, top), avoid(b, c, top−1), avoid(d, c>, top−1), . . . , where c> is
a dummy company which belongs to every strategic set, and top is the highest priority
number. Then, we can easily represent this more complicated problem, by adding the
following weak constraint to the original encoding for STRATCOMP:

:∼ avoid(Sell,Keep, P riority), not strat(Sell), strat(Keep). [: Priority]

The (optimal) answer sets of the resulting program then correspond to the solutions of the
above problem.
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4. THE COMPLEXITY OF THE DLV LANGUAGE

In this section, we analyze the computational complexity of the DLV language and some
relevant fragments thereof. The exploitation of the analysis of the computational complex-
ity of DLV programs is one of the key factors of DLV’s efficiency. Indeed, as we will
point out in Section 6, the DLV system recognizes syntactic subclasses of the language
and employs “ad hoc” evaluation algorithms if the subclass has a lower complexity.

In the sequel of this section, we first provide some preliminaries on complexity theory.
Subsequently, we define a couple of relevant syntactic properties of DLV programs, which
allow us to single out computationally simpler subclasses of our language.Then, we define
the main computational problems under consideration and derive their precise complexity.
We conclude with a discussion, paying attention to the impact of syntactic restrictions.

4.1 A Reminder of the Polynomial Hierarchy

We assume that the reader has some acquaintance with the concepts of NP-completeness
and complexity theory and provide only a very short reminder of the complexity classes
of the Polynomial Hierarchy which are relevant to this section. The book [Papadimitriou
1994] is an excellent source for deepening the knowledge in this field.

The classes ΣP
k , ΠP

k , and ∆P
k of the Polynomial Hierarchy (PH, cf. [Johnson 1990]) are

defined as follows:

∆P
0 = ΣP

0 = ΠP
0 = P; and for all k ≥ 1,∆P

k = PΣP

k−1 ,ΣP
k = NPΣP

k−1 ,ΠP
k = co-ΣP

k ,

where NPC denotes the class of decision problems that are solvable in polynomial time on
a nondeterministic Turing machine with an oracle for any decision problem π in the class
C. In particular, NP = ΣP

1 , co-NP = ΠP
1 , and ∆P

2 = PNP.
The oracle replies to a query in unit time, and thus, roughly speaking, models a call to a

subroutine for π that is evaluated in unit time.
Observe that for all k ≥ 1,

ΣP
k ⊆ ∆P

k+1 ⊆ ΣP
k+1 ⊆ PSPACE

where each inclusion is widely conjectured to be strict. By the rightmost inclusion above,
all these classes contain only problems that are solvable in polynomial space. They allow,
however, a finer grained distinction among NP-hard problems that are in PSPACE.

4.2 Relevant Fragments of the DLV Language

In this section, we introduce syntactic classes of DLV programs with a number of useful
and interesting properties. First we need the following:

DEFINITION 4.1. Functions || || : BP → {0, 1, . . .} from the ground (classical) literals
of the Herbrand Literal Base BP to finite ordinals are called level mappings of P.

Level mappings give us a useful technique for describing various classes of programs.

DEFINITION 4.2. A disjunctive logic program P is called (locally) stratified [Apt et al.
1988; Przymusinski 1988], if there is a level mapping || ||s of P such that, for every rule r
of Ground(P),

(1) For any l ∈ B+(r), and for any l′ ∈ H(r), ||l||s ≤ ||l′||s;

(2) For any l ∈ B−(r), and for any l′ ∈ H(r), ||l||s < ||l′||s.
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(3) For any l, l′ ∈ H(r), ||l||s = ||l′||s.

EXAMPLE 4.3. Consider the following two programs.

P7 : p(a) v p(c) :-not q(a). P8 : p(a) v p(c) :-not q(b).
p(b) :-not q(b). q(b) :- not p(a).

It is easy to see that program P7 is stratified, while program P8 is not. A suitable level
mapping for P7 is the following:

||p(a)||s = 2 ||p(b)||s = 2 ||p(c)||s = 2 ||q(a)||s = 1 ||q(b)||s = 1 ||q(c)||s = 1

As for P8, an admissible level mapping would need to satisfy ||p(a)||s < ||q(b)||s and
||q(b)||s < ||p(a)||s, which is impossible.

Another interesting class of problems consists of head-cycle free programs.

DEFINITION 4.4. A program P is called head-cycle free (HCF) [Ben-Eliyahu and
Dechter 1994], if there is a level mapping || ||h ofP such that, for every rule r ofGround(P),

(1) For any l ∈ B+(r), and for any l′ ∈ H(r), ||l||h ≤ ||l′||h;
(2) For any pair l, l′ ∈ H(r) ||l||h 6= ||l′||h.

EXAMPLE 4.5. Consider the following program P9.

P9 : a v b.
a :- b.

It is easy to see that P9 is head-cycle free; an admissible level mapping for P9 is given by
||a||h = 2 and ||b||h = 1. Consider now the program

P10 = P9 ∪ {b :- a.}

P10 is not head-cycle free, since a and b should belong to the same level by Condition (1)
of Definition 4.4, while they cannot by Condition (2) of that definition. Note, however, that
P10 is stratified.

4.3 Main Problems Considered

As for the classical nonmonotonic formalisms, three important decision problems, corre-
sponding to three different reasoning tasks, arise in the context of the DLV language:

Brave Reasoning. Given a program P , and a ground atom A, decide whether A is true
in some answer set of P (denoted P |=b A).
Cautious Reasoning. Given a program P , and a ground atom A, decide whether A is
true in all answer sets of P (denoted P |=c A).
Answer Set Checking. Given a program P , and a set M of ground literals as input,
decide whether M is an answer set of P .

We study the complexity of these decision problems, which are strongly relevant to the
tasks performed by the DLV computational engine. Brave Reasoning is strictly related
also to the problem of finding an answer set, which is to be solved, for instance, when a
search problem (like Hamiltonian Path in Section 3) is encoded in a DLV program.

In the following, we analyze the computational complexity of the two decision problems
specified above for ground (i.e., propositional) DLV programs; we shall address the case
of non-ground programs at the end of this section.
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An interesting issue, from the viewpoint of system implementation, is the impact of
syntactic restrictions on the logic program P . Starting from normal positive programs
(without negation and disjunction), we consider the effect of allowing the (combined) use
of the following constructs:

—stratified (nonmonotonic) negation (nots),

—arbitrary (nonmonotonic) negation (not),

—head-cycle free disjunction ( v h ),

—arbitrary disjunction ( v ),

—weak constraints (w). 7

Given a set X of the above syntactic elements (with at most one negation and at most
one disjunction symbol in X), we denote by DLV[X] the fragment of the DLV language
where the elements in X are allowed. For instance, DLV[vh, nots] denotes the fragment
allowing head-cycle free disjunction and stratified negation, but no weak constraints.

4.4 Derivation of Complexity Results

The computational complexity of the above problems for a number of fragments of the
DLV language has been previously analyzed, cf. [Eiter et al. 1997b; Gottlob 1994; Buc-
cafurri et al. 2000; Eiter et al. 1998b; Eiter and Gottlob 1995]. To obtain a full picture
of the complexity of the fragments of the DLV language, we establish in this subsection
the complexity characterization of the fragments which have not been studied yet. The
reader who is not interested in the technicalities might jump directly to Section 4.5, which
provides a summary and discussion of the results.

Throughout this section, we consider the ground case, i.e., we assume that programs
and, unless stated otherwise, also atoms, literals etc. are ground. Furthermore, to simplify
matters and stay in line with results from the literature, we shall tacitly restrict the language
fragments by disregarding strong negation and integrity constraints in programs. However,
this is insignificant inasmuch as the results in presence of these constructs are the same
(see, e.g., [Buccafurri et al. 2000]). Some remarks on the complexity and expressiveness
of non-ground programs are provided at the end of Section 4.5.

We start by analyzing the complexity of cautious reasoning for DLV[ v , not, w], i.e., the
full DLV language. To determine the upper complexity bound, we first prove two lemmas.

LEMMA 4.6. Given a DLV[ v , not, w] program P and an integer n ≥ 0 as input,
deciding whether some answer set M of Rules(P) exists such that HP(M) ≤ n is in ΣP

2 .

PROOF. We can decide the problem as follows. GuessM ⊆ BP , and check that: (1)M
is an answer set of Rules(P), and (2) HP(M) ≤ n. Clearly, property (2) can be checked
in polynomial time, while (1) can be decided by a single call to an NP oracle, cf. [Marek
and Truszczyński 1991; Eiter et al. 1997b]. The problem is therefore in Σ P

2 .

LEMMA 4.7. Given a DLV[v, not, w] program P , a positive integer n, and an atomA
as input, deciding whether there exists an answer set M ofRules(P) such thatHP(M) =
n and A /∈ M is in ΣP

2 .

7Following [Buccafurri et al. 2000], possible restrictions on the support of negation affect Rules(P), that is, the
rules (including the integrity constraints) of the program, while weak constraints, if allowed, can freely contain
both positive and negative literals in any fragment of the DLV language we consider.
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PROOF. Similar as above, guess M ⊆ (BP −{A}) and check that: (1) M is an answer
set ofRules(P), and (2)HP(M) = n. Clearly, property (2) can be checked in polynomial
time, while (1) again can be decided by a single call to an NP oracle. The problem is
therefore in ΣP

2 .

We are now in the position to determine the precise complexity of cautious reasoning
over full DLV programs.

THEOREM 4.8. Given a DLV[v, not, w] program P , and an atomA as input, deciding
whether A is true in all answer sets of P is ∆P

3 -complete. Hardness holds even if P is a
DLV[v, w] program.

PROOF. Membership. We prove that the complementary problem is in ∆P
3 as follows.

Given P , let u = u(P) be the value that the objective functionHP(M) from Section 2.2
takes when an interpretation M would violate all weak constraints in WC(P) (in each

layer). More precisely, u(P) =
∑lP

max

i=1 (fP(i) ·
∑

w∈WCi
weight(w)), where WCi is the

set of weak constraints in layer i (see Section 2.2).
Clearly, u is an upper bound on the cost s∗ of any optimal answer set of P . By a binary

search on [0..u], we can compute s∗ using an oracle which decides, given P and an integer
n ≥ 0, the existence of an answer set M of Rules(P) such that HP(M) ≤ n (on the first
call, n = u/2 ; then if the oracle answers “yes,” n = u/4; otherwise, n is set to u/2+u/4,
and so on, according to standard binary search).

Observe that u is computable in polynomial time but, because of binary number repre-
sentation, its value might be exponential in the size of the input. However, the number of
calls to the oracle is logarithmic in u, and thus polynomial in the size of the input. Further-
more, the oracle employed is in ΣP

2 by virtue of Lemma 4.6. Thus, computing s∗ as above
is possible in polynomial time with polynomially many calls to a ΣP

2 oracle.
Finally, a further call to a ΣP

2 oracle verifies that there is an answer set M of Rules(P)
such that A /∈M and HP(M) = s∗ (this is feasible in ΣP

2 from Lemma 4.7).
In summary, disproving that A is true in all answer sets of P is in ∆P

3 . Since co-∆P
3 =

∆P
3 , cautious reasoning on full DLV programs is in ∆P

3 as well.

Hardness. We reduce brave reasoning on DLV[v, w] programs, which was shown to be
∆P

3 -hard in [Buccafurri et al. 2000], to cautious reasoning on DLV[v, w] programs.
Given a DLV[v, w] program P and an atom A, we build a DLV[v, w] program P ′ such

that P |=b A if and only if P ′ |=c A.
To that end, we first consider the program P1, which we obtain from P by the following

transformations: (i) shift up the priority level of each weak constraint by 1; (ii) add the
weak constraint :∼ not A. [: 1] (which is then the only weak constraint in the lowest
layer). If P 6|=b A, then nothing changes, and the (optimal) answer sets of P1 are the
(optimal) answer sets of P . If P |=b A, then the newly added weak constraint filters out
those answer sets of P where A is false. In this case, the optimal answer sets of P1 are
precisely the optimal answer sets of P containingA.

However, the equivalence “P |= b A iff P1 |=c A” does not hold if P has no answer
set, as P1 |=c A while P 6|=b A in this case. To account for this case, we transform P1

into P ′ as follows: (i) add the disjunctive fact w vw′., where w and w′ are fresh atoms;
(ii) add the atom w′ to the body of every rule of P1 (including constraints); and (iii) add
the weak constraint :∼ w. [: top], where top is higher than the maximum layer of P1. If
P has some answer set, then the (optimal) answer sets of P ′ are precisely the same as the
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optimal answer sets of P1 (modulo the atom w′, which occurs in each answer set of P ′).
Otherwise, P ′ has precisely one answer set, namely {w}. We have therefore reached our
goal, as P |=b A iff P ′ |=c A and P ′ is obviously constructible from P in polynomial time
(in fact, in logarithmic space).

We next investigate the impact of disallowing positive recursion through disjunction
(HCF programs). We first derive the analogs of Lemmas 4.6 and 4.7 for DLV[vh, not, w],
which follows by a similar proof using the fact that answer set checking for a head-cycle
free program can be done in polynomial time [Ben-Eliyahu and Dechter 1994], rather than
being co-NP-complete as in the general case.

LEMMA 4.9. Given a DLV[vh, not, w] program P , and a positive integer n, deciding
whether there exists an answer set M of Rules(P) such that HP(M) ≤ n is in NP.

PROOF. We guess M ⊆ BP , and check that: (1) M is an answer set of Rules(P), and
(2)HP(M) ≤ n. Both of the above properties can be checked in polynomial time. Indeed,
since the program is head-cycle free, answer-set checking is feasible in polynomial time
[Ben-Eliyahu and Dechter 1994]. The problem is therefore in NP.

LEMMA 4.10. Given a DLV[vh, not, w] program P , a positive integer n, and an atom
A as input, deciding whether there exists an answer set M of Rules(P) such that A /∈M
and HP(M) = n is in NP.

PROOF. We guess M ⊆ (BP − {A}), and check that: (1) M is an answer set of
Rules(P), and (2) HP(M) = n. Clearly, properties (1) and (2) can be checked in poly-
nomial time. In particular, for property (1) this follows from the fact that the program is
head-cycle free [Ben-Eliyahu and Dechter 1994]. The problem is therefore in NP.

THEOREM 4.11. Given a DLV[vh, not, w] program P , and an atom A as input, de-
ciding whether A is true in all answer sets of P is ∆P

2 -complete. Hardness holds even if
P is either a DLV[vh, w] or a DLV[not, w] program.

PROOF. Membership. To prove that the complementary problem is in ∆P
2 , we pro-

ceed as in the membership proof of Theorem 4.8. From Lemma 4.9 and Lemma 4.10,
this time the oracle needed is in NP (instead of ΣP

2 ). Therefore, cautious reasoning on
DLV[vh, not, w] programs is in ∆P

2 .

Hardness. We reduce brave reasoning on DLV[ vh , w] programs, which was shown to be
∆P

2 -hard in [Buccafurri et al. 2000], to cautious reasoning on DLV[ vh , w] programs. The
reduction is precisely the same as in the Hardness proof of Theorem 4.8. Note that the
program P ′ resulting from the reduction is in DLV[vh, w] if the original program P is in
DLV[vh, w]: the addition of the disjunctive fact does not affect head-cycle freeness, and
negation in weak constraints is allowed in the fragment DLV[vh, w].

Concerning the case of DLV[not, w], recall that brave reasoning on DLV[not, w] is
also ∆P

2 -hard [Buccafurri et al. 2000]. Now, assume that P is a DLV[not, w] program,
and apply again the same reduction as in the hardness part of the proof of Theorem 4.8
with one slight change: Since disjunction is not allowed in DLV[not, w] programs, we
replace the disjunctive fact w vw′. by two rules with (unstratified) negation: w :-not w′.
and w′ :-not w. Evidently, the meaning of the program remains unchanged, and we ob-
tain a reduction from brave reasoning on DLV[not, w] programs to cautious reasoning for
DLV[not, w].
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Next, we point out the complexity of cautious reasoning over the “easy” fragments of
the DLV language, where existence and uniqueness of an answer set is guaranteed.

THEOREM 4.12. Given a DLV[nots, w] program P , and an atomA as input, deciding
whether A is true in all answer sets of P is P-complete. Hardness holds even if P is a
DLV[] program.

PROOF. Each program in the fragments DLV[nots, w] and DLV[w] has precisely one
answer set. Consequently, on these fragments brave and cautious reasoning coincide, and
the statement follows from the results on the complexity of brave reasoning derived in
[Buccafurri et al. 2000]. (The introduction of priority levels for weak constraints does not
affect these results, as priority levels can be easily converted to plain weights as we have
seen in Section 2.2 and the beginning of Section 4.4.)

Finally, we address the problem of answer set checking. In particular, we study the
complexity of all fragments of the DLV language where weak constraints are allowed; for
the other ones, such results are (often implicitly) contained in preliminary papers.

First we show an interesting correspondence between the problem of cautious reasoning
for programs without weak constraints and the problem of answer set checking for the
corresponding fragment where weak constraints may occur in the programs.

LEMMA 4.13. Let P be a DLV[v] program and q an atom. Then, there exists a
DLV[v, w] program P ′ and a model M for P ′, such that M is an answer set for P ′ if and
only if q /∈ M ′ for each answer set M ′ of P . Moreover, P ′ andM are computable in poly-
nomial time from P and q, and, if P belongs to DLV[vh], then P ′ belongs to DLV[vh, w].

PROOF. Let q̄, q̄′, and nq̄ be fresh atoms. Then, define the following program P′:

q̄ vnq̄.
q̄′ :- q̄.
p :- q̄. for all p ∈ BP − {q},
q v q̄′ :-B(r). for all r ∈ P such that q ∈ H(r),
H(r) :-B(r). for all r ∈ P such that q 6∈ H(r),
:∼ q̄. [1 : 1]
:∼ nq̄, not q. [1 : 1]

First, consider the interpretation M̂ = BP′ − {q, nq̄}. Note that M̂ is an answer set for
Rules(P ′), because it is clearly closed under Rules(P ′) and it is minimal. Indeed, M̂ is
the only minimal closed interpretation for P ′ containing q̄, and all closed interpretations
not containing q̄ must contain nq̄ and are hence incomparable with M̂ (w.r.t. set inclusion).
Moreover, observe that the cost of M̂ is HP

′

(M̂) = 1.
We show that M̂ is not an (optimal) answer set for P ′ if and only if there is some answer

set M ′ for P containing q.
Indeed, suppose that M̂ is not an optimal answer set for P ′. Then, there is an (optimal)

answer set M for P ′ having cost HP
′

(M) = 0, i.e., all weak constraints are satisfied. By
the first one, we conclude that q̄ /∈M , which, by the first rule in P′, implies that nq̄ ∈M .
Thus, by the second weak constraint, we have that q ∈ M . By the minimality of M , we
furthermore obtain that q̄′ /∈ M . Now it is easy to see that M ′ = M − {nq̄} is an answer
set of P which contains q.
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Conversely, consider any answer set M ′ for P containing the atom q. It is easy to see
that M = M ′ ∪{nq̄} is an answer set forRules(P ′). Moreover,HP

′

(M) = 0; hence, M̂
is not an optimal answer set for P ′. This proves the claim.

Clearly, P ′ is computable in polynomial time from P and q. Moreover, if P is head-
cycle free, then P ′ is head-cycle free, too. Indeed, a new “bad” cycle would imply that one
of the fresh atoms q̄, q̄′, and nq̄ already occured in the body of some rule and also in the
head of some rule with nonempty body. Obviously, this is not the case.

THEOREM 4.14. Checking whether a given model M is an answer set for a DLV pro-
gram P is

(1) P-complete, if P belongs to DLV[nots, w]. Hardness holds even if P is positive.

(2) co-NP-complete, if P belongs to DLV[vh, not, w]. Hardness holds even if P is either
positive or non-disjunctive.

(3) ΠP
2 -complete, if P belongs to DLV[v, not, w]. Hardness holds even if P is positive.

PROOF. 1). A DLV[nots, w] program P has a unique answer set, computable in poly-
nomial time. Thus, weak constraints do not affect the complexity of this problem, which
remains the same as for DLV[nots] and DLV[] programs, namely P-completeness. The
hardness part for the latter is obtained by an easy reduction from deciding whether an atom
A is in the answer set of a DLV[] program P : just add clauses p :-A. for all p ∈ BP and
check whether BP is the answer set of the resulting program.

2). Membership. Let P be a program in DLV[vh, not, w], and M be a set of ground
literals. We can check that M is not an answer set for P as follows. First we verify in
polynomial time whether M is an answer set for Rules(P). If this is not the case, we
stop. Otherwise, we compute its cost c = HP(M), and then decide whether there exists
an answer set M ′ for P such that HP(M ′) < c. From Lemma 4.9, this task is feasible in
NP, and thus the checking problem is in co-NP.

Hardness. Recall that, given a DLV[vh] program P and an atom q, deciding whether
q /∈ M for each answer set of P is co-NP-complete, cf. [Eiter et al. 1998b]. From Lemma
4.13, this problem can be reduced to answer set checking for DLV[vh, w] programs.

Moreover, it is well-known that, for each DLV[vh] program P , we can construct in
polynomial time a DLV[not] program having the same answer sets as P , by replacing
disjunction by unstratified negation [Ben-Eliyahu and Dechter 1994]. The same reduction
clearly allows us to reduce answer set checking for DLV[vh, w] programs to answer set
checking for DLV[not, w] programs. Thus, the latter problem is co-NP-hard, as well.

3). Membership. Let P be a program in DLV[v, not, w], and M be a set of ground
literals. We show that the complementary problem of checking that M is not an answer
set for P is in ΣP

2 . First we decide in co-NP whether M is an answer set for Rules(P)
or not. If this is not the case, we stop. Otherwise, we compute its cost c = HP(M) and
then decide whether there exists an answer set M ′ for P such that HP(M ′) < c. This is
feasible in ΣP

2 , according to Lemma 4.6.
Hardness. Deciding whether a given literal is not contained in any answer set of a

DLV[v] program is ΠP
2 -complete [Eiter et al. 1997b]. From Lemma 4.13 it follows that

this problem can be reduced to answer set checking for DLV[v, w] programs.
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{} {w} {nots} {nots,w} {not} {not,w}

{} P P P P NP ∆P

2

{vh} NP ∆P

2 NP ∆P

2 NP ∆P

2

{v} ΣP

2 ∆P

3 ΣP

2 ∆P

3 ΣP

2 ∆P

3

Table I. The Complexity of Brave Reasoning in fragments of the DLV Language

{} {w} {nots} {nots, w} {not} {not,w}

{} P P P P co-NP ∆P

2

{vh} co-NP ∆P

2 co-NP ∆P

2 co-NP ∆P

2

{v} co-NP ∆P

3 ΠP

2 ∆P

3 ΠP

2 ∆P

3

Table II. The Complexity of Cautious Reasoning in fragments of the DLV Language

{} {w} {nots} {nots,w} {not} {not,w}

{} P P P P P co-NP

{vh} P co-NP P co-NP P co-NP

{v} co-NP ΠP

2 co-NP ΠP

2 co-NP ΠP

2

Table III. The Complexity of Answer Set Checking in fragments of the DLV Language

4.5 Summary of Results and Discussion

The complexity of Brave Reasoning and Cautious Reasoning from ground DLV programs
are summarized in Table I and Table II, respectively. In Table III, we report both well-
known (for the weak constraint-free case) and new results on the complexity of Answer
Set Checking.

The rows of the tables specify the form of disjunction allowed; in particular, {} = no
disjunction, {vh} = head-cycle free disjunction, and {v} = unrestricted (possibly not head-
cycle free) disjunction. The columns specify the support for negation and weak constraints.
For instance, {w, nots} denotes weak constraints and stratified negation. Each entry of the
table provides the complexity of the corresponding fragment of the language, in terms of a
completeness result. For instance, ({vh}, {nots}) is the fragment allowing head-cycle free
disjunction and stratified negation, but no weak constraints. The corresponding entry in
Table I, namely NP, expresses that brave reasoning for this fragment is NP-complete. The
results reported in the tables represent completeness under polynomial time (and in fact
LOGSPACE) reductions. All results have either been proved in Section 4.4 or emerge from
[Eiter et al. 1997b; Gottlob 1994; Eiter et al. 1998b; Eiter and Gottlob 1995; Buccafurri
et al. 2000]. Note that the presence of weights besides priority levels in weak constraints
does not increase the complexity of the language, and thus the complexity results reported
in [Buccafurri et al. 2000] remain valid also for our more general language. Furthermore,
not all complexity results in the quoted papers were explicitly stated for LOGSPACE re-
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ductions, but can be easily seen to hold from (suitably adapted) proofs.

Looking at Table I, we see that limiting the form of disjunction and negation reduces
the respective complexity. For disjunction-free programs, brave reasoning is polynomial
on stratified negation, while it becomes NP-complete if we allow unrestricted (nonmono-
tonic) negation. Brave reasoning is NP-complete on head-cycle free programs even if no
form of negation is allowed. The complexity jumps one level higher in the Polynomial
Hierarchy, up to ΣP

2 -complexity, if full disjunction is allowed. Thus, disjunction seems to
be harder than negation, since the full complexity is reached already on positive programs,
even without any kind of negation. Weak constraints are irrelevant, from the complexity
viewpoint, if the program has at most one answer set (if there is no disjunction and nega-
tion is stratified). On programs with multiple answer sets, weak constraints increase the
complexity of reasoning moderately, from NP and ΣP

2 to ∆P
2 and ∆P

3 , respectively.
Table II contains results for cautious reasoning. One would expect its complexity to

be symmetric to the complexity of brave reasoning, that is, whenever the complexity of a
fragment is C under brave reasoning, one expects its complexity to be co-C under cautious
reasoning (recall that co-P = P, co-∆P

2 = ∆P
2 , co-ΣP

2 = ΠP
2 , and co-∆P

3 = ∆P
3 ).

Surprisingly, there is one exception: While full disjunction raises the complexity of
brave reasoning from NP to ΣP

2 , full disjunction alone is not sufficient to raise the com-
plexity of cautious reasoning from co-NP to ΠP

2 . Cautious reasoning remains in co-NP if
default negation is disallowed. Intuitively, to disprove that an atom A is a cautious con-
sequence of a program P , it is sufficient to find any model M of P (which need not be
an answer set or a minimal model) which does not contain A. For not-free programs, the
existence of such a model guarantees the existence of a subset of M which is an answer
set of P (and does not contain A).

The complexity results for Answer Set Checking, reported in Table III, help us to under-
stand the complexity of reasoning. Whenever Answer Set Checking for weak constraint-
free programs is co-NP-complete for a fragment F , the complexity of brave reasoning
jumps up to the second level of the Polynomial Hierarchy (ΣP

2 ). In contrast, co-NP-
completeness for Answer Set Checking involving weak constraints causes only a mod-
est increase for brave reasoning, which stays within the same level (∆P

2 ). Indeed, brave
reasoning on full DLV programs suffers from three sources of complexity:

(s1) the exponential number of answer set “candidates”,
(s2) the difficulty of checking whether a candidate M is an answer set (the minimality of
M can be disproved by an exponential number of subsets of M ), and

(s3) the difficulty of determining the optimality of the answer set w.r.t. the violation of the
weak constraints.

Now, disjunction (unrestricted or even head-cycle free) or unrestricted negation preserve
the existence of source (s1), while source (s2) exists only if full disjunction is allowed (see
Table III). Source (s3) depends on the presence of weak constraints, but it is effective
only in case of multiple answer sets (i.e., only if source (s1) is present), otherwise it is
irrelevant. As a consequence, e.g., the complexity of brave reasoning is the highest (∆P

3 )
on the fragments preserving all three sources of complexity (where both full disjunction
and weak constraints are allowed). Eliminating weak constraints (source (s3)) from the
full language, decreases the complexity to ΣP

2 . The complexity goes down to the first level
of PH if source (s2) is eliminated, and is in the class ∆P

2 or NP depending on the presence
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or absence of weak constraints (source (s3)). Finally, avoiding source (s1) the complexity
falls down to P, as (s2) is automatically eliminated, and (s3) becomes irrelevant.

We close this section with briefly addressing the complexity and expressiveness of non-
ground programs. A non-ground program P can be reduced, by naive instantiation, to
a ground instance of the problem. The complexity of this ground instantiation is as de-
scribed above. In the general case, where P is given in the input, the size of the grounding
Ground(P) is single exponential in the size of P . Informally, the complexity of Brave
Reasoning and Cautious Reasoning increases accordingly by one exponential, from P to
EXPTIME, NP to NEXPTIME, ∆P

2 to EXPTIMENP, ΣP
2 to NEXPTIMENP, etc. For dis-

junctive programs and certain fragments of the DLV language, complexity results in the
non-ground case have been derived e.g. in [Eiter et al. 1997b; Eiter et al. 1998b]. For the
other fragments, the results can be derived using complexity upgrading techniques [Eiter
et al. 1997b; Gottlob et al. 1999]. Answer Set Checking, however, increases exponentially
up to co-NEXPTIMENP only in the presence of weak constraints, while it stays in PH if
no weak constraints occur. The reason is that in the latter case, the conditions of an answer
set can be checked using small guesses, and no alternative (perhaps exponentially larger)
answer set candidates need to be considered.

Finally, we remark that, viewed as a database-style query language (cf. [Dantsin et al.
2001]), the DLV language without weak constraints captures the classes of ΣP

2 and ΠP
2

queries under brave and cautious reasoning, respectively, as follows from the results of
[Eiter et al. 1997b]. DLV with weak constraints is more expressive, and captures the class
of ∆P

3 queries. Thus, the full language of DLV is strictly more expressive than Disjunctive
Datalog (unless the polynomial hierarchy collapses). For instance, the Preferred Strategic
Companies problem in Section 3.3.7 can be naturally expressed in the full DLV language,
but it cannot be expressed at all if weak constraints are disallowed.

5. DLV FRONT-ENDS

Besides its kernel, the DLV system offers a number of front-ends for various domain spe-
cific reasoning formalisms, which we briefly overview in this section. For in-depth de-
scriptions and download information for executables, we must refer to the quoted sources.

Currently, the DLV system has “internal” front-ends for inheritance reasoning, model-
based diagnosis, planning, and SQL3 query processing; several “external” front-ends have
been made available by other research teams. Each front-end maps its problem specific
input into a DLV program, invokes the DLV kernel, and then post-processes any answer set
returned, extracting from it the desired solution; optionally, further solutions are generated.

5.1 Internal Front-Ends

5.1.1 Inheritance Front-End. DLV’s inheritance front-end supports an extension of
the kernel language, named DLP< [Buccafurri et al. 2002], in which rules can be grouped
to objects arranged in a partial order < (i.e., irreflexive and transitive relation), specified
by the immediate successor relation “:”. It mimics inheritance, where o < o ′ reads “o is
more specific than o′ ”, and assigns a “plausibility” to rules for conflict resolution. This is
accomplished by overriding: informally, a rule r is overridden, if the complement of every
literal in the head of r is supported by a more specific rule. The following simple example
illustrates the approach; for formal details, we refer to [Buccafurri et al. 2002].
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EXAMPLE 5.1. Consider the following program Ptweety:

bird {flies.} penguin : bird {¬flies.} tweety : penguin { }

It has the objects bird, penguin, and tweety, where tweety is more specific than penguin
and penguinmore than bird; hence they are ordered by tweety<penguin, penguin<bird,
and tweety<bird. The rules of each object are enclosed in “{” and “}”.
Ptweety has the single answer set {¬flies}, which fully captures its intuitive meaning.

The rule flies in object bird is overridden by ¬flies in the more specific object penguin.

Further information is available at http://www.dlvsystem.com/inheritance/.

5.1.2 Diagnosis Front-End. In model-based diagnosis, two major formal notions of
diagnosis have been proposed: abductive diagnosis [Poole 1989] and consistency-based
diagnosis [Reiter 1987]. Both strive for capturing, given a logical background theory T ,
some observations O, and a set of hypotheses H on potential failures, a diagnosis ∆ ⊆ H
which reconciles T with O (i.e., T ∪H models O resp. T ∪H ∪ O is consistent).

DLV’s built-in diagnosis front-end [Eiter et al. 1997a] supports, under certain restric-
tions, an instance of abductive diagnosis for T being a logic program and consistency-
based diagnosis for T under classical semantics. Moreover, it offers computation of differ-
ent types of diagnoses, viz. general,⊆-minimal (irredundant), and single failure diagnoses.
The following simple example illustrates the usage of logic program semantics.

EXAMPLE 5.2 NETWORK DIAGNOSIS. Suppose in the computer network of Figure 1
machine a is up, but we observe that it cannot reach machine e. Which machines are down?

b

a
d

c

f

e

Fig. 1. Computer network

This can be easily modeled as a diagnosis problem, where the theory T is the logic program

reaches(X,X) :- node(X), not down(X).
reaches(X,Z) :- reaches(X,Y ), connected(Y, Z), not down(Z).

the observations O are not down(a) and not reaches(a, e), and the hypotheses H are
down(a), . . . , down(f). Running the diagnosis front-end, we can compute all diagnoses;
the irredundant ones are {down(e)}, {down(b), down(f)}, and {down(c), down(d),
down(f)}. Note that a logic programming representation of T is beneficial, since non-
reachability is easily expressed; under classical semantics, this is more cumbersome.

5.1.3 Planning Front-End. DLV’s has a powerful built-in planning front-end called
DLVK [Eiter et al. 2003a]. It is based on the action language K [Eiter et al. 2000b; 2001b],
which is akin to the action language C [Giunchiglia and Lifschitz 1998] but semantically
adheres to logic programming instead of classical logic. It features dealing with incom-
plete knowledge (neither an atom f nor ¬f may be known in a state), negation as failure,
nondeterministic action effects, and parallel actions. A DLVK program describes an initial
state, the state transitions by action executions, and the goal to be reached. Different kinds
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of plans may be computed; among them are optimal plans [Eiter et al. 2002b], in which
the actions have minimal total cost, according to specified action costs.

EXAMPLE 5.3. The Traveling Salesperson Problem in Section 3.3.3 (with input facts
node, arc, and start) is expressed by the following DLVK program:

fluents : in(C ) requires node(C ).
visited(C ) requires node(C ).
unvisited . home.

actions : travel(X , Y ) requires arc(X , Y ,C ) costs C .

always : executable travel(X , Y ) if in(X ).
nonexecutable travel(X ,Y ) if visited(Y ).
caused in(Y ) after travel(X , Y ).
caused visited(Y ) after travel(X ,Y ).
caused unvisited if node(C ), not visited(C ).
caused home if in(C ), start(C ).
inertial visited(C ).
noConcurrency .

initially : caused in(C ) if start(C ).
goal : not unvisited , home ? (〈n〉)

Informally, the fluents and actions parts declare changeable predicates (fluents) and ac-
tions, respectively, where after requires argument types and action costs are specified. The
always part describes when action travel can be taken, as well as causal laws for fluents,
depending on other predicates in the current and previous state and possible actions ex-
ecuted; the law in the initially part applies only to the initial state. The final goal part
defines the goal by two ground literals and a plan length (here the number of nodes, 〈n〉).

More information and examples are available at http://www.dlvsystem.com/K/.

5.1.4 SQL3 Front-End. Different from earlier versions, SQL3 allows recursive data-
base queries. DLV’s built-in SQL3 front-end, available since the early days, provides a
playground for getting a grasp on SQL3, which formerly database systems did not support.
It covers an SQL3 fragment, including queries like the “list-of-materials” query.

5.1.5 Meta-Interpreter Front-End. A meta-interpretation technique for prioritized logic
programs is described in [Eiter et al. 2001a; 2003], developed for computing different
notions of preferred answer sets from [Brewka and Eiter 1999; Schaub and Wang 2001].
In this setting, a particular fixed program, the meta-interpreter, is used in combination with
an input prioritized logic program, which is represented by a set of facts. The answer sets of
the meta-interpreter augmented with the facts then correspond to the preferred answer sets
of the original prioritized program. The meta-interpreters, several examples, and further
information are available at http://www.dlvsystem.com/preferred/.

5.2 External Front-Ends

The plp Front-End. The plp system for prioritized logic programs [Delgrande et al.
2001], available at http://www.cs.uni-potsdam.de/˜torsten/plp/, is the
most notable external front-end. It is a powerful platform for declaratively “programming”
preference-semantics for logic programs, by respecting particular orders and criteria for
rule consideration. plp can use DLV but also Smodels as a back-end for computation.

Update Front-End. A front-end for update logic programs, i.e., sequences P = (P0, . . . ,
Pn) of extended logic programs Pi, where P0 is the initial program and Pi, i > 0, rep-
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resents an update at time i ∈ {1, 2, . . . , n}, is described in [Eiter et al. 2001e]. The se-
mantics of P, defined in [Eiter et al. 2002c], extends standard answer sets for a single
program (n = 1). The front-end supports different reasoning tasks and was used to realize
policies for updating knowledge bases [Eiter et al. 2001d]; it is available for download at
http://www.kr.tuwien.ac.at/staff/giuliana/project.html.

The nlp Front-End. Most recent is the nlp front-end, which transforms nested logic
programs to Answer Set Programs; see [Pearce et al. 2002] for a description and http:
//www.cs.uni-potsdam.de/˜torsten/nlp/ for a prototype download.

6. THE IMPLEMENTATION OF THE DLV SYSTEM: AN OVERVIEW

The high expressiveness of the DLV language together with the ambition to deal efficiently
also with larger instances of simpler problems, made the implementation of DLV system
a challenging task.

The DLV core has three layers (see Figure 2), each of which is a powerful subsystem per
se: The Intelligent Grounder (IG, also Instantiator) has the power of a deductive database
system; the Model Generator (MG) is as powerful as a Satisfiability Checker; and the
Model Checker (MC) is capable of solving co-NP-complete problems. These layers have
been improved over the years through the implementation of sophisticated data structures
and of advanced optimization techniques. It is infeasible to give a detailed description of
the implementation of DLV in this paper. Instead, we describe the general architecture of
DLV, illustrate the inspiring principles underlying the DLV system, and give an overview
of the main techniques which were employed in the implementation, pointing the reader to
specific papers that provide full details.

The system architecture of DLV is shown in Figure 2. The internal system language
is the one described in Section 2, and the DLV Core (the shaded part of the figure) is an
efficient engine for computing answer sets (one, some, or all) of its input. In addition to
various front-ends (described in Section 5), there is a Graphical User Interface (GUI) that
provides convenient access to some of these front-ends as well as the system itself.

The implementation of the DLV system is based on very solid theoretical foundations,
and exploits the results on the computational complexity of DLV language fragments dis-
cussed in Section 4. Ideally, the performance of a system should reflect the complexity of
the problem at hand, such that “easy” problems (say, those of polynomial complexity) are
solved fast, while only harder problems involve methods of higher run-time cost. Indeed,
the DLV system is designed according to this idea, and thrives to exploit the complexity
results reported in Section 4. Note that in general, without syntactic restrictions, it is im-
possible to detect whether a program uniformly encodes an “easy” problem, since this task
is clearly undecidable.

For example, stratified normal programs (which have polynomial complexity, as re-
ported in Table I8) are evaluated solely using techniques from the field of deductive databases,
without employing the more complex techniques which are needed to evaluate full DLV
programs; in fact, such normal stratified programs are evaluated without generating the
program instantiation at all. Datalog programs encoding deductive problems like Reacha-
bility or Same Generation (cf. Sections 3.1.1 and 3.1.2) and SQL3 front-end, which only
generates such programs, benefit from this and exhibit good performance.

8Note that the complexity of propositional DLV programs reported in Tables I–III coincides with the data com-
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Fig. 2. The System Architecture of DLV

The architecture of the DLV Core closely reflects complexity results for various subsets
of our language. As mentioned before, the Intelligent Grounding (IG) module is able to
completely solve some problems which are known to be of polynomial time complexity
(like normal stratified programs); the Model Generator (together with the Grounding) is
capable of solving NP-complete problems. Adding the Model Checker is needed to solve
ΣP

2 -complete problems. The WCH (Weak Constraints Handler) comes into play only in
presence of weak constraints. More precisely, referring to the notation of Section 4, we
have the following five disjoint language classes L1 – L5 for evaluation:

—L 1 contains the programs included in the class 〈{}, {w, nots}〉, which all have poly-
nomial complexity. They are completely evaluated by the IG module,9 which runs in
polynomial time (referring to propositional complexity).

—L 2 contains the programs which are in the subclass corresponding to 〈{ vh }, {not}〉, but
not in L1. The complexity of this fragment is NP, and the programs are evaluated by the
MG module (besides the IG) with only a call to the linear-time part of the MC module.
Note that the MG implements a flat backtracking algorithm and is suitable for solving
NP-complete problems.

—L 3 contains the DLV programs from 〈{ vh }, {not, w}〉 minus L1 ∪L2. The complexity
of this fragment is ∆P

2 . Here, also the WCH module is employed, which iteratively
invokes the MG. Again, only the linear-time part of the MC is invoked.

—L 4 contains the programs from the subclass corresponding to 〈{ v }, {not}〉 minus L1 ∪
L2 ∪ L3. The complexity of this fragment is ΣP

2 , and the programs are evaluated by
the MG module (besides the IG) with calls to the full MC module. Note that a flat
backtracking algorithm is not sufficient to evaluate ΣP

2 -complete problems, and such a
nested evaluation scheme, with calls to MC, is needed.

—Finally, L 5 contains all other programs, i.e., those in the full class (corresponding to
〈{ v }, {not, w}〉) which are not contained in L1 ∪ L2 ∪ L3 ∪ L4, where we have the
full language complexity of ∆P

3 . The evaluation proceeds as for L4, but also the WCH
module comes into play for handling the weak constraints.

plexity of non-ground DLV programs.
9In this section, for evaluation we mean the process of generating an answer set of the input program; brave
reasoning corresponds to this task.
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The three DLV modules, MG, MC, and WCH, thus deal with the three sources of com-
plexity denoted by (s1), (s2), and (s3) in Section 4; each of them is fully activated only if
the respective source of complexity is present in the program at hand.

Let us now look at the evaluation flow of the DLV computation in some more detail.
Upon startup, the DLV Core or one of the front-ends parses the input specified by the
user and transforms it into the internal data structures of DLV. In both cases, this is done
efficiently (requiring only linear memory and time). The input is usually read from text
files, but DLV also provides a bridge to relational databases through an ODBC interface,
which allows for retrieving facts stored in relational tables.

Using differential and other advanced database techniques (see [Faber et al. 1999; Leone
et al. 2001]) together with suitable data structures, the Intelligent Grounding (IG) module
then efficiently generates a ground instantiationGround(P) of the input that has the same
answer sets as the full program instantiation, but is much smaller in general. For example,
in case of a stratified program, the IG module already computes the single answer set, and
does not produce any instantiation.

The heart of the computation is then performed by the Model Generator and the Model
Checker. Roughly, the former produces some “candidate” answer sets, the stability of
which is subsequently verified by the latter. In presence of weak constraints, further pro-
cessing is needed, which is performed under the control of the WCH module. Since the
handling of weak constraints is somehow orthogonal to the rest of the computation, we first
focus on the evaluation of standard disjunctive logic programs, describing the processing
of weak constraints later on.

The generation of the answer sets of a program P relies on a monotonic operator WP

[Leone et al. 1997] which extends the well-founded operator of [van Gelder et al. 1991]
for normal programs to disjunctive programs. It is defined in terms of a suitable notion of
unfounded set. Intuitively, an unfounded set for a disjunctive program P w.r.t. an interpre-
tation I is a set of positive literals that cannot be derived from P assuming the facts in I
[Leone et al. 1997].

Briefly, the MG works as follows: First, W ω
P

(∅) (the fixpoint of WP ) is computed,
which is contained in every answer set. If Wω

P
(∅) is a total model, it is returned as the

(unique) answer set. Otherwise, moving from Wω
P(∅) towards the answer sets, a literal

(called possibly-true literal in [Leone et al. 1997]), the truth of which allows to infer new
atoms, is assumed true. Clearly the choice of “good” possibly-true literals at each step
(i.e., a sequence of possibly-true literals that quickly leads to an answer set) is crucial for
an efficient computation, so we employ novel heuristics with extensive lookahead and also
propagate knowledge about choices that lead to inconsistency [Faber et al. 2001].

The computation proceeds by alternately selecting a possibly-true literal and applying
the pruning operator, until either a total model of Ground(P) is reached or two contra-
dictory literals are derived. If a model is found, the Model Checker is called; otherwise,
backtracking is performed.

The Model Checker (MC) verifies whether the modelM at hand is an answer set for the
input program P . In particular, the MC disregards weak constraints, and verifies whether
M is an answer set forRules(P); the optimality of the models w.r.t. the violation of weak
constraints is handled by the WCH module. The task performed by MC is very hard in
general, because checking the stability of a model is well-known to be co-NP-complete (cf.
[Eiter et al. 1997b]). However, for some relevant and frequently used classes of programs
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answer-set checking can be efficiently performed (see Table III in Section 4).
The MC implements novel techniques for answer-set checking [Koch and Leone 1999;

Koch et al. 2003; Pfeifer 2004], which extend and complement previous results [Ben-
Eliyahu and Dechter 1994; Ben-Eliyahu and Palopoli 1994; Leone et al. 1997]. The MC
fully complies with the complexity bounds specified in Section 4. Indeed, (a) it terminates
in polynomial time on every program where answer-set checking is tractable according to
Table III (including, e.g., HCF programs); and (b) it always runs in polynomial space and
single exponential time. Moreover, even on general (non-HCF) programs, the MC limits
the inefficient part of the computation to the subprograms that are not HCF. Note that it
may well happen that only a very small part of the program is not HCF [Koch and Leone
1999; Koch et al. 2003].

Finally, once an answer set has been found, the control is returned to the front-end in use,
which performs post-processing and possibly invokes the MG to look for further models.
In a sense, also the language described in Section 2 is implemented by means of a front-
end, even though by a very “thin” one.

In presence of weak constraints, after the instantiation of the program, the computation
is governed by the WCH and consists of two phases: (i) the first phase determines the
cost of an optimal answer set10, together with one “witnessing” optimal answer set and,
(ii) the second phase computes all answer sets having that optimal cost. It is worthwhile
noting that both the IG and the MG also have built-in support for weak constraints, which
is activated (and therefore incurs higher computational cost) only if weak constraints are
present in the input. The MC, instead, does not need to provide any support for weak
constraints, since these do not affect answer-set checking at all.

7. EXPERIMENTS AND BENCHMARKS

7.1 Overview of Compared Systems

The goal of the DLV project is to provide an efficient implementation of Disjunctive Logic
Programming. Thus, the main purpose of the experiments is to assess the efficiency of
DLV as a DLP system. Unfortunately, most DLP systems in the literature (cf. Introduc-
tion) have been built for experimental purposes only and are not much concerned with
efficiency; there are almost no elaborated, robust implementations of DLP to evaluate the
performance of DLV against. Only the GnT system [Janhunen et al. 2000; Janhunen et al.
2003] (described below) is an efficient and robust implementation of DLP under the answer
set semantics, which we thus selected for an experimental comparison with DLV.

Furthermore, in order to elucidate the performance of DLV in comparison with more
specialized systems, we have also considered some efficient ASP engines which are close
relatives of DLV, but do not support disjunction. The comparison of DLV with these sys-
tems is of other interest than its comparison with DLP systems: it should provide an idea
how disjunctive systems like DLV and GnT compare (on natural disjunctive encodings)
against non-disjunctive systems which use unstratified negation. It is worthwhile noting,
however, that non-disjunctive ASP systems have lower expressiveness than DLV. In partic-
ular, on benchmark problems in NP, DLV (and GnT as well) has an overhead with respect
to these systems since it is designed as a solver for a larger class containing much harder

10By cost of an answer set we mean the sum of the weights of the weak constraints violated by the answer set,
weighted according to their priority level – see Section 2.2.
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problems, while non-disjunctive systems are tailored for a special fragment in this class
which is, in general, not efficiently recognizable in a syntactic way.

Recently, the scientific community has made considerable efforts on the implementation
of answer set programming, and a number of systems nowadays support this formalism to
some extent [Anger et al. 2001; Aravindan et al. 1997; Babovich 2002; Chen and Warren
1996; Cholewiński et al. 1996; Cholewiński et al. 1999; East and Truszczyński 2000; East
and Truszczyński 2001a; East and Truszczyński 2001b; Egly et al. 2000; Eiter et al. 1998a;
Janhunen et al. 2000; Janhunen et al. 2003; Lin and Zhao 2002; McCain and Turner 1998;
Niemel ä and Simons 1997; Rao et al. 1997; Seipel and Th öne 1994; Simons et al. 2002].
Most of these systems have common roots, but differ in several respects, especially in the
languages they support.

For a comparison with DLP systems, we have considered ASP systems whose languages
are as close to Disjunctive Logic Programming (and to the DLV language) as possible,
since we feel that it is difficult to make a fair comparison among systems supporting very
different languages. We have thus focused on systems supporting the full language of
function-free logic programs under the answer set semantics, including recursion and un-
stratified negation. Among those, we preferred more widely used systems which are at a
more advanced engineering stage; several other ASP systems are research prototypes im-
plemented just for experimental purposes, and would need quite some engineering work to
be made efficient and robust.

In particular, in addition to GnT, we picked Smodels [Simons et al. 2002; Niemel ä et al.
2000; Niemel ä and Simons 1997] – one of the most robust and widely used ASP systems
– and ASSAT [Lin and Zhao 2002], which is not as widely used and robust as Smodels yet,
but appeared to be very efficient in a couple of recent experimental comparisons [Simons
et al. 2002; Lin and Zhao 2002].

It is worthwhile noting that another system named Cmodels [Babovich 2002] has re-
cently emerged. Cmodels is similar in spirit to ASSAT, in that it translates the logic
program to a CNF theory and uses a SAT-solver for its evaluation. The original version
of Cmodels required the input program to satisfy a so called tightness condition, and it
seems that this only applies to a single of the benchmarks which is not already solved by
the instantiation procedure (RAMSEY). After completion of all our benchmarks, an ex-
tended version called Cmodels-2 became available, which is capable of handling arbitrary
non-disjunctive programs, by implementing the same techniques as ASSAT. We did not
consider Cmodels in our comparisons because the focus of this paper is on systems imple-
menting the full language (including disjunction); we include the non-disjunctive systems
Smodels and ASSAT mainly for reference purposes. Furthermore, since Cmodels-2 is
based on similar ideas as ASSAT, we might suspect that it shows similar behavior. The
standing of this system remains to be explored in other work providing an exhaustive com-
parison of answer set solvers, which is beyond the scope of this paper.

In the rest of this section, we provide a short description of the three systems we used
for our comparison with to the “May 16th, 2003” release of DLV.

Smodels. [Simons et al. 2002; Niemel ä et al. 2000; Niemel ä and Simons 1997] is one
of the best known and most widely used Answer Set Programming systems. It implements
the answer set semantics for normal logic programs extended by built-in functions as well
as cardinality and weight constraints for domain-restricted programs.

Disregarding the extension for cardinality and weight constraints, the Smodels system

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.



36 ·

takes as input normal (v-free) rules as described in Section 2. Programs must be domain-
restricted, which intuitively amounts to the following property: the predicate symbols in
the program are divided into two classes, namely domain predicates and non-domain pred-
icates, where the former are predicates whose definition11 does not involve rules with neg-
ative recursion [Syrj änen 2002]. Every rule must be domain-restricted in the sense that
every variable in that rule must appear in a domain predicate which appears positively in
the rule body.

In addition to normal rules, Smodels supports rules with cardinality and weight con-
straints. To illustrate the idea on an example, the cardinality constraint

1{a, b, notc}2.

holds in an answer set if at least 1 but at most 2 of the literals in the constraint are satisfied
by that answer set.

The instantiation module of Smodels is a separate application called Lparse, which pre-
processes the programs which are then evaluated by Smodels.

In our tests, we used the current versions of these two at the time of this writing, Lparse
1.0.11 and Smodels 2.27, running them in a UNIX pipe and measuring overall CPU time.

GnT. [Janhunen et al. 2000; Janhunen et al. 2003] is a DLP system that extends the
Smodels language by disjunction rule heads, written as {a1, · · · , an}. GnT has been im-
plemented on top of Smodels by means of a rewriting technique. Roughly, a disjunctive
input program P is rewritten to a non-disjunctive program P ′, such that the answer sets of
P ′ form a superset of the answer sets of P . Program P ′ is passed to Smodels for the eval-
uation, and each answer set M produced is then processed by a nested call to Smodels, to
check whether M is also an answer set of P . GnT is not a strict generalization of Smodels
in that it does not support the full language of Smodels (in particular, it has no cardinality
constraints).

For our tests, we used GnT 2 as downloaded from http://www.tcs.hut.fi/
Software/gnt/ in April 2003, together with Lparse 1.0.11, running both in a UNIX
pipe and measuring overall CPU time.

ASSAT. The ASSAT system (Answer Sets by SAT solvers) is a system for computing
answer sets of a logic program by using SAT solvers [Lin and Zhao 2002; Zhao 2002].
Given a ground logic program P and a SAT solver X , ASSAT(X) works as follows:

—It computes the Clark-completion [Clark 1978] of P and converts it into a set C of
clauses.

—It then repeats the following steps:
—Call X on C to get a model M of P , and terminate with failure if no such M exists.
—If M is an answer set of P , then return it as the result.
—Otherwise, find some loops in P whose “loop formulas” (defined in [Lin and Zhao

2002]) are not satisfied by M , and add their clausal forms to C. This exploits the
result that a model M is not an answer set of P if and only if some loop formula is
not satisfied [Lin and Zhao 2002].

11The definition of a predicate p contains all rules with head p plus the definitions of all predicates appearing in
the bodies of the rules with head p.
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As shown in [Lin and Zhao 2002], this procedure is sound and complete, assuming
that X is a sound and complete SAT solver. It should be noted that this approach is geared
towards computing one answer set, rather than computing all (or a given number of) answer
sets. While in an incremental computation, already computed answer sets can be easily
excluded from re-computation by adding suitable clauses, the efficiency of this approach
remains to be seen.

Like Smodels, ASSAT employs Lparse for program instantiation. It accepts the core
language of Smodels without cardinality and weight constraints, and imposes the domain
restriction constraint on the variables required by Lparse.

For the benchmarks, we used ASSAT version 1.34 together with Lparse 1.0.11 and
the SAT solver Chaff version 2001-06-16, which we obtained from http://www.ee.
princeton.edu/˜chaff/index1.html. (By using Chaff, ASSAT provided the
best performance in benchmarks by the authors of ASSAT [Lin and Zhao 2002].)

We used ASSAT in its default (built-in) configuration and Chaff with the default config-
uration file “cherry.smj,” which comes with the Chaff distribution.

Using the DLV instantiator with Smodels, GnT, and ASSAT. In addition to the “native”
setting where Smodels, GnT, and ASSAT all employ Lparse to compute the ground in-
stantiation of their input, we also used the instantiator mode of DLV (requested by the
command-line option -instantiate), where DLV just computes and prints the ground
instantiation of its input which then can be fed to other systems. The actual invocation
chain in this case was

dlv -instantiate | lparse | smodels/gnt2/assat

since Smodels, GnT, and ASSAT expect their input in a particular internal format only
supported by Lparse (which performs very efficiently when only used as a filter to convert
ground programs into that format, so in general the extra time employed by Lparse here is
negligible).

7.2 Benchmark Problems and Data

We had to ponder about the construction of a suite of benchmark problems to test DLP
systems, as unlike other areas, such as Satisfiability Testing, there currently is no generally
recognized set of benchmark problems for DLP systems. We believe that a benchmark
suite should be ample, cover different application areas, and comprise problems of different
complexities, in order to highlight the suitability of the systems for different applications,
and on different problem (complexity) classes.

We have studied previous experimentation work performed for benchmarking ASP sys-
tems at Helsinki University of Technology, and exploited also the precious discussions on
this topic at LPNMR’01, the AAAI Spring 2001 Symposium on Answer-Set Programming,
and the Dagstuhl Seminar on Answer Set Programming in September 2002.

We considered a number of benchmark problems taken from various domains and with
very different complexities ranging from P over NP, co-NP, and ∆P

2 to ΣP
2 and included

most examples provided in Section 3 as well as a couple of further problems with suitable
sets of benchmark data. In particular, we evaluated the systems on the following problems:

—Reachability (REACH)
—Same Generation (SAMEGEN)
—Hamiltonian Path (HAMPATH)
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—Traveling Salesperson (TSP)

—Ramsey Numbers (RAMSEY)
—Sokoban (SOKOBAN)

—Quantified Boolean Formulas (2QBF)
—Strategic Companies (STRATCOMP)

All problems except TSP are from the suite of “Benchmark Problems for Answer Set
Programming Systems” of the University of Kentucky (http://cs.engr.uky.edu/
ai/benchmarks.html), which was used to compare ASP systems at the 6th Interna-
tional Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR’01) in
Vienna, Sept. 2001. RAMSEY was also used to compare ASP systems at the AAAI Spring
2001 Symposium on Answer Set Programming in Stanford, March 2001, and SAMEGEN,
HAMPATH, RAMSEY, and STRATCOMP are also in the benchmark suite defined at the
Dagstuhl Seminar on Answer Set Programming, Sept. 2002 [Brewka et al. 2002].

As far as the encodings are concerned, we did not look for tricky ones; rather, we tried to
exploit the expressiveness of the language to design simple and declarative encodings. We
kept the encodings as close as possible to the standard DLP language,12 avoiding system-
specific language features.13 In the main comparison (DLV vs GnT), we run the two
systems precisely on the same (disjunctive) encoding, when using DLV instantiator for
GnT; also when GnT was run with his native instantiator Lparse, we nearly used the same
encodings for the two systems (only some domain predicate had to be added for GnT in
some case). Disregarding domain predicates, also for Smodels and ASSAT we could use
the same encodings adopted for DLV and GnT, by just translating disjunction to unstrati-
fied negation in the straightforward way (Smodels and ASSAT were not benchmarked on
2QBF and STRATCOMP, since their languages miss the needed expressiveness).

All benchmark instances and encodings we have used are available on the web at http:
//www.dlvsystem.com/examples/tocl-dlv.zip.

We next specify the data and the encodings which we have used for the experiments.

Reachability (REACH). For DLV we used the encoding presented in Section 3.1.1; for
GnT, Smodels,14 and ASSAT we had to make some modifications to respect the domain
restriction constraint required by Lparse:

reachable(X,Y ) :-arc(X,Y ).
reachable(X,Y ) :-arc(X,U), reachable(U, Y ), vertex(Y ).

In particular, we had to add vertex(Y ) to the body of the second rule in order to restrict
the domain of the variable Y .

The input graphs for Reachability were generated by means of the Stanford GraphBase
[Knuth 1994], using the function random graph(#nodes, #arcs, 0,0,0,0,0,0,0,0) with a ratio
of 3:1 between #arcs and #nodes.

Same Generation (SAMEGEN). Here, we used the encoding described in Section 3.1.2
and instances where the parent relation is a square board as depicted in Figure 3.

12The language adopted in [Gelfond and Lifschitz 1991] is generally acknowledged in the literature, and most
systems support it to a large extent.
13Only for TSP we resorted to optimization constructs which are not included in standard DLP.
14Note that GnT behaves like Smodels if the input program can be solved by the instantiator.
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Fig. 3. Input for SAMEGEN

We did not need to adapt the encodings for GnT, Smodels, and ASSAT, as the encoding
from Section 3.1.2 already satisfies the domain restriction constraint of Lparse.

Ramsey Numbers (RAMSEY). We considered deciding, for varying k, m, and n, if n is
the Ramsey number R(k,m). For DLV, we used the encoding shown in Section 3.3.4.

It is worthwhile noting that for this problem we do not use a single, uniform encoding
to solve all instances, rather, we have one program for each instance. In particular, for
checking that n is the Ramsey number R(k,m), the first constraint contains

(
k
2

)
atoms

with predicate red and the second constraint contains
(
m
2

)
atoms with predicate blue.

For Smodels and ASSAT we replaced the disjunctive rule by two normal rules using un-
stratified negation. We also added some instances of node(. . . ) to the integrity constraints
to meet the syntactical restrictions of Lparse . For these systems, we have also considered
an alternative encoding where the domain restriction constraint is satisfied by adding an
atom of the form arc(t1, t2), for each atom blue(t1, t2) and each atom red(t1, t2) occur-
ring in the constraint. This encoding seems to have a positive impact on the performance
(see Section 7.3) due to the instantiation procedure employed by Lparse. However, we be-
lieve that this encoding is less intuitive, as a domain predicate is understood as the “type” of
a variable; accordingly, node(X) would be the natural type for each variable X occurring
in this program.

For GnT, we used the disjunctive encoding from Section 3.3.4 with the addition of the
above domain predicates to satisfy the domain restriction constraint.

Hamiltonian Path (HAMPATH). For DLV, we used the encoding described in Sec-
tion 3.3.2. For Smodels and ASSAT we rewrote the disjunctive guessing rule to use un-
stratified negation instead, and added some instances of arc(. . . ) to the integrity constraints
to work around the domain restriction constraint required by Lparse . 15

For GnT we used the (disjunctive) encoding of DLV, with the addition of the domain
predicates in the integrity constraints as above.

The graph instances were generated using a tool by Patrik Simons (http://tcs.
hut.fi/Software/smodels/misc/hamilton.tar.gz)which originally was used
to compare Smodels against SAT solvers [Simons 2000]. This tool generates graphs with
nodes labeled 0, 1, and so forth, and we assume node(0) as the starting node.

Traveling Salesperson (TSP). Here we have reused the graph instances for HAMPATH
described above and randomly added costs between 1 and 10 to every arc. The uniform

15We have used the domain predicate arc instead of node, since Lparse seems to produce a more advantageous
instantiation this way; cf. the discussion on the encodings of RAMSEY.
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approach described in Section 3.3.3 for encoding TSP in DLV is not feasible using the
language of Smodels, since the direct counterpart of the weak constraint of DLV in Smod-
els (the minimize statement) does not support the use of variables. Thus, we employed a
more direct, instance-specific encoding in the form of

minimize [ inPath(0, 3) = 9, inPath(0, 2) = 4, . . . , inPath(3, 1) = 7 ].
compute all {}.

for Smodels and

:∼ inPath(0, 3).[9 :]
:∼ inPath(0, 2).[4 :]
...
:∼ inPath(3, 1).[7 :]

for DLV (for the sake of similarity). The rest of the encoding for DLV corresponds to the
one described in Section 3.3.3. For Smodels, we have replaced the disjunctive rules with
rules employing unstratified negation.

Note that the compute all statement for Smodels only leads to a single model of least
cost, while during the computation Smodels also prints non-optimal models. To the best of
our knowledge, Smodels currently is not capable of generating precisely the set of models
having least cost (in case there is more than one such model). Such models can only be
obtained by running Smodels a second time with the original program extended by a further
constraint discarding the models whose costs are higher than the least cost (computed in
the first run).

ASSAT and GnT currently do not support the minimize statement of Lparse/Smodels
(and weak constraints neither), so we could not test them on this problem.

Sokoban (SOKOBAN). Sokoban means “warehouse-keeper” in Japanese, and is the name
of a game puzzle which has been developed by the Japanese company Thinking Rabbit,
Inc., in 1982. Each puzzle consists of a room layout (a number of square fields represent-
ing walls or parts of the floor, some of which are marked as storage space) and a starting
situation (one sokoban and a number of boxes, all of which must reside on some floor lo-
cation). The goal is to move all boxes to storage locations. To this end, the sokoban can
walk on floor locations (unless occupied by a box), and push single boxes to unoccupied
floor locations. Figure 4 shows a typical configuration involving two boxes, where grey
fields are storage fields and black fields are walls.

Fig. 4. A Sokoban Instance

We have written programs for DLV, GnT, Smodels and ASSAT (see Appendix A).
These programs find solutions with a given number of push actions (where one push ac-
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tion can move a box over any number of fields) for a given puzzle, and we have developed
scripts which iteratively run these programs with increasing numbers of push actions (start-
ing at one) until some solution is found. In this way solutions with a minimal number of
push actions are computed.

The puzzle in Figure 4 is solvable with six push actions, so each of the scripts uses the
corresponding ASP system to first prove that no solutions with one to five push actions
exist, and then to compute a solution with six push actions.

Quantified Boolean Formulas (2QBF). Our first benchmark problem at the second level
of the Polynomial Hierarchy is 2QBF (see Section 3.3.5). The encoding for GnT is the
same as for DLV, just using the different syntax for disjunction. This problem is ΣP

2 -
complete, so we could not consider ASSAT and Smodels, since they do not support dis-
junction, which is strictly needed in this case (unless P = NP).

Our benchmark instances were generated following recent works presented in the lit-
erature that describe transition phase results for QBFs [Cadoli et al. 1997b; Gent and
Walsh 1999]. They showed experimentally that classes of 2QBF instances with a cer-
tain #clauses/#variables ratio contain approximately the same number of valid and invalid
instances, and are quite hard to be solved.

We generated randomly two data sets of 2QBF formulas Φ = ∃X∀Y φ, where φ is in
3DNF. In all generated instances, the number of ∀-variables in any formula is the same
as the number of ∃-variables (that is, |X | = |Y |) and each disjunct contains at least two
universal variables. Moreover, in the first data set the number of clauses equals the over-
all number of variables (that is, |X | + |Y |), while in the second data set the number of
clauses is ((|X |+ |Y |)/2)0.5. For both data sets, these numbers of clauses have been cho-
sen according to the experimental verification reported in [Gent and Walsh 1999]. Indeed,
in this paper, Gent and Walsh showed that, if the length of clauses is fixed to 3, the two
choices above lead to a phase transition behaviour where approximately 50% of the in-
stances are valid, both for their generation schema and for the schema proposed in [Cadoli
et al. 1997b]. In the following, we will refer to instances belonging to the first data set as
2QBFGW , and to instances belonging to the second data set as 2QBFCGS .

Note that the above cited papers on phase transitions deal with dual 2QBF formulas of
form Φ′ = ∀X∃Y φ′ , where φ′ is in 3CNF; for distinction, they are called 2QBF3CNF

∀

formulas and the former 2QBF3DNF

∃
formulas. Deciding the validity of 2QBF3CNF

∀
for-

mulas is ΠP
2 -complete. However, in our ΣP

2 -complete benchmark problem 2QBF, we
have to decide the validity of 2QBF3DNF

∃
formulas. Nevertheless, our instance generation

schemes are designed in such a way that the classes of QBFs from which we randomly
select instances have the same phase transition behaviors as those described in [Cadoli
et al. 1997b; Gent and Walsh 1999]. Indeed, it is easy to see that for each valid (resp.,
invalid) 2QBF3CNF

∀
formula Φc, there is a corresponding invalid (resp., valid) 2QBF3DNF

∃

formula Φd with the same probability to be generated, and vice versa. Therefore, the frac-
tion of valid instances (as a function of the #clauses/#variables ratio) for such 2QBF3CNF

∀

formulas is the same as the fraction of the invalid instances (as a function of the #dis-
juncts/#variables ratio) for our 2QBF3DNF

∃
formulas.

Strategic Companies (STRATCOMP). Here, we generated tests with instances for n
companies (5 ≤ n ≤ 170), 3n products, 10 uniform randomly chosen contr by relations
per company, and uniform randomly chosen prod by relations.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.



42 ·

To make the problem harder, we considered (up to) four producers per product, (up
to) four controlling companies per company and only strategic sets containing two fixed
companies (1 and 2, without loss of generality), slightly adjusting the program Pstrat from
Section 3.3.6 as follows:

strat(X1) v strat(X2) v strat(X3) v strat(X4) :-
prod by(X,X1, X2, X3, X4).

strat(W ) :- contr by(W,X1, X2, X3, X4),
strat(X1), strat(X2), strat(X3), strat(X4).

:-not strat(1).
:-not strat(2).

We used the same encoding also for GnT (just rewriting the disjunction in GnT syntax).
We could not consider ASSAT and Smodels, as they lack support for disjunction.

7.3 Results and Discussion

For HAMPATH, TSP, 2QBFGW , 2QBFCGS , and STRATCOMP, we generated 50 random
instances for each problem size as indicated in the respective descriptions. For the more
“deterministic” benchmarks REACH and SAMEGEN, we have one instance per size.

All experiments were performed on AMD Athlon 1200 MHz machines with 512MB
RAM (with resource restrictions, see below) running FreeBSD 4.8. Time measurements
have been done using the time command shipped with FreeBSD 4.8, counting total CPU
time for the respective process.

For every instance, we allowed a maximum running time of 7200 seconds (two hours)
and a maximum memory usage of 256MB (using the command “limit datasize 256mega”);
in the case of a system using an external instantiator, 256MB per individual component.
In the graphs displaying the benchmark results, the line of a system stops whenever some
problem instance was not solved within these time and memory limits.

In Figure 5, we show the results obtained for REACH (left) and SAMEGEN (right).
Figures 6 and 7 show the results for 2QBFGW and 2QBFCGS , respectively, while Figure 8
displays the results for STRATCOMP. The results for HAMPATH and TSP are shown in
Figures 9 and 10, respectively. Tables IV and V, finally, contain the results for RAMSEY
and SOKOBAN, respectively. In the graphs and the tables, for ASSAT, GnT, and Smodels,
native denotes the usage of the Lparse instantiator, while DLV Instantiator denotes the
runs of these systems when their input is grounded by DLV Instantiator (see Section 7.1).16

For 2QBFGW , 2QBFCGS , STRATCOMP, and TSP, where we have 50 instances for each
problem size, we report two graphs visualizing the average and the maximum computation
time, respectively, consumed by each system over the 50 instances of the same size. For
HAMPATH we provide two such pairs of graphs: the first for the “native” runs of the
systems, the second for runs where DLV serves as the instantiator.

On average, DLV outperforms the other systems on the set of proposed problems, but
the results must be taken with some caveats, since they depend on the specific benchmark
problems and, in some cases, also on the adopted encodings. We next discuss the results
of the experiments, grouping similar cases together.

16The results for GnT with DLV Instantiator for 2QBF and STRATCOMP are not reported since there was
basically no difference compared to Lparse. For the other benchmarks, DLV Instantiator was run with DLV
encodings where for ASSAT and Smodels disjunction (only appearing in the “guessing rules”) is translated by
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Fig. 5. Reachability (REACH, left) and Same Generation (SAMEGEN, right)
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Fig. 6. 2QBFGW

Deductive Database Applications. On the deductive database applications REACH and
SAMEGEN, DLV is significantly faster than the other systems, which is due to the in-
stantiators used. Indeed these problems can be completely solved by the instantiators of
all considered systems. Since Smodels, GnT, and ASSAT adopt the same instantiator
(Lparse), they show essentially the same performance, differences are negligible and are
due to minor architectural issues. All of them exhaust at 700 nodes on REACH and on
676 nodes on SAMEGEN, respectively, while DLV goes much further, up to 10000 nodes
on REACH and up to 9025 nodes on SAMEGEN. Such a relevant difference in system
performance is explained by the fact that Lparse does not employ database optimization
techniques, and its instantiation method requires each variable in the program to be bound
over a pre-defined domain. The instantiator of DLV, instead, incorporates several database

unstratified negation.
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Fig. 7. 2QBFCGS
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Fig. 8. Strategic Companies (STRATCOMP)

techniques, and the domains are built dynamically, which often leads to a smaller result
[Faber et al. 1999; Leone et al. 2001]; such a dynamic instantiation technique pays off in
this case.

ΣP
2 Problems17. On 2QBFGW , both DLV and GnT scale in a very similar way, with

DLV having a clear lead. In the case of 2QBFCGS the difference between the two systems
becomes significantly larger: the GnT system stops at size 40, while DLV easily solves all
instances up to size 1200 (where we stopped benchmarking).

On the smaller instances of STRATCOMP, DLV and GnT behave similarly, but DLV
scales better and reaches 170 companies, while GnT stops at 160 companies.

17Recall that Smodels and ASSAT are not considered here, since they do not support disjunction, which is strictly
needed to solve ΣP

2
-complete problems like 2QBF and STRATCOMP.
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Fig. 9. Hamiltonian Path (HAMPATH) – “native” (top), DLV Instantiator (bottom)

The higher efficiency of DLV on ΣP
2 -complete problems is not surprising, as the treat-

ment of disjunction in DLV is built-in, while GnT employs a rewriting technique.

HAMPATH and TSP. On HAMPATH, the picture for DLV and GnT is similar to the one
for 2QBFGW , which shows better performance of DLV. The results for the other systems
are more surprising, however: DLV solves all instances up to size 105, while Smodels
stops at size 50, and GnT and ASSAT stop at size 45.

Both Smodels and ASSAT are specialized for problems in NP, and we are aware that
both are rather efficient on several NP-complete problems. In the literature, benchmark
results on Hamiltonian Path or Hamiltonian Circuit have been reported also in [Lin and
Zhao 2002] and [Nicolas et al. 2002]. While the findings in [Nicolas et al. 2002] appear
to confirm our results, those in [Lin and Zhao 2002] are quite different. Apparently, this
difference is mainly due to the encodings employed in the benchmarks. Indeed, we have
tested the Hamiltonian Path programs of our benchmarks on the instances used in [Lin and
Zhao 2002], and we arrived at similar results as reported above.

Interestingly, when we use DLV as instantiator, Smodels and GnT stop earlier (and solve
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Fig. 10. Traveling Salesperson (TSP)

all instances up to size 40 versus size 45 with Lparse), while ASSAT reaches size 45. This
is somewhat unexpected, since the instantiation produced by the DLV instantiator is, in
general, a subset of that generated by Lparse (on these examples they often coincide). The
difference is probably due to the different orderings of the ground rules generated by the
two instantiators, which may have an impact on the heuristics of GnT and Smodels in this
case.

Finally, we observe that Smodels behaves better than ASSAT on small instances, and
that the two systems scale similarly.

The picture for TSP is different:18 the optimality of a solution makes the problem harder
than HAMPATH. Both DLV and Smodels get significantly slower and have very similar
run time, with DLV being slightly faster. This behavior suggests that the implementation
of the optimization constructs is still to be improved in both DLV and Smodels.

RAMSEY. This problem highlights some interesting aspects related to the instantiation.
First of all, the choice of the domain predicate (node vs arc) has a tremendous impact on
the performance of Lparse.19 Indeed, the three systems based on Lparse (GnT, Smodels,
and ASSAT) behave significantly worse than DLV when node is used as domain predicate,
which is due to the ill-conditioned performance of Lparse on these encodings. Lparse gen-
erates too many ground instances on this program and requires a huge amount of memory.
For instance, to prove that RAMSEY3-5 is not 13, the Intelligent Grounding module of
DLV consumes 6MB of memory and generates 1,651 ground rules (including constraints);
on the same instance, Lparse requires 42.5MB of memory and generates 373,737 ground
rules. Thus, the instantiation by Lparse is two orders of magnitude larger than the one
by DLV, resulting in a huge overhead for GnT, Smodels and ASSAT. On larger instances
(including all of RAMSEY3-6, RAMSEY3-7, and RAMSEY4-5), Lparse could not make
the instantiation in the allowed amount of memory (256MB) and was halted. On the other

18Recall that ASSAT and GnT can not be tested on this problem, since they have no optimization constructs.
19The instantiator of DLV does not need the addition of domain predicates and, if domain predicates are added,
their impact is very marginal on the instantiation time and they do not affect the size of the generated instantiation.
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Problem DLV GnT Smodels ASSAT

—
Size (node) (edge) (DLV) (node) (edge) (DLV) (node) (edge) (DLV)

3-3 / 5 0.01 0.02 0.01 0.02 0.01 0.01 0.03 0.05 0.04 0.05
3-3 / 6 0.00 0.03 0.02 0.03 0.02 0.01 0.02 0.04 0.04 0.05
3-4 / 8 0.01 0.28 0.02 0.06 0.24 0.01 0.05 0.28 0.04 0.07
3-4 / 9 0.78 1.26 0.81 0.84 0.95 0.52 0.55 2.09 1.64 1.53
3-5 / 12 0.18 24.06 0.19 0.51 20.79 0.16 1.12 21.84 0.18 1.15
3-5 / 13 0.30 36.18 0.30 0.82 31.24 0.26 1.89 32.92 0.25 1.92
3-5 / 14 - - - - - - - 38.06 2032.30 1874.78
3-6 / 16 3.56 - 6.40 8.94 - 5.60 44.89 - 4.76 43.38
3-6 / 17 6.66 - 11.45 14.91 - 10.45 73.59 - 7.28 70.75
3-6 / 18 - - - - - - - - 435.56 592.42
3-7 / 15 4.18 - 49.41 9.22 - 48.66 87.59 - 47.96 86.84
3-7 / 16 7.91 - 85.52 17.68 - 82.65 157.05 - 81.30 157.49
3-7 / 17 14.33 - 144.88 - - 138.11 - - 134.26 -
3-7 / 18 25.41 - 239.83 - - - - - 215.64 -
3-7 / 19 43.84 - 387.14 - - - - - 337.20 -
3-7 / 20 73.22 - 608.51 - - 563.44 - - 513.62 -
3-7 / 21 118.12 - 909.07 - - 848.26 - - 767.27 -
3-7 / 22 1476.08 - 1668.76 - - - - - 1125.67 -
3-7 / 23 - - - - - - - - 2017.22 -
4-4 / 13 0.19 3.68 0.16 0.54 69.78 0.16 0.54 3.35 0.15 0.53
4-4 / 14 0.29 4.99 0.23 0.77 109.83 6.03 0.77 4.51 0.18 0.77
4-4 / 15 0.45 6.84 0.36 1.14 - 1.64 1.10 5.94 0.24 1.07
4-4 / 16 0.81 48.14 131.19 8.75 - 5.01 - 10.38 0.90 3.88
4-4 / 17 4282.26 98.32 1.45 28.19 - - - 13.80 1.07 4.57
4-4 / 18 - - - - - - - 723.88 492.69 588.68
4-5 / 17 2.50 - 2.66 6.02 - 1.83 12.70 - 1.27 11.99
4-5 / 18 3.78 - 4.12 8.80 - 11.09 18.82 - 1.73 18.09
4-5 / 19 5.55 - 6.11 12.64 - 988.37 27.13 - 2.34 26.24
4-5 / 20 7.56 - 7.99 17.56 - - 39.64 - 3.16 35.99
4-5 / 21 10.74 - 11.71 28.14 - - 55.86 - 4.13 51.11
4-5 / 22 14.91 - 39.91 34.81 - - 83.22 - 5.57 68.53
4-5 / 23 53.93 - 96.31 - - - - - 12.56 -
4-5 / 24 - - - - - - - - 182.81 -

% solved 84.84 33.33 84.84 63.63 24.24 60.60 57.57 39.39 100.00 72.72

Table IV. Results for RAMSEY (times in seconds)

hand, for the encoding with edge as domain predicate, Lparse generates an instantiation of
RAMSEY3-5 (13) with 1,820 ground rules using only 1.1MB of memory. Indeed, the per-
formance of GnT, Smodels and ASSAT changes completely on the encodings with edge,
and the three systems perform significantly better than on the encoding with node.20 The
performance of GnT comes closer to the performance of DLV, and ASSAT outperforms
all other systems on increasing instances.

Surprisingly, coupling ASSAT, GnT, and Smodels with the DLV instantiator does not
work well in this case, revealing an inefficiency of DLV in the instantiation of this spe-
cific non-disjunctive encoding (the resulting instantiation is small, but instantiation time is
long).

SOKOBAN. Also on this benchmark, the instantiation process has a strong impact on
overall system performance. If the native instantiators are used, DLV significantly outper-
forms the other systems; the difference is mainly due to the instantiation modules. Lparse
requires much more memory and generates a higher number of rule instances than DLV.
For instance, on SOKOBAN #48 (with plan length 8), DLV requires 6MB of memory
and generates 3,236 ground rules, while Lparse requires 125MB of memory and generates
2,130,705 ground rules. In fact, in many cases Lparse exceeded the memory limit and was

20We cannot explain the performance of GnT around RAMSEY4-4/16, but we verified that the timings are indeed
correct.
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native DLV Instantiator

Problem# DLV GnT Smodels ASSAT GnT Smodels ASSAT
1 15.41 - - - 75.13 23.78 6.36
2 0.16 - - - 0.71 0.61 0.80
3 0.21 - - - 1.12 0.88 0.97
4 0.13 55.71 49.05 58.36 0.69 0.58 0.75
5 0.32 - - - 1.53 1.25 1.73
6 0.11 34.49 30.43 32.40 0.48 0.42 0.53
7 0.15 84.43 74.44 70.66 0.77 0.62 0.75
8 0.46 - - - 2.13 1.74 2.00
9 0.09 - 99.32 94.25 0.43 0.36 0.43
10 0.18 - - - 0.84 0.69 0.79
11 0.15 - 155.04 145.69 0.69 0.58 0.69
12 0.17 - 156.24 186.24 0.80 0.68 0.80
13 0.06 13.20 11.52 11.34 0.33 0.28 0.35
14 0.11 34.54 30.47 32.04 0.58 0.48 0.57
15 0.17 - - - 0.81 0.68 0.84
16 1.14 - - - 5.69 4.09 4.41
17 0.14 - 109.28 119.88 0.71 0.58 0.71
18 0.92 - - - 5.72 3.68 3.08
19 0.59 - - - 5.20 3.22 2.87
20 0.76 - - - 4.48 3.19 2.73
21 0.27 - 157.43 162.44 1.23 1.01 1.16
22 0.27 - 223.57 209.98 1.18 0.98 1.11
23 0.29 - 224.04 - 1.34 1.07 1.45
24 0.26 - 157.67 170.00 1.24 1.00 1.33
25 0.08 11.35 9.91 10.72 0.43 0.36 0.47
26 0.38 - 213.14 248.01 1.94 1.56 1.93
27 0.06 13.26 11.58 11.23 0.32 0.27 0.36
28 0.34 - - - 1.51 1.20 1.55
29 0.54 - 191.14 241.92 3.14 2.28 2.66
30 0.39 - - - 1.66 1.32 1.52
31 0.53 - - - 2.74 1.89 2.12
32 0.06 13.41 11.69 12.74 0.35 0.29 0.37
33 0.31 - - - 1.46 1.20 1.46
34 0.49 - - - 1.96 1.59 1.99
35 1.00 - - - 4.71 3.27 4.06
36 0.20 79.70 70.27 77.99 1.02 0.83 1.08
37 0.66 - - - 3.07 2.33 2.26
38 0.46 - 215.15 271.75 2.04 1.61 2.08
39 0.43 - - - 1.87 1.49 2.03
40 0.27 - 157.08 181.74 1.19 0.99 1.37
41 0.32 - 145.70 153.56 1.56 1.26 1.55
42 0.31 107.89 95.94 109.38 1.48 1.22 1.52
43 0.74 - - - 4.07 2.88 2.82
44 0.38 - 214.17 224.76 1.64 1.34 1.58
45 0.49 - 191.05 218.84 2.32 1.88 2.19
46 0.69 - 353.98 - 4.05 2.78 3.77
47 0.96 - - - 5.36 3.32 3.24
48 0.89 - 354.23 - 4.17 3.06 3.38
49 0.41 - - - 1.85 1.52 1.63
50 659.02 - - - 233.07 370.21 12.00
51 198.84 - - - - 2033.88 263.88
52 - - - - - 5631.03 234.42
53 0.56 - 279.91 322.20 3.32 2.40 2.71
54 12.31 - - - 163.51 45.96 13.00
55 320.44 - - - 196.89 122.37 129.66
56 2.70 - - - 13.08 6.86 6.65
57 - - - - - - -
58 - - - - - - -
59 19.98 - - - 106.95 104.58 19.55
60 5.27 - - - 173.32 25.65 19.32

% solved 95.00 16.67 46.67 41.67 93.33 96.67 96.67

Table V. Results for SOKOBAN (times in seconds)
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halted.
We see a very different picture when the DLV instantiator is used. ASSAT, GnT and

Smodels perform like DLV; in fact, ASSAT and Smodels solve even one instance more
than DLV now. The encoding of SOKOBAN is much longer and more complex than the
other benchmark programs, some optimization techniques employed by the DLV instan-
tiator improve the “quality” (i.e., the size) of the instantiation with a great benefit for the
performance of the other systems.

Summary. Summarizing, we can draw the following conclusions:

—Currently, the DLV system is better suited to deal with “database oriented” applications
(in the sense of deductive databases) than the other systems, as the optimization tech-
niques implemented in its instantiator allow DLV to handle larger amounts of data in a
more efficient way.

—The built-in implementation of disjunction allows the DLV system to be faster than the
other systems on hard (ΣP

2 -hard) problems. Even if GnT is slower on such problems, its
performance is very good considering that disjunction is implemented through a rewrit-
ing technique. Smodels and ASSAT cannot handle ΣP

2 -hard problems at all, since they
do not support disjunction and ΣP

2 -hard problems cannot be encoded uniformly by v-
free programs, unless the Polynomial Hierarchy collapses (cf. Section 4).

—On NP / co-NP / ∆ P
2 problems like HAMPATH and TSP, the performance of the systems

comes closer, and they seem to be more strongly influenced by the chosen encodings
and by the instantiation procedures. DLV has a lead on problems involving recursion
like HAMPATH (with the chosen encoding being relevant here), while ASSAT is best
on RAMSEY, where the search space is very large and the computationally expensive
heuristics of DLV and Smodels (based on look-ahead) appear unsuited. On SOKOBAN
DLV outperforms the other systems if the native instantiators are used, while the other
systems improve significantly when they adopt the DLV instantiator.

—Thanks to the good performance on deductive database applications and on Σ P
2 -com-

plete problems, DLV appears to be applicable to a larger range of problems than the
other systems, which have been designed for a more specific class of problems.

—The approach implemented in the recent ASSAT system is very interesting, as it allows
to exploit the huge amount of work on satisfiability checkers done in AI. This approach
is promising especially on NP/co-NP problems, where the well-assessed heuristics of
satisfiability checkers pay off (e.g., ASSAT was fast on the RAMSEY problem). How-
ever, this system still needs some work to make it more robust; we experienced a number
of crashes on the Sokoban encodings, which are more elaborated than the others.
It would be nice to see an extension of ASSAT for dealing with optimization problems,
and enhancing ASSAT to compute all answer sets seems very important. Indeed, while
DLV, GnT, and Smodels are able to compute all (or a given number of) answer sets of a
program, ASSAT cannot generate all answer sets in one computation (see Section 7.1).
This limitation may have a negative impact on the efficiency of ASSAT on some relevant
tasks like, for instance, computing the set of all brave or cautious consequences.

—Comparing the use of disjunction versus unstratified negation or other means to express
choice, the experiments showed that, in the specific benchmark problems considered,
DLV, and in some cases also GnT, is competitive to Smodels and ASSAT, and the use
of the more familiar disjunction connective does not come at higher computational price.
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Two strong points of DLV in comparison to the other systems are: (i) the built-in imple-
mentation of disjunction, which allows DLV to efficiently solve ΣP

2 -complete problems,
and (ii) its advanced instantiation module, which allows DLV to efficiently deal with de-
ductive database applications, which supports a simpler way of programming (the user
does not have to bother about domain predicates), and which also tends to affect perfor-
mance on hard problems (like SOKOBAN) positively, as it produces a smaller instantiation
than Lparse, and requires less memory.

Our experimental results are complemented by other efforts on benchmarking ASP sys-
tems recently reported in the literature [Dix et al. 2002; Koch and Leone 1999; Lin and
Zhao 2002; Nicolas et al. 2002; Simons et al. 2002; Eiter et al. 1998a; Janhunen et al.
2003]. In general, these confirm our claim that DLV handles deductive database applica-
tions and ΣP

2 -complete problems more efficiently than the other systems, while the situ-
ation is less clear on NP-complete problems where the results depend, to a larger extent,
on the encodings adopted. While the experiments in [Koch and Leone 1999; Lin and Zhao
2002; Nicolas et al. 2002; Simons et al. 2002; Eiter et al. 1998a] are conducted on bench-
mark problems very similar to those used in this paper, a completely different approach has
been taken in [Dix et al. 2002]. This paper reports on a most recent comprehensive bench-
marking activity which was independently performed in the context of Hierarchical Task
Network (HTN) Planning based on ASP. Dix et al. considered instances of several plan-
ning problems, which are transformed to logic programs and solved by invoking an answer
set engine. These experiments are relevant, as they compare the systems in the important
domain of AI planning on benchmark instances which are really used to compare planning
systems. In particular, Dix et al. used DLV and Smodels (version v2.27) and compared
the behaviors of the systems. Summarizing their findings in [Dix et al. 2002], the authors
state that DLV was significantly faster than Smodels in their experiments. They believe
one of the reasons for this is grounding, as Smodels requires domain predicates, creating
many ground instances of the program clauses which are often irrelevant. But Dix et al.
also conclude that the better grounding is not the only source for DLV’s superiority in their
experiments: DLV was still faster than Smodels running on an instantiation provided by
DLV.

8. CONCLUSION

After an extensive period of mainly foundational and theoretical research on nonmonotonic
logics and databases, during the last years several implementations became available which
can be utilized as advanced and powerful tools for problem solving in a highly declarative
manner. They provide a computational back-end for the Answer Set Programming (ASP)
paradigm, in which the solutions to a problem are encoded in the models (or answer sets)
of a nonmonotonic logic program.

In this paper, we have presented the DLV system, which is a state-of-the-art imple-
mentation of disjunctive logic programming under the answer set semantics [Gelfond and
Lifschitz 1991], enriched by further useful language constructs. This paper is the first com-
prehensive document in which a wide survey over several relevant aspects of the system is
provided, covering technical, methodological, and application aspects.

Starting from an exposition of the core system language, we have illustrated how knowl-
edge representation and reasoning problems, even of high computational complexity, can
be declaratively encoded in the DLV language following a Guess-Check-Optimize (GCO)
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paradigm. Furthermore, we have addressed computational aspects of the language by pro-
viding a complete picture of the complexity of the DLV language and relevant syntactic
fragments thereof. The DLV engine exploits this picture by handling fragments of lower
complexity more efficiently. On the benchmarking side, as an important contribution this
paper presents and discusses a thorough experimentation activity which we have carried
out on an ample set of benchmark problems, taken from various application areas and with
different computational complexity. These experiments provide some evidence that, in
comparison with similar systems, DLV may have a wider range of applicability and, due
to its built-in database techniques and sophisticated processing of non-ground programs,
is better suited to deal with larger amounts of input data. It is worthwhile noting that the
Intelligent Grounder (IG) – a strong point of DLV– can be profitably exploited also by
other ASP systems for the instantiation of logic programs (by running DLV with option
“-instantiate”). Furthermore, by its high expressiveness (up to ∆ P

3 -complete problems),
DLV is capable of representing more complex problems than comparable systems, whose
expressiveness is limited to lower classes in the Polynomial Hierarchy.

The DLV system is disseminated in academia, and presumably soon also in industry.
Indeed, the industrial exploitation of DLV in the emerging areas of Knowledge Manage-
ment and Information Integration is the subject of two international projects funded by
the European Commission, namely, INFOMIX (Boosting Information Integration, project
IST-2002-33570) and ICONS (Intelligent Content Management System, project IST-2001-
32429). Further research on the DLV system is pursued in a number of national projects
such as the FWF (Austrian Science Funds) projects P14781 and P-16536-N04 on logic-
based planning and project P-17212-N04 on ASP for the Semantic Web.

DLV is widely used for educational purposes in courses on databases and on AI, both
in European and American universities. The DLV system has been employed at CERN,
the European Laboratory for Particle Physics located near Geneva, for an advanced deduc-
tive database application that involves complex knowledge manipulation on large-sized
databases. The Polish company Rodan Systems S.A. exploits DLV in a tool for the detec-
tion of price manipulations and unauthorized use of confidential information, which is used
by the Polish Securities and Exchange Commission. We believe that the strengths of DLV
– its expressivity and solid implementation – make it attractive for similar applications.

The DLV system has been continuously extended and improved over the last years, and
several language enhancements are under development which will be available in future
releases. In particular, aggregates and other set functions will be available [Dell’Armi et al.
2003], which are very convenient for the encoding of many practical problems. On the
other hand, improvements at the algorithmic level are underway by the development and
implementation of more sophisticated magic set techniques than those which are currently
available for disjunctive logic programs [Greco 1999]. Furthermore, refinements of the
heuristics in the model generation process should improve performance and scalability.

From what has been achieved and what may be expected, we are confident that DLV,
as well as similar ASP systems, will provide us with more and more widely applicable
tools which render computational logic an important component in advanced information
technology. ASP has been recognized as a promising approach for dealing with problems
which require advanced modeling capabilities for problem representation – recently, the
European Commission granted funding for a special Working Group on Answer Set Pro-
gramming (WASP) that is formed by a number of research groups in Europe.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.



52 ·

ACKNOWLEDGMENTS

We would like to thank Robert Bihlmeyer, Francesco Buccafurri, Francesco Calimeri, Si-
mona Citrigno, Tina Dell’Armi, Giuseppe Ielpa, Christoph Koch, Cristinel Mateis, and
Axel Polleres who contributed to the DLV project, as well as Ilkka Niemel ä and Patrik Si-
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A. APPENDIX: SOKOBAN ENCODINGS

The SOKOBAN problem has been encoded in DLV as follows.

time(T ) :-#int(T ).
actiontime(T ) :-#int(T ), T <> #maxint.

left(L1, L2) :- right(L2, L1).
bottom(L1, L2) :- top(L2, L1).

adj(L1, L2) :- right(L1, L2).
adj(L1, L2) :- left(L1, L2).
adj(L1, L2) :- top(L1, L2).
adj(L1, L2) :- bottom(L1, L2).

push(B, right, B1, T ) v¬push(B, right, B1, T ) :- reachable(L,T ), right(L, B), box(B,T ),
pushable right(B,B1, T ), good pushlocation(B1), actiontime(T ).

push(B, left, B1, T ) v¬push(B, left, B1, T ) :- reachable(L,T ), left(L, B), box(B,T ),
pushable left(B, B1, T ), good pushlocation(B1), actiontime(T ).

push(B,up, B1, T ) v¬push(B, up,B1, T ) :- reachable(L, T ), top(L, B), box(B,T ),
pushable top(B, B1, T ), good pushlocation(B1), actiontime(T ).

push(B, down, B1, T ) v¬push(B, down, B1, T ) :- reachable(L,T ), bottom(L, B), box(B,T ),
pushable bottom(B, B1, T ), good pushlocation(B1), actiontime(T ).

reachable(L,T ) :- sokoban(L, T ).
reachable(L,T ) :- reachable(L1, T ), adj(L1, L), not box(L, T ).

pushable right(B,D, T ) :- box(B, T ), right(B,D), not box(D, T ), actiontime(T ).
pushable right(B,D, T ) :- pushable right(B, D1, T ), right(D1, D), not box(D, T ).
pushable left(B, D, T ) :- box(B,T ), left(B, D), not box(D, T ), actiontime(T ).
pushable left(B, D, T ) :- pushable left(B, D1, T ), left(D1, D), not box(D, T ).
pushable top(B,D, T ) :- box(B, T ), top(B, D), not box(D, T ), actiontime(T ).
pushable top(B,D, T ) :-pushable top(B,D1, T ), top(D1, D), not box(D, T ).
pushable bottom(B,D, T ) :- box(B, T ), bottom(B,D), not box(D, T ), actiontime(T ).
pushable bottom(B,D, T ) :- pushable bottom(B, D1, T ), bottom(D1, D), not box(D, T ).

sokoban(L, T1) :- push( , right,B1, T ),#succ(T, T1), right(L,B1).
sokoban(L, T1) :- push( , left, B1, T ), #succ(T, T1), left(L, B1).
sokoban(L, T1) :- push( , up, B1, T ), #succ(T, T1), top(L, B1).
sokoban(L, T1) :- push( , down, B1, T ),#succ(T, T1), bottom(L,B1).

box(B,T1) :- push( , , B, T ),#succ(T, T1).
¬box(B,T1) :- push(B, , , T ), #succ(T, T1).

box(LB,T1) :- box(LB,T ), #succ(T, T1), not ¬box(LB, T1).

:- push(B, , , T ), push(B1, , , T ), B <> B1.

:- push(B, D, , T ), push(B,D1, , T ), D <> D1.

:- push(B, D, B1, T ), push(B, D, B11, T ), B1 <> B11.

good pushlocation(L) :- right(L, ), left(L, ).
good pushlocation(L) :- top(L, ), bottom(L, ).
good pushlocation(L) :- solution(L).

goal unreached :- solution(L), not box(L,#maxint). :- goal unreached.

For GnT, we used the same encoding with the addition of domain predicates and minor
syntactic changes to conform to the different syntax.

The encoding for Smodels and ASSAT has been obtained from the encoding for GnT,
rewriting disjunction in the “guessing” rules for push by unstratified negation.
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