MATEMATICA PER L'ANALISI DEI DATI

Capitolo 1: Statistica Descrittiva

Giovanni Amendola

Corso di laurea triennale in Informatica Università della Calabria

Anno Accademico 2020/2021

Concetto di Statistica

Statistica (Dizionario di Oxford, 2006)

La **statistica** è lo studio di una collezione (campione o popolazione) di dati (osservazioni):

- dell'analisi dei dati,
- dell'interpretazione dei dati,
- della presentazione dei dati,
- dell'organizzazione dei dati.

Statistica descrittiva: analizzare i dati osservati, indipendentemente dai modelli probabilistici e dalla provenienza dei dati:

Statistica descrittiva: analizzare i dati osservati, indipendentemente dai modelli probabilistici e dalla provenienza dei dati:

 ridurre i dati: estrapolare informazione attraverso grafici o indici (posizione, dispersione, forma);

Statistica descrittiva: analizzare i dati osservati, indipendentemente dai modelli probabilistici e dalla provenienza dei dati:

- ridurre i dati: estrapolare informazione attraverso grafici o indici (posizione, dispersione, forma);
- comparare i dati, ovvero
 - osservare una stessa variabile su più gruppi di individui.

Statistica descrittiva: analizzare i dati osservati, indipendentemente dai modelli probabilistici e dalla provenienza dei dati:

- ridurre i dati: estrapolare informazione attraverso grafici o indici (posizione, dispersione, forma);
- comparare i dati, ovvero
 - osservare una stessa variabile su più gruppi di individui.

Esempio

Voto di Fondamenti degli studenti del II anno e degli studenti del III anno.

Statistica descrittiva: analizzare i dati osservati, indipendentemente dai modelli probabilistici e dalla provenienza dei dati:

- ridurre i dati: estrapolare informazione attraverso grafici o indici (posizione, dispersione, forma);
- comparare i dati, ovvero
 - osservare una stessa variabile su più gruppi di individui.

Esempio

Voto di Fondamenti degli studenti del II anno e degli studenti del III anno.

 osservare più variabili sullo stesso gruppo di individui (scatterplot, covarianza, correlazione, retta di regressione).

Statistica descrittiva: analizzare i dati osservati, indipendentemente dai modelli probabilistici e dalla provenienza dei dati:

- ridurre i dati: estrapolare informazione attraverso grafici o indici (posizione, dispersione, forma);
- comparare i dati, ovvero
 - osservare una stessa variabile su più gruppi di individui.

Esempio

Voto di Fondamenti degli studenti del II anno e degli studenti del III anno.

 osservare più variabili sullo stesso gruppo di individui (scatterplot, covarianza, correlazione, retta di regressione).

Esempio

Voto di Fondamenti e voto di Analisi degli studenti del II anno.

Statistica descrittiva: analizzare i dati osservati, indipendentemente dai modelli probabilistici e dalla provenienza dei dati:

- ridurre i dati: estrapolare informazione attraverso grafici o indici (posizione, dispersione, forma);
- comparare i dati, ovvero
 - osservare una stessa variabile su più gruppi di individui.

Esempio

Voto di Fondamenti degli studenti del II anno e degli studenti del III anno.

 osservare più variabili sullo stesso gruppo di individui (scatterplot, covarianza, correlazione, retta di regressione).

Esempio

Voto di Fondamenti e voto di Analisi degli studenti del II anno.

Statistica inferenziale: fare inferenze (trarre conclusioni logiche) circa la popolazione complessiva a partire da osservazioni fatte su un campione estratto.

Variabile statistica

Una caratteristica rilevata su qualche unità statistica che appartiene ad una popolazione (campione) di riferimento.

Variabile statistica

Una caratteristica rilevata su qualche unità statistica che appartiene ad una popolazione (campione) di riferimento.

Esempio (Variabili statistiche)

A = "Numero di cani posseduti dagli studenti del corso".

Variabile statistica

Una caratteristica rilevata su qualche unità statistica che appartiene ad una popolazione (campione) di riferimento.

Esempio (Variabili statistiche)

A = "Numero di cani posseduti dagli studenti del corso".

$$0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1,$$

$$1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 2, 1.$$

Variabile statistica

Una caratteristica rilevata su qualche unità statistica che appartiene ad una popolazione (campione) di riferimento.

Esempio (Variabili statistiche)

A = "Numero di cani posseduti dagli studenti del corso".

$$0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 2, 1.$$

B = "Record di salto in alto degli studenti del corso (in centimetri)".

Variabile statistica

Una caratteristica rilevata su qualche unità statistica che appartiene ad una popolazione (campione) di riferimento.

Esempio (Variabili statistiche)

A = "Numero di cani posseduti dagli studenti del corso".

$$0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 2, 1.$$

B = "Record di salto in alto degli studenti del corso (in centimetri)".

Variabile statistica

Una caratteristica rilevata su qualche unità statistica che appartiene ad una popolazione (campione) di riferimento.

Esempio (Variabili statistiche)

A = "Numero di cani posseduti dagli studenti del corso".

$$0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 2, 1.$$

B = "Record di salto in alto degli studenti del corso (in centimetri)".

C = "Diploma di scuola superiore degli studenti del corso".

Variabile statistica

Una caratteristica rilevata su qualche unità statistica che appartiene ad una popolazione (campione) di riferimento.

Esempio (Variabili statistiche)

A = "Numero di cani posseduti dagli studenti del corso".

$$0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 2, 1.$$

B = "Record di salto in alto degli studenti del corso (in centimetri)".

C = "Diploma di scuola superiore degli studenti del corso".

Liceo Scientifico, Industriale, Liceo Scientifico, Ragioneria, Ragioneria, ...

Distinguiamo tra

- variabili numeriche, i valori che assumono sono numeri;
 - discrete, i valori che assumono sono finiti o numerabili (ad esempio la variabile A);
 - **continue**, i valori che assumono sono continui (ad esempio la variabile *B*);
- variabili categoriche, i valori che assumono non sono numeri (ad esempio la variabile *C*).

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

Esempio: La cifra più significativa di 0.02459 è

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

Esempio: La cifra più significativa di 0.02459 è 2.

La cifra meno significativa (o ultima cifra significativa) di un numero intero è la prima cifra partendo da destra diversa da zero, mentre di un numero con una parte frazionaria è l'ultima cifra a destra.

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

Esempio: La cifra più significativa di 0.02459 è 2.

La cifra meno significativa (o ultima cifra significativa) di un numero intero è la prima cifra partendo da destra diversa da zero, mentre di un numero con una parte frazionaria è l'ultima cifra a destra.

Esempio: La cifra meno significativa di 12600 è

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

Esempio: La cifra più significativa di 0.02459 è 2.

La cifra meno significativa (o ultima cifra significativa) di un numero intero è la prima cifra partendo da destra diversa da zero, mentre di un numero con una parte frazionaria è l'ultima cifra a destra.

Esempio: La cifra meno significativa di 12600 è 6

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

Esempio: La cifra più significativa di 0.02459 è 2.

La cifra meno significativa (o ultima cifra significativa) di un numero intero è la prima cifra partendo da destra diversa da zero, mentre di un numero con una parte frazionaria è l'ultima cifra a destra.

Esempio: La cifra meno significativa di 12600 è 6 , mentre la cifra meno significativa di 0.02459 è

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

Esempio: La cifra più significativa di 0.02459 è 2.

La cifra meno significativa (o ultima cifra significativa) di un numero intero è la prima cifra partendo da destra diversa da zero, mentre di un numero con una parte frazionaria è l'ultima cifra a destra.

Esempio: La cifra meno significativa di 12600 è 6 , mentre la cifra meno significativa di 0.02459 è 9.

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

Esempio: La cifra più significativa di 0.02459 è 2.

La cifra meno significativa (o ultima cifra significativa) di un numero intero è la prima cifra partendo da destra diversa da zero, mentre di un numero con una parte frazionaria è l'ultima cifra a destra.

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

Esempio: La cifra più significativa di 0.02459 è 2.

La cifra meno significativa (o ultima cifra significativa) di un numero intero è la prima cifra partendo da destra diversa da zero, mentre di un numero con una parte frazionaria è l'ultima cifra a destra.

Esempio: La cifra meno significativa di $12600 \ {\rm e}\ 6$, mentre la cifra meno significativa di $0.02459 \ {\rm e}\ 9$. L'ultima cifra significativa di $0.3710 \ {\rm e}\ 0$.

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

Esempio: La cifra più significativa di 0.02459 è 2.

La cifra meno significativa (o ultima cifra significativa) di un numero intero è la prima cifra partendo da destra diversa da zero, mentre di un numero con una parte frazionaria è l'ultima cifra a destra.

Esempio: La cifra meno significativa di $12600 \ \text{è} \ 6$, mentre la cifra meno significativa di $0.02459 \ \text{è} \ 9$. L'ultima cifra significativa di $0.3710 \ \text{è} \ 0$.

Le cifre significative di un numero sono tutte quelle comprese tra la cifra più significativa e quella meno significativa (incluse).

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

Esempio: La cifra più significativa di 0.02459 è 2.

La cifra meno significativa (o ultima cifra significativa) di un numero intero è la prima cifra partendo da destra diversa da zero, mentre di un numero con una parte frazionaria è l'ultima cifra a destra.

Le cifre significative di un numero sono tutte quelle comprese tra la cifra più significativa e quella meno significativa (incluse).

Esempio: Il numero 12600

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

Esempio: La cifra più significativa di 0.02459 è 2.

La cifra meno significativa (o ultima cifra significativa) di un numero intero è la prima cifra partendo da destra diversa da zero, mentre di un numero con una parte frazionaria è l'ultima cifra a destra.

Le cifre significative di un numero sono tutte quelle comprese tra la cifra più significativa e quella meno significativa (incluse).

Esempio: Il numero 12600 ha 3 cifre significative

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

Esempio: La cifra più significativa di 0.02459 è 2.

La cifra meno significativa (o ultima cifra significativa) di un numero intero è la prima cifra partendo da destra diversa da zero, mentre di un numero con una parte frazionaria è l'ultima cifra a destra.

Esempio: La cifra meno significativa di $12600 \ \text{è} \ 6$, mentre la cifra meno significativa di $0.02459 \ \text{è} \ 9$. L'ultima cifra significativa di $0.3710 \ \text{è} \ 0$.

Le cifre significative di un numero sono tutte quelle comprese tra la cifra più significativa e quella meno significativa (incluse).

Esempio: Il numero 12600 ha 3 cifre significative, mentre 0.02459 ne ha

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

Esempio: La cifra più significativa di 0.02459 è 2.

La cifra meno significativa (o ultima cifra significativa) di un numero intero è la prima cifra partendo da destra diversa da zero, mentre di un numero con una parte frazionaria è l'ultima cifra a destra.

Le cifre significative di un numero sono tutte quelle comprese tra la cifra più significativa e quella meno significativa (incluse).

Esempio: Il numero 12600 ha 3 cifre significative, mentre 0.02459 ne ha 4.

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

Esempio: La cifra più significativa di 0.02459 è 2.

La cifra meno significativa (o ultima cifra significativa) di un numero intero è la prima cifra partendo da destra diversa da zero, mentre di un numero con una parte frazionaria è l'ultima cifra a destra.

Esempio: La cifra meno significativa di $12600 \ {\rm e}\ 6$, mentre la cifra meno significativa di $0.02459 \ {\rm e}\ 9$. L'ultima cifra significativa di $0.3710 \ {\rm e}\ 0$.

Le cifre significative di un numero sono tutte quelle comprese tra la cifra più significativa e quella meno significativa (incluse).

Esempio: Il numero 12600 ha 3 cifre significative, mentre 0.02459 ne ha 4.

L'n-esima cifra significativa (n > 1) di un numero è l'n - 1-esima cifra a destra a partire dalla cifra più significativa.

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

Esempio: La cifra più significativa di 0.02459 è 2.

La cifra meno significativa (o ultima cifra significativa) di un numero intero è la prima cifra partendo da destra diversa da zero, mentre di un numero con una parte frazionaria è l'ultima cifra a destra.

Le cifre significative di un numero sono tutte quelle comprese tra la cifra più significativa e quella meno significativa (incluse).

Esempio: Il numero 12600 ha 3 cifre significative, mentre 0.02459 ne ha 4.

L'n-esima cifra significativa (n > 1) di un numero è l'n - 1-esima cifra a destra a partire dalla cifra più significativa.

Esempio: La terza cifra significativa di 0.02459 è

La cifra più significativa (o prima cifra significativa) di un numero: prima cifra partendo da sinistra diversa da zero.

Esempio: La cifra più significativa di 0.02459 è 2.

La cifra meno significativa (o ultima cifra significativa) di un numero intero è la prima cifra partendo da destra diversa da zero, mentre di un numero con una parte frazionaria è l'ultima cifra a destra.

Le cifre significative di un numero sono tutte quelle comprese tra la cifra più significativa e quella meno significativa (incluse).

Esempio: Il numero 12600 ha 3 cifre significative, mentre 0.02459 ne ha 4.

L'n-esima cifra significativa (n > 1) di un numero è l'n - 1-esima cifra a destra a partire dalla cifra più significativa.

Esempio: La terza cifra significativa di 0.02459 è 5.

Come rappresentare le grandezze numeriche in modo inesatto? Distinguiamo due tipi di approssimazioni.

Come rappresentare le grandezze numeriche in modo inesatto? Distinguiamo due tipi di approssimazioni.

 Troncamento: vengono cancellate tutte le cifre a destra di una data cifra del numero considerato.

Come rappresentare le grandezze numeriche in modo inesatto? Distinguiamo due tipi di approssimazioni.

 Troncamento: vengono cancellate tutte le cifre a destra di una data cifra del numero considerato.

Esempio: Troncare il numero 13.29357 alla quarta cifra significativa:

Come rappresentare le grandezze numeriche in modo inesatto? Distinguiamo due tipi di approssimazioni.

 Troncamento: vengono cancellate tutte le cifre a destra di una data cifra del numero considerato.

Esempio: Troncare il numero 13.29357 alla quarta cifra significativa: 13.29.

Come rappresentare le grandezze numeriche in modo inesatto? Distinguiamo due tipi di approssimazioni.

 Troncamento: vengono cancellate tutte le cifre a destra di una data cifra del numero considerato.

Esempio: Troncare il numero 13.29357 alla quarta cifra significativa: 13.29.

Esempio: Troncare il numero 13.29357 alla sesta cifra significativa:

Come rappresentare le grandezze numeriche in modo inesatto? Distinguiamo due tipi di approssimazioni.

 Troncamento: vengono cancellate tutte le cifre a destra di una data cifra del numero considerato.

Esempio: Troncare il numero 13.29357 alla quarta cifra significativa: 13.29. **Esempio**: Troncare il numero 13.29357 alla sesta cifra significativa: 13.2935.

Come rappresentare le grandezze numeriche in modo inesatto? Distinguiamo due tipi di approssimazioni.

 Troncamento: vengono cancellate tutte le cifre a destra di una data cifra del numero considerato.

Esempio: Troncare il numero 13.29357 alla quarta cifra significativa: 13.29. **Esempio**: Troncare il numero 13.29357 alla sesta cifra significativa: 13.2935.

 Arrotondamento: si approssima il numero di partenza all'n-esima cifra significativa con un altro numero il più vicino possibile, dunque l'arrotondamento può essere:

Come rappresentare le grandezze numeriche in modo inesatto? Distinguiamo due tipi di approssimazioni.

 Troncamento: vengono cancellate tutte le cifre a destra di una data cifra del numero considerato.

Esempio: Troncare il numero 13.29357 alla quarta cifra significativa: 13.29. **Esempio**: Troncare il numero 13.29357 alla sesta cifra significativa: 13.2935.

- Arrotondamento: si approssima il numero di partenza all'n-esima cifra significativa con un altro numero il più vicino possibile, dunque l'arrotondamento può essere:
 - per difetto, se la prima cifra dopo l'n-esima cifra significativa è 0,
 1, 2, 3 o 4;

Come rappresentare le grandezze numeriche in modo inesatto? Distinguiamo due tipi di approssimazioni.

 Troncamento: vengono cancellate tutte le cifre a destra di una data cifra del numero considerato.

Esempio: Troncare il numero 13.29357 alla quarta cifra significativa: 13.29. **Esempio**: Troncare il numero 13.29357 alla sesta cifra significativa: 13.2935.

- Arrotondamento: si approssima il numero di partenza all'n-esima cifra significativa con un altro numero il più vicino possibile, dunque l'arrotondamento può essere:
 - per difetto, se la prima cifra dopo l'n-esima cifra significativa è 0,
 1, 2, 3 o 4;

Esempio: Arrotondare 13.29357 alla quarta cifra significativa:

Come rappresentare le grandezze numeriche in modo inesatto? Distinguiamo due tipi di approssimazioni.

 Troncamento: vengono cancellate tutte le cifre a destra di una data cifra del numero considerato.

Esempio: Troncare il numero 13.29357 alla quarta cifra significativa: 13.29. **Esempio**: Troncare il numero 13.29357 alla sesta cifra significativa: 13.2935.

- Arrotondamento: si approssima il numero di partenza all'n-esima cifra significativa con un altro numero il più vicino possibile, dunque l'arrotondamento può essere:
 - per difetto, se la prima cifra dopo l'n-esima cifra significativa è 0,
 1, 2, 3 o 4;

Esempio: Arrotondare 13.29357 alla quarta cifra significativa: 13.29.

Come rappresentare le grandezze numeriche in modo inesatto? Distinguiamo due tipi di approssimazioni.

 Troncamento: vengono cancellate tutte le cifre a destra di una data cifra del numero considerato.

Esempio: Troncare il numero 13.29357 alla quarta cifra significativa: 13.29. **Esempio**: Troncare il numero 13.29357 alla sesta cifra significativa: 13.2935.

- Arrotondamento: si approssima il numero di partenza all'n-esima cifra significativa con un altro numero il più vicino possibile, dunque l'arrotondamento può essere:
 - per difetto, se la prima cifra dopo l'n-esima cifra significativa è 0,
 1, 2, 3 o 4;

Esempio: Arrotondare 13.29357 alla quarta cifra significativa: 13.29.

per eccesso, se la prima cifra dopo l'n-esima cifra significativa è 5,
 6, 7, 8 o 9;

Come rappresentare le grandezze numeriche in modo inesatto? Distinguiamo due tipi di approssimazioni.

 Troncamento: vengono cancellate tutte le cifre a destra di una data cifra del numero considerato.

Esempio: Troncare il numero 13.29357 alla quarta cifra significativa: 13.29. **Esempio**: Troncare il numero 13.29357 alla sesta cifra significativa: 13.2935.

- Arrotondamento: si approssima il numero di partenza all'n-esima cifra significativa con un altro numero il più vicino possibile, dunque l'arrotondamento può essere:
 - per difetto, se la prima cifra dopo l'n-esima cifra significativa è 0,
 1, 2, 3 o 4;

Esempio: Arrotondare 13.29357 alla quarta cifra significativa: 13.29.

per eccesso, se la prima cifra dopo l'n-esima cifra significativa è 5,
 6, 7, 8 o 9;

Esempio: Arrotondare 13.29357 alla sesta cifra significativa:

Come rappresentare le grandezze numeriche in modo inesatto? Distinguiamo due tipi di approssimazioni.

 Troncamento: vengono cancellate tutte le cifre a destra di una data cifra del numero considerato.

Esempio: Troncare il numero 13.29357 alla quarta cifra significativa: 13.29. **Esempio**: Troncare il numero 13.29357 alla sesta cifra significativa: 13.2935.

- Arrotondamento: si approssima il numero di partenza all'n-esima cifra significativa con un altro numero il più vicino possibile, dunque l'arrotondamento può essere:
 - per difetto, se la prima cifra dopo l'n-esima cifra significativa è 0,
 1, 2, 3 o 4;

Esempio: Arrotondare 13.29357 alla quarta cifra significativa: 13.29.

per eccesso, se la prima cifra dopo l'n-esima cifra significativa è 5,
 6, 7, 8 o 9;

Esempio: Arrotondare 13.29357 alla sesta cifra significativa: 13.2936.

Attenzione alla propagazione dell'errore di approssimazione

Attenzione alla propagazione dell'errore di approssimazione

Esempio

Attenzione alla propagazione dell'errore di approssimazione

Esempio

Consideriamo i numeri x=1.6666666, y=1.7333333 e z=100. Vogliamo calcolare $(y-x) \cdot z$. Eseguiamo il calcolo utilizzando due diverse approssimazioni.

• Terza cifra significativa:

Attenzione alla propagazione dell'errore di approssimazione

Esempio

Consideriamo i numeri x=1.6666666, y=1.7333333 e z=100. Vogliamo calcolare $(y-x) \cdot z$. Eseguiamo il calcolo utilizzando due diverse approssimazioni.

• Terza cifra significativa: $\tilde{x} = 1.67$,

Attenzione alla propagazione dell'errore di approssimazione

Esempio

Consideriamo i numeri x=1.6666666, y=1.7333333 e z=100. Vogliamo calcolare $(y-x) \cdot z$. Eseguiamo il calcolo utilizzando due diverse approssimazioni.

• Terza cifra significativa: $\tilde{x} = 1.67$, $\tilde{y} = 1.73$

Attenzione alla propagazione dell'errore di approssimazione

Esempio

Consideriamo i numeri x=1.6666666, y=1.7333333 e z=100. Vogliamo calcolare $(y-x) \cdot z$. Eseguiamo il calcolo utilizzando due diverse approssimazioni.

• Terza cifra significativa: $\tilde{x} = 1.67$, $\tilde{y} = 1.73$ e $\tilde{z} = 100$.

Attenzione alla propagazione dell'errore di approssimazione

Esempio

Consideriamo i numeri x=1.6666666, y=1.7333333 e z=100. Vogliamo calcolare $(y-x) \cdot z$. Eseguiamo il calcolo utilizzando due diverse approssimazioni.

• Terza cifra significativa: $\tilde{x}=1.67$, $\tilde{y}=1.73$ e $\tilde{z}=100$. Per cui $(\tilde{y}-\tilde{x})\cdot \tilde{z}=$

Attenzione alla propagazione dell'errore di approssimazione

Esempio

Consideriamo i numeri x=1.6666666, y=1.7333333 e z=100. Vogliamo calcolare $(y-x) \cdot z$. Eseguiamo il calcolo utilizzando due diverse approssimazioni.

• Terza cifra significativa: $\tilde{x}=1.67$, $\tilde{y}=1.73$ e $\tilde{z}=100$. Per cui $(\tilde{y}-\tilde{x})\cdot \tilde{z}=(1.73-1.67)\cdot 100=$

Attenzione alla propagazione dell'errore di approssimazione

Esempio

Consideriamo i numeri x=1.6666666, y=1.7333333 e z=100. Vogliamo calcolare $(y-x) \cdot z$. Eseguiamo il calcolo utilizzando due diverse approssimazioni.

• Terza cifra significativa: $\tilde{x}=1.67$, $\tilde{y}=1.73$ e $\tilde{z}=100$. Per cui $(\tilde{y}-\tilde{x})\cdot \tilde{z}=(1.73-1.67)\cdot 100=0.06\cdot 100=$

Attenzione alla propagazione dell'errore di approssimazione

Esempio

Consideriamo i numeri x=1.6666666, y=1.7333333 e z=100. Vogliamo calcolare $(y-x) \cdot z$. Eseguiamo il calcolo utilizzando due diverse approssimazioni.

• Terza cifra significativa: $\tilde{x} = 1.67$, $\tilde{y} = 1.73$ e $\tilde{z} = 100$. Per cui $(\tilde{y} - \tilde{x}) \cdot \tilde{z} = (1.73 - 1.67) \cdot 100 = 0.06 \cdot 100 = 6$.

Attenzione alla propagazione dell'errore di approssimazione

Esempio

- Terza cifra significativa: $\tilde{x} = 1.67$, $\tilde{y} = 1.73$ e $\tilde{z} = 100$. Per cui $(\tilde{y} - \tilde{x}) \cdot \tilde{z} = (1.73 - 1.67) \cdot 100 = 0.06 \cdot 100 = 6$.
- Seconda cifra significativa:

Attenzione alla propagazione dell'errore di approssimazione

Esempio

- Terza cifra significativa: $\tilde{x} = 1.67$, $\tilde{y} = 1.73$ e $\tilde{z} = 100$. Per cui $(\tilde{y} - \tilde{x}) \cdot \tilde{z} = (1.73 - 1.67) \cdot 100 = 0.06 \cdot 100 = 6$.
- Seconda cifra significativa: $\tilde{x} = 1.7$,

Attenzione alla propagazione dell'errore di approssimazione

Esempio

- Terza cifra significativa: $\tilde{x} = 1.67$, $\tilde{y} = 1.73$ e $\tilde{z} = 100$. Per cui $(\tilde{y} - \tilde{x}) \cdot \tilde{z} = (1.73 - 1.67) \cdot 100 = 0.06 \cdot 100 = 6$.
- Seconda cifra significativa: $\tilde{x}=1.7$, $\tilde{y}=1.7$

Attenzione alla propagazione dell'errore di approssimazione

Esempio

- Terza cifra significativa: $\tilde{x} = 1.67$, $\tilde{y} = 1.73$ e $\tilde{z} = 100$. Per cui $(\tilde{y} - \tilde{x}) \cdot \tilde{z} = (1.73 - 1.67) \cdot 100 = 0.06 \cdot 100 = 6$.
- Seconda cifra significativa: $\tilde{x} = 1.7$, $\tilde{y} = 1.7$ e $\tilde{z} = 100$.

Attenzione alla propagazione dell'errore di approssimazione

Esempio

- Terza cifra significativa: $\tilde{x} = 1.67$, $\tilde{y} = 1.73$ e $\tilde{z} = 100$. Per cui $(\tilde{y} - \tilde{x}) \cdot \tilde{z} = (1.73 - 1.67) \cdot 100 = 0.06 \cdot 100 = 6$.
- Seconda cifra significativa: $\tilde{x} = 1.7$, $\tilde{y} = 1.7$ e $\tilde{z} = 100$. Per cui $(\tilde{y} - \tilde{x}) \cdot \tilde{z} =$

Attenzione alla propagazione dell'errore di approssimazione

Esempio

- Terza cifra significativa: $\tilde{x} = 1.67$, $\tilde{y} = 1.73$ e $\tilde{z} = 100$. Per cui $(\tilde{y} - \tilde{x}) \cdot \tilde{z} = (1.73 - 1.67) \cdot 100 = 0.06 \cdot 100 = 6$.
- Seconda cifra significativa: $\tilde{x}=1.7$, $\tilde{y}=1.7$ e $\tilde{z}=100$. Per cui $(\tilde{y}-\tilde{x})\cdot \tilde{z}=(1.7-1.7)\cdot 100=$

Attenzione alla propagazione dell'errore di approssimazione

Esempio

- Terza cifra significativa: $\tilde{x} = 1.67$, $\tilde{y} = 1.73$ e $\tilde{z} = 100$. Per cui $(\tilde{y} - \tilde{x}) \cdot \tilde{z} = (1.73 - 1.67) \cdot 100 = 0.06 \cdot 100 = 6$.
- Seconda cifra significativa: $\tilde{x}=1.7$, $\tilde{y}=1.7$ e $\tilde{z}=100$. Per cui $(\tilde{y}-\tilde{x})\cdot \tilde{z}=(1.7-1.7)\cdot 100=0$.

Attenzione alla propagazione dell'errore di approssimazione

Esempio

Consideriamo i numeri x=1.6666666, y=1.7333333 e z=100. Vogliamo calcolare $(y-x) \cdot z$. Eseguiamo il calcolo utilizzando due diverse approssimazioni.

- Terza cifra significativa: $\tilde{x} = 1.67$, $\tilde{y} = 1.73$ e $\tilde{z} = 100$. Per cui $(\tilde{y} - \tilde{x}) \cdot \tilde{z} = (1.73 - 1.67) \cdot 100 = 0.06 \cdot 100 = 6$.
- Seconda cifra significativa: $\tilde{x} = 1.7$, $\tilde{y} = 1.7$ e $\tilde{z} = 100$. Per cui $(\tilde{y} - \tilde{x}) \cdot \tilde{z} = (1.7 - 1.7) \cdot 100 = 0$.

Esercizio

Arrotondare i seguenti numeri alla seconda e alla quarta cifra significativa: 1.38277, 0.0266666, 0.35555, 14.5051.

Definizione (Frequenza)

• Frequenza assoluta: numero di osservazioni in cui si presenta una data modalità (numeri o attributi) di una variabile.

Definizione (Frequenza)

- Frequenza assoluta: numero di osservazioni in cui si presenta una data modalità (numeri o attributi) di una variabile.
- Frequenza relativa: rapporto tra frequenza assoluta e numero totale di osservazioni.

Definizione (Frequenza)

- Frequenza assoluta: numero di osservazioni in cui si presenta una data modalità (numeri o attributi) di una variabile.
- Frequenza relativa: rapporto tra frequenza assoluta e numero totale di osservazioni.
- Frequenza percentuale: frequenza relativa per 100.

Definizione (Frequenza)

- Frequenza assoluta: numero di osservazioni in cui si presenta una data modalità (numeri o attributi) di una variabile.
- Frequenza relativa: rapporto tra frequenza assoluta e numero totale di osservazioni.
- Frequenza percentuale: frequenza relativa per 100.
- Frequenza relativa (percentuale) cumulativa: frequenza relativa (percentuale) delle osservazioni minori o uguali ad un certo valore.

Definizione (Frequenza)

- Frequenza assoluta: numero di osservazioni in cui si presenta una data modalità (numeri o attributi) di una variabile.
- Frequenza relativa: rapporto tra frequenza assoluta e numero totale di osservazioni.
- Frequenza percentuale: frequenza relativa per 100.
- Frequenza relativa (percentuale) cumulativa: frequenza relativa (percentuale) delle osservazioni minori o uguali ad un certo valore.

Tabella di distribuzione di frequenza: classi (partizioni dei dati osservati), frequenze assolute, frequenze relative, frequenze percentuali, frequenze cumulative.

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0				

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0				
1				

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0				
1				
2				

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0				
1				
2				
3				

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34			
1				
2				
3				

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34			
1	13			
2				
3				

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34			
1	13			
2	2			
3				

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34			
1	13			
2	2			
3	1			

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34	0.68		
1	13			
2	2			
3	1			

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34	0.68		
1	13	0.26		
2	2			
3	1			

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34	0.68		
1	13	0.26		
2	2	0.04		
3	1			

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34	0.68		
1	13	0.26		
2	2	0.04		
3	1	0.02		

Esempio (Tabella di distribuzione di frequenza)

	Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
	0	34	0.68	68%	
İ	1	13	0.26		
	2	2	0.04		
	3	1	0.02		

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34	0.68	68%	
1	13	0.26	26%	
2	2	0.04		
3	1	0.02		

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34	0.68	68%	
1	13	0.26	26%	
2	2	0.04	4%	
3	1	0.02		

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34	0.68	68%	
1	13	0.26	26%	
2	2	0.04	4%	
3	1	0.02	2%	

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34	0.68	68%	68%
1	13	0.26	26%	
2	2	0.04	4%	
3	1	0.02	2%	

Esempio (Tabella di distribuzione di frequenza)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34	0.68	68%	68%
1	13	0.26	26%	94%
2	2	0.04	4%	
3	1	0.02	2%	

Esempio (Tabella di distribuzione di frequenza)

	Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
	0	34	0.68	68%	68%
İ	1	13	0.26	26%	94%
	2	2	0.04	4%	98%
	3	1	0.02	2%	

Esempio (Tabella di distribuzione di frequenza)

	Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
	0	34	0.68	68%	68%
	1	13	0.26	26%	94%
	2	2	0.04	4%	98%
ĺ	3	1	0.02	2%	100%

Esempio (Tabella di distribuzione di frequenza)

Consideriamo la variabile numerica discreta A:

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34	0.68	68%	68%
1	13	0.26	26%	94%
2	2	0.04	4%	98%
3	1	0.02	2%	100%

Osservazione

La somma della frequenza relativa è sempre pari a 1.

Esempio (Tabella di distribuzione di frequenza)

Consideriamo la variabile numerica discreta A:

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34	0.68	68%	68%
1	13	0.26	26%	94%
2	2	0.04	4%	98%
3	1	0.02	2%	100%

Osservazione

La somma della frequenza relativa è sempre pari a 1.

La somma della frequenza percentuale è sempre pari al 100%.

oio
$^{\prime\prime}$

Consideriamo la variabile numerica continua

B = "Record di salto in alto degli studenti del corso".

Classe	f. assoluta

Esempio

Classe	f. assoluta
$140cm \leq B < 150cm$	

Esempio

Classe	f. assoluta
$140cm \leq B < 150cm$	4

Esempio

Consideriamo la variabile numerica continua

B = "Record di salto in alto degli studenti del corso".

Classe	f. assoluta
$140cm \le B < 150cm$	4
$150cm \le B < 160cm$	

Esempio

Classe	f. assoluta
$140cm \leq B < 150cm$	4
$150cm \le B < 160cm$	7

Esempio

Classe	f. assoluta
$140cm \leq B < 150cm$	4
$150cm \le B < 160cm$	7
$160cm \le B < 170cm$	

Esempio

Classe	f. assoluta
$140cm \leq B < 150cm$	4
$150cm \le B < 160cm$	7
$160cm \le B < 170cm$	20

Esempio

Classe	f. assoluta
$140cm \leq B < 150cm$	4
$150cm \le B < 160cm$	7
$160cm \le B < 170cm$	20
$170cm \le B < 180cm$	

Esempio

Classe	f. assoluta
$140cm \leq B < 150cm$	4
$150cm \le B < 160cm$	7
$160cm \le B < 170cm$	20
$170cm \le B < 180cm$	17

Esempio

Classe	f. assoluta
$140cm \leq B < 150cm$	4
$150cm \leq B < 160cm$	7
$160cm \le B < 170cm$	20
170 cm $\leq B < 180$ cm	17
$180cm \leq B < 190cm$	

Esempio

Classe	f. assoluta
$140cm \leq B < 150cm$	4
$150cm \le B < 160cm$	7
$160cm \le B < 170cm$	20
$170cm \le B < 180cm$	17
180 cm $\leq B < 190$ cm	2

Esempio

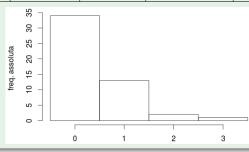
Consideriamo la variabile numerica continua B = "Record di salto in alto degli studenti del corso".

Classe	f. assoluta
$140cm \leq B < 150cm$	4
$150cm \le B < 160cm$	7
$160cm \leq B < 170cm$	20
$170cm \le B < 180cm$	17
$180cm \le B < 190cm$	2

Osservazione

Per variabili continue: si perde informazione, ma si guadagna in leggibilità. Passaggio da dati grezzi a dati raggruppati.

Rappresenta le distribuzioni di frequenza per variabili numeriche.


Esempio (Istogramma relativo alla variabile numerica discreta A)

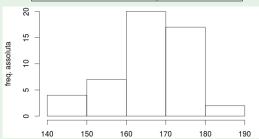
Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34	0.68	68%	68%
1	13	0.26	26%	94%
2	2	0.04	4%	98%
3	1	0.02	2%	100%

Rappresenta le distribuzioni di frequenza per variabili numeriche.

Esempio (Istogramma relativo alla variabile numerica discreta A)

Classe	f. assoluta	f. relativa	f. percentuale	f. cumulativa
0	34	0.68	68%	68%
1	13	0.26	26%	94%
2	2	0.04	4%	98%
3	1	0.02	2%	100%

Rappresenta le distribuzioni di frequenza per variabili numeriche.


Esempio (Istogramma relativo alla variabile numerica continua B)

Classe	freq. assoluta
$140cm \le B < 150cm$	4
$150cm \le B < 160cm$	7
$160cm \le B < 170cm$	20
$170cm \le B < 180cm$	17
$180cm \le B < 190cm$	2

Rappresenta le distribuzioni di frequenza per variabili numeriche.

Esempio (Istogramma relativo alla variabile numerica continua B)

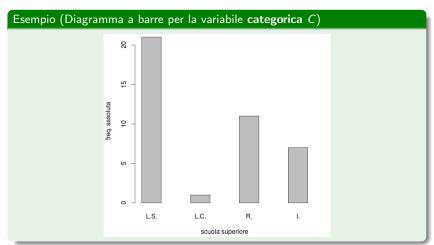
Classe	freq. assoluta
$140cm \le B < 150cm$	4
$150cm \le B < 160cm$	7
$160cm \le B < 170cm$	20
$170cm \le B < 180cm$	17
$180cm \le B < 190cm$	2

Rappresentazione grafica dei dati: Diagramma a barre

Rappresenta le distribuzioni di frequenza per variabili categoriche.

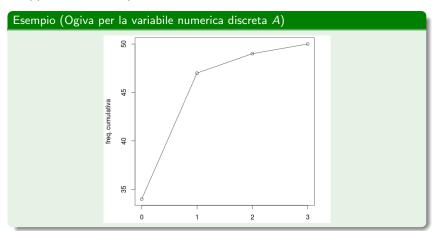
Rappresentazione grafica dei dati: Diagramma a barre

Rappresenta le distribuzioni di frequenza per variabili categoriche.

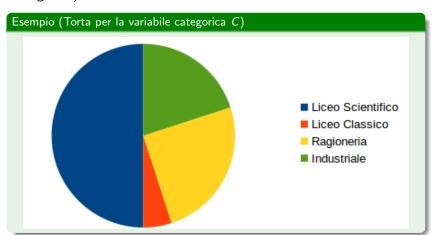

Esempio (Diagramma a barre per la variabile categorica C)

C = "Diploma di scuola superiore degli studenti del corso". 40 osservazioni:

Classe	frequenza assoluta	frequenza percentuale
Liceo Scientifico	20	50%
Liceo Classico	2	5%
Ragioneria	10	25%
Industriale	8	20%


Rappresentazione grafica dei dati: Diagramma a barre

Rappresenta le distribuzioni di frequenza per variabili categoriche.


Rappresentazione grafica dei dati: Ogiva

Rappresenta la frequenza cumulativa di una variabile numerica.

Rappresentazione grafica dei dati: Torta

Rappresenta le frequenze percentuali di una variabile (numerica o categorica).

