Prova scritta del 16.01.2021

(tempo: 60 minuti)

Esercizio 1

Si considerino le seguenti coppie di dati relativi alle variabili statistiche X e Y.

X		6	0	3	30	3	60	12	18	9	15	33	45	21	27	30	33	36	60	42	45	54	60	36	6
7	7	2	0	1	10	1	20	4	6	3	5	11	15	7	9	10	11	12	20	14	15	18	20	12	2

- 1. Si calcoli il valore del primo quartile per la variabile statistica X.
- 2. Si considerino esclusivamente le prime tre coppie di dati riportate nella tabella sopra. Determinare il coefficiente di correlazione, spiegando di che tipo di correlazione si tratta.

Esercizio 2

Luca, Marco e Andrea giocano a "sette e mezzo". Si gioca con le carte italiane, ovvero 40 carte in totale con 4 semi diversi (denari, coppe, spade, bastoni) coi valori 1, 2, 3, 4, 5, 6, 7, donna, cavallo, re (per ciascun seme). Queste ultime tre sono dette "figure" e hanno un valore di 0.5. Luca fa il mazziere e inizia il gioco, distribuendo una carta a ciascuno di loro. L'obiettivo è avvicinarsi al punteggio massimo di 7.5, sommando i punteggi delle carte che uno ha. Chi lo supera ha sballato.

- 1. Marco guarda la sua carta: è un 7; e chiede al mazziere un'altra carta. Qual è la probabilità di fare 7.5? (Si lasci il risultato sotto forma di frazione)
- 2. È andata bene a Marco! Ha fatto 7 e mezzo! Mostra così le sue carte agli altri giocatori. Andrea guarda la sua carta: è un 5. Anche lui chiede al mazziere un'altra carta. Qual è la probabilità di sballare? (Si lasci il risultato sotto forma di frazione)

Esercizio 3

Da un'urna avente 4 palline rosse e 36 palline blu, vengono eseguite 200 estrazioni con rimpiazzo.

- 1. Qual è il valore atteso di palline rosse estratte?
- 2. Si determini il numero minimo di estrazioni da fare affinché la probabilità di ottenere più di 10 palline rosse sia maggiore del 50%. Si utilizzi l'approssimazione gaussiana.

Esercizio 4

Si consideri la seguente funzione

$$f(x) = \begin{cases} \frac{a}{2}x & \text{se } 0 \leq x < 1 \\ -x + a & \text{se } 1 \leq x < 2 \\ 0 & \text{altrove} \end{cases}$$

- 1. Determinare per quale valore di *a* la funzione *f* rappresenta una densità di probabilità.
- 2. Calcolare il valore atteso della variabile aleatoria associata ad *f*.

Esercizio 5

Giovanni e Davide giocano a "piquet". Si gioca con 32 delle carte francesi, aventi 4 semi (cuori, quadri, fiori, picche) e con i valori 7, 8, 9 10, J, Q, K, A (per ciascun seme). A ciascun giocatore vengono distribuite 12 carte.

- 1. Sapendo che Davide ha un poker di A (assi), qual è la probabilità che Giovanni abbia una scala di lunghezza 7 (ovvero una sequenza di 7 carte dello stesso seme nell'ordine naturale)? (Si scriva l'espressione esatta senza calcolarla)
- 2. Qual è la probabilità che Davide abbia almeno un poker (quattro carte dello stesso valore) tra le sue carte? (Si scriva l'espressione esatta senza calcolarla)

INDICAZIONI PER LA CONSEGNA

Scrivere sul proprio foglio in alto: Numero di Matricola, Nome e Cognome. Fare una foto all'intero foglio con lo svolgimento degli esercizi ed inviare le soluzioni tramite mail ad <u>amendola@mat.unical.it</u>, inserendo come oggetto: **2021-01-NumeroMatricola-Nome-Cognome**

FORMULARIO

$$s = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{\sigma} \right)^3$$

$$s = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_{i} - \bar{x}}{\sigma} \right)^{3} \qquad P(B_{k}|A) = \frac{P(A|B_{k})P(B_{k})}{\sum_{i=1}^{n} P(A|B_{j})P(B_{j})} \qquad \binom{n}{k} = \frac{n!}{k!(n-k)!} \qquad C_{n,k} = \frac{D_{n,k}}{P_{k}} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1)}{k!}$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)}$$

$$C_{n,k} = \frac{D_{n,k}}{P_k} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1)}{k!}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$\rho_{\mathsf{x}\mathsf{y}} = \frac{\sigma_{\mathsf{x}\mathsf{y}}}{\sigma_{\mathsf{x}}\sigma_{\mathsf{y}}}$$

$$\sigma_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$\sigma_{xy} = \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}y_{i}\right) - \bar{x}\bar{y}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \qquad \rho_{xy} = \frac{\sigma_{xy}}{\sigma_{x}\sigma_{y}} \qquad \sigma_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y}) \qquad \sigma_{xy} = \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}y_{i}\right) - \bar{x}\bar{y} \qquad \beta = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_{i} - \bar{x}}{\sigma}\right)^{4}$$

$$D_{n,k} = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1).$$

$$G = 1 - \frac{\sum_{i=1}^{n} G}{\sum_{i=1}^{n} F}$$

$$D_{n,k} = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1). \qquad G = 1 - \frac{\sum_{i=1}^{n} Q_i}{\sum_{i=1}^{n} P_i} \qquad \frac{\binom{r_1}{k_1} \cdot \binom{r_2}{k_2} \cdot \ldots \cdot \binom{r_m}{k_m}}{\binom{n}{k}} \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$m = \begin{cases} x_{\frac{n+1}{2}} \\ \frac{x_{\frac{n}{2}} + x_{\frac{n}{2}+1}}{2} \end{cases}$$

$$q_p = \left\{egin{array}{c} X_{\lceil np \rceil} \ rac{x_{np} + x_{np+1}}{2} \end{array}
ight.$$

$$P_{k_1,k_2,...,k_r}^* = \frac{n!}{k_1!k_2!...k_r!}$$

$$m = \begin{cases} \frac{x_{\frac{n+1}{2}}}{\frac{x_n^2 + x_{\frac{n}{2}+1}}{2}} & q_p = \begin{cases} \frac{x_{\lceil np \rceil}}{\frac{x_{np} + x_{np+1}}{2}} & P_{k_1, k_2, \dots, k_r}^* = \frac{n!}{k_1! k_2! \dots k_r!} \\ & y = \hat{a}x + \hat{b} \text{ con } \hat{a} = \frac{\sigma_{xy}}{\sigma_x^2} \text{ e } \hat{b} = \bar{y} - \bar{x} \frac{\sigma_{xy}}{\sigma_x^2} \end{cases}$$

$$\frac{1}{n}\sum_{i=1}^{n}|x_i-\bar{x}|$$

$$P(A) = \sum_{i=1}^{n} P(A|B_j) \cdot P(B_j)$$

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$\frac{1}{n}\sum_{i=1}^{n}|x_{i}-\bar{x}| \qquad \qquad \sigma^{2}=\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2} \qquad \qquad \sigma^{2}=\frac{1}{n}\left(\sum_{i=1}^{n}x_{i}^{2}\right)-(\bar{x})^{2}$$

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$p_X(k) = p(1-p)^{k-1}$$

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 $p_X(k) = p(1-p)^{k-1}$ $p_X(k) = \binom{n+k-1}{k} p^n (1-p)^k$

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!} \qquad F_X(t) = P(X \le t) = \int_{-\infty}^t \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(y-\mu)^2}{2\sigma^2}} dy = \Phi\left(\frac{t-\mu}{\sigma}\right) \qquad P(X \le k) \simeq \Phi\left(\frac{k+0.5-\mu}{\sigma}\right)$$

$$P(X \le k) \simeq \Phi\left(\frac{k + 0.5 - \mu}{\sigma}\right)$$

$$Cov(X, Y) = E((X - E(X))(Y - E(Y)))$$
 $Cov(X, Y) = E(XY) - E(X)E(Y)$ $Var(X) = E(X^2) - E(X)^2$

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

$$Var(X) = E(X^2) - E(X)^2$$

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

$$Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)$$
 $P(\mu_X - \delta\sigma_X < X < \mu_X + \delta\sigma_X) \ge 1 - \frac{1}{\delta^2}$

$$E(X) = \sum_{k} x_k \cdot p_X(x_k)$$

$$Var(aX + b) = a^2 Var(X)$$

$$P(X \leq t) \simeq \Phi\left(\frac{t-np}{\sqrt{np(1-p)}}\right)$$

$$P(X \in I) = \int_I f_X(t) dt$$

$$E(X) = \int_{\mathbb{D}} t f_X(t) dt$$

$$Var(X) = E((X - E(X))^2)$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91308	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992