

Workpackage: 3

Task: 3.6

Authors: K. Kavoussanakis, S. D. Telford, S. Booth, L . Clarke, A. Smith,

 A. Trew, A. Simpson, G. Spezzano, D. Talia.

Date of issue: 29 September 2000

d9.doc

PROJECT COLOMBO

(Project No.: 24,907)

REPORT D9:
CAMELot 1.3 Implementation and User Guide

(AVAILABILITY: Public)

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 1

Table of contents
1. Executive Summary .. 2

1.1 Objectives .. 2

1.2 Tools and Methods ... 2

1.3 Results... 2

1.4 Major Experiences and Lessons Learned ... 2

2. Introduction ... 2

2.1 CAMELot Components .. 2

2.2 Software Components .. 2

2.3 Structure ... 2

2.4 Acknowledgements ... 2

3. User Manual... 2

3.1 CAMELot Sample Session ... 2

3.1.1 Starting CAMELot.. 2

3.1.2 Editing a program.. 2

3.1.3 Program Compilation .. 2

3.1.4 Building a Program.. 2

3.1.5 Running a Program.. 2

3.1.6 Exiting CAMELot ... 2

3.2 CAMELot Functionality Overview.. 2

3.2.1 Development Window... 2

3.2.2 Simulation Window .. 2

3.2.3 Visualisation Window... 2

3.2.4 Off-line CA Engine Execution.. 2

3.3 The CARPET Programming Language.. 2

3.3.1 The transition function... 2

3.3.2 cadef ... 2

3.3.3 cell_<substate>.. 2

3.3.4 cpt_abort .. 2

3.3.5 cpt_save.. 2

3.3.6 cpt_set_param.. 2

3.3.7 deterministic (alias determin) .. 2

3.3.8 dimension ... 2

3.3.9 DimX, DimY, DimZ.. 2

3.3.10 GetX, GetY, GetZ.. 2

3.3.11 neighbour (alias neighbor)... 2

3.3.12 NFolds.. 2

3.3.13 NProcs.. 2

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 2

3.3.14 parameter ... 2

3.3.15 radius.. 2

3.3.16 random... 2

3.3.17 randomise (alias randomize).. 2

3.3.18 region ... 2

3.3.19 region_<op> .. 2

3.3.20 srandom.. 2

3.3.21 state.. 2

3.3.22 steering... 2

3.3.23 step ... 2

3.3.24 threshold... 2

3.3.25 update... 2

4. GUI Implementation ... 2

4.1 Overview.. 2

4.2 Communication with the CA Engine .. 2

4.3 Visualisation Windows... 2

4.4 Source code files ... 2

4.5 Libraries.. 2

4.6 X Shell Widgets... 2

4.7 Global variables and data structures ... 2

4.7.1 Major data structures... 2

4.7.2 Major global variables... 2

4.7.3 Callback context variables... 2

4.8 List of Functions .. 2

4.8.1 Functions in camelot_stubs.c... 2

4.8.2 Functions in camelot_viz.c.. 2

4.9 GUI-CA Engine Protocol Requests ... 2

5. Cellular Automata Engine Implementation.. 2

5.1 Program Structure.. 2

5.1.1 User-Defined Types.. 2

5.1.2 Functions in macrocell.c ... 2

5.1.3 External Function Prototypes.. 2

5.1.4 External Variables.. 2

5.1.5 Global Variables.. 2

5.2 Data Handling .. 2

5.2.1 Internal Representation.. 2

5.2.2 Data I/O.. 2

5.3 Process Placement.. 2

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 3

5.4 Data Decomposition ... 2

5.4.1 Uneven Decomposition .. 2

5.4.2 Notation.. 2

5.5 Boundary Replication .. 2

5.5.1 Boundary Copy... 2

5.5.2 Boundary Swap .. 2

5.5.3 Function init_boundaries().. 2

5.6 Transition Function Execution ... 2

5.6.1 CA Engine States.. 2

5.6.2 Automatic Inactive Strip Detection .. 2

5.6.3 Function run() .. 2

5.7 Timing... 2

5.7.1 Strategy for Timing the Functions.. 2

5.7.2 Structures and Functions... 2

6. CARPET Parser Implementation .. 2

6.1 Tokeniser .. 2

6.2 Parser .. 2

6.2.1 Interface to macrocell.c.. 2

6.2.2 Steering Code Generation.. 2

6.3 Parser library interface .. 2

7. GUI–CA Engine Communication .. 2

7.1 General Remarks.. 2

7.1.1 Communication Abstraction... 2

7.1.2 Socket Instances... 2

7.1.3 Header Format... 2

7.1.4 Spatial Entities... 2

7.2 Auxiliary Functions ... 2

7.2.1 Socket Functions .. 2

7.2.2 Acknowledgements... 2

7.3 Requests .. 2

7.4 Implementation of GUI Functions.. 2

7.4.1 Substate related.. 2

7.4.2 Program Flow Management .. 2

7.4.3 Visualisation Functions.. 2

7.4.4 Configuration (Project) Related... 2

7.4.5 Other functions... 2

7.5 Implementation of the CA Engine Functions... 2

7.5.1 General Remarks.. 2

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 4

7.5.2 Function rv()... 2

7.5.3 File and Socket I/O... 2

7.5.4 Substate Related Functions.. 2

7.5.5 Program Flow Management .. 2

7.5.6 Visualisation Functions.. 2

7.5.7 Configuration (Project) Related Functions.. 2

7.5.8 Auxiliary Functions.. 2

8. Visualisation... 2

8.1 Data Structures... 2

8.1.1 Plane Definition ... 2

8.1.2 Plane Classes... 2

8.1.3 Plane Lists.. 2

8.1.4 Visualisation List.. 2

8.2 Global Variables ... 2

8.2.1 CA Engine Global Visualisation Variables.. 2

8.2.2 GUI Global Visualisation Variables.. 2

8.3 Relevant Files and Functions .. 2

8.3.1 File common.h ... 2

8.3.2 Files guicomms.h and guicomms.c... 2

8.3.3 File macrocell.c .. 2

8.3.4 File plane.c.. 2

8.3.5 File list.c .. 2

8.3.6 File buffer.c ... 2

8.4 Plane Addition .. 2

8.4.1 Addition Protocol ... 2

8.4.2 The Function add_plane() and Other Related Functions 2

8.4.3 GUI-Side Plane Addition ... 2

8.4.4 CA Engine-Side Plane Addition... 2

8.4.5 Why is the Protocol Complicated?... 2

8.5 Plane Deletion .. 2

8.5.1 Deletion Protocol ... 2

8.5.2 The Function rem_plane() and Other Related Functions 2

8.5.3 GUI-Side Plane Deletion ... 2

8.5.4 CA Engine-Side Plane Deletion... 2

8.6 Plane Visualisation... 2

8.6.1 Visualisation Protocol .. 2

8.6.2 CA Side Visualisation... 2

8.6.3 GUI Side Visualisation... 2

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 5

9. Per formance of the CA Engine.. 2

9.1 The Benchmark .. 2

9.2 Benchmark Results .. 2

9.2.1 Scaling Curve... 2

9.2.2 Homogeneous Optimisation... 2

9.2.3 Discussion of the Results.. 2

10. Benefits to Project and Open Issues.. 2

10.1 Benefits to Partners ... 2

10.2 Open Issues.. 2

10.2.1 Port to Windows NT... 2

10.2.2 Single-Processor Optimisation .. 2

10.2.3 Inactive Strip Detection Enhancements... 2

10.2.4 Timing Function... 2

10.2.5 Quiescent Substates.. 2

10.2.6 Visual cell substate value enquiry.. 2

11. References.. 2

I . CAMELot Release History ... 2

I I . CAMELot MPI Configuration... 2

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 6

1. Executive Summary

1.1 Objectives

Workpackage 3 of the COLOMBO project aimed to produce a software tool for the pro-

gramming and execution of Cellular Automata on parallel computing platforms. The tool,

named CAMELot, was used within the Colombo framework for the programming and exe-

cution of bioremediation simulation software. Although this defines the current end-users

of the software and therefore influences largely the design, the final product is not biore-

mediation-specific.

It was important for the software to be available on state of the art parallel computing plat-

forms, including Massively Parallel Platforms, like the Cray T3E and the Quadrics CS-2;

Shared Memory Platforms, like the Sun Enterprise-3500; and closely or loosely coupled

clusters of workstations or PCs, like Beowulf clusters or any local cluster of workstations

in a typical networked modern office environment. The scope of the underlying operating

systems was limited to Unix variants and that of the Graphical User Interface (GUI) to X-

Windows, although it would be desirable to develop the software with a view to allow fur-

ther portability.

CAMELot was to be more user-friendly than its predecessor both in the user interface and

the associated programming language, CARPET. It was intended that the internals of the

underlying program which supports the parallel execution of the CARPET program be hid-

den from the user. It was also desired that parallel execution be straightforward to apply

and unrelated to the CARPET program. After these basic requirements were satisfied

within the predefined schedule, the onus fell on the requirements of the end-users (CRA,

ENEA and ISI-CNR) which were only aiming towards a general CA programming tool. It

was also anticipated that the performance of the system would be adequate in order to ex-

ploit the enormous computational power of the intended architecture. Performance optimi-

sations were sought throughout the development of the tool.

1.2 Tools and Methods

The CA program was developed in C, a widely available programming language. Parallel-

ism was achieved by means of the MPI message passing standard. This provides support

for parallel execution without needing to incorporate the details of the processing elements

to the code. MPI implementations are also available in all the desired computer platforms.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 7

The graphical user interface was developed using X-Designer, a graphical tool which can

generate X-Windows code. The tool can also reuse the native code it has generated to pro-

duce MS-Windows code thus enabling portability further than the initial requirements. It

would be wrong to infer that porting to MS-Windows is straightforward though. X-

Designer only provides the windows; the functionality behind them has to be developed

separately and coded manually.

A similar GUI look-and-feel to the predecessor tool was intended, as no serious drawbacks

were identified. The users were invited to contribute ideas and share their views about the

quality of the software by means of a system which was also able to record the progress of

the interactions between end users and developers. This was not activated until the state of

the tool had been stabilised. Alpha and beta releases of the software were however made

available to the users according to the predefined plan [Clarke et al. 1998].

The above suggest an iterative software development method, namely evolutionary deliv-

ery, by which the architecture is defined initially and then a develop-deliver-feedback-

enhancements cycle is followed. This method has the advantage that it gives good visibility

to the project’s development and is flexible enough to produce good results even if the

original time and effort estimates prove to be inaccurate. The weakness of the model is the

idleness of the developers during the feedback solicitation period; this was handled by ex-

ploiting the time to develop the report documenting the use and implementation of the sys-

tem, a version of which you are reading now.

The method for feedback is also specified in [Clarke et al. 1998]. EPCC implemented at a

specified stage (Workpackage 3.5) a system through which the users were able to report

bugs and submit enhancement requests. EPCC ran the system and assigned the reports to

the appropriate partner who reported back to the system about the progress of these reports.

This enabled tracking and archiving of the progress of the project after the point where the

initial design [Telford et al. 1998] stopped.

1.3 Results

The Workpackage produced three interrelated components:

• A Graphical User Interface for the development of CA code;

• A CA Engine to enable the parallel execution of the CA code to parallel computers;

• A new version of the CARPET CA programming language.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 8

The software is available in all the architectures originally targeted. It eliminates weak-

nesses of its predecessor, both in the user interface and CARPET. Finally, the vast majority

of the features requested by the users were implemented. The bioremediation simulation

code developers agree that the open issues identified in section 10 of this document were

not important for the fulfilment of their goals and were mostly dropped because of lack of

time.

The iterative development method was well suited to the project. The software was devel-

oped in time and the quality has satisfied its end-users, namely the partners in CRA and

Universita di Calabria who developed the bioremediation code. It also worked well for the

extension of the project, which was viewed as another cycle of the iterative process. Addi-

tionally, the repetitive walkthroughs of the CA Engine software, caused by the iterative

development mode, benefited the quality of the final deliverables.

The software has also been validated using the Purify tool, which checks for safe memory

manipulation. The claims for a bug-free environment are amplified by the rarity of bug

reports tracked by the problem report mechanism, none of which was left open at the end

of the project. Moreover, the software contains all the features the end-users have requested

during the lifetime of the project using the problem reports mechanism mentioned in the

previous section. The archive is available from the project’s webpage (please note this is

password protected):

ht t p: / / www. epcc. ed. ac. uk/ col ombo/ wp3/

The performance of the software was also highly satisfactory. Section 9 of this report is

devoted to benchmarking results. The following are highlighted:

• The performance of the software scales up well with the number of processors;

• The bioremediation modelling problem calls for parallelism because it involves inten-

sive calculations;

• The optimisations to the parallel code applied by EPCC improved the performance and

scalability of the software.

1.4 Major Experiences and Lessons Learned

The most important issue in the lifetime of the project was probably the delay to produce

the first software and documentation deliverables. This must be attributed to the aggressive

schedule in the initial phases, which failed to predict the difficulty in the initial implemen-

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 9

tation and the volume of the work that had to be done. The initial schedule was also at

fault, since the write-up of the first version of this document coincided with the Christmas

of 1998. The reason why the schedule was so optimistic was the need for the other partners,

the end-users of the deliverables, to use the software.

The iterative development method used came to rescue. EPCC, in association with the

partners, preferred to delay the delivery rather than compromise the quality of the early

deliverables. This was an important decision, given that software S1 and report D7 were

the backbone of the final deliverables. The schedule did not deviate unacceptably though,

since, in agreement with the partners, two internal delivery cycles were compacted into

one, saving time for delivery preparation overheads without compromising the quality.

Another beneficial feature of the project was the excellent relationship between the part-

ners. Especially for Workpackage 3 there was constant communication both for extra fea-

tures and for problems with the software and the documentation. This was encouraged

mainly by the problem report mechanism; however the frequent meetings made things eas-

ier and helped particularly to bridge the cultural gap between the partners.

Finally, we should not forget to stress the value that conferences added to the project. Apart

from the obvious yet desirable effects of publicity and exposure a conference publication

provides, the attendance helps put the project into context and import new ideas. The bold

idea for computed fold boundaries, which never made it to be delivered because of lack of

time, is a good example of high quality features that fertile conference attendances can

suggest. Also, computational steering was put into context in an international “Problem

Solving Environments” conference.

On the technical side of things there are many issues that Colombo highlighted and will be

taken on board in the future. The availability of the software on various platforms was im-

portant but each platform should not be viewed in isolation. The use of XDR made

CAMELot results portable as well as its code, providing a significant commercial advan-

tage.

Another feature which was not seen initially as an important one, was the ability to run the

software as a batch program without user interaction. This batch mode was central to the

benchmarking of the software. It is also inevitable for the intended use of the software on a

highly productive computing platform where submission queues are the only method avail-

able for the user to access resources.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 10

Computational steering is also an important issue. The functionality is heavily used in the

bioremediation simulation code. It must be stressed though that the availability of computa-

tional steering is an important and very desirable feature of many problem solving envi-

ronments and is never straightforward to implement.

Perhaps one of the most important lessons learned has to do with the decomposition

method use for Colombo. The initial regular decomposition assumed to be sufficient was

anything but useful to the users who had to worry about the x-dimension divisibility with

the number of processors (and folds). The issue was remedied in the last release of the

software.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 11

2. Introduction

CAMELot is an environment for the programming and seamlessly parallel execution of

Cellular Automata. The system supports CARPET, a purpose-built language for CA pro-

gramming. It offers a programming environment and a Graphical User Interface which en-

ables the user to interact with the system while running a simulation and to view visualisa-

tions of the simulated data. It also includes a customisable facility to produce traces of the

simulation in a specified format thus allowing to post-process the output of the run by

means of an external tool. The system has been developed as part of the COLOMBO Pro-

ject. It is a follow-up to the CAMEL software, implemented for the CABOTO project

[Spezzano et al. 1995].

This document is the report on the implementation of CAMELot Release 1.3: Deliverable

D9, Internal Deliverable DI3.6.2.

2.1 CAMELot Components

CAMELot consists of three major components:

• The CA Engine, incorporating a compiled CARPET CA model. This comprises one or

more parallel processes called macrocells and uses an MPI-1-compliant message-

passing library;

• The X/Motif-based graphical user interface (GUI), including the GUI/CA Engine

communication library;

• The CARPET parser, which is integrated with the GUI.

An overview of the structure of CAMELot and the communication between its components

during a running simulation is shown in Figure 1.

2.2 Software Components

The CAMELot implementation includes the following software components:

• macr ocel l . c

The CA Engine module. Also contains code for the statistics output and random num-

ber generators.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 12

• l i bcmt gui comms. a

A library containing the GUI-related GUI-CA Engine communication functions. The

source files are:

− gui comms. h

− gui comms. c

• l i bcmt common. a

A library containing functions used in both the GUI and the CA Engine. The source

files are:

− common. h

− const ant s. h

− l i s t . c

− pl ane. c

− buf f er . c

− sock. c

• l i bcpt _par se. a

The library of CARPET parser-related functions. The source files are:

− par ser . h

− par ser . c

− cpt _par se. h

− cpt _par se. c

− yyl ex. l

− yypar ser . y

• camel ot

The main CAMELot executable, including the GUI and parser. It is linked with the

three libraries listed above, and is built from the following source files:

− camel ot . h

− camel ot . c

− camel ot _st ubs. c

− camel ot _vi z. c

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 13

− camel ot _gl obal s. c

2.3 Structure

The rest of this report discusses the components in turn. Section 3 contains the CAMELot

User Manual. In section 4 we discuss the GUI implementation. In section 5 we deal with

the CA Engine and in section 6 we give a brief description of the Parser. The communica-

tion protocol is discussed in section 7 and the Visualisation facility in section 8. Section 9

provides benchmarking results for the CA Engine and section Errore. L 'or igine r ifer i-

mento non è stata trovata. lists the open issues of CAMELot. The release history is avail-

able from appendix I. The possibilities for MPI configuration can be found in appendix II.

2.4 Acknowledgements

The authors would like to thank Dr Mark Bull and Mr John Fisher for their contribution in

this document. Dr Mark Bull has also contributed towards the testing and validation of the

software.

Figure 1: Overall structure of CAMELot

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 14

3. User Manual

In this section we describe the functionality of CAMELot. We first provide an example of

how CAMELot is run and use some of its basic features. We then give a detailed overview

of CAMELot and finally we list and discuss the CARPET directives.

3.1 CAMELot Sample Session

3.1.1 Starting CAMELot

Assuming the current working directory is the top directory of the CAMELot binary distri-

bution, CAMELot is invoked from a UNIX shell using the command:

platform/ camel ot [X options] [filename]

Where platform is the platform identifier (the supported platforms are sunos5, l i nux ,

i r i x6 and t r u64); filename is a CARPET source file; and X options are the standard X

application command line flags (- di spl ay, - geomet r y, - i coni c, - f n etc). These

command line arguments are optional. The CAMELot Development Window appears on

the screen. It consists of three sections:

• A Menu Bar;

• An Editor subwindow with a scroll bar in each direction;

• A three-Button bar.

3.1.2 Editing a program

A user may write a program using the editor window. Alternatively, they may open a pre-

viously saved program file using the Open option of the File menu. After any modifications

the file must be saved using the Save or Save As option of the File menu; if a filename has

been provided, this is done automatically when pressing the Compile button.

Program editing is facilitated with the use of the Cut, Copy and Paste Options of the Edit

menu. Shortcuts are available for all these functions.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 15

Figure 2: The Development Window

3.1.3 Program Compilation

When the program is ready, the user may compile it by clicking the Compile button. A suc-

cessful compilation is followed by a pop-up window dismissible by clicking its Dismiss

button. An erroneous compilation causes a beep and a pop-up window provides informa-

tion about the error.

Figure 3: Successful Compilation Pop-Up Window

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 16

3.1.4 Building a Program

The Build operation generates a Unix executable file for CA execution. In order to build a

file the user must first set the configuration parameters by using the Configure menu. These

define:

• The Dimensions of the CA Engine;

• The number of Processes to handle the task;

• The number of Folds (see section 5.4 for more on folds) into which the task is divided.

The user can then build the executable by pressing the Build button. The output of the C

compiler is shown to the user in a pop-up window.

Figure 4: Successful Build Pop-Up Window

3.1.5 Running a Program

The Configure menu of the Development Window includes a menu by which the user can

initialise the collection of statistics for the basic functions of the CA Engine. This should

be enabled before clicking the Run button. After successful compilation and building the

program, the user can invoke the executable by clicking the Run button. This pops up the

Simulation Window which consists of three parts, a Menu bar, a Display part and a Button

bar.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 17

Figure 5: The Simulation Window

The State menu contains an Initialise and a Save Option. The user may initialise a substate

or the whole state of a CA using an existing file, or save the current status of the CA. The

Setup menu allows the definition of the number of CA evolutions to be run as well as other

more advanced features, which are described later in this section. The display part of the

window contains information about the configuration of the CA and updates the current

step when the CA is running.

There are 5 buttons on this window. The Go and Loop buttons initialise the CA execution,

the former for a number of steps defined from the Setup menu, the latter indefinitely (in

fact for I NT_MAX1 steps). The Pause button temporarily suspends CA execution and al-

lows visualisation window examination, state saving or editing etc. The user may continue

the CA execution by clicking on the Resume button or restart the execution by clicking Go

or Loop. The Visualise button allows the visualisation of a substate in various formats. The

statistics for the functions of the system are output periodically during the run or after stop-

ping the CA Engine execution, according to the user’s request.

3.1.6 Exiting CAMELot

The user may close the Simulation Window and terminate the CA Engine execution by

selecting the Close Option of the State menu. In order to exit CAMELot the user must se-

lect the Exit option in the File menu of the Development window.

1 i.e 312 -1 on 32-bit systems

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 18

3.2 CAMELot Functionality Overview

The CAMELot environment supports 3 different types of Windows. We will examine them

in order of appearance when using the environment.

3.2.1 Development Window

The Development Window pops up when running CAMELot and, when it is closed,

CAMELot exits. It consists of three parts, a Menu Bar, the CAMELot Editor and a 3-

Button Bar.

3.2.1.1 Menu Bar

There are 4 pull-down menus.

Figure 6: The Development Window Menus. Note that the Configure Menu is greyed out

since the screenshot was taken before compiling the file in the Editor.

• File;

• Edit;

• Configure;

• Help.

3.2.1.1.1 File

The File menu offers the following options:

• Open a file;

• Save a file;

• Save a file As;

• Load configuration;

• Save Configuration;

• Exit CAMELot.

The Open and Save As options pop up a window which allows the user to navigate through

the filesystem and select the desired filename. For a file to be visible by Open, its name

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 19

must have the extension . cpt . The Save option is only available if a filename has been

specified for a file being edited. The Exit button exits CAMELot; the Delete button usually

available on X Window titlebars is disabled for this window.

Figure 7: The File Menu

The characteristics of the program which are set under the Configure menu of the Devel-

opment Window are automatically saved in a file named pr ogname. cnf , pr ogname

being the full pathname of the CARPET file, every time the users saves the CARPET file.

They are automatically retrieved when the CARPET file is Opened. In addition to this

automatic facility, the Save and Load Configuration options allow the user to explicitly

save and retrieve the configuration of the model2.

3.2.1.1.2 Edit

The Edit menu contains the usual options. Keyboard short-cuts or “accelerators” (in brack-

ets) are available for all options:

• Cut (Ctrl-X);

• Copy (Ctrl-C);

• Paste (Ctrl-V);

• Find (Ctrl-F);

• Find next (Ctrl-G);

• Replace (Ctrl-R).

Paste is only available after a Cut or Copy has been issued.

2 Note that the . cnf file format was extended in CAMELot 1.2. . cnf files saved by CAMELot 1.1 are not
compatible with CAMELot 1.2. When opening a CARPET file in CAMELot 1.2 which has a corresponding
. cnf file saved by CAMELot 1.1, immediately check the Configuration menu settings and use “Save
Configuration…” to overwrite the old . cnf file.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 20

Figure 8: The Edit Menu

3.2.1.1.3 Configure

The Configure menu is made available after a successful compilation. It allows the user to

modify the following parameters:

• The Dimensions of the CA (x-Length, y-Height, z-Width);

• The number of Processes to handle the task;

• The number of Folds to which the CA is divided in the Length axis.

• The C compiler pathname and flags;

• The MPI run command;

• The Timing output.

Figure 9: The Configure Menu

It is worth noting that:

• For best performance the Length of the CA must be an exact multiple of the product of

the number of Processes with the number of Folds;

• A 1-D CA has only the x axis available and a 2-D CA has only the x and y axes avail-

able.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 21

3.2.1.1.3.1 Controlling XDR Output

Starting from release 1.2 of CAMELot, XDR is used for the file I/O, this allows CAMELot

data files to be portable between different machine architectures. The user can control the

use of XDR through the use of the C compiler command line option of the Configure

menu, shown in Figure 10.

Figure 10: The C compiler command line option pop-up menu

• If the user wants to disable XDR for the operations related with reading from file, they

should define - DNO_XDR_READ in the C compiler flags of the C compiler command

line option pop-up menu;

• If the user wants to disable XDR for the operations related with writing to file, they

should define - DNO_XDR_WRI TE.

The user can use this facility to translate native binary project or substate files to XDR by

applying the following:

• Load and compile the corresponding CARPET file;

• Specify the appropriate dimensions and define - DNO_XDR_READ in the C compiler

flags of the C compiler command line option pop-up menu, then build;

• Click the Run button, load the configuration or substate files in question and then save

them without running any iterations.

Please refer to the following sections for information about the steps mentioned in the

above discussion.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 22

3.2.1.1.3.2 Notes on Timing

Figure 11: The Timer Configuration Menu

The CA Engine times its basic functions, namely the execution of the update statement,

steering, visualisation, writing the system state on file and the total time spent excluding

the time spent paused or stopped. The user can use the menu shown in Figure 11, which

appears when the user clicks the Timing output option of the configure menu, to enable or

disable the output of such results, set the period for printing them and direct the output to a

file or the standard output of the terminal from which CAMELot was started. The format of

the output is shown in Table 1.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Pr ocess:  0                                              Gener at i ons:   
 
                         Cal l s            Ti me            Best             Wor st  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Updat e Funct i on :         
St eer i ng        :         
Boundar y Comm   :         
Vi sual i sat i on   :         
Per i odi c Save   :         
 
Sum             :         
Tot al  Execut i on Ti me:     

Table 1: Output of Timing Statistics 

 

 

Setting the timing step to zero results in the output being printed once after the CA Engine 

has been terminated (not at the end of the run). If the timing step is set to a value greater 

than zero, then the statistics are generated in the specified period. The time is accounted 

using double precision real numbers and is printed in floating-point representation in the 

standard C format (6 decimal digits), the measuring unit being seconds. 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  23 

The Generations field contains the number of generations the output concerns. The field 

Calls counts the number of calls to each of the functions. Time is the total time taken for 

the calls in the Calls field. Best and Worst give the best and worst times for the function in 

question. The functions accounted are obvious. One remark is that after each iteration of 

the CA Engine, the read copy of the CA is updated by means of a memcpy  call. Note that 

the time taken by this call is not accounted for by the Update Function timer. Sum gives the 

sum of the above times, whereas Total Execution Time counts the time total time taken, 

excluding the time spent paused or serving user requests. The Time field of Total can be 

less than the time shown in Sum, if the number of iterations is small, in which case the 

time taken for the initial boundary exchange is significant compared with the total execu-

tion time. This time is part of the Sum time but not part of Total.  

 

3.2.1.1.3.3 Notes on Other Settings 

The following settings can be made using the -D pre-processor flag in the “C compiler 

command line”  menu option: 

 

• PROFI LI NG: This directive enables gpr of  profiling output. Its use is explained in 

[Kavoussanakis et al. 1999]. It should be noted that in order for this flag to be effec-

tive, the MPI libraries must be compiled with the gpr of  compiling enabled. The ap-

propriate flag must be set in the “C compiler command line”  as well. 

• DEBUG: Provides assorted debugging messages 

• DEBUG_CALC_X_SI ZES: Ditto for function cal c_x_si zes( )  (section 5.4.1). 

• DEBUG_CMT_READ: Ditto for function cmt _r ead( )  (section 7.5.8.1). 

• DEBUG_CMT_WRI TE: Ditto for function cmt _wr i t e( )  (section 7.5.8.1). 

• DEBUG_CMT_BOUNDARY_SWAP: Ditto for function cmt _boundar y_swap( )  

(section 5.5.2). 

• DEBUG_RUN: Ditto for function r un( )  (section 5.6.3). 

• DEBUG_TX_VI S_PACK: Ditto for function t x_vi s_pack( )  (section 8.6.2.1). 

• DEBUG_SERV_VI EW_STATE: Ditto for function ser v_vi ew_st at e( )  (section 

7.5.4). 

• DEBUG_SERV_SET_STATE: Ditto for function ser v_set _st at e( )  (section 

7.5.4). 

• DEVELOP: More assorted messages; it was used in the initial stages of developing the 

program.  

• EVEN_DECOMP: Assumes that even decomposition of the model is possible. The ef-

fects of this are discussed extensively in sections 5.4 and 7.5.3 of this document.  



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  24 

• HOMOGENEOUS: A non-portable performance optimisation which is discussed in sec-

tion 6.2.1. 

 

3.2.1.1.4 Help 

The details of the product authors are available from the About CAMELot option of the 

Help menu. 

 

 

Figure 12: The Editor  of the Development Window. Note the two errors, the dimension 

of the nei ghbor  vector and the undefined Get  directive which will be detected in the 

Compile and Build processes respectively. 

3.2.1.2 Editor Window 

The user may Open a file and use the Editor to view and modify it (Figure 12). If the file 

exceeds the length (80 characters) or the height (24 characters) of the window, the user 

may use the respective scrollbars or the keyboard arrow keys. 

 

3.2.1.3 Button Bar 

The available buttons are: 

 

• Compile; 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  25 

• Build;  

• Run. 

 

 

 

Figure 13: The Button Bar of the Development Window. The only available button is 

compile since the screenshot was taken before compiling the file in the Editor and there 

was no configuration file available for this program. 

 

Compile 

This button compiles the current program in the Editor. This compilation checks for 

CARPET syntactic errors and generates the C source and header files for the specified CA 

model. The compiler handles both C (/ *  * / ) and C++ (/ / ) style comments. A failed 

compilation is accompanied by a beep; a window is popped up containing the error mes-

sages and the cursor in the Editor is positioned at the first line reported to contain an error. 

If there is a beep but no error message is displayed then the automatic Save has failed. 

 

 

Figure 14: Error  Message on the CARPET Compiler  Output Window 

 

If a compilation fails, the Build and Run buttons as well as the Configure menu are un-

available to the user. 

 

N.B.: Clicking the Compile button in CAMELot 1.0 implicitly saved the CARPET file. 

This feature has been disabled in release 1.1 of the software to meet the users’  request. 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  26 

Build 

This button compiles and links the CA Engine code with the generated C source and header 

files for the CA. It invokes the C compiler specified in the Configure menu and redirects its 

output to the pop-up window generated. Starting from release 1.1 of the software, the pop-

up window contains an [ OK]  or [ ERROR]  line at the end of the message generated by the 

compiler, to provide feedback about the status of the finished compilation. This is helpful, 

because if the compilation is successful, the UNIX C compiler cc( 1)  usually generates no 

messages. 

 

While the building of the program fails, the Run button is greyed out. 

 

Run 

This button spawns the CA Engine processes specified in the Configuration menu using the 

MPI run command as it appears in the respective option of the same menu. It also spawns 

the Simulation Window discussed next and makes the Build and Run buttons unavailable. 

 

 

Figure 15: Error  Message on the Build (C compiler) Output Window 

 

3.2.2 Simulation Window 

The Simulation Window comprises  

 

• a Menu bar;  

• a Display subwindow;  

• a Button bar. 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  27 

3.2.2.1 Menu Bar 

The Menu Bar contains three menus: 

 

• State; 

• Setup; 

• Help. 

 

 

Figure 16: The Menu Bar of the Simulation Window 

 

3.2.2.1.1 State Menu 

This allows the whole state or specific substates to be initialised or saved. The Close option 

closes the Simulation Window as well as all the Visualisation Windows and terminates the 

execution of the CA Engine. 

 

A Substate can be saved in a binary file using the State-Save-Substate sequence of options. 

In order for the file to be subsequently detected as a substate file, it must be saved with the 

extension . cmt . Saving the Configuration involves saving status-specific data in a file 

with the extension . cpj , as well as all the substates in files with filenames constructed as 

follows: if the Configuration filename is cf n. cpj  the substates are saved in filenames 

named cf n000. cmt , cf n001. cmt , etc.  

 

Figure 17: The State Menu 

The data contained in a configuration file are: 

 

• The number of Dimensions; 

• The per-dimension Sizes; 

• The current Generation of the CA Engine; 

• The number of States; 

• The number of Folds; 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  28 

• The number of Global Parameters; 

• The values of the Global Parameters. 

 

Information stored in configuration or substate files can be loaded into the CA Engine us-

ing the State-Initialise options. 

 

3.2.2.1.2 Setup Menu 

The Setup Menu allows the following to be adjusted: 

 

• Steps to run the Engine; 

• Storage interval; 

• Substate editing (one cell); 

• Parameter editing; 

• Active Fold setting; 

• Manual setting of the per-substate minimum and maximum values for colour mapping. 

 

Steps: Sets the number of CA Engine iterations to be run if the user presses the Go button. 

 

Figure 18: The Setup Menu 

 

Storage Interval: Enables automatic CA Configuration saving with the set period. This 

involves saving the global parameters and other state variables in a binary file with the ex-

tension . pr j  and saving the substate data in files following the convention described ear-

lier in the State Menu discussion. In addition to what stated there, the filename is prefixed 

with three characters denoting the sequence of the automatic save, starting with 000. If 

more than one thousand3 consecutive automatic saves take place, the system overwrites the 

first without warning. 

 

In addition to the above, an AVS field file is saved for each substate datatype, for each in-

vocation of the macrocell executable (not each run, the file stops being updated when the 

                                                 
3 In CAMELot 1.0 this limit was set to 100 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  29 

Simulation Window is closed). These contain information to be used by the post-

processing tool which is based on AVS/Express. The format of the field files, based in the 

AVS description [AVS 1993] is shown in Table 2. 

 

To summarise the above, the following files are saved as a result of periodic configuration 

saves: 

 

• In each save, a project file with the extension . cpj ; 

• In each save, a data file for each substate with the extension . cmt ; 

• In each simulation, a field file for each substate datatype with the extension . f l d. 

 

 
# AVS f i el d f i l e 
# CAMELot  gener at ed 
nst ep = <number  of  expect ed4 saves> 
ndi m = <model  di mensi on> 
di m1 = <x- di mensi on> 
di m2 = <y- di mensi on> 
di m3 = <z- di mensi on> 
nspace = 3 
vecl en = <number  of  associ at ed subst at es> 
dat a = <dat at ype of  associ at ed subst at es> 
f i el d = uni f or m 
l abel  = <names of  associ at ed subst at es5> 
 
t i me val ue = 1 
var i abl e 1 f i l e = <f i l ename> f i l et ype = bi nar y 
var i abl e 2 f i l e = <f i l ename> f i l et ype = bi nar y 
 
. . .  
EOT6 
 
t i me val ue = 2 
. . .  

Table 2: Format of CAMELot Generated AVS Field Files 

 

For example, if the filename for the periodic configuration is f name and the system has 

three substates, two of which are of type char  and one of type f l oat , one periodic save 

will result to the following files being saved on disk: 

 

000f name. cpj  

                                                 
4 This could differ from the number of actual saves if the user ends the run prematurely 
5 The format of the label list is described in the discussion of function cmt _cr eat e_f l d( )  in section 
7.5.8.1. 
6 Starting with release 1.3 of the software, the EOT separator appears between blocks of data refering to 
consecutive time steps 
 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  30 

000f name000. cmt  

000f name001. cmt  

000f name002. cmt  

f name_char . f l d 

f name_f l oat . f l d 

 

It should be noted that after choosing the filename for the Project save, the CA Engine gen-

erates a warning if this choice will lead to files already on disk being overwritten. If the 

program is not running in Batch mode (see section 0 for details), this warning is also dis-

played in a pop-up window. The user can change their preference by repeating the opera-

tion described above; otherwise, the saves will occur. 

 

Substate Editing: Allows the user to view and set the values of the substates of one cell 

manually. The possible substate names are made available through a menu. 

 

Figure 19: The Substate Editing Menu 

 

Parameter Setting: Allows the adjustment of a global parameter. Parameters can be ad-

justed using the names they have in the program. The possible names are made available 

through a menu similar to the one shown in Figure 19.  

 

Active Fold Setting: Allows the definition of the first and last active fold. This implies that 

the active regions can only be considered contiguous. Folds are numbered from 0 to 

NFol ds -1; illegal values are disallowed. Alternatively, the automatic inactive region de-

tection mechanism implemented in CAMELot allows non-contiguous active regions and 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  31 

offers finer granularity. The mechanism is automatically activated if the CARPET program 

contains the statement det er mi ni st i c  and the user has not set the folds manually. 

Once deactivated, the automatic inactive region detection mechanism can be reactivated if 

the active folds are set to maximum range under the condition that the det er mi ni st i c  

keyword exists in the CARPET program.  

 

 

Figure 20: The Substate Selection Menu 

 

Manual setting of the per-substate minimum and maximum values for colour mapping: 

This option allows the user to override the automatic per-substate minimum and maximum 

calculation executed as part of the colour mapping strategy. Specifying the minimum and 

maximum enables visualising parts of the data with greater detail. This does not affect the 

evolution of the model, although it speeds up the visualisation process. The system reverts 

to the automatic mechanism if the users clicks on the Auto button of the menu (Figure 21). 

 

 

Figure 21: Manual Per-Substate Minimum and Maximum Value Setting Menu 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  32 

3.2.2.2 Display Screen 

Displays the current values of the following: 

 

• The Dimensions; 

• The Current Step of the CA Engine7; 

• The Periodic Storage Interval; 

• The number of Folds. N.B.: “Folds: 1”  indicates that no partitioning into multiple folds 

was done at compile time; i.e.. the CA is considered to consist of one single fold. 

 

 

Figure 22: The Display Part of the Simulation Window 

 

3.2.2.3 Button Bar 

The available buttons are: 

 

• Go; 

• Loop; 

• Pause; 

• Resume; 

• Visualise. 

 

 

Figure 23: The Button Bar of the Simulation Window 

 

Go: Starts the CA Engine until the generation counter reaches the number of iterations 

specified in the corresponding Setup menu option. It can be interrupted by State or Setup 

                                                 
7 In the initial versions of the software this was available only if planes were visualised and only at the 
visualisation intervals. From release 1.1 this is available at all steps regardless of the existence of visualisation 
windows. 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  33 

menu options as well as pressing any other buttons on the Button Bar not including Re-

sume. 

 

Loop: Same as Go except that it starts an infinite (I NT_MAX iterations) CA evolution. 

 

Pause: Temporarily suspends CA Engine execution. This can be restarted with any of three 

buttons.  

 

• Go will restart the Engine until it reaches the specified number of iterations; 

• Loop will restart the Engine for infinite iterations;  

• Resume will continue the operation of the Engine from the step where it stopped. It will 

Loop if Loop was selected before Pause was pressed, or continue until the specified 

(possibly revised) finishing point is reached otherwise. 

 

Visualise: Allows the initialisation of a Visualisation window. The user is prompted to set 

the visualisation period and select the substate to be visualised. In the case of a 3-D model 

the user has to select one of the three available visualisation formats discussed in the Visu-

alisation Window Section. 

 

N.B.: As of the release 1.1 of the software, Go and Loop no longer zero the iteration coun-

ter. 

 

3.2.3 Visualisation Window 

The Visualisation Window comprises two basic parts:  

 

• the Visualisation Space; 

• the Button Bar. 

 

Important information is also displayed in the title bar of the X window, namely the 

CARPET program filename, the Visualisation Step, the name of the visualised Substate, 

and the entity Coordinates. 

 

3.2.3.1 Visualisation Space 

This occupies an area of 640x640 pixels (not including the colour palette bar area). The 

visualised entity is scaled so as to fit in the window. If the size (in cells) of the visualised 

entity is too big to represent each cell by at least one pixel, then the cells of the entity are 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  34 

sampled at regular spatial intervals. These sampled cells are drawn as single pixels. No 

averaging over the interval is performed.  

 

The user can resize the visualisation window. This is achieved by means of the correspond-

ing facility of the user’s Window Manager. If the user decreases the visualisation space, 

scroll bars appear at the right-hand and bottom sides of the window. The default size of the 

window is the maximum; increasing the size further does not make the visualisation larger. 

However, it is meaningful for a decreased window to be enlarged at will, until it reaches its 

maximum size. This happens because resizing the window does not cause the visualised 

entity to be zoomed in or out, it only moves the borders of the window.  

 

The colour palette currently in use is shown as a horizontal bar at the bottom of the Visu-

alisation Space of the window. The minimum and maximum values for the visualised sub-

state are shown above this bar. 

 

The possible types of visualisation depend on the number of dimensions of the model: 

 

1-D Models: The visualisation is drawn in horizontal lines from left to right. The vertical 

dimension of the window corresponds to time. The user can therefore see how the model 

changes with time. When the vertical dimension of the screen is exhausted, the visualisa-

tion restarts from the first line overwriting the first visualisation. 

 

2-D Models: They are represented in an orthogonal manner, x running horizontally and y 

running vertically, the origin being the bottom left corner of the window. 

 

Figure 24: The Possible Types of Visualisation of a 3-D Model 

 

3-D Models: x-y, x-z or y-z planes of a 3-D model can be displayed either as orthographic 

(as above) or isometric projections. The coordinate of the plane (i.e.. z value for an x-y 

plane, y value for a x-z plane etc) is specified by the user via a dialog box with scale wid-

gets. 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  35 

 

In the orthographic case, x-y planes are displayed as above, x-z planes are displayed with a 

horizontal x-axis and vertical z-axis, and y-z planes are displayed with a vertical y-axis and 

horizontal z-axis. In the isometric case, the y-axis is oriented vertically, the x-axis is ori-

ented upper-left to lower-right and the z-axis lower-left to upper-right. 

 

Figure 25: Plane Coordinate Dialog Box 

 

A 3-plane isometric view is available for 3-D models. In this case, an x-y, x-z and a y-z 

plane are selected by the user. If the coordinates of these planes are denoted z1, y1, and x1 

respectively and the size of the CA in the z dimension is zmax then the x-y plane from x=0 to 

x=x1 and y=0 to y=y1, the x-z plane from x=0 to x=x1 and z=z1 to z=zmax and the y-z plane 

from y=0 to y=y1 and z=z1 to z=zmax are displayed as three faces of a cuboid with the axes 

oriented as for the 1-plane isometric case. The origin is thus the lower leftmost visible ver-

tex, i.e.. a “ left-handed” coordinate system is used. 

 

From the above it can be deduced that in order to visualise a substate for the entire 3-D 

model, the user has to select the x and y coordinates to be equal to the maximum value for 

the x and y dimensions respectively and z=1 (x1=xmax, y1=ymax, z1=1), as shown in Figure 

25. 

 

3.2.3.2 Button Bar 

This contains two buttons: 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  36 

• Colours; 

• Close. 

 

Colours: Allows the user to set the 256-colour palette to match their preference. The de-

fault is coloured from blue (lowest value) to red (highest value), the intermediate values 

mapped to cyan, green and yellow in ascending order. A monochrome (greyscale) palette 

ranging from black to white is also available. The files specifying the palette are stored 

with the extension . pal  and contain 256 lines with 3 space-separated unsigned 16-bit 

hexadecimal values for Red, Green and Blue respectively, in each line. The colour in the 

first line is used for background. The palette selected is shown in the colour palette bar. 

 

Close: Closes the Visualisation Window; this does not affect the CA Engine execution. 

The user may also close the Window from the Delete button of the Window Manager. 

 

A screenshot of the Visualisation Window for the model in Figure 12 is shown in Figure 

26. 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  37 

 

Figure 26: The Visualisation Window. This is the output of the model in Figure 12 

after  10 iterations of the CA Engine. 

3.2.4 Off-line CA Engine Execution 

The CA Engine can be invoked outside the CAMELot environment. Limited functionality 

is supported. In the following discussion we assume that the user has built the CA executa-

ble either using the CAMELot environment or using the Makefile.batch makefile available 

with the distribution. 

 

The command-line arguments available to the user are as follows: 

 

- l 8<no_of _st at e> <f i l ename> 

 

                                                 
8 This is the letter “el” . No space exists between the “ l”  and the state index. 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  38 

Initialise substate <no_of _subst at e> from <f i l ename>. This suggests that the user 

knows the substate index allocation done transparently in the CARPET parser. These indi-

ces can be deduced from the st at e CARPET statement, as they are parsed sequentially, 

i.e. the first substate given is indexed 0, the second 1 etc. 

 

- 0  

 

This initialises all substates to 0. 

 

- n<num_gens>  

 

Set the number of generations to be run to <num_gens>. 

 

- s<save_st ep> <f i l ename> 

 

Enable periodic project save to files with basename <f i l ename> (according to the con-

ventions for saving a project) with period <save_st ep>. See section 3.2.2.1 for more 

details. 

 

- t <t i me_st ep> <f i l ename> 

 

Enable periodic timing statistics output to file <f i l ename> with period <t i me_st ep>. 

If <t i me_st ep> equals zero, then the results are output at the end of the simulation. If 

<f i l ename> is set to - , then the results are written to the standard output of the terminal 

window where CAMELot was started. See section 3.2.1.1 for more details. 

 

<f i l ename> 

Initialise the project from <f i l ename>. This has no parameter to identify it and it must 

be the last argument. If - l  or - 0 have been specified it is ignored. 

 

3.3 The CARPET Programming Language 

CARPET is a programming language for the definition of cellular automata-based models 

and their transition functions, designed as an extension to ANSI C. A CARPET program 

consists of the following sections: a global declaration section, known as the cadef (CA 

DEFinition) section; a transition function; and an optional steering function.  

 

The general layout of a CARPET program is as follows: 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  39 

 

cadef  

{  

 declarations 

}  

 

[transition function local variable declarations and subroutine prototypes] 

 

{  

 transition function code 

}  

 

[transition function subroutines] 

 

[ 

st eer i ng 

{  

 steering function code 

}  

] 

 

where items in […] brackets are optional. Note that the steering function must be located 

after the transition function and any subroutine functions called by the transition function. 

 

The extensions to C defined in the CARPET language are described below. 

 

3.3.1 The transition function 

The transition function (and its subroutine functions, if any) may contain the following 

CARPET statements, in addition to C code: 

 

•  cel l _substate 

•  Di mX,  Di mY,  Di mZ 

•  Get X,  Get Y,  Get Z 

•  NFol ds 

•  NPr ocs 

•  r andom( )  

•  r andomi se( )  



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  40 

•  sr andom( )  

•  st ep 

•  updat e( )  

• parameter references 

 

 

3.3.2 cadef   

Syntax 

cadef  

{  

decl ar at i on;  

decl ar at i on;  

     . . .  

decl ar at i on;  

}  

 

Remarks 

This is the declaration section of the program; it must precede any statement except 

for C pre-processor ones. decl ar at i on can be any of the following statements: 

  

• det er mi ni st i c 

• di mensi on 

• nei ghbour  

• par amet er  

• r adi us 

• r egi on 

• st at e 

• t hr eshol d 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  41 

Example 

 cadef  

 {  

  di mensi on 3;  

r adi us 1;  

r egi on I nsi de ( st ar t +1: end- 2,  : , : ) ;  

st at e ( f l oat  val ;  i nt  val 2) ;  

nei ghbour  N[ 6]  ( [ - 1, 0, 0] l ef t , [ 1, 0, 0] r i ght ,  

[ 0, - 1, 0] down,  [ 0, 1, 0] up,   

[ 0, 0, - 1] i n,  [ 0, 0, 1] out ) ;  

par amet er  ( pi  3. 14159) ;  

det er mi ni st i c;  

t hr eshol d ( cel l _val  == 3) ;  

 }  

 

 

3.3.3 cell_<substate> 

Syntax 

 cel l _<subst at e> 

 

Remarks 

A user may refer to a specific substate of a cell by using the string “cel l _”  fol-

lowed by the name of the substate.  

N.B.: A user may modify the value of a substate using the updat e function (sec-

tion 3.3.25). 

 

Example 

 cadef   

 {  

  st at e ( f l oat  t emp) ;  

 }  

 

 f l oat  val ;  

 

 val  = cel l _val +3;  

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  42 

3.3.4 cpt_abort 

Syntax 

 cpt _abor t ( )  

 

Remarks 

Calling this function causes the program to stop. It is only available inside the 

st eer i ng block of the program. 

 

Example 

An example is available in section 3.3.22. 

 

3.3.5 cpt_save 

Syntax 

 cpt _save ( char  * f name)  

 

Remarks 

This function saves all the CA Engine data to project and substate files. It does not 

save the AVS/Express related files. It is only available for steering. It uses the 

f name argument as a root for the generated files, as described in section 3.2.2.1.2 

(omitting the AVS/Express related discussion). 

 

Example 

An example is available in section 3.3.22. 

 

3.3.6 cpt_set_param 

Syntax 

 cpt _set _par am ( f l oat  * par ,  f l oat  npar )  

 

Remarks 

This function alters the value of the global parameter pointed by par  to that of 

npar . It is only available inside the st eer i ng statement. See section 3.3.14 for 

the definition of global parameters. 

 

Example 

An example is available in section 3.3.22. 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  43 

3.3.7 deterministic (alias determin) 

Syntax 

 det er mi ni st i c;  

 

Remarks 

This statement signifies the commitment of the programmer that the cell update 

function is deterministic [Telford et al. 1998].  A deterministic program is one 

where the state of a cell is guaranteeed to be unchanged if the state of its local 

neighbourhood is unchanged. This is one of the necessary conditions for automatic 

inactive region detection (the other being that the user has not set active folds 

manually). 

N.B.: A program whose update rule depends on st ep or random functions is non-

deterministic (except if this only happens in step 0). Starting with release 1.2 of the 

software, detection of the det er mi ni st i c  keyword and the keyword st ep or 

any random function in a program is flagged by the parser as a warning (non-fatal). 

 

Example 

The example below gives an example where the incorrect use of det er mi ni s-

t i c  leads to erroneous program execution.  

 

 cadef  {  

  . . .  

  st at e ( f l oat  val ) ;  

  det er mi ni st i c;  

 }  

  

 f l oat  newval ;  

 {  

  i f  ( 0 == st ep)  {    / /  OK 

   newval  = Get X+Get Y+Get Z;   

  }  el se i f  ( st ep < 20)  {   / /  not  det er mi ni st i c!  

   newval  = 0. 51* cel l _val ;  

  }  

 . . .  

updat e( cel l _val ,  newval ) ;  

 }  

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  44 

 

3.3.8 dimension 

Syntax 

 di mensi on <n>;  

 

Remarks 

Defines the number of dimensions of the CA Engine. It ranges from 1-3.  

 

3.3.9 DimX, DimY, DimZ 

Syntax 

 Di mX,  Di mY,  Di mZ 

 

Remarks 

These values are the CA Engine dimension of the x, y and z axis respectively. Note 

that for x, which is split according to the number of processes, this is the size of the 

whole model. 

 

Example 

 cadef  {  

  . . .  

  st at e ( i nt  st ) ;  

  . . .  

 }  

 

 {  

  Di mX = 5;    / /  Thi s i s i l l egal !  

  

 i f  ( Di mX == cel l _st )  {  

updat e( cel l _st ,  Di mY) ;  

  }  

  . . .  

 }  

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  45 

3.3.10 GetX, GetY, GetZ 

Syntax 

 Get X,  Get Y,  Get Z 

 

Remarks 

These values are the global x, y and z coordinates of the cell respectively. 

 

Example 

 cadef   

 {  

  . . .  

  st at e ( f l oat  di st ) ;  

  . . .  

 }  

 

 f l oat  val ;   

 {  

 i f  ( 0 == st ep)  {  

val  = Get X+Get Y+Get Z- 3;  

updat e( cel l _di st ,  val ) ;  

 }  

  . . .  

 }  

 

3.3.11 neighbour (alias neighbor) 

Syntax 

 nei ghbour  <Nname>[ <n>] ( <[ x, y, z]  al i as>,  . . . ,   

<[ x, y, z]  al i as>) ;  

 

Remarks 

This statement defines a logical neighbourhood. The x, y, z  values must remain 

within the [ - r adi us,  r adi us]  interval defined in the cadef  statement. The 

alias for each neighbour is not compulsory; a cell can refer to its neighbour using 

the Nname[ i ]  notation. 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  46 

Example 

 cadef  {  

  di mensi on 2;  

  r adi us 1;  

  st at e ( f l oat  di st ) ;  

nei ghbour  Neumann[ 4] ( [ 0, - 1]  Nor t h,  [ 0, 1] ,  [ - 1, 0] ,  

[ 1, 0] ) ;  

 }  

 

f l oat  v1,  v2;  

{  

v1 = Nor t h_di st ;  

v2 = Neumann_di st [ 0] ;  / /  Shoul d be t he same!  

 . . .  

}  

 

3.3.12 NFolds 

Syntax 

 NFol ds 

 

Remarks 

Returns the number of folds. 

 

Example 

 cadef   

 {  

. . .  

 }  

 

NFol ds = 3;    / /  i l l egal !  

i f  ( 1 == NFol ds)  {  

 . . .  

 

3.3.13 NProcs 

Syntax 

 NPr ocs 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  47 

 

Remarks 

Returns the number of processes to which the CA is split in the x axis. 

 

Example 

 cadef   

 {  

. . .  

 }  

 

Npr ocs = 2;    / /  i l l egal !  

i nt  st r i p_l engt h;  

 

st r i p_l engt h = Di mX/ ( NPr ocs *  NFol ds) ;  

 . . .  

 

3.3.14 parameter 

Syntax 
 par amet er  ( par am_def _l i st )  
 

where par am_def _l i st  is a comma-separated list of parameter definitions, 
where each parameter definition has one of the following forms: 
 

• par am_name 

• par am_name val ue 
where val ue is a f l oat , in any C f l oat  syntax.  

• par am_ar r ay[ di m]  

• par am_ar r ay[ di m]  { ar r ay_l i st }  
where ar r ay_l i st  is a comma-separated list of f l oat s, in any C 
f l oat  syntax, and di m is an i nt eger  index greater than 1.  

 

Remarks 

Declares and defines global CA parameters. Their values can only be changed dur-

ing the run from the GUI, or by means of the cpt _set _par am( )  primitive (sec-

tion 3.3.6), since they are global to all the cells. They are of type f l oat . Parame-

ters are accessed in a CARPET program directly through their symbolic name. The 

maximum number of parameters (counting each element of parameter arrays) is 

500, as set by the MaxNumPar am variable in the file par ser . h of the parser. The 

same file contains the definition of the maximum length of a parameter name (30 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  48 

characters, including the array indices) MaxLenPar am. The array list may have 

fewer than di m elements, in which case the additional values default to zero (non-

initialised parameters default to 0 in any case). 

 

Example 

 cadef  {  

  . . .  

  par amet er  ( mypar  2. 0,  par _ar r ay[ 3]  { 1. 0,  4. 0} ) ;  

. . .  

 }  

 

3.3.15 radius 

Syntax 

 r adi us n;  

 

Remarks 

Defines the radius of the neighbourhood of the cells. 

N.B.: r adi us  is limited to 

 

• 60, if di mensi on is 1; 

• 2, if di mensi on is 2; 

• 1, if di mensi on is 3. 

 

3.3.16 random 

Syntax 

 r andom ( n) ;  

 

Remarks 

Returns a pseudo random integer between 0 and n, n being a positive integer.  

N.B.: r andom( )  returns the same sequence of numbers every time it is called. To 

avoid this, the user may use the r andomi se( )  function. The use of this function 

could make a program non-deterministic (see section 3.3.7).  

 

3.3.17 randomise (alias randomize) 

Syntax 

 r andomi se( ) ;  



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  49 

 

Remarks 

Creates a new seed for the random number generator. 

 

3.3.18 region 

Syntax 

 r egi on <r egi on- name> ( <mi n_x>: <max_x>, <mi n_y>: <max_y>,  

<mi n_z>: <max_z>) ;  

 

Remarks 

The user specifies a region as part of the cadef  block of the program, using a dec-

laration of the above form. This is used to allow global reduction operations within 

the steering block of the CARPET program. There is no limit to the number of re-

gions that can be specified by the user. If the lower or upper bound of a co-efficient 

of the region is not defined, the specification defaults to the corresponding mini-

mum or maximum for the respective dimension. The bounds of the region range 

from 1 to the size of the corresponding dimension. The keywords st ar t  and end 

are defined to be the minimum and maximum of the dimension in which they are 

found, thus allowing flexible region specification. 

 

Because the dimensions of the model are specified at build time while the regions 

are declared at compile time, full error checking is not possible. Nonetheless, the 

following conditions are flagged as errors: 

 

• Specifying minimum and maximum values for dimensions not used by the 

model; 

• Specifying a negative integer as a range boundary; 

• Specifying a maximum value less than a minimum value (this check is possible 

if the region boundaries are explicitly defined). 

 

Example 

 cadef  {  

  di mensi on 3;  

r egi on myr egi on ( st ar t +2: end- 2, : , 3: ) ;  

. . .  

 }  

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  50 

3.3.19 region_<op> 

Syntax 

 r egi on_<op> ( <r egi on- name>,  <st at e>) ;  

 

Remarks 

The r egi on_<op>( )  function is available inside the steering function. It returns 

a value of the same type as its st at e argument. It applies the reduction operation 

op to state st at e all the cells in region r egi on- name. The supported opera-

tions are as follows: 

 

• max 

• mi n 

• sum 

• pr od 

• l and (logical and) 

• band (binary and) 

• l or  (logical or) 

• bor  (binary or) 

• l xor  (logical exclusive or) 

• bxor  (binary exclusive or) 

 

The user can supply a global reduction operation inside their CARPET program to 

cater for operations other than the ones above. The prototype of a global reduction 

function corresponding to the r egi on_<op>( )  function must comply with the 

following: 

 

<dat at ype> cpt _<dat at ype>_<op> ( i nt  mi n_x,  i nt  max_x,  

i nt  mi n_y,  i nt  max_y,  i nt  mi n_z,  i nt  max_z,  i nt  st at ei d,  

Cpt Cel l  * cp)  

 

N.B.: The automatically generated functions assume that the co-efficients of the 

model are in the [ 0, DI Mw- 1]  range, w ∈{ X, Y, Z} , in other words, they range 

from 0 to the maximum dimension of the model minus 1.    

 

Note: the importance of the neutral element 

When developing a global reduction function the user should take into account that 

a region can be defined so that the data in it are outside the domain of one or more 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  51 

processes. The functions automatically generated provide an algorithm which pre-

vents erroneous calculation. However, because the operations are global, all the 

processes contribute to the global reduction of the result. In order to avoid incorrect 

global reduction of the data, the user can set the initial value of the variable contain-

ing the per-process result of the function to be equal to the neutral element for the 

corresponding operation.  

 

Example 

Examples of such functions are the ones automatically generated by the parser. 

 

3.3.20 srandom 

Syntax 

 sr andom ( n) ;  

 

Remarks 

Same as r andomi se( ) , only that the programmer may choose the seed argument 

through n. 

 

3.3.21 state 

Syntax 

st at e( t ype subst at eA1,  subst at eA2,  …,  subst at eAn,   

t ype subst at eB1,  subst at eB2,  …,  subst at eBn,  …) ;  

 

Remarks 

The state of a cell consists of various typed substates. The allowed types are: 

 

• (unsigned) char; 

• (unsigned) short; 

• (unsigned) int; 

• float; 

• double; 

• arrays of the above. 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  52 

3.3.22 steering 

Syntax 

st eer i ng {  

st at ement ;  

. . .  

st at ement ;  

}  

 

Remarks 

The steering function is an optional feature of a CARPET program by which the 

user can affect the flow of the program as a result of global reductions on regions of 

the model (see section 3.3.18 for the definition of regions in a CARPET program). 

 

The steering function is defined in a separate section of the CARPET program, 

similarly to the update function. The main difference is that the update function is 

applied separately in each cell, whereas the steering function is global for the 

model. Any code inside the st eer i ng statement is copied verbatim to the gener-

ated file, with the exception of the r egi on_<op>( )  statements which are trans-

lated to a global reduction function, as shown in section 3.3.19. The user can mod-

ify the flow of the program inside the steering section in either of the following two 

ways: 

 

• call the function cpt _set _par am ( f l oat  * ol d_p,  f l oat  new_p) , 

which sets the global parameter pointed by ol d_p to the value of new_p; 

• call the function cpt _abor t ( ) , which terminates the execution of the program 

without exiting the CA Engine. 

 

Inside the steering code, the user has access only to the following CARPET defined 

variables: 

 

• Di mX, Di mY, Di mZ;  

• st ep; 

• global parameter values. 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  53 

Example 

cadef  {  

di mensi on 3;  

r egi on I nsi de ( st ar t +2: end- 2, : , : ) ;  

. . .  

st at e ( f l oat  val ) ;  

par amet er  ( pi  3. 141) ;  

}  

. . .  

st eer i ng {  

f l oat  mi n = r egi on_mi n ( I nsi de,  val ) ;  

 

i f  ( mi n < 4. 0)  {  

cpt _set _par am ( &pi ,  3. 14159) ;  

}  el se i f  ( mi n > 100. 0)  {  

cpt _save ( “ abor t ed” ) ;  

cpt _abor t  ( ) ;  

}  

}  

 

3.3.23 step 

Syntax 

 st ep 

 

Remarks 

This denotes the current CA Engine iteration. The initial value is 0. Allows time-

dependent update function development. 

 

 

3.3.24 threshold 

Syntax 

t hr eshol d ( expr essi on) ;  

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  54 

Remarks 

Defines a C expression, which, if satisfied, is equivalent to the cell being idle for 

the past CA Engine evolution. It is used in conjunction with det er mi ni st i c  for 

the inactive region detection. 

 

Example 

cadef  

{  

. . .  

st at e (   f l oat  val ;   i nt  val 2;  ) ;  

t hr eshol d ( cel l _val  == 3) ;  

. . .  

 }  

 

3.3.25 update 

Syntax  

 updat e ( cel l _subst at e,  val ue) ;  

 

Remarks 

This is the only way to set the value of a cell substate by means of the program. 

This is done in order to ensure that the state of all cells is set in lock step in the next 

generation after the update has been issued, thus preventing race conditions. 

 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  55 

4.  GUI  Implementation 

4.1 Overview 

The CAMELot GUI is a Motif application written using Imperial Software Technology's 

X-Designer 4.6 and 5.0 GUI builder tool, which is a tool for designing GUIs graphically. 

This tool generates (in this case) C code which implements a GUI using the Motif library. 

 

This approach was taken to allow rapid prototyping and development. Since X-Designer 

also has facilities for generating C++ (using Motif or Microsoft MFC libraries) or Java 

(using the AWT library), this may also ease any future porting of CAMELot to other plat-

forms. 

 

This tool has been used to generate code to implement the visual elements of the GUI (text-

editing widget, menus, buttons, etc). The rest of the GUI functionality (CARPET file read-

ing and writing, CARPET compilation and building, communication with the CA Engine, 

visualisation) was coded by hand and integrated with the X-Designer-generated code by 

means of X callback interfaces. The CARPET parser and the CA Engine communication 

module were written as separate libraries linked with the GUI. These are described else-

where in this document. 

 

4.2 Communication with the CA Engine  

Communication with the CA Engine is via two Internet-domain sockets, pr ot _sockf d for 

CA Engine requests and acknowledgements and vi s_sockf d for receiving visualisation 

data and the current generation number in each step. These are opened when the CA En-

gine is spawned and closed when it is terminated.  

 

The incoming visualisation data socket is multiplexed into the X event loop using the 

Xt AppAddI nput ( )  X Toolkit function. 

 

4.3 Visualisation Windows 

The Visualisation window’s main graphics area is implemented in hand-coded Xlib pix-

map code (for efficiency) within an XmDrawingArea widget. 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  56 

CAMELot uses the default X Visual for the X Screen it is displaying on. CAMELot sup-

ports the following types of Visuals: PseudoColor, DirectColor or TrueColor with colour 

depth of at least 8 bits. A separate colormap for each Visualisation window is set using 

XSet Wi ndowCol or map( ) ; this allows different windows to use different colour palettes 

if desired. Hence, a display of a depth greater than 8 bits is recommended to avoid color-

map switching when changing window focus. 

 

The default colormap is a red/yellow/green/blue spectrum plus black for the background. 

 

4.4 Source code files 

The following source files comprise the GUI: 

 

• camel ot . c  (partly X-Designer generated) 

This contains the mai n( )  function. This file has been hand-edited to set a fallback X 

resource in order to override the CDE Motif default * Font Li st  resource and to open a 

CARPET source file on startup if one is specified on the command line. 

 

• camel ot . h 

This contains global cpp definitions and declarations. Some of the optional compile-

time cpp flags defined in this file are: 

DEBUG_CROAKS: Enables assorted debug trace statements to st der r  

DEV_CONFI G: Development configuration (e.g. no “Save CARPET file?”  dialog box 

on exit) 

LOCALHOST_SOCKET: Hardwire front-end hostname to “ l ocal host ”  (this is the host-

name passed to the CA Engine in order for it to initiate the connection to the GUI). 

This is a useful optimisation if the GUI and CA Engine run on the same IP host. 

 

• camel ot _ext . h (X-Designer generated) 

Widget declarations. 

 

• camel ot _gl obal s. c 

Global variable definitions. 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  57 

• camel ot _gui . c  (X-Designer generated) 

Widget creation/deletion code. 

 

• camel ot _st ubs. c  (partly X-Designer generated) 

X-Designer-generated GUI callbacks plus all non-X-Designer-generated code, except 

for Visualisation window code. 

 

• camel ot _vi z. c     

Visualisation window code. 

 

• Makef i l e. { sunos5,i r i x6,l i nux, t r u64}  (partly X-Designer generated) 

Makefile for the CAMELot GUI for various platforms (SunOS 5.6, IRIX 6.2, Red Hat 

Linux 5.2 and Tru64 UNIX 4.0F respectively). 

 

4.5 Libraries 

The GUI is linked with the following libraries, which form part of the whole CAMELot 

system. These are described elsewhere in the document: 

 

• l i bcpt _par se  The CARPET parser 

• l i bcmt gui comms  CA Engine communication interface 

• l i bcmt common  Code common to GUI and CA Engine 

 

4.6 X Shell Widgets 

The following X shell widgets are defined in the X-Designer design: 

 

• dev_shel l  

Development window. 

 

• si m_shel l  

Simulation window. 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  58 

• vi z_shel l  

Visualisation window. A shell widget for each Visualisation window opened by the 

user is created by calling the X-Designer-generated function cr eat e_vi z_shel l ( )  

in vi z_open( ) . 

 

• devdi ms_shel l  

Development window Configure menu “Automata dimensions...”  dialog box. 

 

• devcc_shel l  

Development window Configure menu “C compiler command line...”  dialog box. 

 

• devmpi _shel l  

Development window Configure menu “MPI run command...”  dialog box. 

 

• devr epl ace_shel l  

Development window Edit menu “Replace…” dialog box.  

 

• devcomp_shel l  

CARPET parser (compiler) output window. 

 

• devbui l d_shel l  

C compiler output window. 

 

• about _shel l  

“About CAMELot...”  message box. 

 

• f i l esel _shel l  

File selector dialog box. 

 

• subst at e_shel l  

CA substate selector dialog box. 

 

• cel l _shel l  

CA cell selector dialog box (x, y, z coordinate scales). 

 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  59 

• f ol d_shel l  

CA active fold selector dialog box (Simulation window Setup menu “Folding...”  dialog 

box). 

 

• di spt ype_shel l  

Display type (orthographic, isometric 1-plane or isometric 3-plane) selector dialog box. 

 

• mi nmax_shel l  

Simulation window “Min/max substate values…” dialog box. 

 

• t i mi ng_shel l  

Development window Configure menu “Timing output…” dialog box. 

 

• si medi t _shel l  

Simulation window “Edit substate…” dialog box. 

 

• si mpar ams_shel l  

Simulation window “Parameters…” dialog box. 

 

• di al og1_shel l  

Generic one-field dialog box. 

 

• msgbox_shel l  

Generic message box with “Dismiss”  button. 

 

• conf i r m_shel l  

Generic confirmation dialog box with “Yes”  and “No” buttons. 

 

4.7 Global variables and data structures 

4.7.1 Major data structures 

• VI ZWI N 

For each Visualisation window opened, a VI ZWI N structure is allocated. This holds all 

the attributes associated with a Visualisation window: Xlib data (pixmap, GC, color-

map, etc.), pointer to corresponding shell widget, display type, scaling factors, plane 

IDs of planes displayed in window, etc. 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  60 

• VI ZWI NLI STNODE 

Structure used for plane-to-window mapping linked lists (see pl ane2wi n[ ]  descrip-

tion). 

 

4.7.2 Major global variables 

• Cpt CADef  cadef  

CA definition structure used by CARPET parser. Information on CA dimensions, sub-

states and parameters declared in CARPET source is entered into it by the parser during 

CARPET compilation. 

 

• unsi gned i nt  xyzdi ms[ 3]  

Current dimensions of CA, as defined via the Development window menu item “Con-

figure->Automata Dimensions…”. 

 If the CA is 1-D or 2-D, then xyzdi ms[ ZDI M] =1; if 1-D, xyzdi ms[ YDI M] =1 also. 

 

• i nt  nvi zwi ns 

• VI ZWI N * vi zwi ns[ ]  

• VI ZWI NLI STNODE * pl ane2wi n[ ]  

• i nt  pl aner ef cnt [ ]  

• pl ane_l i st  al l _pl anes 

 

These are further discussed in the Visualisation section 8.2.2. 

 

4.7.3 Callback context variables 

In order to associate a single callback function with generic dialog boxes such as f i l e-

sel _shel l  and di al og1_shel l , global context variables are set before the dialog box is 

popped-up. These variables preserve state required for the callback function. The following 

context variables are used: 

 

• Wi dget  di al og_cont ext  

Pointer to widget (menu item or button) responsible for popping-up di al og1_shel l . 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  61 

• i nt  subst at e_cont ext  

Saved CA substate ID when selecting substate and file. 

 

• i nt  subst at endx_cont ext   

Saved CA substate index when selecting substate. 

 

• i nt  di spt ype_cont ext  

Saved display type (orthographic, isometric 1-plane, isometric 3-plane) when opening 

new Visualisation window. 

 

• i nt  di sppl ane_cont ext   

Saved display plane (x-y, x-z or y-z) when opening new Visualisation window. 

 

• i nt  par am_cont ext  

Saved CA parameter ID when setting parameter. 

 

• i nt  cel l _cont ext [ 3]  

Saved cell coordinates when selecting cell. 

 

• VI ZWI N * vi zwi n_cont ext  

Saved VI ZWI N struct pointer when setting Visualisation window colormap. 

 

 

4.8 List of Functions 

4.8.1 Functions in camelot_stubs.c   

• voi d dev_f i l e_open( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for Development window “File->Open...”  menu item. 

 

• voi d dev_f i l e_save( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for Development window “File->Save” menu item. 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  62 

• voi d dev_qui t ( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for Development window “File->Exit”  menu item. 

 

• voi d dev_save_and_qui t ( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,   

Xt Poi nt er  xt _cal l _dat a)  

Callback for conf i r m_shel l  dialog “Yes" button. 

 

• voi d dev_qui t _conf i r m( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,   

Xt Poi nt er  xt _cal l _dat a)  

Callback for Development window “Exit”  menu item. 

 

• voi d dev_edi t _cut ( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for Development window “Edit->Cut”  menu item. 

 

• voi d dev_edi t _copy( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for Development window “Edit->Copy" menu item. 

 

• voi d dev_edi t _past e( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for Development window “Edit->Paste”  menu item. 

 

• voi d dev_conf i g_popup( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,   

Xt Poi nt er  xt _cal l _dat a)  

Callback for buttons which pop-up the 1-field dialog box (di al og1_shel l ). 

 

• voi d dev_conf i g_set ( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for dialogs popped-up by Development window “Configure”  menu items and 

some Simulation window “Setup”  menu items (devdi ms_shel l , devcc_shel l , 

devmpi _shel l , f ol d_shel l , t i mi ng_shel l , mi nmax_shel l  or di a-

l og1_shel l ). Uses di al og_cont ext  for di al og1_shel l  dialogs. 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  63 

• voi d dev_compi l e( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for Development window “Compile”  button - calls CARPET parser via 

cpt _i ni t ( ) , cpt _par se( )  and cpt _f i nal i ze( )  functions. 

Some support for an external CARPET parser, used in early development of CAMELot 

remains in the source code (#i f def ’d out), but has not been tested recently. 

 

• voi d dev_bui l d( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for Development window “Build”  button - runs C compiler. 

 

• voi d dev_r un( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for Development window “Run” button - opens Simulation window, initial-

ises sockets, spawns CA Engine, initialises visualisation data. 

 

• voi d dev_spawn( Wi dget  t ext wi dget ,  char  * cmdl i ne)  

Spawn cmdl i ne using popen( 3)  and feed st dout  into XmText widget t ext wi d-

get , keeping cursor at, and showing, end of text. Used by dev_bui l d( ) . 

 

• voi d dev_compi l e_er r hndl r ( i nt  code,  i nt  l i neno)  

Error handler callback for CARPET parser. Calls cpt _er r or _message( )  to get error 

message string from CARPET parser, inserts this into a message box XmText widget; 

also calls XBel l ( )  and moves the cursor of the Development window XmText widget 

to the offending line for the first error of a parse only (when global variable 

cpt _er r _occur r ed==FALSE). 

 

• voi d dev_set _wi nt i t l e( voi d)  

Sets window title on Development window, appending l ast _car pet _f i l e. Called 

by f i l e_save( )  and f i l e_open( ) . 

 

• i nt  f i l e_open( char  * f i l ename,  Wi dget  t ext wi dget )  

Opens file f i l ename and reads contents into XmText widget t ext wi dget . Also up-

dates global variable l ast _car pet _f i l e and attempts to load configuration file from 

same directory with same base name as f i l ename but with a . cnf  extension, ignoring 

errors. Returns -1 on error, otherwise 0. 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  64 

 

• i nt  f i l e_save( char  * f i l ename,  Wi dget  t ext wi dget ,  i nt  conf _f l ag)  

Writes contents of XmText widget t ext wi dget  to file f i l ename. If conf _f l ag is 

TRUE, also calls conf _save( )  to save a configuration file to same directory with 

same base name as f i l ename but with a . cnf  extension. Returns -1 on error, other-

wise 0. 

 

• voi d si m_go( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for Simulation window “Go” button. Sends EVOLVE request to CA Engine. 

 

• voi d si m_l oop( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for Simulation window “Loop” button. Sends LOOP request to CA Engine. 

 

• voi d si m_pause( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for Simulation window “Pause” button. Sends PAUSE request to CA Engine. 

 

• voi d si m_r esume( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for Simulation window “Resume” button. Sends RESUME request to CA En-

gine. 

 

• voi d si m_exi t ( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for Simulation window “Exit”  button. Closes all Visualisation windows, 

sends EXI TCODE to CA Engine and closes sockets. Also called from various places to 

terminate CA Engine. 

 

• voi d f i l e_sel ect ( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for buttons which pop-up the file selector dialog (f i l esel _shel l ). 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  65 

• voi d f i l e_sel ect ed( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for file selector dialog (f i l esel _shel l ). 

 

• voi d subst at e_sel ect ( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Pops up the substate selector dialog (subst at e_shel l ). 

 

• voi d subst at e_sel ect ed( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,   

Xt Poi nt er  xt _cal l _dat a)  

Callback for substate selector dialog (subst at e_shel l ) and substate editor dialog 

(si medi t _shel l ). 

 

• voi d cel l _sel ect ( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Pops up cell selector dialog (cel l _shel l ) with scales set from xyzdi ms[ ] .  

 

• voi d cel l _sel ect ed( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for cell selector dialog (cel l _shel l ). 

 

• voi d par am_sel ect ed( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for parameter editor dialog (si mpar ams_shel l ). 

 

• voi d di spt ype_sel ect ed( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,   

Xt Poi nt er  xt _cal l _dat a)  

Callback for display type selector (di spt ype_shel l ).  

 

• voi d di spt ype_t oggl e( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Enable or disable plane selection radiobox according to di spt ype_i so3_t oggl e 

value. 

• voi d popup_msgbox( XmSt r i ng st r i ng)  

Pops up message box dialog shell (msgbox_shel l ) with XmLabel text set to 

st r i ng.  



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  66 

 

• voi d vi z_but t on( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for Visualisation window buttons. 

 

• voi d si m_r eset _gen_count ( voi d)  

Set initial Simulation window step number label to “  - ” . 

 

• voi d si medi t _i ni t ( voi d)  

Initialises substate editor dialog (si medi t _shel l ) and pops it up. 

 

• voi d si mpar ams_i ni t ( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Initialises parameter editor dialog (si mpar ams_shel l ) and pops it up.  

 

• voi d eng_r x_cal l back( Xt Poi nt er  xt p,  i nt  * sour ce,  Xt I nput I d 

* xt i ni d)  

Xt AppAddI nput ( )  callback for receiving messages from CA Engine. 

 

• r eq_code eng_r x_packet ( voi d)  

Receives packet from CA Engine and handles it appropriately. Returns packet header 

(r eq_code) or I GNORED on error. 

 

• r eq_code eng_wai t _vi spack( voi d)  

Block until data received from the CA Engine (or timeout occurs). If packet received, 

call eng_r x_packet ( )  and repeat until it is a VI S_PACK. Returns VI S_PACK on 

success or I GNORED on failure. Called from vi s_open( )  to receive and display ini-

tial VI S_PACK. 

 

• voi d t ext _sear ch( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

 Callback for Development window "Find next" button (also called from  

dev_conf i g_set ( )  after "Find" button selected). Searches XmText widget 

dev_shel l - >dev_t ext 1 for text f i ndt ext  (global variable). If called back from 

dev_f i nd_but t on, start at beginning of text, else if called back from 

dev_f i ndnext _but t on, start at cursor position. If found, moves cursor to start of 

text. 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  67 

• voi d t ext _r epl ace( Wi dget  w,  Xt Poi nt er  c l i ent _dat a,  Xt Poi nt er  

xt _cal l _dat a)  

Callback for Development window "Replace text" dialog. Searches XmText widget 

dev_shel l - >dev_t ext 1 for text in XmText widget devr epl ace_t ext 1 and 

replaces all occurrences with text in devr epl ace_t ext 2. Also sets f i ndt ext  to 

contents of devr epl ace_t ext 1. 

 

• i nt  conf _l oad( char  * f i l ename)  

Load Development window configuration dat a ( xyzdi ms[ ] ,  npr ocs,  nf ol ds,  

t i mi ng_f l ag,  t i mi ng_st ep,  ccname,  cf l ags,  c l i bs,  mpi cmd,  t i m-

i ng_f i l e) from file f i l ename. Sets appropriate widgets to the new values. Returns -

1 on error, otherwise 0.  

 

• i nt  conf _save( char  * f i l ename)  

Save Development window configuration dat a ( xyzdi ms[ ] ,  npr ocs,  nf ol ds,  

t i mi ng_f l ag,  t i mi ng_st ep,  ccname,  cf l ags,  c l i bs,  mpi cmd,  t i m-

i ng_f i l e) to file f i l ename. Returns -1 on error, otherwise 0. 

 

4.8.2 Functions in camelot_viz.c   

• voi d vi z_open( i nt  x,  i nt  y,  i nt  z)  

Create a new Visualisation window and corresponding VI ZWI N struct; tell CA Engine 

about new plane(s) to visualise. 

 

• voi d vi z_exi t ( Wi dget  wi dget ,  Xt Poi nt er  c l osur e,  Xt Poi nt er  

cal l _dat a)  

Window manager Delete callback for Visualisation windows (also called from “Close”  

button callback). 

 

• voi d vi z_r ender _pl ane( VI ZWI N * vi zwi n,  i nt  i d,  unsi gned char  

* dat a)  

Renders a plane with ID i d in a Visualisation window which corresponds to vi zwi n 

from data pointed to by dat a. 

  



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  68 

• voi d vi z_set _def _col map( VI ZWI N * vi zwi n)  

Set colormap of window vi zwi n to default palette (red-to-blue spectrum). Sets color-

map of both XmDrawingArea and shell widget. 

 

• voi d vi z_l oad_col map( char  * f i l ename)  

Opens palette file f i l ename and sets colormap of Visualisation window pointed to by 

vi zwi n_cont ext  according to contents of file. 

Palette files are in ASCII format and consist of 256 lines each containing three space-

separated unsigned 16-bit hex numbers specifying the R, G and B values respectively 

of the palette entry corresponding to the line number (counting from 0). The first line 

specifies the colour to be used for the background. 

 

• voi d vi z_dr aw_col scal e( VI ZWI N * vi zwi n)  

Draws horizontal colour palette bar of height VI ZCOLSCALEHEI GHT across the bottom 

of Visualisation window pixmap. 

 

• voi d vi z_dr aw_col scal e_l i mi t s( VI ZWI N * vi zwi n,  doubl e mi n,  dou-

bl e max)  

Draw numeric upper and lower limits above colour palette bar in Visualisation window 

pixmap using colour from middle of colormap. Store limit values, strings and string 

metrics in VI ZWI N struct for next call. 

 

• voi d spect r um( i nt  i dx,  XCol or  * col or )  

Returns a colour in col or  corresponding to the value of i dx  compared to VI ZCOLS 

(the number of colours to be used for visualisation). 0 
�

 i dx  < VI ZCOLS. The colour 

range is a spectrum from blue to red. 

 

4.9 GUI-CA Engine Protocol Requests 

All requests to the CA Engine are sent using the macros in Table 3. They are defined in 

camel ot . h. 

 

These macros send the request code, call consume_vi s_pack( )  to discard outstanding 

visualisation packets (except for REQ_EXI T) and then call the corresponding r eq_* ( )  

function in l i bcmt gui comms  if present. 

 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  69 

 

Macro    Request code 

 

REQ_SAVE_REQUEST  SAVE_REQUEST 

REQ_SET_FOLD  SET_FOLD 

REQ_SET_LOAD  SET_LOAD 

REQ_VI EW_STATE  VI EW_STATE 

REQ_SET_STATE  SET_STATE 

REQ_GET_PARAM   GET_PARAM 

REQ_SET_PARAM   SET_PARAM 

REQ_EVOLVE   EVOLVE 

REQ_LOOP   LOOP 

REQ_RESUME   RESUME 

REQ_TERMI NATE  TERMI NATE 

REQ_PAUSE   PAUSE 

REQ_ADD_PLANE  ADD_PLANE 

REQ_DEL_PLANE  DEL_PLANE 

REQ_PROJ_READ  READ_PROJECT 

REQ_PROJ_SAVE  SAVE_PROJECT 

REQ_PERI ODI C_SAVE PERI ODI C_SAVE 

REQ_SET_MI NMAX  SET_MI NMAX 

REQ_EXI T   EXI TCODE 

Table 3: Correspondence between CAMELot GUI  macros and req_codes 

 

 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  70 

5. Cellular Automata Engine Implementation 

The CA Engine component of the program performs the evolution of the model specified 

in the CARPET program. Because of the computational intensity of bioremediation models 

and the inherently parallel characteristics of Cellular Automata, the CA Engine is imple-

mented as a parallel program adhering to the Single Program Multiple Data paradigm. Each 

process thus created is called a macrocell and can apply the transition function of the 

model locally to a subset of the model, under the assumption that it holds locally all the 

data that it requires. This suggests the introduction of boundary data which are maintained 

in neighbouring macrocells and communicated to the process after each evolution. 

 

This communication is implemented using MPI-1 [MPIf 1995], a portable interface for 

parallel programming. The CA Engine also needs to communicate with the GUI. This 

communication is executed between one process and the GUI using a purpose-built proto-

col on top of sockets, as explained in section 7. The process communicating with the GUI 

is commonly called the root process and is selected as the one with rank 0 in the 

MPI _COMM_WORLD MPI Communicator. It coordinates the other processes in order to serve 

the GUI requests. In this section we discuss the macrocell process implementation and 

leave the protocol and MPI interaction to section 7.  

 

In addition to the application of the transition function, a steering function is available, by 

which global reductions are performed after each iteration. This is described in section 

5.6.3. The system also performs periodic state saves (section 7) and substate visualisations 

(section 8), as well as timing of the main functions (section 5.7).  

 

5.1 Program Structure 

The main CA program component is contained in the file macr ocel l . c . This references 

global variables, external function and variable declarations in the CARPET generated 

program and also contains shared and static function prototypes and their code and the 

mai n( )  function. The CA Engine functions which implement the communication protocol 

are also included in the same file but their discussion is deferred until section 7.4. The CA 

Engine also uses objects defined in the l i bcmt common library.  

 

5.1.1 User-Defined Types 

Apart from the predefined C types, the following types are used in macr ocel l . c . 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  71 

5.1.1.1 Cpt Cel l   

The type depends on the definition of the cell in the CARPET program. The code for the 

struct is written by the parser into the generated header file. The generated type definition 

for the “Game of Life”  example model, which has one substate l i f e of  type char , is as 

follows. 

 

t ypedef  st r uct  _Cpt Cel l  

{  

   char    l i f e ;  

}  

Cpt Cel l ;  

 

5.1.1.2 pl ane and pl ane_l i st   

These types are used for the visualisation facility on both the GUI and the CA Engine. 

They are included in pl ane. c . We discuss them in section 8.1. 

 

5.1.1.3 t i mer  and st at s  

These are used in conjunction with the statistics output of the CA Engine. Their definitions 

are included in macr ocel l . c ; they are as follows. 

 

t ypedef  st r uct  {  

    doubl e st ar t ;  

    doubl e st op;  

    doubl e sum;  

    doubl e best ;  

    doubl e wor st ;  

    u_char  st ar t ed;  

    unsi gned l ong cal l ed;  

    char  t i t l e[ TI TLE_LENGTH] ;  

}  t i mer ;  

 

t ypedef  st r uct  {  

    t i mer  f unc;  

    t i mer  v i s;  

    t i mer  pr j ;  

    t i mer  bound;  



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  72 

    t i mer  st eer ;  

    t i mer  t ot al ;  

    i nt  r ank;  

    unsi gned l ong gens;  

    i nt  st ar t _gen;  

    u_i nt  per i od;  

    u_char  wor k;  

    FI LE * out f i l e;  

}  st at s;  

 

The t mr _code type is also used in the context of the above structures. 

 

t ypedef  enum {  

        FUNC = 9999,  

        VI S,  

        PRJ,  

        BOUND,  

        STEER,  

        TOTAL 

}  t mr _code;  

 

5.1.1.4 st at e_dt  and st at e_dt _l i st   

These types are used for the output of the AVS/Express field files, discussed in section 

7.5.8. Their definition follows: 

 

t ypedef  st r uct  {  

    MPI _Dat at ype dat a;  

    i nt  st at es;  

    i nt  st at e_i nd[ NumOf St at es] ;  

}  st at e_dt ;  

 

t ypedef  st r uct  {  

    st at e_dt  st at et ypes[ NumOf St at es] ;  

    i nt  many;  

}  st at e_dt _l i st ;  

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  73 

5.1.2 Functions in macrocell.c  

5.1.2.1 File I/O Related 

st at i c i nt  cmt _r ead ( char  * ,  i nt ) ;  

st at i c i nt  cmt _r ead_gl obal  ( char  * ) ;  

st at i c i nt  cmt _r ead_al l  ( char  * ) ;  

st at i c i nt  cmt _wr i t e ( char  * ,  i nt ) ;  

st at i c i nt  cmt _wr i t e_gl obal  ( char  * ) ;  

st at i c i nt  cmt _wr i t e_al l  ( char  * ,  char  * ) ;  

st at i c i nt  cmt _cr eat e_f l d ( char  * ,  char  * ) ;  

st at i c i nt  cmt _wr i t e_f l d ( char  * ,  char  * ,  i nt ) ;  

st at i c i nt  check_f s ( char  * ,  char  * ) ;  

i nt  cpt _save ( char  * ) ;  

 

Function cpt _save( )  is used in conjunction with steering (see section 3.3.5 for more). 

 

5.1.2.2 st at e_dt  and st at e_dt _l i st  Related 

st at i c voi d i ni t _st at e_dt  ( st at e_dt  * ,  MPI _Dat at ype) ;  

st at i c i nt  add_st at e ( st at e_dt  * ,  i nt ) ;  

st at i c voi d i ni t _st at e_dt _l i st  ( st at e_dt _l i st  * ) ;  

st at i c i nt  add_st at e_dt  ( st at e_dt _l i st  * ,  i nt ) ;  

 

5.1.2.3 Boundary Exchange 

st at i c i nt  cmt _boundar y_copy ( Cpt Cel l  * ) ;  

st at i c i nt  cmt _boundar y_swap ( Cpt Cel l  * ) ;  

st at i c voi d i ni t _boundar i es ( voi d) ;  

 

5.1.2.4 Fold Related 

st at i c voi d get _x_l i ne ( Cpt Cel l  * ,  i nt ,  u_char  * ,  i nt ) ;  

st at i c voi d set _x_l i ne ( Cpt Cel l  * ,  i nt ,  u_char  * ,  i nt ) ;  

st at i c voi d cal c_x_si zes ( voi d) ;  

st at i c voi d l i ne2f ol d ( const  u_char  * ,  u_char  * ,  s i ze_t ) ;  

st at i c voi d f ol d2l i ne ( const  u_char  * ,  u_char  * ,  s i ze_t ) ;  

st at i c voi d get _wr i t e_pt r  ( u_char  * ,  u_char  * ,  i nt ,  i nt ,  i nt ,   

 i nt ,  i nt ,  i nt ,  i nt ) ;  



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  74 

 

st at i c voi d get _scat t er _pt r  ( u_char  * * ,  u_char  * ,  u_char  * ,   

 i nt  ,  i nt ) ;  

 

5.1.2.5 Visualisation Functions 

st at i c i nt  ser v_add_pl ane ( voi d) ;  

st at i c i nt  ser v_del _pl ane ( voi d) ;  

st at i c i nt  t x_vi s_pack ( cel l  * ,  char ) ;  

st at i c i nt  ser v_set _mi nmax ( voi d) ;  

st at i c voi d col our _map ( const  u_char  * ,  u_char  * ,  i nt ,  i nt ,   

 doubl e,  doubl e) ;  

st at i c voi d check_pl ane ( pl ane * ) ;  

st at i c voi d bcast _pl ane ( pl ane * ,  MPI _Comm) ;  

 

5.1.2.6 Protocol Service 

st at i c i nt  r v ( r eq_code) ;  

st at i c i nt  ser v_save_r equest  ( voi d) ;  

st at i c i nt  ser v_set _f ol d ( voi d) ;  

st at i c i nt  ser v_set _l oad ( voi d) ;  

st at i c i nt  ser v_vi ew_st at e ( voi d) ;  

st at i c i nt  ser v_set _st at e ( voi d) ;  

st at i c i nt  ser v_set _par am ( voi d) ;  

st at i c i nt  ser v_t er mi nat e ( voi d) ;  

st at i c i nt  ser v_pr oj _r ead ( voi d) ;  

st at i c i nt  ser v_pr oj _save ( voi d) ;  

st at i c i nt  ser v_per i odi c_save ( voi d) ;  

st at i c i nt  send_ack ( i nt ) ;  

 

5.1.2.7 CA Execution Function 

st at i c i nt  r un ( voi d) ;  

 

5.1.2.8 Random Number Generators 

voi d cpt _r andomi ze ( voi d) ;  

voi d cpt _sr andom ( unsi gned i nt ) ;  

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  75 

These functions provide pseudo-random number generators and are the only shared (pub-

lic) functions defined in macr ocel l . c . 

 

5.1.2.9 Statistics Output 

st at i c voi d i ni t _t mr  ( t i mer  * ,  const  char  * ) ;  

st at i c i nt  st ar t _t mr  ( t i mer  * ) ;  

st at i c i nt  st op_t mr  ( t i mer  * ) ;  

st at i c voi d pr i nt _t mr  ( const  t i mer  * ,  FI LE * ) ;  

 

st at i c voi d i ni t _st s ( st at s * ,  i nt ,  u_char ,  u_i nt ,  const  char  * ) ;  

st at i c voi d r eset _st at s ( st at s * ) ;  

st at i c i nt  st ar t _one_t i mer _st s ( st at s * ,  t mr _code,  i nt ) ;  

st at i c i nt  st op_one_t i mer _st s ( st at s * ,  t mr _code,  i nt ) ;  

st at i c voi d pr i nt _st s ( const  st at s * ) ;  

st at i c voi d cl ose_f i l e_st s ( const  st at s * ) ;  

 

5.1.2.10 Other Functions 

st at i c voi d check_pos ( i nt  * ) ;  

st at i c i nt  get _val _si ze ( const  i nt  * ) ;  

 

5.1.3 External Function Prototypes 

ext er n voi d cpt _hook_i ni t  ( voi d) ;  

ext er n voi d cpt _f unc ( Cpt Cel l  * ,  Cpt Cel l  * ) ;  

ext er n voi d cpt _set _st at e ( Cpt Cel l  * ,  i nt ,  voi d * ,  i nt ) ;  

ext er n voi d cpt _get _st at e ( Cpt Cel l  * ,  i nt ,  voi d * ,  i nt ) ;  

ext er n voi d cpt _mpi _t ype_cel l  ( MPI _Dat at ype * ) ;  

ext er n voi d cpt _hook_f i nal i ze ( voi d) ;  

ext er n i nt  cpt _t hr esh ( Cpt Cel l  * ) ;  

ext er n r eq_code cpt _st eer i ng ( Cpt Cel l  * ) ;  

 

5.1.4 External Variables 

ext er n f l oat  cpt _gl obpar [ NumOf Gl obPar ] ;  / *  CARPET par amet er s * /  

ext er n const  s i ze_t  cpt _st at e_si ze[ NumOf St at es] ;   

 / *  Subst at e byt esi zes * /  



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  76 

ext er n MPI _Dat at ype cpt _st at e_mpi dt [ NumOf St at es+1] ;   

 / *  Subst at e MPI  Dt ypes * /  

ext er n bool _t  ( * cpt _st at e_XDRf n[ NumOf St at es] ) ( ) ;  

 / *  Subst at e XDR f unct i on* /  

ext er n const  i nt  cpt _det er mi n;  / *  Det er mi ni st i c f l ag * /  

ext er n const  char  * cpt _st at e_name[ NumOf St at es] ;      

 / *  Names of  st at es * /  

 

5.1.5 Global Variables 

Cpt Cel l  * ca1;   / *  1st  copy of  Cel l ul ar  Aut omat a * /  

Cpt Cel l  * ca2;   / *  2nd copy of  Cel l ul ar  Aut omat a * /  

i nt  cpt _di mx,  cpt _di my,  cpt _di mz;  / *  Local  CA di m si zes * /  

i nt  cpt _x,  cpt _y,  cpt _z;       / *  Cur r ent  coor di nat es,  X,  Y,  Z   

 Must  be gl obal  f or  Get [ XYZ]  * /  

char  * out _basename = NULL;   / *  Root  of  per i odi c save f i l ename * /  

char  * out _di r name = NULL;   / *  Pat h of  per i odi c save f i l ename * /  

i nt  save_st ep = I NT_MAX;   / *  Per i od of  saves * /  

i nt  num_gens;   / *  Remai ni ng gener at i ons t o r un * /  

i nt  cpt _gener at i on = 0;   / *  Must  be i ni t i al i sed f or  v i s_l i st  * /  

char  i n_st eer i ng = 0;  / *  Fl ag f or  st eer i ng st at ement  * /  

 

i nt  cmt Wor l dSi ze,  cmt Wor l dRank;   

 / *  MPI  wor l d si ze and l ocal  r ank * /  

i nt  cmt Pr evRank,  cmt Next Rank;  / *  Ranks of  nei ghbour  macr ocel l s * /  

MPI _Comm cmt CommCommand,  cmt CommBoundar y;   

 / *  MPI  cont ext s:  dat a & cont r ol  * /  

MPI _Dat at ype cmt Boundar yType;  / *  MPI  dat at ype f or  boundar y dat a * /  

i nt  pr ot _sockf d = 0,  v i s_sockf d = 0;   

 / *  pr ot ocol  and vi sual i sat i on socket  

 f d,  gl obal  f or  comm abst r act i on 

 i ndependence * /  

 

l i s t  v i s_l i st ;   / *  Li st  of  v i sual i sed pl anes * /  

pl ane_l i st  al l _pl anes;   / *  Li st  of  al l  pl anes i n t he Engi ne * /  

i nt  al t _i nt nl _bound[ 2] [ NFOLDS] ;   

 / *  Lef t / Ri ght  i nt er nal  boundar y  

 al t er ed f l ag f or  each st r i p * /  



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  77 

i nt  al t _st r i p[ NFOLDS] ;   / *  I nt er nal  cel l s al t er ed f l ag * /  

i nt  act i ve_st r i p[ NFOLDS] ;   / *  Act i ve St r i p f l ag * /  

i nt  manual _f ol ds = 0;   / *  Fl ag t o exami ne ( i n) act i ve f ol ds * /  

doubl e mi nmax[ NumOf St at es] [ 2] ;  / *  Mi ni mum/ Maxi mum val ue f or   

 each st at e.  * /  

 

char  aut o_map[ NumOf St at es] ;  / *  Fl ags f or  aut omat i c col our  map * /  

st at s st at i st i cs;   / *  St at i st i cs f or  t i mer s * /  

st at e_dt _l i st  * dt _l i st  = 0;  / *  st at e_dt _l i st  f or  AVS f i l es * /  

 

#i f def  EVEN_DECOMP9 

#el se 

i nt  CPT_DI MX [ CPT_NPROCS] ;  / *  Act ual  x dat a i n pr ocess * /  

i nt  CPT_F_X [ CPT_NPROCS] [ NFOLDS] ;  / *  Act ual  x dat a per  St r i p * /  

i nt  CPT_S_X [ CPT_NPROCS] [ NFOLDS] ;  / *  Tot al  St r i p x- si ze * /  

i nt  f i r st _smal l _st r i ps_i nd[ CPT_NPROCS] ;  / *  I ndex of  f i r st  st r i p of   

 pr ocess t o have smal l er  s i ze * /  

#endi f  

 

5.2 Data Handling 

5.2.1 Internal Representation 

Each cell can be thought of as a 3-D (x, y, z) triplet of co-ordinates with an associated set of 

substate values. In [Telford et al. 1998] it was decided that cells would be represented as C 

structs. The CA is represented as an array of such cells. If the program is run on more than 

one process, each process contains a fraction of the model data. The decomposition of the 

data to processing elements is discussed in section 5.4. Because of the way the CA execu-

tion function works, each process maintains two such arrays, one to contain the data of the 

previous iteration and another where the output of the transition function is written. After 

the transition function has been applied to all the cells of a macrocell, the read copy is up-

dated. This is necessary for the correct execution of the program, despite the fact that the 

read and write copies are toggled after each step. A good example of a program that fails is 

one that updates the cells with odd x-coefficient on the odd generations and the even ones 

on the even generations. 

 

                                                 
9 The EVEN_DECOMP macro definition is explained in section 3.2.1.1.3.3. 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  78 

The cells are accessed through the following macro, defined in the file cpt _ccdef s. h. 

 

#def i ne CA_REF(  ca,  z,  y,  x )  ( ( ca)  + ( z) * CPT_Y* CPT_X + ( y) * CPT_X + ( x) )  

 

As we discuss later in the section, duplicate, boundary data are incorporated in the real CA 

data to allow the execution of the transition function. CPT_X and CPT_Y are the total di-

mensions across the x and y axis of each process respectively, including the real and repli-

cated data. The above macro implies that the x-axis is “moving”  fastest when accessing the 

cells and because the decomposition is done across the x-axis, boundary data are located 

between two consecutive x-lines in the dataset of each process. Therefore, the data are 

fragmented thus reducing the expected benefit from processor read-ahead and caching op-

timisations when applying the transition function [Telford et al. 1998]. It should be noted 

that whether performance could be improved by running the z-axis fastest depends on the 

model size and the decomposition, since boundary data are replicated across all axes. 

Moreover, this approach effects non-contiguous boundaries, thus necessitating the intro-

duction of MPI boundary datatypes which contain non-contiguous data. This also possibly 

affects the performance of the CA Engine, as discussed in [Kavoussanakis et al. 1999], but 

no conclusive evidence has been found during the profiling of the software. 

 

5.2.2 Data I/O 

CAMELot supports state initialisation from files as well as saving the state to files. Files 

output to disk can be used for state initialisation at a later stage without any transformation. 

Data transfer occurs also between the CA Engine and the GUI both in order to control the 

execution and to provide visualisation of the states.  

 

Starting from release 1.2 of the software, the XDR data representation standard is sup-

ported for file I/O only. The use of XDR for read-related operations is discerned from that 

for write-related operations, as they are controlled by means of different C pre-processor 

definitions in macrocell.c (NO_XDR_READ and NO_XDR_WRI TE respectively). This allows 

the user to use the system as a filter to translate old binary files to XDR-based ones by de-

fining the NO_XDR_READ flag, as shown in section 3.2.1.1.3.1. In order to achieve this, the 

cpt _st at e_XDRf n[ ]  pointer-to-function array is generated from the parser and defined 

in the C file. This provides the appropriate XDR primitives to translate the substate ele-

ments to their corresponding external representation. 

 

File I/O is effected with one call, both when XDR is used and otherwise. The correspond-

ing functions (cmt _r ead( )  and cmt _wr i t e( ) ) use adequately large buffers to fit the 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  79 

data, as discussed in section 7.5.3.1. Most of the times I/O to the socket is also done with 

one call. 

 

5.3 Process Placement 

The user defines the number of processes from the Configure Menu of the Development 

Window. These processes are then arranged in a 1-D, periodic Cartesian topology repre-

sented by MPI Communicator cmt CommBoundar y , to enable boundary exchange. The 

physical allocation of processes to processing elements is hidden by the system. As far as 

the programmer is concerned, each process has a known couple of neighbours, cmt Nex-

t Rank  and cmt Pr evRank , identified by their rank (for process i in a n-process system, the 

previous has rank (i-1) mod n, the next has rank (i+1) mod n). An additional, unordered 

Communicator, cmt CommCommand, is also created for controlling the processes. The rank 

of each process, cmt Wor l dRank , as well as the total size of the system, cmt Wor l dSi ze, 

are stored as global variables in each process. They are acquired by means of standard MPI 

calls. The Cartesian arrangement of processes and the creation of the two Communicators 

are also achieved using MPI calls.  

 

5.4 Data Decomposition 

The CABOTO project introduced a form of block-cyclic decomposition aiming to reduce 

load imbalance [Spezzano et al. 1995]. The idea, which was also implemented in CAME-

Lot, was to split the model virtually in a number of folds and then assign equal parts (if this 

is possible) of each fold to each of the processes (Figure 27). This can lead to load balanc-

ing under the condition that the resulting granules (further referred to as strips) are fine 

enough to ensure that the uneven load distribution across folds statistically is insignificant 

across processes. It should be noted though, that the numbers of folds and processes should 

be chosen with caution during the executable build phase, since the more the strips, the 

bigger the communication overhead among the processing elements. 

 

The model is decomposed across the x-axis; this suggests that, in order to utilise the avail-

able resources, 1-D models should be considered as x lines and 2-D models should be 

viewed as x-y planes. The fold and process numbers are defined by the user through the 

Configure Menu of the Development Window and they are passed to the CA program as 

compiler line arguments using the - D option. The radius of the neighbouring cells is de-

fined in the CARPET program through the r adi us  statement (see section 3.3.15).  

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  80 

 

Figure 27: Block-Cyclic Decomposition in CAMELot. The figure and the notation as-

sume even decomposition. 

 

5.4.1 Uneven Decomposition 

For CAMELot releases prior to 1.3 it was necessary for the product of the number of folds 

times the number of processes to divide the total x-size of the model. This condition was 

relaxed in CAMELot 1.3. It should be noted that the former implementation is more effi-

cient since it carries less overhead, whereas the latter is more general. As a result of uneven 

decomposition, some processes may have their x-dimension larger than others by one. 

Similarly, some strips in a process may have their x-dimension larger by one.  

 

The definition of the x-sizes of the processes and strips takes place in function 

cal c_x_si zes( ) . The strategy for processes is that the root process will have at most as 

many elements as the others, on the grounds that it has extra workload because of the 

communication duties. On the contrary, strips are allocated extra elements in their x-

dimension starting with strip 0. 

 

There are two useful corollaries from the above discussion: 

 

• In each process there is a strip which has the lowest index of those with less elements 

than the others and the index of small strips range from this lowest index to NFOLDS- 1. 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  81 

This index for each process is stored in the file macr ocel l . c  in the global array 

f i r st _smal l _st r i p_i nd[ CPT_NPROCS] . In the case of even decomposition, this 

index defaults to 0. 

• The size of the smallest strip is the size of strip indexed NFOLDS- 1 in the root process. 

 

Example: Suppose that the total x-dimension of a 1-D model is 50, divided in 3 processes 

and 3 folds. Processes 1 and 2 will have 17 elements each, whereas process 0 will have 16. 

In processes 1 and 2 strips 0 and 1 will have 6 elements each, whereas strip 2 will have 5. 

In process 0 strip 0 will have 6 elements and strips 1 and 2 will have 5 each. Also, the fol-

lowing is true for the per-process array of indices to small strips. 

 

f i r st _smal l _st r i p_i nd[ 3]  = { 1,  2,  2}  

 

 

CPT_NPROCS 

 

Number of processes  

NFOLDS Number of folds 

DI MX Total number of data on the x-axis of the model 

DI MY Total number of data on the y-axis of the model 

DI MZ Total number of data on the z-axis of the model 

CPT_DI MX Number of actual data on the x-axis of a process 

CPT_F_X Number of actual data on the x-axis of a strip 

CPT_S_X Total number of data on the x-axis of a strip (including boundary 

duplicates) 

CPT_X Total number of data on the x-axis of a process 

CPT_Y Total number of data on the y-axis of a process 

CPT_Z Total number of data on the z-axis of a process 

 

Table 4: Model Definition Notation 

 

 

5.4.2 Notation 

CAMELot supports two implementations for the data decomposition depending on whether 

this is even or not. The code selected for each case is controlled by the C pre-processor 

definition EVEN_DECOMP. If this is defined, then the program assumes that the product of 

the number of folds times the number of processes divides the total x-size of the model. 

However if the assumption is false, the program exits with a warning message returning -1. 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  82 

Otherwise, and this is the default behaviour, the program assumes uneven decomposition 

of data to processes.  

 

The constants (or macros) in Table 4 define the model. The type of each of the definitions 

in this Table differs according to the definition of the EVEN_DECOMP macro. This is shown 

in Table 5 and Table 6 below. Note the difference in the definitions of CPT_DI MX, 

CPT_F_X and CPT_S_X, in the case of even decomposition they are straightforwardly cal-

culated and stored as macros in the cpt _ccdef s. h header file, otherwise they are defined 

as arrays stored in macr ocel l . c  and  calculated by the function cal c_x_si zes( ) . 

 

 

#def i ne CPT_DI MX ( DI MX/ CPT_NPROCS)  / *  Act ual  x dat a i n each pr ocess * /  

#def i ne CPT_F_X ( CPT_DI MX/ NFOLDS)  / *  Act ual  x dat a i n each St r i p * /  

#def i ne CPT_S_X ( CPT_F_X+( 2* Radi us) )  / *  Tot al  St r i p x- s i ze * /  

#def i ne CPT_X ( CPT_S_X* NFOLDS)   / *  Tot al  pr ocess x- s i ze * /  

#def i ne CPT_Y ( ( DI MY) +( 2* Radi us) )   / *  Tot al  pr ocess y- s i ze * /  

#def i ne CPT_Z ( ( DI MZ) +( 2* Radi us) )   / *  Tot al  pr ocess z- s i ze * /  

Table 5: CA Engine Size Definitions (EVEN_DECOMP defined) 

 

 

 

i nt   CPT_DI MX[ CPT_NPROCS] ;   / *  Act ual  x dat a i n pr ocess * /  

i nt   CPT_F_X[ CPT_NPROCS] [ NFOLDS] ;  / *  Act ual  x dat a per  st r i p * /  

i nt   CPT_S_X[ CPT_NPROCS] [ NFOLDS] ;  / *  Tot al  St r i p x- s i zes * /  

#def i ne CPT_X ( 2* Radi us* NFOLDS+CPT_DI MX[ cmt Wor l dRank] )  

#def i ne CPT_Y ( ( DI MY) +( 2* Radi us) )  

#def i ne CPT_Z ( ( DI MZ) +( 2* Radi us) )  
 

Table 6: CA Engine Size Definitions (EVEN_DECOMP undefined) 

 

 

5.5 Boundary Replication  

Data decomposition effects the introduction of duplicate boundary data. The reason is that 

splitting the model into strips and allocating contiguous strips to different processes causes 

some cells to lose immediate neighbours. Given that the strips divide the model across the 

x-axis, the cells which are located in r adi us  distance from the x-edges of the strips have 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  83 

lost their neighbours lying outside the strip and they are thus unable to execute the CA evo-

lution rule. 

 

Moreover, all cells within Radi us  distance from any edge have no defined neighbours 

outside the model domain. In order to remedy this, we implement cyclic boundaries. This 

means that data are “wrapped round” in each dimension, so that cells at one edge are 

neighbours of cells at the opposite edge in the same dimension. This ensures cyclic interac-

tion and execution of cells. The effect to the topology of the model is the following. 

 

• 1-dimensional models are effectively circular; 

• 2-dimensional models have the shape of the surface of a torus; 

• 3-dimensional models are shaped as a 3-D torus. 

 

The above approach suggests four types of halo: 

 

• before the first and after the last real element (z-axis); 

• between planes (y-axis); 

• between lines (x-axis); 

• between strips (folded data). 

 

The first three haloes conceptually form a shell around the model, whereas the last in-

creases its x dimension. This is depicted in Figure 28. We will discuss the effect of the ha-

loes on the internal representation of the CA. 

 

The first type of halo consists of Radi us  planes of size CPT_X* CPT_Y on each z-side of 

the CA model. It is implemented by prefixing and postfixing the data with contiguous 

planes of halo data. The plane halo is Radi us  lines of size CPT_X on each y-side of the 

model. It is implemented by adding lines of haloes between planes of data. Similarly, there 

is a Radi us  sized halo introduced on either side of the model, corresponding to the line 

halo. 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  84 

 

Figure 28: Halo replication: A 2-fold, 2-process decomposition is shown. 

 

The above discussion suggests two different kinds of boundary replication. Across the y 

and z axes the data can be replicated internally in macrocells. We call this a boundary copy. 

Across strips (this effects x-axis halo replication as well) the data must be exchanged be-

tween consecutive processes using MPI. We call this boundary swap. Boundary data are 

copied across axes and swapped between strips after the execution of a step.  

 

5.5.1 Boundary Copy 

This is achieved with the following function: 

 

st at i c i nt  cmt _boundar y_copy ( Cpt Cel l  * ca)  

 

This function replicates the local boundary data across the non-distributed dimensions. It is 

dependent on the cell access macro. It returns zero on completion. Note that this function 

only performs the boundary copy on one CA array copy. 

 

The z-axis (slowest) boundary exchange, is performed with two memcpy  calls, each copy-

ing Radi us* CPT_Y* CPT_Z elements, i.e. Radi us  x-planes. For the y-axis copy it loops 

over z with two memcpy  calls in each iteration. Each memcpy  handles Radi us* CPT_X 

elements, i.e. Radi us  x-lines. 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  85 

 

5.5.2 Boundary Swap 

This is done with the following function:  

 

st at i c i nt  cmt _boundar y_swap ( Cpt Cel l  * ca)  

 

This function uses MPI to exchange x-axis boundary data between the strips. If the auto-

matic inactive strip detection mechanism is activated, it also exchanges information about 

the activity of the internal boundaries of its neighbouring cells so as to determine its own 

activity. The implementation depends on the cell access method (CA_REF) and only repli-

cates the data for one CA array copy passed to it as an argument. 

 

In order to define the receiver and the sender of messages we use the global variables 

cmt Pr evRank  and cmt Next Rank  returned from the call of the Cartesian Topology crea-

tion functions of MPI, MPI _Car t _cr eat e( )  and MPI _Car t _shi f t ( ) . We thus define a 

global MPI Communicator, cmt CommBoundar y , used for boundary swapping. We also 

define a derived datatype, cmt Boundar yType, for the boundaries to be exchanged. This is 

a vector datatype created using the MPI _Type_vect or ( )  function of MPI. It allows refer-

ence to the stridden boundary by specifying only the starting point of the data to be re-

ceived or sent. It consists of CPT_Z* CPT_Y blocks cells, each of which has length Radi us ; 

the stride between consecutive blocks is CPT_X. This communicator is global to our pro-

gram. 

 

In order to exchange activity and boundary data, two similar blocks of communication 

primitives have been developed which differ only in the data they exchange. Each of the 

blocks contains two loops over the number of strips in the process, one to receive and one 

to send the data. The activity data received from the previous neighbour for strip i  are 

stored in pr ev_act i ve[ i ]  and the data from the next in next _act i ve[ i ] . The corre-

sponding tags for the messages are 2* i  and 2* i +1. 

 

The definition of the index for the data to be sent is less straightforward. The general rule 

for sending data to the next process is to send the right internal boundary to the strip of the 

same rank on the right of the sender. From the above we see that the receiver strip i  waits 

for a message tagged 2* i . This means that the message to the next process contains 

al t _i nt l _bound[ 1] [ i ]  and is tagged 2* i . The former does not hold for process 

cmt Wor l dSi ze- 1 whose next neighbour is process 0, since this must send the data of the 

previous rank to process 0 (see Figure 27) in order to implement cyclic boundaries. Thus, 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  86 

the data sent to process 0 are al t _i nt nl _bound[ 1] [ ( i - 1) %NFOLDS] 10. Similarly, the 

data sent to the previous process are stored in al t _i nt nl _bound[ 0] [ i ]  except for pro-

cess 0 which sends the data stored in al t _i nt nl _bound[ 0] [ ( i +1) %NFOLDS] . In both 

cases the message is tagged 2* i +1. 

 

The above hold for the actual boundary swapping block as well. Reception from the previ-

ous strip starts from CA_REF( ca, 0, 0, i * CPT_S_X) , and is tagged 2* i ; reception from 

the next strip starts at CA_REF( ca, 0, 0, ( i +1) * CPT_S_X- Radi us) , tagged 2* i +1. Data 

to the next process are tagged 2* i  and start at CA_REF( ca, 0, 0, CPT_F_X+i * CPT_S_X)  

except if the sender is process cmt Wor l dSi ze- 1 which sends data starting at 

CA_REF( ca, 0, 0, CPT_F_X+( ( i - 1) %NFOLDS) * CPT_S_X) . Data to the previous process 

start at CA_REF( ca, 0, 0,  i * CPT_S_X+Radi us)  except for process 0 which sends data 

that start at CA_REF( ca, 0, 0, ( ( i +1) %NFOLDS) * CPT_S_X+Radi us) . The execution of 

this block does not start until all the activity data have been received from the previous 

process; when the receives from the previous and next neighbour are issued, ac-

t i ve_st r i p[ i ]  is updated according to pr ev_act i ve[ i ]  and next _act i ve[ i ] . 

 

Although immediate sends and receives have been used for the implementation of bound-

ary swaps, the current implementation does not execute the transition function for internal 

cells while boundaries are exchanged, as suggested in [Telford et al. 1998]. Efficient 

boundary swapping, taking into account whether each strip is active or not, has not been 

implemented either. 

 

5.5.3 Function init_boundaries()    

In order to facilitate boundary exchange when the system is restarted we implemented the 

following function. 

 

st at i c voi d i ni t _boundar i es ( voi d)    

 

This function assumes that the system has been brought to a new state and cancels all of the 

strip activity data previously defined by the automatic mechanism. It thus sets ac-

t i ve_st r i p[ ]  and al t _i nt nl _bound[ ] [ ]  for all of the strips before calling 

cmt _boundar y_copy( )  and cmt _boundar y_swap( )  on both copies of the CA array. It 

then cancels al t _i nt nl _bound[ ] [ ]  and al t _st r i p[ ] .  

 

                                                 
10 In fact the code reads al t _i nt nl _bound[ 1] [ ( i - 1+NFOLDS) %NFOLDS]  to ensure correctness of the 
modulus operator. 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  87 

N.B.: This function must only be used when the system is brought to a new state, as it af-

fects the strip activity variables. Nonetheless, if called at any point, it does not affect the 

correct execution of a deterministic program. 

 

5.6 Transition Function Execution 

5.6.1 CA Engine States 

The CA Engine can be in any of the following states: 

 

• Running; 

• Serving Protocol Requests; 

• Paused; 

• Stopped. 

 

Protocol requests (including PAUSE and TERMI NATE which effect the two last states) can 

be received at any point, but they are only handled before a CA Engine iteration. These are 

implemented with static variables in the r v( )  function, discussed in section 7.5.2. 

 

5.6.2 Automatic Inactive Strip Detection 

CAMELot contains an automatic inactive strip detection mechanism, used to isolate inac-

tive regions and avoid applying the function to idle strips. The block cyclic decomposition 

suggests that load imbalance emanating from this strategy will be insignificant in the gen-

eral case, given that contiguous areas of the model are transparently distributed to proc-

esses. Automatic inactive strip detection can be disabled by manually choosing a set of 

active folds as described in section 3.2.2.1. The finest grain in this case is the fold, which is 

generally larger than the strip, and the strategy is error prone as it depends on the user's 

vigilance. Moreover, manual fold selection cannot isolate inactive regions located in the 

middle of the model even if the granularity suffices, because the active range defined is 

continuous. The implementers do not recommend manual fold selection. We will discuss 

the implementation of the automatic inactive strip detection mechanism in 5.6.3.1. 

 

5.6.3 Function run()  

The r un( )  function of the program loops over the requested number of CA Engine genera-

tions and applies the update function to all the cells. It also executes the steering function, 

transmits the current generation number to the GUI and initialises the visualisation and 

periodic saves which are due in this iteration. Before each iteration the root process polls 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  88 

the socket for pending messages by means of a sel ect ( 3C)  call. If a message is present it 

broadcasts it to the other processes. The control at this point is passed to the r v( )  function, 

discussed in section 7.5.2. The processes synchronise loosely by means of this MPI _Bcast  

call as they exit this loop and enter running mode when all pending requests have been 

served.  

 

At the end of the iteration the boundaries are replicated on the write copy of the CA array 

and this is then copied to the read copy by means of a memcpy  call. The steering function is 

applied to one copy of the automaton only. This does not affect the execution of the model, 

because the steering function cannot alter the state of cells. Immediately before calling the 

external steering function cpt _st eer i ng( )  we set the global variable i n_st eer i ng so 

as to enable the execution of the steering related functions. We also synchronise the proc-

esses so as to avoid race conditions in the update of global parameters. The variable 

i n_st eer i ng is cleared immediately after exiting the steering function to disable access 

to the steering related functions. We discuss the steering function later in this section.  

 

After the steering function has been executed, the visualisation list is checked for planes 

waiting to be visualised; if there are any, t x_vi s_pack( )  is called with the f or ce argu-

ment set to 0. After each visualisation, the gener at i on member of the cell is set for the 

next visualisation, and the cell is inserted in the correct position in the visualisation list, 

using the function r eor der ( ) , discussed with the l i s t  functions, in section 8.3.5. Then 

the current generation number is written to vi s_sockf d. Finally, periodic project saves 

are performed by means of the cmt _wr i t e_al l ( )  function if the incremented generation 

is divided by the save_st ep. If the generation run is the last one requested, and periodic 

saves are enabled, but no periodic save has occurred in the current step, then  

cmt _wr i t e_al l ( )  is called to save the final configuration of the CA. 

 

The implementation of function r un( )  is shown in pseudocode in Table 7. 

 

f or  ( num_gens)  {  

 do {  

  get _r equest ( ) ;  

 }  whi l e ( no_r equest  | |  st op) ;  

 

 i f  ( st op)  

  r et ur n;  

 

 cp = CA_REF ( ca,  Radi us,  Radi us,  0) ;  



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  89 

 

 f or  ( cpt _z)  {  

  f or  ( cpt _y)  {  

   f or  ( st r i p)  {  

    cp += Radi us;  

    f or  ( x)  {  

     cal cul at e ( cpt _x) ;  

     updat e( cel l ) ;  

     i f  ( x < l _bound)  

      check_l _i nt nl _bound( )  

     el se i f  ( x > r _bound)  

      check_r _i nt nl _bound( )  

     el se  

      check_i nt nl _st r i p( ) ;  

     cp++;  

    }  / *  End f or  ( x)  * /  

    cp += Radi us;  

   }  / *  End f or  ( st r i p)  * /  

  }  / *  End f or  ( cpt _y)  * /  

  cp += 2* Radi us* CPT_X;  

 }   / *  End f or  ( cpt _z)  * /  

 

 updat e_boundar i es( ca) ;  

 updat e_copi es ( ca) ;   

 

 synchr oni se_pr ocs;   

     cpt _st eer i ng ( ca) ;  

 

 i f  ( v i sual i sat i on_due)  

  t x_vi s_pack( ) ;  

 i f  ( conf i gur at i on_save_due)  

  cmt _wr i t e_al l ( ) ;  

 

 wr i t e_gen_no( ) ;  

 

}   / *  End f or  ( num_gens)  * /  

 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  90 

i f  ( conf i gur at i on_not _j ust _saved)  

 cmt _wr i t e_al l ( ) ;  

Table 7: Function run() in pseudocode 

 

 

5.6.3.1 Application of the Transition Function 

The transition function is applied to all the cells of a process without any interruption. The 

processes communicate again for the necessary interaction for boundary swapping. The 

next step is to identify which of the two pointers to the CA represents the read and write 

copy by means of the parity of the CA generation and then the function loops over the 

strips skipping the haloes and applies the transition function cpt _f unc( )  to its cells.  

 

During this phase the cells in strips are examined in order to decide their activity status. 

Initially, all the strips are considered active. The system attempts automatic inactive strip 

detection under the condition that the user has characterised the transition function as de-

terministic through the CARPET statement det er mi ni st i c  [Telford et al. 1998]. After 

the transition function has been applied to a cell, the cell is checked against 

cpt _t hr esh( )  and the previous values of all its substates. If a substate has changed and 

cpt _t hr esh( )  returns false, then the whole strip is characterised as active for the next 

generation and the check is not performed for any other cells of the strip. Even if all the 

cells of a strip are classed as inactive, the strip is not considered inactive unless the bound-

ary cells to be received by each of the neighbours are also inactive. 

 

In order to achieve the above we virtually split the strips in three components, a block of 

internal cells and two blocks of internal boundaries on either of its x sides. The internal 

boundaries are part of the strip's cells but they are of special interest as they are communi-

cated to the strips lying on their external sides. Their dimensions are the same as those of 

the boundary data. During the boundary swap the processes exchange information with 

their neighbours about the activity status of the incoming boundaries and combine the re-

sults with those emanating from the internal cell check to decide on the activity status of 

their strips. 

 

Haloes are skipped as follows: before the function enters the loop the first z and y haloes 

are skipped. In the first strip the x halo is skipped and then the application of the function 

begins. If the strip is idle, the pointers are advanced by CPT_F_X, which is the x-size of a 

strip; otherwise, for each of the CPT_F_X applications of the function the pointers are ad-

vanced by 1 position. At the end of the strip line traversal, the pointers are advanced again 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  91 

by an x halo. This leaves the pointers at the beginning of the first x halo of the next strip. 

After the end of the plane (and the y iteration of the loop) the pointers are incremented by 

2* Radi us* CPT_X, which skips both the y halo at the end of the current plane and that of 

the next plane. 

 

In addition to the above, the position of the cell updated is recorded by means of the 

cpt _x , cpt _y  and cpt _z  global variables. This follows the convention that the co-

ordinate of the first cell in each dimension is 1. We also take into account the decomposi-

tion of cells in folds and processes so as to enable correct cpt _x  calculation. The user can 

access the values of cpt _x , cpt _y  and cpt _z  in their program using respectively the 

Get _X, Get _Y and Get _Z CARPET statements (see section 3.3.10), thus enabling posi-

tion-dependent update functions. 

 

5.6.3.2 Calling the Steering Function 

After the two CA copies have been updated, the steering function is being called. This is 

external to macr ocel l . c . Nonetheless, it is important for the program to set the global 

variable i n_st eer i ng before calling the steering function and clear it after exiting it. This 

is external to the CARPET-generated C file, and allows the global reduction functions to 

be executed. We chose to control this flag from macr ocel l . c , rather than the generated 

cpt _st eer i ng( )  function to avoid possible problems if the CARPET program contains a 

r et ur n call inside the st eer i ng statement. The processes synchronise by means of the 

MPI MPI _Bar r i er  call before executing the steering function, so as to avoid possible race 

conditions. 

 

5.7 Timing 

From release 1.1 of the software onwards, the basic functions of the CA Engine are timed. 

The functions timed are as follows: 

 

• Transition function; 

• Visualisation; 

• Project save; 

• Boundary replication; 

• Steering. 

 



Project COLOMBO (Project No.: 24,907)  Version 2.0 

29/05/2000  92 

The user can define how often the results are output (see section 3.2 for more details on 

this). Regardless of this setting, the execution is timed in each step. For each of the func-

tions timed, the following features are monitored and reported: 

 

• The number of calls; 

• The total time taken by this function; 

• The best and worst time recorded for this function. 

 

The sum of the above times is also reported. Additionally, a timer instance collects statis-

tics for the duration of the period of each run. The format of the output is seen in Table 8. 

 

5.7.1 Strategy for Timing the Functions 

There are several ways in which a function can be timed. In this section we describe the 

strategy used for each of the functions. 

 

 

 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Pr ocess: 0 Gener at i ons:

 Cal l s Ti me Best Wor st
-
Updat e Funct i on :
St eer i ng :
Boundar y Comm :
Vi sual i sat i on :
Per i odi c Save :

Sum :
Tot al Execut i on Ti me:

Table 8: Output of Timing Statistics

5.7.1.1 Transition Function

The transition function is timed inside function r un() . We start the corresponding timer

before entering the nested loop traversing the elements of the model and stop it immedi-

ately after exiting it. This provides a per-PE granularity. As mentioned in section 5.6.3,

after each iteration of the CA Engine, the read copy of the CA is updated by means of a

memcpy call. Note that the time taken by this call is not accounted for by the update func-

tion timer, yet it appears in the total timer discussed in section 5.7.1.6 below.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 93

Our initial implementation timed each call to function cpt _f unc() , but the overhead was

unacceptable. More specifically, removing the timing functions in a trivial 1000x1000

model running in 1 processor, 1 fold for 10 steps yielded a 70% performance benefit.

5.7.1.2 Visualisation

The visualisation timer is started when entering function t x_vi s_pack() (see section

8.6.2.1) and stopped before exiting it.

5.7.1.3 Project Save

The project save timer is associated with function cmt _wr i t e_al l () . This allows the

timing of the project saves even when the program is running in batch mode (see section

0). This function initialises the writing of all the configuration related files, as described in

section 7.5.8.1.

5.7.1.4 Boundary Replication

The start and stop calls for this timer enclose calls to cmt _boundar y_copy() and

cmt _boundar y_swap() . These two functions are always called together.

5.7.1.5 Steering

The timer is started after explicitly synchronising the processes for the execution of the

steering statement and stopped immediately after it has been executed. The time taken for

the synchronisation of the processes is not taken into account.

5.7.1.6 Total Time

This timer is started when entering the r un() function and it is kept running while the CA

Engine is running. It stops when r v() is called to serve user requests (see section 7.5.2)

and it is restarted when r v() returns. The timer is running when pr i nt _al l _st at s() ,

discussed in section 5.7.2.2, is called but it is stopped and restarted so as to allow for cor-

rect statistics gathering in process 0.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 94

5.7.2 Structures and Functions

5.7.2.1 Structure t i mer

We designed the structure t i mer which contains all the necessary data for each of the

timed functions.

t ypedef st r uct {

 doubl e st ar t ;

 doubl e st op;

 doubl e sum;

 doubl e best ;

 doubl e wor st ;

 u_char st ar t ed;

 unsi gned l ong cal l ed;

 char t i t l e[TI TLE_LENGTH] ;

} t i mer ;

The associated functions are as follows:

• st at i c voi d i ni t _t mr (t i mer * t p, const char * t i t l e)

This initialises a t i mer struct. It assumes that memory has previously been allocated

for it. All the members are set to 0, with the exception of t i t l e which takes the value

of the argument11 and best which is set to DBL_MAX.

• st at i c i nt st ar t _t mr (t i mer * t p)

This starts the t i mer pointed to by t p. It increments cal l ed, sets st ar t ed and as-

signs to st ar t the value returned by MPI _Wt i me() .

It returns 0 if the timer was already started, or 1 otherwise.

• st at i c i nt st op_t mr (t i mer * t p)

This stops the t i mer pointed to by t p. It clears st ar t ed and assigns to st op the

value returned by MPI _Wt i me() . It also adds the time between st opped and

st ar t ed to sum and checks if the current record is a best and/or wor st time.

11 If the t i t l e argument equals NULL, the t i t l e member is not set. The function in this case is used to
reset the members of the structure.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 95

This returns 0 if the timer was already stopped, or 1 otherwise.

• st at i c voi d pr i nt _t mr (t i mer * t p, FI LE * f)

This checks if t p is st ar t ed, in which case it prints a warning. It then prints the t i -

t l e, followed by one tab and cal l ed followed by one or two tabs according to its

length. It then prints the sum, best and wor st separated by a tab character and fin-

ishes with a newline character. All the output is in one line.

5.7.2.2 Structure st at s

This structure is a collection of timers. It includes a pointer to a FI LE variable which iden-

tifies the file where the data are written. It encapsulates various characteristics of the “ in-

stance” , including a flag indicating whether statistics are taken (wor k), the per i od of out-

putting the statistics, the number of generations for which statistics are produced (gens)

and others, as seen below.

t ypedef st r uct {

 t i mer f unc;

 t i mer v i s;

 t i mer pr j ;

 t i mer bound;

 t i mer st eer ;

 t i mer t ot al ;

 i nt r ank;

 unsi gned l ong gens;

 i nt st ar t _gen;

 u_i nt per i od;

 u_char wor k;

 FI LE * out f i l e;

} st at s;

The associated functions are as follows:

• st at i c voi d i ni t _st s (st at s * st p, i nt r ank, u_char wor k,

char * f name)

This initialises a st at s structure. The t i mer members are initialised with the titles as

set inside the function (not passed as a set of arguments). The out f i l e member is

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 96

opened in process 0 and set to NULL in all other processes. The rest are straightfor-

ward.

• st at i c voi d r eset _st s (st at s * st p)

This is applied only to structures where the wor k flag is set. It is used by function

pr i nt _al l _st at s() discussed below. All the t i mer members are restarted with

the titles argument set to NULL (see function i ni t _t mr () above) and gens is set to

0.

• st at i c i nt st ar t _one_t i mer _st s (st at s * st p, t mr _code t mr ,

i nt gen)

This starts the t i mer denoted by t mr . If t mr is not TOTAL, it calls the corresponding

st ar t _t mr () call and returns what that returns. If it is TOTAL it also checks and sets

the st ar t _gen member of the st at i st i cs structure to gen.

It returns 0 if the st at i st i cs entity does not wor k or if the request is ignored (see

the discussion of st ar t _t mr () above), a negative value if the arguments are unac-

ceptable or 1 otherwise (successful termination).

• st at i c i nt st op_one_t i mer _st s (st at s * st p, t mr _code t mr ,

i nt gen)

This starts the t i mer denoted by t mr . If t mr is not TOTAL, it calls the corresponding

st op_t mr () call and returns what that returns. If it is TOTAL it also checks and sets

its gens member to gen- st p- >st ar t _gen.

It returns 0 if the st at i st i cs entity does not wor k or if the request is ignored (see

the discussion of st op_t mr () above), a negative value if the arguments are unaccept-

able or 1 otherwise (successful termination).

• st at i c voi d pr i nt _st s (const st at s * st p)

This prints all the members of the st at s structure. It produces the output shown in

Table 8. The Sum field is the sum of the sum members of all the timers with the excep-

tion of TOTAL.

• st at i c voi d cl ose_f i l e_st s (const st at s * st p)

This closes the output file for the stats structure, except if the file is st dout .

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 97

The following function is written using the above library of functions. It also makes use of

the associated global variable al l _st at s[] .

• st at i c voi d pr i nt _al l _st at s (voi d)

This collects and prints the statistics from all the processes at the root process. It cre-

ates a derived MPI _Dat at ype for the st at s type, which requires a datatype for the

t i mer type as well, to gather the statistics instance at the root process. Requires care-

ful handling of the TOTAL timer because periodic saves mean that this timer is not

stopped when printing the data.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 98

6. CARPET Parser Implementation

CARPET programs are translated into C programs that define the global parameters and

transition function of the CA. This translator, usually referred to as the parser, is composed

of a tokeniser and a parser generated using the UNIX tools f l ex and yacc (or bi son).

Note that the use of the standard UNIX l ex tool results in a tokeniser which handles com-

ments incorrectly.

This parser is derived from the one used in the CAMEL software developed in the

CABOTO project [Smith 1998]. It has been enhanced with various features according to

the users’ requests [Telford et al. 1999].

6.1 Tokeniser

The tokeniser (yyl ex. l) reads in text from the CARPET source file. It uses eight Left

Context states to control the way it interprets text:

• <ZERO>

Default start state. Reverted to in body of transition function. When the keyword

“st eer i ng” is read, the state changes to <STEERSTATE>.

• <UNO>

After reading “cadef ” , CARPET keywords are expected and are passed to the parser

as tokens. All other strings are interpreted as identifiers, integer values, or real values

and are passed as tokens, with the name or value being passed by global variables. A

“ t hr eshol d” keyword changes the state to <CI NQUE>. When the C block close sym-

bol “ } ” is read, indicating the end of the cadef block, the state changes to <TRE>.

• <DUE>

Once the string “updat e” has been read, this state handles the parameters, i.e. the fol-

lowing symbols are interpreted as two comma-separated C expressions enclosed by “ (”

and “) ” . The state is then reset to <ZERO>.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 99

• <TRE>

All symbols are ignored and passed through to the output file except:

− the state is changed back to <ZERO> after the C open block symbol “ { ” is read; to-

ken YSTARTCODE is generated;

− “st r uct ” , “enum” , “uni on” or “=” change the state to <QUATTRO>.

• <QUATTRO>

Reads array initialisers, enum, st r uct and uni on declarations between the cadef

block and the transition function body (the transition function's local declarations). Re-

turns to <TRE> upon reading a “ ; ” .

• <CI NQUE>

Reads parameter of “ t hr eshol d” directive in cadef block, similarly to state <DUE>.

Reverts to state <UNO> on reading a “ ; ” .

• <STEERSTATE>

Reads the name of the defined region and changes to state <REDARG>.

• <REDARG>

Reads the limits of the defined region.

In addition, two exclusive start states are used to handle comments: <COMMENT> for C-

style “ / * . . . * / ” comments and <COMMENT2> for C++-style “ / / . . . ” comments.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 100

6.2 Parser

The parser (yypar ser . y) is implemented as a combination of a grammar with embedded

C code.

After the cadef block is parsed, the functions cadef _check() , cadef _h_code() ,

cadef _c_code() and cadef _desc() are called. Respectively, these check for missing

or inconsistent cadef declarations, generate the header file, generate the transition func-

tion code in the output C file and fill in the Cpt CADef state table returned by the parser.

At the start of the transition function body (marked by the token YSTARTCODE),

nei gh_code() is called to generate the symbolic neighbourhood mapping code. The

parser also transforms the updat e() statements in the transition function body into the

appropriate C code.

After the update function, the steering code is generated by means of the function

cpt _st eer i ng_code() .

6.2.1 Interface to macrocell.c

As mentioned in section 5.1.3, there is a number of functions defining the interface of the

parser-generated model to macr ocel l . c . Their description follows.

• ext er n voi d cpt _hook_i ni t (voi d) ;

It defines the variables cpt _di mx , cpt _di my and cpt _di mz which are equal to

CPT_X, CPT_Y and CPT_Z respectively. More importantly, in the case of uneven de-

composition, it defines the array of neighbours, cpt _N[] ; in the even decomposition

case this array is defined on declaration, but this is not possible in the case of uneven

decomposition because its initialisation values depend on variables defined at run-time.

• ext er n voi d cpt _f unc (Cpt Cel l * , Cpt Cel l *) ;

This defines the update function code. Its first argument is a pointer to the read copy of

the cell to be updated, whereas the second argument is a pointer to the cell to be up-

dated in the write copy of the model.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 101

• ext er n voi d cpt _set _st at e (Cpt Cel l * , i nt , voi d * , i nt) ;

This function is used to set the values of a given substate on contiguous cells to speci-

fied values. The starting cell is pointed to by the first argument of the function, the

state id is the second argument, the voi d * pointer contains the new data and the last

argument defines the number of contiguous cells this operation affects.

• ext er n voi d cpt _get _st at e (Cpt Cel l * , i nt , voi d * , i nt) ;

Similarly to cpt _set _st at e() , this function returns the substate values of a set of

contiguous cells to the pointer defined in the third argument. Note that this pointer must

be suitably initialised by the caller function.

• ext er n voi d cpt _mpi _t ype_cel l (MPI _Dat at ype *) ;

This function defines the derived datatype corresponding to a cell, which is in turn used

to define the boundary vector datatype. The obvious way to define the cell type is by

treating it as a struct, thus employing MPI _Type_st r uct . This approach is correct and

guarantees that the datatype is defined correctly even when the underlying architecture

consists of CPUs with various datatype representations. Portability comes at a price

though. When memory for a C st r uct is allocated, there is a possibility that holes are

introduced between consecutive fields. This is reflected in the derived datatype and

causes MPI to call internal functions more times than it would in order to communicate

these derived datatypes. To avoid this performance deterioration, the user can define

the HOMOGENEOUS C pre-processor macro, which defines the derived datatype as an

appropriately sized contiguous block of memory. This definition is not the default, be-

cause it is not portable; it assumes that the underlying architecture is homogeneous.

• ext er n voi d cpt _hook_f i nal i ze (voi d) ;

Reserved function to be executed when exiting the program. It does nothing at the mo-

ment.

• ext er n i nt cpt _t hr esh (Cpt Cel l *) ;

It returns the threshold condition defined by the user (see sections 5.6.3.1 and 3.3.24 for

more on the threshold condition).

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 102

6.2.2 Steering Code Generation

6.2.2.1 Steering Related Types

The following structure types are defined in yypar ser . y :

6.2.2.1.1 CptRegion

t ypedef st r uct _Cpt Regi on {

 char * name;

 i nt bounds[6] ;

 st r uct _Cpt Regi on * next ;

} Cpt Regi on;

This defines a single-link list containing the data for each of the defined regions. The asso-

ciated functions are as follows:

• st at i c Cpt Regi on * cpt _make_r egi on (char * name, i nt bounds[6] ,

Cpt Regi on * l i st)

This function adds a region to the list pointed by l i s t , having the members pointed by

the first two arguments of the function. It returns a pointer to the head of the list.

• st at i c voi d cpt _f r ee_r egi on (Cpt Regi on * l i st)

This frees the dynamically allocated memory of the contents of the list pointed by

l i s t .

• st at i c Cpt Regi on * cpt _f i nd_r egi on (char * name, Cpt Regi on * l i st)

This makes a search in l i s t for a region with the same name member as name. It re-

turns a pointer to such a Cpt Regi on if found, or NULL otherwise.

• st at i c voi d cpt _check_r egi on (Cpt Regi on * l i st , i nt di m)

This checks the regions in l i s t to verify that if the model is 1-dimensional or 2-

dimensional. The bounds of the regions are not specified for unused dimensions.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 103

6.2.2.1.2 CptReduction

t ypedef st r uct _Cpt Reduct i on {

 char name[BUFSI Z] ;

 i nt t ype;

 i nt unsi gn;

 char * neut r al ;

 st r uct _Cpt Reduct i on * next ;

} Cpt Reduct i on;

This is a single-link unordered list, with descriptions of the reduction operations in the

CARPET program. The t ype member is a handle to the datatype of the arguments in the

reduction operation and unsi gn is a flag whether the datatype is unsigned or not. The

neut r al member is the neutral element for the reduction. We briefly discuss the related

functions.

• st at i c Cpt Reduct i on * cpt _make_r educt i on (char * name, i nt t ype,

i nt unsi gn, Cpt Reduct i on * l i st)

This function checks the reduction operations already in l i s t for a reduction with the

same characteristics as the one to be inserted. All the details of the new reduction are

available from the argument list of the function with the exception of the neutral ele-

ment, provided by the get _neut r al () function discussed below. Returns a pointer to

the head of the list.

• st at i c voi d f r ee_r educt i on_l i st (Cpt Reduct i on * l i st)

This frees all the elements in l i s t .

• st at i c voi d emi t _r ed_f unc (Cpt Reduct i on * p)

This routine outputs the reduction function corresponding to the reduction pointed at by

p to the generated C file. Information about the prototype and how to write a reduction

function is available from section 3.3.19.

• st at i c char * get _neut r al (Cpt Reduct i on * p)

This function returns the neutral element for the reduction pointed at by p. The neutral

element depends on the type of data and the reduction operation. If the combination of

the two above members is not matched in the function code, NULL is returned. In this

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 104

case the user supplies the neutral element for the operation implicitly in the reduction

function that they provide. See section 3.3.19 for the importance of the neutral element.

• st at i c i nt pr i nt _r ed_f unc (Cpt Reduct i on * p)

This function prints only one line in the generated C file, containing the operator corre-

sponding to the reduction pointed by p. For example, if the function is max , it prints the

following:

r es = MAX (r es, t mp_dat a[i]) ;

The definitions of the macros MI N and MAX are emitted in the generated file when the

cpt _wr i t e_r educt i ons() function is called. The function returns -1 if the opera-

tion is unknown, or 1 in the normal case.

• st at i c voi d pr i nt _al l _r educe (Cpt Reduct i on * p)

This function also prints only one line in the generated C file. It outputs the MPI global

reduction statement.

6.2.2.2 Steering Related Global Variables

The following global variables in yypar ser . y are related to the steering code generation:

• st at i c Cpt Regi on * cpt _r egi on_l i st =NULL;

The list of all the regions, initialised by cpt _make_r egi on() .

• st at i c Cpt Regi on * cur r ent _r egi on;

A pointer, used when outputting the steering function.

• st at i c Cpt Reduct i on * cpt _r educt i on_l i st =NULL;

The list of all the reductions, initialised by cpt _make_r educt i on() .

• st at i c char r edop_name[BUFSI Z] ;

This is used to store the reduction operation name when outputting the reduction func-

tions.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 105

6.2.2.3 Steering Related Functions

The functions in yypar ser . y associated with the generation of the steering code are as

follows:

• st at i c voi d cpt _st eer i ng_code (voi d)

This function outputs the cpt _abor t () and cpt _set _par am() functions in the gen-

erated C file.

• st at i c voi d cpt _wr i t e_r educt i ons (voi d)

This function writes the following to the generated C file:

− a list of steering-related standard header files which should be included;

− a list of definitions used internally, such as MI N and MAX;

− the reduction functions, by calling emi t _r ed_f unc() for all the members of

cpt _r educt i on_l i st .

It also writes the prototypes of the generated reduction functions to the generated

header file and frees the list by means of f r ee_r educt i on_l i st () .

6.3 Parser library interface

The parser is built as a library (l i bcpt _par se) with the following interface (declared in

cpt _par se. h):

• i nt cpt _i ni t (const char * car pet _f i l e, const char * c_f i l e,

 const char * h_f i l e,

 voi d (* er r or _handl er) (i nt code, i nt l i ne))

This function is called to start the parsing process. It opens the pathname car -

pet _f i l e as the input CARPET source file, c_f i l e as the output C file, and h_f i l e

as the output C header file. The tokeniser and parser are initialised.

er r or _handl er () is a pointer to user-supplied callback function which is called

when a parser error occurs. The parameters passed to er r or _handl er () are the error

code and CARPET source file line number respectively. If l i ne is 0, the error is of a

global nature (i.e. failed to open file); codes 900 and above are considered warnings

and do not prevent the output files from being generated.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 106

Returns -1 on error or 0 otherwise.

• i nt cpt _par se (Cpt CADef * cadef)

This function is called to perform the parsing process. The output files specified in the

cpt _i ni t () call are written to and the state table pointed to by cadef is filled in with

information about the CARPET program. Note that the cadef - >st and cadef - >pt

tables are allocated by the parser and must be freed by the user when no longer re-

quired.

Returns 0 on success or number of errors found.

• i nt cpt _f i nal i ze (voi d)

This function closes the three files given in the call to cpt _i ni t () .

Always returns 0.

• voi d cpt _er r or _message (i nt code, char * message, i nt l engt h)

This function copies up to l engt h characters of an error message corresponding to er-

ror code code into the user-supplied buffer pointed to by message. Error messages are

defined by the parser library.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 107

7. GUI–CA Engine Communication

This section presents the design of the protocol implemented for the communication be-

tween the GUI and the CA Engine of CAMELot. The implementation of the corresponding

functions is also discussed in detail.

7.1 General Remarks

7.1.1 Communication Abstraction

It was decided to implement the protocol using BSD sockets. The reason for choosing

sockets is that they provide a simple programming interface. This interface is more ad-

vanced and better documented than those of pipes or FIFOs. MPI-1 could not be used be-

cause its specification does not allow processes to start at different times, which is essential

for the application since the GUI spawns the macrocell processes. The reason for choosing

Berkeley sockets instead of TLI is that they have been established over the past years and

are widely supported across platforms [Stevens 1990].

Our protocol was implemented over TCP, which provides a bi-directional, connection ori-

ented channel of communication. The connection is established at the beginning of the run

and is not terminated until a request to exit the program is received (EXI TCODE).

The functions implemented are not socket dependent. Their prototypes do not contain the

sockets as arguments and are thus easily modifiable.

7.1.2 Socket Instances

There are two socket instances in each of the GUI and CA Engine, one for visualisation

and one for the other protocol requests, named vi s_sockf d and pr ot _sockf d respec-

tively. In both cases, the GUI acts as a server, which is expected since the GUI process

spawns the CA Engine.

On the GUI side, the program calls socket , bi nd (with si n_por t set to 0 so as to have

the system assign the port number), l i s t en, then spawns the CA processes and calls ac-

cept twice on the initial socket to get pr ot _sockf d and vi s_sockf d respectively. On

the CA Engine side, the program calls socket and connect twice, in order to initialise

pr ot _sockf d and vi s_sockf d. This is done by calling the function st ar t _cl i ent ()

twice.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 108

The name of the host and the name of the port are passed to the master macrocell process

through the - H and - P command line arguments of the macrocell program, respectively.

7.1.3 Header Format

In order for the two sides to exchange messages, the communication initiator must send a

valid r eq_code as defined in the header file const ant s. h and shown in Table 9. Of

those, FI NI SHED and BATCH are reserved for internal use in macr ocel l . c and I GNORED

is used as an acknowledgement only. VI S_PACK is used by the CA Engine to communi-

cate visualisation data, and GEN_NO to send generation numbers. OVER_W is only transmit-

ted from the CA Engine in the special case described in the discussion of

ser v_per i odi c_save() in section 7.5.7. All other codes are used only by the GUI. The

receiving side ignores messages which do not have a valid r eq_code.

7.1.4 Spatial Entities

The co-ordinates of a spatial entity (plane, line or cell) are uniformly passed to the function

by means of the integer array, pos[3] . The exception to this rule is function

r eq_add_pl ane() , which encapsulates the array to its pl ane argument, as explained in

section 8.4.3. This convention implies that an entity will always extend to its maximum

dimensions, thus leaving sub-entity display for the GUI. Since valid co-ordinates for each

dimension range from 1 to the maximum number of cells in the axis, in order to “ free” a

dimension the appropriate element of the position array has to be set to 0.

7.2 Auxiliary Functions

7.2.1 Socket Functions

The following are the socket-related functions of the CAMELot software. They are imple-

mented in file sock. c , and their prototypes can be found in common. h.

• i nt r eadn (i nt f d, char * pt r , i nt nbyt es)

Reads nbyt es bytes from file descriptor f d into the supplied buffer pt r . It assumes

that the file descriptor has been opened and the pointer is appropriately initialised to

hold the data. This function is a wrapper for r ead(2) . It returns the number of bytes

actually read.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 109

t ypedef enum { I GNORED = I NT_MI N,

 EXI TCODE = - 13,

 FI NI SHED = 1,

 OVER_W = 333,

 SAVE_REQUEST = 1111,

 SET_FOLD,

 SET_LOAD,

 VI EW_STATE,

 SET_STATE,

 SET_PARAM,

 GET_PARAM,

 EVOLVE,

 LOOP,

 RESUME,

 TERMI NATE,

 PAUSE,

 ADD_PLANE,

 DEL_PLANE,

 READ_PROJECT,

 SAVE_PROJECT,

 PERI ODI C_SAVE,

 VI S_PACK,

 GEN_NO,

 SET_MI NMAX,

 BATCH} r eq_code;

Table 9: Enumerated type req_code

• i nt wr i t en (i nt f d, char * pt r , i nt nbyt es)

Writes nbyt es bytes to file descriptor f d from the supplied buffer pt r . It assumes that

the file descriptor has been opened. This function is a wrapper for wr i t e(2) . It returns

the number of bytes written.

• i nt st ar t _cl i ent (u_shor t por t , char * host name)

This function initialises a client by connecting to the process running on port por t on

host host name. It assumes that a TCP connection must be made and takes the address

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 110

of the host using the get host byname(3N) function. In the normal case it returns the

socket descriptor returned by socket (5) , after achieving a connection using con-

nect (3N) . In the case of our application, the client is the CA Engine. The function re-

turns a negative integer if any of the calls fails.

7.2.2 Acknowledgements

Depending on the function executed, the CA Engine should return an acknowledgement to

the GUI, regarding the success of the requested action.

Acknowledgements are handled by the following two functions.

• st at i c i nt send_ack (r eq_code ack)

This function, local to macr ocel l . c , transmits the r eq_code that initiated the action

as an acknowledgement for a successfully executed task, or a negative error code if the

caller function failed. The function returns ack , except if wr i t en() fails, in which

case it returns a negative value. The special negative r eq_code, I GNORED might also

be transmitted and thus returned. This does not indicate a failure of the function.

Acknowledgements are handled in the GUI-side by the get _ack() function, which

compares the received acknowledgement code with the one expected in each case.

• i nt get _ack (r eq_code r equest)

The function is implemented in file gui comms. c ; its prototype is listed in gui -

comms. h. It returns:

− r equest , if this is the value of the message read;

− 0, if the message read is I GNORED;

− a negative integer, otherwise.

7.3 Requests

Here we describe protocols and the implementations of the functions on each side, with

respect to each of the values of r eq_code.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 111

SAVE_REQUEST

The GUI requests that the values for a certain substate be written to a file whose name is

transmitted. An acknowledgement is expected at the GUI side.

Sender Token Type

GUI SAVE_REQUEST r eq_code

GUI subst at e i nt

GUI st r l en (f name) i nt

GUI f name char *

CA SAVE_REQUEST r eq_code

SET_FOLD

This is a request to set the active folds manually. An acknowledgement is expected after

completion of the action.

Sender Token Type

GUI SET_FOLD r eq_code

GUI st ar t _f ol d i nt

GUI end_f ol d i nt

GUI f name char *

CA SET_FOLD /

I GNORED

r eq_code

SET_LOAD

The GUI requests that the specified substate values of all cells in the CA Engine be set to

those listed in the specified file. An acknowledgement is expected from the CA Engine.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 112

Sender Token Type

GUI SET_LOAD r eq_code

GUI subst at e i nt

GUI st r l en (f name) i nt

GUI f name char *

CA SET_LOAD r eq_code

VI EW_STATE

The GUI transmits the co-ordinates of an entity and gets the data for the substate and the

generation that the data were collected. This request is used by the “Edit Substate” GUI

facility.

Sender Token Type

GUI VI EW_STATE r eq_code

GUI pos i nt [3]

GUI subst at e i nt

CA cpt _gener at i on i nt

CA dat a char *

CA VI EW_STATE r eq_code

SET_STATE

The GUI transmits appropriate values and requests that the substate be set in the CA En-

gine. An acknowledgement finishes the communication. This request is used by the “Edit

Substate” GUI facility.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 113

Sender Token Type

GUI SET_STATE r eq_code

GUI pos i nt [3]

GUI subst at e i nt

GUI dat a char *

CA SET_STATE r eq_code

SET_PARAM

This request concerns the modification of cadef global CARPET parameters. More than

one parameter can be set, as their number is written to the socket. The reply from the CA

Engine is an acknowledgement.

Sender Token Type

GUI SET_PARAM r eq_code

GUI no_of _par ams i nt

f or (i)

 GUI par am_i d[i] i nt

 GUI val ue[i] f l oat

end f or

CA SET_PARAM r eq_code

GET_PARAM

This request gets the value of one global CARPET parameter. There is no acknowledge-

ment in this case.

Sender Token Type

GUI GET_PARAM r eq_code

GUI par am_i d i nt

CA par am[par am_i d] /

I GNORED

i nt /

r eq_code

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 114

EVOLVE

The GUI requests the evolution of the CA Engine for a given number of generations. No

reply is expected.

Sender Token Type

GUI EVOLVE r eq_code

GUI num_gens i nt

LOOP

This is a request for CA Engine execution until further notice. No reply is anticipated.

Sender Token Type

GUI LOOP r eq_code

TERMI NATE

This request terminates CA Engine execution, but it does not cause the program to exit.

The user can instruct a new run of the Engine. Visualisation planes are removed from the

data structures and the generation is zeroed. An acknowledgement that execution has

stopped is returned to the GUI through the communication channel.

Sender Token Type

GUI TERMI NATE r eq_code

CA TERMI NATE /

I GNORED

r eq_code

PAUSE

This requests the CA Engine to pause execution. Its difference from TERMI NATE is that in

this case the visualisation planes are not affected and the generation is not zeroed. When

paused, the CA Engine can accept requests and can then be restarted by:

• EVOLVE or LOOP, in which case the visualisation list will be reinitialised but not emp-

tied (unlike TERMI NATE). This effects to the planes being displayed immediately;

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 115

• RESUME, in which case no changes to the lists are imposed, except those explicitly re-

quested while the Engine was paused.

No acknowledgement that the Engine is paused is transmitted to the GUI.

Sender Token Type

GUI PAUSE r eq_code

ADD_PLANE

This is a request to add a visualisation plane to the CA Engine. An acknowledgement is

expected at the GUI side except if the plane is I GNORED. The protocol for ADD_PLANE is

explained in Section 8.4.

Sender Token Type

GUI ADD_PLANE r eq_code

GUI pos i nt [3]

GUI subst at e i nt

GUI vi s_st ep i nt

CA I D /

I GNORED

i nt /

r eq_code

CA I D_same /

(NOTHING)

r eq_code

CA ADD_PLANE /

(NOTHING)

r eq_code

GUI VI S_PACK r eq_code

DEL_PLANE

The GUI requests the deletion of a plane identified by its ID. An acknowledgement is sent

to the GUI.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 116

Sender Token Type

GUI DEL_PLANE r eq_code

GUI I D i nt

CA DEL_PLANE /

I GNORED

r eq_code

READ_PROJECT

Requests that the CA Engine initialise its state from the data in the file whose name is

transmitted. Communication is finished with an acknowledgement.

Sender Token Type

GUI READ_PROJECT r eq_code

GUI st r l en (f name) i nt

GUI f name char [st r l en(f name)]

CA READ_PROJECT r eq_code

SAVE_PROJECT

The GUI requests that the current state of the CA Engine be saved in a set of project files.

The resulting files can be used for the READ_PROJECT operation, as well as SET_STATE.

Sender Token Type

GUI SAVE_PROJECT r eq_code

GUI st r l en (f name) i nt

GUI f name char [st r l en(f name)]

CA SAVE_PROJECT r eq_code

PERI ODI C_SAVE

The GUI initiates periodic saving of project data.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 117

Sender Token Type

GUI PERI ODI C_SAVE r eq_code

GUI st r l en(f name) i nt

GUI f name char [st r l en(f name)]

GUI save_st ep i nt

CA OVER_W / 0 r eq_code

CA PERI ODI C_SAVE r eq_code

SET_MI NMAX

The GUI sets the minimum and maximum values for the colour mapping of a substate.

Sender Token Type

GUI SET_MI NMAX r eq_code

GUI subst at e i nt

GUI l _mi nmax doubl e[2]

CA SET_MI NMAX /

I GNORED

r eq_code

I GNORED

According to the state of the Engine, the following requests are I GNORED:

• TERMI NATE and PAUSE, if the Engine is Stopped;

• PAUSE, if the Engine is Paused;

• EVOLVE and LOOP, if the Engine is Running;

• RESUME, if the Engine is Running or Stopped;

• FI NI SHED, if the Engine is Paused or Stopped.

Sender Token Type

CA I GNORE r eq_code

Other reasons for the CA Engine to transmit I GNORED are as follows:

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 118

• if the plane to be added is already in the visualisation list;

• if the plane to be deleted does not exist;

• if the transmitted spatial entity is invalid;

• if the parameter id for the parameter to be transmitted is invalid;

• if the suggested minimum or maximum values for the colour mapping of a substate are

inadequate.

If in any of these cases an acknowledgement is expected, I GNORED is transmitted to the

GUI.

EXI TCODE

This request causes the CA Engine program to exit.

Sender Token Type

GUI EXI TCODE r eq_code

FI NI SHED

This is not available on the GUI side; it is used in the CA Engine after an EVOLVE request

has been completed so as to reset internal variables.

Sender Token Type

Not Transmitted

RESUME

This is one of three ways to restart the CA Engine after it has been Paused. Explained un-

der PAUSE.

Sender Token Type

GUI RESUME r eq_code

VI S_PACK

This is a visualisation packet identifier, sent as a header from the CA Engine to the GUI

before sending the visualisation data. This is one of the two protocol functions performed

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 119

through vi s_sockf d, the other one being GEN_NO. These two are also the only ones to be

initiated by the CA Engine.

Sender Token Type

CA VI S_PACK r eq_code

CA I D i nt

CA val si ze i nt

CA mi nmax[2] doubl e[]

CA val ue[val si ze] char []

GEN_NO

This is a generation number identifier, sent from the CA Engine to the GUI after each gen-

eration has been executed. It is followed by the current generation number.

Sender Token Type

CA GEN_NO r eq_code

CA cpt _gener at i on i nt

OVER_W

This is a special kind of acknowledgement sent by the CA Engine when files could be

overwritten as a result of the periodic save. See section 7.5.7 for more details.

BATCH

This is not available on the GUI side either. It is used in the CA Engine instead of EVOLVE
when the program is run in standalone mode so that r v() initialises the status of the CA

Engine and exchanges boundaries.

Sender Token Type

Not Transmitted

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 120

7.4 Implementation of GUI Functions

The following are the protocol-related functions contained in the l i bcmt gui comms li-

brary linked with the GUI. They are all implemented in file gui comms. c ; their prototypes

are listed in gui comms. h. The function arguments for functions prefixed r eq_ are to be

transmitted to the other side, except if otherwise stated. All functions return the r eq_code

if finished successfully. Functions receiving an I GNORED acknowledgement return 0. We

discuss them with respect to their context.

7.4.1 Substate related

• i nt r eq_save_r equest (i nt subst at e, char * f i l ename)

The GUI requests that the subst at e values for all cells in the CA Engine be written to

file f i l ename. The function merely implements the protocol.

• i nt r eq_set _l oad (i nt subst at e, char * f i l ename)

Set the subst at e values for all cells in the Engine to those listed in file f i l ename.

• i nt r eq_vi ew_st at e (i nt pos[3] , i nt subst at e,

Cpt St at eType st _t ype, i nt * gen, voi d * val ue)

The pos[] array contains the co-ordinates of the cell, line or plane whose subst at e

data are to be retrieved. The results are returned in the val ue array, which has to be

initialised by the caller function. The generation number of the state is returned in the

gen pointer; no memory allocated for it either. Only pos and subst at e are written to

the CA side. st _t ype is used to calculate the total size of the val ue argument and ac-

cordingly receive data.

• i nt r eq_set _st at e (i nt pos[3] , i nt subst at e,

 Cpt St at eType st _t ype, voi d * val ue)

This requests that the substate of the entity in pos[] be set to val ue. Symmetric to

r eq_vi ew_st at e, but it does not affect the generation of the CA Engine.

• i nt r eq_set _par am (i nt no_of _par ams, i nt * par am_i d,

 f l oat * val ue)

This function is concerned with the modification of cadef global CARPET parame-

ters. Their value can only be of type f l oat . If no_of _par ams parameters are to be

set, their ID is stored in the par am_i d array and the corresponding values can be found

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 121

in val ue. The size of both arrays is no_of _par ams . After sending no_of _par ams ,

the function loops over an index no_of _par ams times and writes the respective values

of par am_i d and value to the socket.

• i nt r eq_get _par am (i nt par am_i d, f l oat * val ue_pt r)

This function reads the parameter indexed par am_i d from the CA Engine. The value

of the parameter read is stored in val ue_pt r . If the value read is I GNORED it returns

0, otherwise it returns GET_PARAM. The caller function must allocate memory for

val ue_pt r .

7.4.2 Program Flow Management

The PAUSE, LOOP, TERMI NATE, EXI TCODE and RESUME r eq_codes are implemented by

issuing a simple wr i t en call; no special function has been developed for them. FI NI SHED

is not available to the GUI.

• i nt r eq_evol ve (i nt num_gens)

The GUI requests the CA Engine evolution for num_gens generations. The implemen-

tation is trivial.

• i nt r eq_set _f ol d (i nt st ar t _f ol d, i nt end_f ol d)

This is a function to set the starting and finishing active folds of the CA manually. The

implementation is straightforward.

• i nt r eq_set _mi nmax (i nt subst at e, doubl e mi n, doubl e max)

This function sets the minimum and maximum values for the given substate so as to be

used on the CA side for the colour-mapping. It implements the protocol.

7.4.3 Visualisation Functions

• i nt r eq_add_pl ane (pl ane * pl _pt r , i nt * I D_same)

This is a request to add a visualisation plane to the CA Engine. The pl ane definition

as well as the discussion of the function are deferred to section 8.4.

• i nt r eq_del _pl ane (i nt pl ane_i d)

The GUI requests the deletion of the plane numbered pl ane_i d. The function imple-

mentation is detailed in section 8.5.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 122

7.4.4 Configuration (Project) Related

• i nt r eq_pr oj _r ead (char * f i l ename)

The function only transmits the length of f i l ename followed by the filename itself

and then blocks for the acknowledgement. f i l ename is used as a root for the files to

be read. The filename construction as well as the CA Engine actions are detailed in the

discussion of ser v_pr oj _r ead.

• i nt r eq_pr oj _save (char * f i l ename)

Similar to r eq_pr oj _r ead.

• i nt r eq_per i odi c_save (char * f i l ename, i nt per i od, i nt * cf s)

Requests the CA Engine to save the state of the system periodically in files whose

name has the given root f i l ename. The argument is an integer passed by-reference

conveying the result of check_f s() on the macrocell side (see section 7.5.7 for more

details). The implementation of this function is trivial.

7.4.5 Other functions

The rest of the functions in file gui comms. h are as follows:

• i nt consume_vi s_pack (voi d)

• voi d GUI _check_pos (i nt *)

• i nt GUI _get _val _si ze (const i nt *)

• i nt get _max_si ze (const unsi gned i nt *)

These functions are discussed in section 8.3.

7.5 Implementation of the CA Engine Functions

7.5.1 General Remarks

The following functions are called to serve the corresponding GUI side requests. These

functions are asymmetric to their GUI-side counterparts, in that they are invoked immedi-

ately after the request has been received and read in the necessary data internally from the

communication channel. Thus they have a void argument list. They return the r eq_code

that initiated them if successful, I GNORE if they did not perform a change for the reason

explained previously or a negative error code in other cases. The acknowledgement, where

applicable, is sent by their caller function, r v() (see section 7.5.2).

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 123

The functions receiving a filename first read its length through the socket. In order to use

the filename as a character pointer we NULL terminate it. So, memory for an extra character

must be allocated.

Data which need to be known to all the processes are broadcast to them using the

MPI _Bcast function. Data are scattered or gathered from or to the root process using

MPI _Scat t er and MPI _Gat her respectively. The root process in all collective communi-

cations is process 0.

7.5.2 Function rv()

The function responsible for request handling on the CA Engine side is

st at i c i nt r v (r eq_code r equest)

For each r eq_code, with the exceptions of EVOLVE, BATCH, LOOP, RESUME, PAUSE,

FI NI SHED, GEN_NO, OVER_W and EXI TCODE there is a function on the CA Engine side to

handle the request. The function r v() consists of a swi t ch statement each case of which

calls the appropriate function and then transmits the acknowledgement to the GUI (where

applicable).

The reason why there are specific requests which do not have corresponding functions is

that they only affect the state of the CA Engine and do not require significant computation

or process interaction. The state of the CA Engine is maintained within r v() with the use

of two local static variables, paused and st ar t ed. In addition to these, another static

variable, i ni t _gen, denotes whether cpt _gener at i on has been explicitly set by any of

the initialisation functions (e.g. ser v_pr oj _r ead() discussed in section 7.5.7) and

should thus be preserved. We will describe the implementation of the handling mechanism

for each of these requests. OVER_W is omitted as it is only used as an acknowledgement for

function ser v_per i odi c_save() , see section 7.5.7. GEN_NO is not discussed here either

as it is only transmitted by the CA Engine, see section 7.3.

EVOLVE

This is I GNORED if already st ar t ed and not paused. Otherwise, the number of genera-

tions to be run is read and broadcast to all the processes in the global variable num_gens .

When this is received:

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 124

• function set _gen() is called to reset the visualisation generation in all the planes in

the list (see section 8.3.5.2);

• i ni t _boundar i es() is called;

• st ar t ed is set;

• paused is cleared;

• i ni t _gen is cleared.

Returns EVOLVE or I GNORED as discussed above.

BATCH

The request is I GNORED if st ar t ed or paused or if pr ot _sockf d is set. The number of

generations is passed to macr ocel l . c by means of the - n argument. Similarly to

EVOLVE:

• set _gen() is called;

• i ni t _boundar i es() is called;

• st ar t ed is set;

• paused is cleared;

• i ni t _gen is cleared.

BATCH or I GNORED may be returned as usual.

LOOP

The same as EVOLVE, only that there is no number of generations to be read, as this re-

quests an infinite loop.

RESUME

This is I GNORED if paused is not set. It simply clears paused and i ni t _gen.

PAUSE

This is I GNORED if the Engine has not st ar t ed or if it is already paused. It sets paused

and returns PAUSED.

FI NI SHED

This pseudo-r eq_code is used by r un() to clear the st ar t ed variable. It is I GNORED if

the Engine is not st ar t ed.

EXI TCODE

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 125

Just returns EXI TCODE.

7.5.3 File and Socket I/O

7.5.3.1 Data Handling

Data communicated to the GUI or saved in a file follow the rule that the x dimension

changes fastest, followed by y, followed by z. In other words, if the data in question are of

size xext ent * yext ent * zext ent , the CA Engine will write them looping zext ent

times over yext ent , sending xext ent data each time. Technically, these loops are not

executed when writing, but the effect to the order of the written data is the one described

above. xext ent , yext ent and zext ent are determined by means of an array, pos[3] . If

a co-ordinate of this array is set to 0, then the corresponding extent may be

DI MX/ DI MY/ DI MZ, except if the dimension is not used, in which case the extent equals 1.

If the co-ordinate is greater than 0, then the corresponding extent is equal to 1. This as-

sumes that the GUI enumerates the cells in each dimension starting from 1, contrary to the

CA Engine which enumerates from 0.

7.5.3.2 Writing Data

Functions that write to a file or socket contain the temporary data storage variable

t mp_dat a of type unsi gned char * . This is used to get the data from the CA Engine

part belonging to each process and gather them in the root process. In the general case its

size is CPT_DI MX12* DI MY* DI MZ* cpt _st at e_si ze[st at ei d] (the number of elements

in each process multiplied by the size of each element of a given substate). On the other

hand, the root process requires an extra variable t mp_dat a2 of the same datatype and ade-

quate size (generally DI MX* DI MY* DI MZ* cpt _st at e_si ze[st at ei d]) in which to col-

lect the data. All the arrays above contain actual data, stripped of boundary data. This is

achieved by means of function get _x_l i ne() which skips the boundaries when travers-

ing the model.

The approach in gathering the data to the root process is very different depending on

whether even decomposition is assumed or not. We will describe these cases separately.

12 CPT_DI MX[cmt Wor l dRank] in the case of uneven decomposition

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 126

7.5.3.2.1 Even Decomposition Data Collection

The data are gathered into the root process using MPI _Gat her . The data in t mp_dat a are

contiguous per process. It would be an error to gather them into the root process using a

simple MPI _Gat her call. This would mean that the first NPROCS x-lines of process 0

would be considered as one x-line of the model. In order to interleave the process lines

while gathering, we create derived MPI _Dat at ypes, both for sending and for receiving

data. The process of creating these datatypes resembles the rationale of the data decomposi-

tion to folds consisting of strips, as discussed in section 5.4. For the sending datatype, we

create first a vector datatype, send_st r i p_vec , packing DI MY* DI MZ blocks of CPT_F_X

contiguous elements. The distance between the first elements of two consecutive contigu-

ous blocks is set to CPT_DI MX elements. This is the MPI way to represent a strip on the

sender. We then create another datatype, send_st r i p_UB_t ype, using the

MPI _Type_st r uct call, to fix the extent of this datatype to CPT_F_X. This is a technical

requirement for MPI and it is achieved by setting the upper bound of the datatype to an

address CPT_F_X elements away from its beginning.

The receiver end creates a strip vector, r ecv_st r i p_vec , similarly to the sender, only

that the stride between the first elements of two consecutive contiguous blocks is set to

DI MX, i.e. the x-size of the receiving buffer. This is the building block of the

r ecv_f ol d_t ype derived datatype, naturally consisting of NFOLDS strips. Finally, we

create a fixed extent datatype r ecv_f ol d_UB_t ype, in the same manner as above and

with the same extent. MPI _Gat her is called so that NFOLDS elements of type

send_st r i p_UB_t ype are sent from each process and process 0 receives one element of

type r ecv_f ol d_UB_t ype from each process. The implementation of this procedure is

shown in Table 10.

/ * Type st r i p * /
 MPI _Type_vect or (DI MY* DI MZ, CPT_F_X, CPT_DI MX,
 cpt _st at e_mpi dt [st at ei d] ,
 &send_st r i p_vec) ;
 MPI _Type_commi t (&send_st r i p_vec) ;

/ * Type st r i p wi t h f i xed ext ent f or gat her * /
 t ypes[0] = send_st r i p_vec;
 t ypes[1] = MPI _UB;

 di spl acement s[0] = 0;
 MPI _Addr ess (&(t mp_dat a[0]) , &st ar t _addr ess) ;
 MPI _Addr ess (&(t mp_dat a[CPT_F_X* cpt _st at e_si ze[st at ei d]]) , &addr ess) ;
 di spl acement s[1] = addr ess- st ar t _addr ess;

 bl ock_l engt hs[0] = 1;
 bl ock_l engt hs[1] = 1;

 MPI _Type_st r uct (2, bl ock_l engt hs, di spl acement s, t ypes,

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 127

 &send_st r i p_UB_t ype) ;
 MPI _Type_commi t (&send_st r i p_UB_t ype) ;

/ * Type st r i p. Di f f er ent t han send_ i n st r i de s i nce buf f er i s bi gger * /
 MPI _Type_vect or (DI MY* DI MZ, CPT_F_X, DI MX, cpt _st at e_mpi dt [st at ei d] ,
 &r ecv_st r i p_vec) ;
 MPI _Type_commi t (&r ecv_st r i p_vec) ;

/ * Type f ol d * /
 f or (i = 0; i < NFOLDS; i ++) {
 t ypes[i] = r ecv_st r i p_vec;
 }

 di spl acement s[0] = 0;
 MPI _Addr ess (&(t mp_dat a2[0]) , &st ar t _addr ess) ;

 f or (i = 1; i < NFOLDS; i ++) {

 MPI _Addr ess(&(t mp_dat a2[i * CPT_NPROCS* CPT_F_X* cpt _st at e_si ze[st at ei d
]]) ,
 &addr ess) ;
 di spl acement s[i] = addr ess- st ar t _addr ess;
 }

 f or (i = 0; i < NFOLDS; i ++) {
 bl ock_l engt hs[i] = 1;
 }

 MPI _Type_st r uct (NFOLDS, bl ock_l engt hs, di spl acement s, t ypes,
 &r ecv_f ol d_t ype) ;
 MPI _Type_commi t (&r ecv_f ol d_t ype) ;

/ * Type f ol d wi t h f i xed ext ent f or gat her * /
 t ypes[0] = r ecv_f ol d_t ype;
 t ypes[1] = MPI _UB;

 di spl acement s[0] = 0;
 MPI _Addr ess (&(t mp_dat a2[0]) , &st ar t _addr ess) ;
 MPI _Addr ess (&(t mp_dat a2[CPT_F_X* cpt _st at e_si ze[st at ei d]]) ,
 &addr ess) ;
 di spl acement s[1] = addr ess- st ar t _addr ess;

 bl ock_l engt hs[0] = 1;
 bl ock_l engt hs[1] = 1;

 MPI _Type_st r uct (2, bl ock_l engt hs, di spl acement s, t ypes,
 &r ecv_f ol d_UB_t ype) ;
 MPI _Type_commi t (&r ecv_f ol d_UB_t ype) ;

 MPI _Gat her (t mp_dat a, NFOLDS, send_st r i p_UB_t ype,
 t mp_dat a2, 1, r ecv_f ol d_UB_t ype, 0, cmt CommCommand) ;

Table 10: The code for the der ived datatype used for inter leaved gather ing of data in

the root process. Taken from function cmt _wr i t e() .

It should be noted that this non-trivial and costly procedure introduced in release 1.2 of

CAMELot eliminates the need for the root process to rearrange the data from folds to nor-

mal line representation. However, there are functions, namely t x_vi s_pack() and

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 128

ser v_vi ew_st at e() , which do not employ this method. The reason is that these func-

tions may need to handle a subset of the substate data, which makes the implementation of

the strategy more complicated.

In order for the aforementioned functions to interleave the process lines while gathering,

we create a derived MPI _Dat at ype called r ecv_vec . This in turn contains another de-

rived datatype called send_vec . The latter is created using the MPI _Type_vect or com-

mand and it generally contains DI MY* DI MZ blocks of elements of a specific datatype, each

having length equal to CPT_DI MX with stride DI MX. In other words, this is a vector which

leaves enough space for the whole x-line of the model (DI MX), yet carries the data of one

process (CPT_DI MX). The r ecv_vec is then created using the MPI _Type_st r uct func-

tion, as a two-element struct, the former being send_vec and the latter the pseudo

MPI _Dat at ype MPI _UB. The displacement for the upper bound is set to

CPT_DI MX* st at e_si ze, i.e. enough for the data of one process. The arguments of the

MPI _Gat her call are set in such a way, so that the processes send contiguous data which

are rearranged in the receiver process, as shown in Table 11. It should be noted that these

structures are local to each function. A global datatype variable cannot be constructed,

since this depends on the datatype of the data to be transferred. This statement is true for

the other method of data transmission as well.

 MPI _Type_vect or (my_y* my_z, my_x, my_x* wor k_si ze,
 cpt _st at e_mpi dt [subst at e] , &send_vec) ;
 MPI _Type_commi t (&send_vec) ;

 di spl [0] = 0;
 di spl [1] = my_x;
 bl ockl engt hs[0] = 1;
 bl ockl engt hs[1] = 1;
 t ypes[0] = send_vec;
 t ypes[1] = MPI _UB;
 MPI _Type_st r uct (2, bl ockl engt hs, di spl , t ypes, &r ecv_vec) ;
 MPI _Type_commi t (&r ecv_vec) ;

 MPI _Gat her (t mp_dat a, my_x* my_y* my_z, cpt _st at e_mpi dt [subst at e] ,
 t mp_dat a2, 1, r ecv_vec, 0, cmt CommWor k) ;

Table 11: The code for the der ived datatype used for inter leaved gather ing of data in

the root process. Taken from function ser v_vi ew_st at e() . This code implies the

need to rearrange the data from fold to normal representation before writing them.

The data collected using the above process are fragmented across the x-axis in strip sized

portions because of the folded block-cyclic decomposition and need to be rearranged. We

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 129

use the t mp_dat a3 array of size equal to that of t mp_dat a2, as an argument to function

get _wr i t e_pt r () which returns data ready for transmission. It should be noted that

get _wr i t e_pt r () is only executed in the root process. The size of the temporary data

storage variables is of particular importance and is further discussed in section 7.5.3.6.

These data structures are allocated memory in every call of the functions according to the

requirements and are freed before exiting the function.

7.5.3.2.2 Uneven Decomposition Data Collection

In this case, point-to-point sends and receives are used to communicate the data. The rea-

son is that strips have different sizes and MPI _Gat her and MPI _Gat her v are not flexible

enough to handle interleaving variable lengths of data from multiple processes.

For each process role (send-receive) two types of vectors are needed, a small and a large

one. Recall from the discussion of function cal c_x_si zes() in section 5.4.1 that we

decided to distribute extraneous cells to the processes from last to first, and place them in

strips from first to last. As far as the senders are concerned, the x-size of the large strip can

be found in CPT_F_X[cmt Wor l dRank] [0] , whereas the small size will be found in

CPT_F_X[cmt Wor l dRank] [f i r st _smal l _st r i p_i nd[cmt Wor l dRank]] . The proc-

ess may not have different sized strips, and this is easily tested by comparing

f i r st _smal l _st r i p_i nd[cmt Wor l dRank]] against its default value, NFOLDS. Note

that this is not a valid index for the f i r st _smal l _st r i p_i nd array. Similarly with the

above, for the receiver the x-size of the large one can be found in CPT_F_X[l ast] [0] ,

and the smallest sized strip, is in CPT_F_X[0] [f i r st _smal l _st r i p_i nd[0]] .

All four vector types consist of DI MY* DI MZ blocks of contiguous data, with sizes as above.

Similarly to the even decomposition case, send vectors differ from receive vectors in the

stride, i.e. the distance between the start of two consecutive contiguous blocks. Send vec-

tors have a stride equal to the x-dimension of the process, CPT_DI MX[cmt Wor l dRank] ,

whereas receive vectors have a stride equal to the x-dimension of the model, DI MX.

Data exchange is achieved with immediate receives issued from the root process and stan-

dard sends issued from each process (including the root process for ease of implementa-

tion). The root process issues NFOLDS* CPT_NPROCS receives, and each process issues

NFOLDS sends, one for each strip, with the appropriate sizes. The tags are defined as a se-

quence starting with 0 and incrementing by 1 for each strip encountered when traversing

the original model (e.g. the second tag equals to 1 and corresponds to strip 0 of process 1).

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 130

A summary of the code used for the case of uneven decomposition is shown in Table 12.

An interesting technical issue has to do with the traversal of the data received on process 0.

This is accomplished with two nested for loops across strips and then across processes. It

should be noted that the order of these loops should not be swapped, otherwise the index,

calculated incrementally, in the receiving array will be miscalculated

/ * Send t ypes * /
 MPI _Type_vect or (DI MY* DI MZ, CPT_F_X[cmt Wor l dRank] [0] ,
 CPT_DI MX[cmt Wor l dRank] , cpt _st at e_mpi dt [st at ei d] ,
 &send_st r i p_vec_l ar ge) ;
 MPI _Type_commi t (&send_st r i p_vec_l ar ge) ;
 i f (NFOLDS ! = f i r s t _smal l _st r i p_i nd[cmt Wor l dRank]) {
 MPI _Type_vect or (DI MY* DI MZ,
 CPT_F_X[cmt Wor l dRank] [f i r s t _smal l _st r i p_i nd[cmt Wor l dRank]] ,
 CPT_DI MX[cmt Wor l dRank] , cpt _st at e_mpi dt [st at ei d] ,
 &send_st r i p_vec_smal l) ;
 MPI _Type_commi t (&send_st r i p_vec_smal l) ;
 } / * End i f (f i r s t _smal l _st r i p_i nd[cmt Wor l dRank]) * /

/ * Recei ve t ypes. * /
 MPI _Type_vect or (DI MY* DI MZ, CPT_F_X[l ast] [0] , DI MX,
 cpt _st at e_mpi dt [st at ei d] , &r ecv_st r i p_vec_l ar ge) ;
 MPI _Type_commi t (&r ecv_st r i p_vec_l ar ge) ;
 i f (NFOLDS ! = f i r s t _smal l _st r i p_i nd[0]) {
 MPI _Type_vect or (DI MY* DI MZ, CPT_F_X[0] [f i r s t _smal l _st r i p_i nd[0]] ,
 DI MX, cpt _st at e_mpi dt [st at ei d] ,
 &r ecv_st r i p_vec_smal l) ;
 MPI _Type_commi t (&r ecv_st r i p_vec_smal l) ;
 } / * End i f (f i r s t _smal l _st r i p_i nd[0]) * /

/ * Recei ve dat a * /
 i f (0 == cmt Wor l dRank) {
/ * Fi r st r un st r i p t hen r un pr ocessor , so as t o t r aver se t mp_dat a2
 l i near l y. t mp_dat a2 cont ai ns t he dat a i n physi cal or der . Goi ng down
 t he x- axi s one meet s f i r s t s t r i p 0 of pr ocess 1 and t hen st r i p 1 of
 pr ocess 0 * /

 i = 0; / * I ndex t o posi t i on i n t mp_dat a2[] * /
 t ag = 0; / * Tag f or comm and r equest [] i ndex * /

 f or (st r i p = 0; st r i p < NFOLDS; st r i p++) {
 i nt advance; / * Byt es t o advance ar r ays (cal c t aken out) * /

 f or (pr oc = 0; pr oc < CPT_NPROCS; pr oc++) {
 i f (s t r i p < f i r s t _smal l _st r i p_i nd[pr oc]) {
 MPI _I r ecv (&t mp_dat a2[I] , 1, r ecv_st r i p_vec_l ar ge, pr oc,
 t ag, cmt CommCommand, &r equest [t ag]) ;
 } el se {
 MPI _I r ecv (&t mp_dat a2[I] , 1, r ecv_st r i p_vec_smal l , pr oc,
 t ag, cmt CommCommand, &r equest [t ag]) ;
 } / * End i f s t r i p * /
 i += CPT_F_X[pr oc] [st r i p] * cpt _st at e_si ze[st at ei d] ;
 t ag++;

 } / * End f or (pr oc) * /
 } / * End f or (st r i p) * /
 } / * End i f (0 == cmt Wor l dRank) * /

/ * Send dat a * /

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 131

 i = 0; / * I ndex t o posi t i on i n t mp_dat a[] * /
 f or (st r i p = 0; st r i p < NFOLDS; st r i p++) {
 t ag = st r i p* CPT_NPROCS + cmt Wor l dRank;
 i f (s t r i p < f i r s t _smal l _st r i p_i nd[cmt Wor l dRank]) {
 MPI _Send (&t mp_dat a[i] , 1, send_st r i p_vec_l ar ge, 0,
 t ag, cmt CommCommand) ;
 } el se {
 MPI _Send (&t mp_dat a[i] , 1, send_st r i p_vec_smal l , 0,
 t ag, cmt CommCommand) ;
 } / * End i f s t r i p * /
 i += CPT_F_X[cmt Wor l dRank] [st r i p] * cpt _st at e_si ze[st at ei d] ;

 } / * End f or (st r i p) * /

 i f (0 == cmt Wor l dRank) {
 i f (MPI _SUCCESS ! = MPI _Wai t al l (CPT_NPROCS* NFOLDS, r equest ,
s t at us)) {
 f pr i nt f (st der r , " cmt _wr i t e: MPI _Wai t al l f ai l ed\ n") ;
 MPI _Abor t (cmt CommCommand, - 1) ;
 } / * End (MPI _Wai t al l) * /
 } / * End i f (0 == cmt Wor l dRank) * /

Table 12: The code for the der ived datatype and data gather ing in the case of uneven

decomposition. Adapted from function cmt _wr i t e() .

Similarly to the even decomposition case, the functions that may need to handle a subset of

the substate data, t x_vi s_pack() and ser v_vi ew_st at e() require complicated im-

plementation. This time we discern between two cases. If the functions handle all of the

data, then we do exactly what we described earlier, as shown in Table 12. Otherwise, we

limit the point-to-point communication between the root process and the process holding

the data; see section 7.5.3.4 for the working process definition. Table 13 summarises the

datatype derivation.

/ * Send t ypes. * /
 MPI _Type_vect or (my_y* my_z, 1 , my_x,
 cpt _st at e_mpi dt [subst at e] , &send_st r i p_vec_l ar ge) ;
 MPI _Type_commi t (&send_st r i p_vec_l ar ge) ;

/ * Recei ve t ypes. * /
 MPI _Type_vect or (my_y* my_z, 1, t mp_dat a2_si ze,
 cpt _st at e_mpi dt [subst at e] , &r ecv_st r i p_vec_l ar ge) ;
 MPI _Type_commi t (&r ecv_st r i p_vec_l ar ge) ;

/ * Recei ve dat a * /
 i f (0 == cmt Wor l dRank) {
 MPI _I r ecv (t mp_dat a2, 1, r ecv_st r i p_vec_l ar ge, pr oc,
 0, cmt CommCommand, &r equest [0]) ;
 } / * End i f (0 == cmt Wor l dRank) * /

/ * Send dat a * /
 i f (wor k) {
 MPI _Send (t mp_dat a, 1, send_st r i p_vec_l ar ge, 0,

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 132

 0, cmt CommCommand) ;
 } / * End i f (wor k) * /

 i f (0 == cmt Wor l dRank) {
 MPI _Wai t al l (1, r equest , s t at us) ;
 } / * End i f (0 == cmt Wor l dRank) * /

Table 13: The code for the der ived datatype and gather ing of a substate of the data in

the case of uneven decomposition. Adapted from function ser v_vi ew_st at e() .

7.5.3.3 Reading Data

Similar operations as for writing are used when reading data. The same arrays for data stor-

age are created per process and on process 0, although what used to serve as a receiver data

store now serves as a sender and vice versa. Function in the even decomposition case is an

exception to the allocation rule, as it only allocates enough space to store data the size of

the x dimension. We will describe the even and uneven decomposition cases separately.

7.5.3.3.1 Even Decomposition Data Distr ibution

This time the sender (process 0) creates a fixed-extent fold type send_f ol d_UB_t ype

deriving it from a previously derived strip vector. The receivers need only a fixed extent

strip type, called r ecv_st r i p_UB_t ype, yet they receive NFOLDS of them and in the

right order. The code is shown in Table 14 below.

/ * Type st r i p * /
 MPI _Type_vect or (DI MY* DI MZ, CPT_F_X, DI MX, cpt _st at e_mpi dt [st at ei d] ,
 &send_st r i p_vec) ;
 MPI _Type_commi t (&send_st r i p_vec) ;

/ * Type f ol d * /
 f or (i = 0; i < NFOLDS; i ++) {
 t ypes[i] = send_st r i p_vec;
 }

 di spl acement s[0] = 0;
 MPI _Addr ess (&(t mp_dat a2[0]) , &st ar t _addr ess) ;

 f or (i = 1; i < NFOLDS; i ++) {

 MPI _Addr ess(&(t mp_dat a2[i * CPT_NPROCS* CPT_F_X* cpt _st at e_si ze[st at ei d
]]) ,
 &addr ess) ;
 di spl acement s[i] = addr ess- st ar t _addr ess;
 }

 f or (i = 0; i < NFOLDS; i ++) {
 bl ock_l engt hs[i] = 1;

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 133

 }

 MPI _Type_st r uct (NFOLDS, bl ock_l engt hs, di spl acement s, t ypes,
 &send_f ol d_t ype) ;
 MPI _Type_commi t (&send_f ol d_t ype) ;

/ * Type f ol d wi t h f i xed ext ent f or scat t er * /
 t ypes[0] = send_f ol d_t ype;
 t ypes[1] = MPI _UB;

 di spl acement s[0] = 0;
 MPI _Addr ess (&(t mp_dat a2[0]) , &st ar t _addr ess) ;
 MPI _Addr ess (&(t mp_dat a2[CPT_F_X* cpt _st at e_si ze[st at ei d]]) ,
 &addr ess) ;
 di spl acement s[1] = addr ess- st ar t _addr ess;

 bl ock_l engt hs[0] = 1;
 bl ock_l engt hs[1] = 1;

 MPI _Type_st r uct (2, bl ock_l engt hs, di spl acement s, t ypes,
 &send_f ol d_UB_t ype) ;
 MPI _Type_commi t (&send_f ol d_UB_t ype) ;

/ * Type st r i p. Di f f er ent t han send_ i n st r i de s i nce buf f er i s smal l er * /
 MPI _Type_vect or (DI MY* DI MZ, CPT_F_X, CPT_DI MX,
 cpt _st at e_mpi dt [st at ei d] , &r ecv_st r i p_vec) ;
 MPI _Type_commi t (&r ecv_st r i p_vec) ;

/ * Type st r i p wi t h f i xed ext ent f or scat t er * /
 t ypes[0] = r ecv_st r i p_vec;
 t ypes[1] = MPI _UB;

 di spl acement s[0] = 0;
 MPI _Addr ess (&(t mp_dat a[0]) , &st ar t _addr ess) ;
 MPI _Addr ess (&(t mp_dat a[CPT_F_X* cpt _st at e_si ze[st at ei d]]) , &addr ess) ;
 di spl acement s[1] = addr ess- st ar t _addr ess;
/ * The r est ar e t he same as above * /

 MPI _Type_st r uct (2, bl ock_l engt hs, di spl acement s, t ypes,
 &r ecv_st r i p_UB_t ype) ;
 MPI _Type_commi t (&r ecv_st r i p_UB_t ype) ;

 MPI _Scat t er (t mp_dat a2, 1, send_f ol d_UB_t ype,
 t mp_dat a, NFOLDS, r ecv_st r i p_UB_t ype,
 0, cmt CommCommand) ;

Table 14: The code for the der ived datatype used for scatter ing data. Taken from func-

tion cmt _r ead() .

Function ser v_set _st at e() does not use derived datatypes for data scattering. This

function is only used when the user changes the value of one substate on one cell, despite

having been implemented to handle any number of elements. In this case, the size of the

allocated buffers is smaller by a factor of yext ent * zext ent because the function does

not involve one-off reads from the root-process, but rather loops over the zext ent and

yext ent to get all the data. As a result the data need to be rearranged on the receivers’

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 134

side after reception, using function set _x_l i ne() . The code for scattering the data is

shown in Table 15.

f or (z = z_st ar t ; z < z_end; z++) {

 f or (y = y_st ar t ; y < y_end; y++) {

 cp1 = CA_REF (ca1, z_di sp+z, y_di sp+y, x_di sp) ;
 cp2 = CA_REF (ca2, z_di sp+z, y_di sp+y, x_di sp) ;

 i f (0 == cmt Wor l dRank) {

 i f (s i ze ! = r eadn (pr ot _sockf d, (char *) t mp_dat a2, s i ze)) {
 f pr i nt f (st der r , " ser v_set _st at e: r eadn er r or ! \ n") ;
 MPI _Abor t (cmt CommCommand, - 1) ;
 } / * End i f r eadn * /

 get _scat t er _pt r (&scat t er _pt r , t mp_dat a2, t mp_dat a3,
 t mp_dat a2_si ze, cpt _st at e_si ze[st at ei d]) ;

 } / * End i f (0 == cmt Wor l dRank) * /

 MPI _Scat t er (scat t er _pt r , my_x, cpt _st at e_mpi dt [st at ei d] ,
 t mp_dat a, my_x, cpt _st at e_mpi dt [st at ei d] ,
 0, cmt CommCommand) ;

 i f (wor k) {
 set _x_l i ne (cp1, st at ei d, t mp_dat a, my_x) ;
 set _x_l i ne (cp2, st at ei d, t mp_dat a, my_x) ;
 } / * End i f (wor k) * /

 } / * End f or (y) * /

 } / * End f or (z) * /

Table 15: The code for scatter ing data without der ived datatypes in the case of even

decomposition. Taken from function ser v_set _st at e() . Note the need to rearrange

the data from normal to fold representation before reading them in the CA copies (call to

get _scat t er _pt r ()).

7.5.3.3.2 Uneven Decomposition Data Distr ibution

Similarly to the discussion in section 7.5.3.2.2, two sizes of vectors must be defined for the

sender and receivers. This operation is symmetric to the gathering, and the code reflects

this too. The sender’s sizes are calculated exactly like the receiver’s sizes in the case of the

collection and vice versa. The same symmetry appears for the strides of the datatypes. The

point-to-point data communication is effected with CPT_NPROCS* NFOLDS immediate

sends from the root process followed by NFOLDS standard receives from each process.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 135

The summary of the code appears in Table 16.

/ * Send t ypes * /
 MPI _Type_vect or (DI MY* DI MZ, CPT_F_X[l ast] [0] , DI MX,
 cpt _st at e_mpi dt [st at ei d] , &send_st r i p_vec_l ar ge) ;
 MPI _Type_commi t (&send_st r i p_vec_l ar ge) ;
 i f (NFOLDS ! = f i r s t _smal l _st r i p_i nd[0]) {
 MPI _Type_vect or (DI MY* DI MZ, CPT_F_X[0] [f i r s t _smal l _st r i p_i nd[0]] ,
 DI MX, cpt _st at e_mpi dt [st at ei d] ,
 &send_st r i p_vec_smal l) ;
 MPI _Type_commi t (&send_st r i p_vec_smal l) ;
 } / * End i f (f i r s t _smal l _st r i p_i nd[0]) * /

/ * Recei ve t ypes. These ar e onl y i mpor t ant on t he r ecei ver s i de * /
 MPI _Type_vect or (DI MY* DI MZ, CPT_F_X[cmt Wor l dRank] [0] ,
 CPT_DI MX[cmt Wor l dRank] ,
 cpt _st at e_mpi dt [st at ei d] , &r ecv_st r i p_vec_l ar ge) ;
 MPI _Type_commi t (&r ecv_st r i p_vec_l ar ge) ;
 i f (NFOLDS ! = f i r s t _smal l _st r i p_i nd[cmt Wor l dRank]) {
 MPI _Type_vect or (DI MY* DI MZ,

CPT_F_X[cmt Wor l dRank] [f i r s t _smal l _st r i p_i nd[cmt Wor l dRank]] ,
 CPT_DI MX[cmt Wor l dRank] , cpt _st at e_mpi dt [st at ei d] ,
 &r ecv_st r i p_vec_smal l) ;
 MPI _Type_commi t (&r ecv_st r i p_vec_smal l) ;
 } / * End i f (f i r s t _smal l _st r i p_i nd[cmt Wor l dRank]) * /

/ * Send dat a * /
 i f (0 == cmt Wor l dRank) {
/ * Fi r st r un st r i p t hen r un pr ocessor , so as t o t r aver se t mp_dat a2
 l i near l y. t mp_dat a2 cont ai ns t he dat a i n physi cal or der . Goi ng down
 t he x- axi s one meet s f i r s t s t r i p 0 of pr ocess 1 and t hen st r i p 1 of
 pr ocess 0 * /

 i = 0; / * I ndex t o posi t i on i n t mp_dat a2[] * /
 t ag = 0; / * Tag f or comm and r equest [] i ndex * /

 f or (st r i p = 0; st r i p < NFOLDS; st r i p++) {
 i nt advance; / * Byt es t o advance ar r ays (cal c t aken out) * /

 f or (pr oc = 0; pr oc < CPT_NPROCS; pr oc++) {
 i f (s t r i p < f i r s t _smal l _st r i p_i nd[pr oc]) {
 MPI _I send (&t mp_dat a2[i] , 1, send_st r i p_vec_l ar ge, pr oc,
 t ag, cmt CommCommand, &r equest [t ag]) ;
 } el se {
 MPI _I send (&t mp_dat a2[i] , 1, send_st r i p_vec_smal l , pr oc,
 t ag, cmt CommCommand, &r equest [t ag]) ;
 } / * End i f s t r i p * /
 i += CPT_F_X[pr oc] [st r i p] * cpt _st at e_si ze[st at ei d] ;
 t ag++;

 } / * End f or (pr oc) * /
 } / * End f or (st r i p) * /
 } / * End i f (0 == cmt Wor l dRank) * /

/ * Recei ve dat a * /
 i = 0; / * I ndex t o posi t i on i n t mp_dat a[] * /
 f or (st r i p = 0; st r i p < NFOLDS; st r i p++) {
 t ag = st r i p* CPT_NPROCS + cmt Wor l dRank;
 i f (s t r i p < f i r s t _smal l _st r i p_i nd[cmt Wor l dRank]) {

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 136

 MPI _Recv (&t mp_dat a[i] , 1, r ecv_st r i p_vec_l ar ge, 0,
 t ag, cmt CommCommand, &st at us[cmt Wor l dRank]) ;
 } el se {
 MPI _Recv (&t mp_dat a[i] , 1, r ecv_st r i p_vec_smal l , 0,
 t ag, cmt CommCommand, &st at us[cmt Wor l dRank]) ;
 } / * End i f s t r i p * /
 i += CPT_F_X[cmt Wor l dRank] [st r i p] * cpt _st at e_si ze[st at ei d] ;

 } / * End f or (st r i p) * /

 i f (0 == cmt Wor l dRank) {
 i f (MPI _SUCCESS ! = MPI _Wai t al l (CPT_NPROCS* NFOLDS, r equest ,
 s t at us)) {
 f pr i nt f (st der r , " cmt _r ead: MPI _Wai t al l f ai l ed\ n") ;
 MPI _Abor t (cmt CommCommand, - 1) ;
 } / * End i f (MPI _SUCCESS ! = MPI _Wai t al l) * /
 } / * End i f (0 == cmt Wor l dRank) * /

Table 16: The code for the der ived datatype used for scatter ing data in the case of

uneven decomposition. Taken from function cmt _r ead() .

The function ser v_set _st at e() may handle a subset of the data. In this case it is as-

sumed that only an x-plane will be distributed, and therefore one process will be reached,

so only one vector datatype is constructed for the sender and one for the receiver. Data is

communicated using and immediate send and a standard receive. The immediate send is

obligatory to avoid a deadlock in the case that the receiver is the root process (which is also

the sender). The sum of the corresponding code is shown in Table 17. In the case that the

whole of the model is distributed to the processes the same code as in Table 16 is used.

Note that up to release 1.3 of CAMELot this function is only used for a single cell.

/ * Send t ypes. * /
 MPI _Type_vect or (my_y* my_z, 1 , t mp_dat a2_si ze,
 cpt _st at e_mpi dt [st at ei d] , &send_st r i p_vec_l ar ge) ;
 MPI _Type_commi t (&send_st r i p_vec_l ar ge) ;

/ * Recei ve t ypes. * /
 MPI _Type_vect or (my_y* my_z, 1, my_x,
 cpt _st at e_mpi dt [st at ei d] , &r ecv_st r i p_vec_l ar ge) ;
 MPI _Type_commi t (&r ecv_st r i p_vec_l ar ge) ;

/ * Send dat a * /
 i f (0 == cmt Wor l dRank) {
 MPI _I send (t mp_dat a2, 1, send_st r i p_vec_l ar ge, pr oc,
 0, cmt CommCommand, &r equest [0]) ;
 } / * End i f (0 == cmt Wor l dRank) * /

/ * Recv dat a * /
 i f (pr oc == cmt Wor l dRank) {
 MPI _Recv (t mp_dat a, 1, r ecv_st r i p_vec_l ar ge, 0,
 0, cmt CommCommand, &st at us[cmt Wor l dRank]) ;
 } / * End i f (pr oc == cmt Wor l dRank) * /

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 137

 i f (0 == cmt Wor l dRank) {
 i f (MPI _SUCCESS ! = MPI _Wai t al l (1, r equest , s t at us)) {
 f pr i nt f (st der r , " ser v_set _st at e: MPI _Wai t al l f ai l ed\ n") ;
 MPI _Abor t (cmt CommCommand, - 1) ;
 } / * End i f (MPI _SUCCESS ! = MPI _Wai t al l) * /
 } / * End i f (0 == cmt Wor l dRank) * /

Table 17: The code for the der ived datatype used for scatter ing a substate of the data

in the case of uneven decomposition. Taken from function ser v_set _st at e() .

7.5.3.4 Working Macrocells and Buffer Sizes

In the case where the spatial entity concerned does not cover the full length of the x-axis,

only some of the processes need to work in order to collect all the necessary data. Given

that the CA Engine only deals with full extent entities, it is understood that these cases

concern set-x entities (e.g. the plane x=1). Therefore, the data belong only to one process.

The identification of the working process is different, depending on whether the even data

distribution code is enabled or not. We discuss the two cases separately.

7.5.3.4.1 Even Decomposition Working Process Identification and Buffer Allocation

This process is identified by the fact that its rank equals

((pos[0] - 1) / CPT_F_X) %CPT_NPROCS) ,

pos[3] being the array denoting the position of the entity. The reason for subtracting 1

from the x co-ordinate is that the CA Engine enumerates the axes starting with 0, whereas

the GUI and thus the user perceive the axes to start with one. Dividing by CPT_F_X we get

the absolute number of the strip, as if the data were not spread among the processes; the

modulo operation maps this to the process where it is assigned.

We will first discuss the case when a subset of data are gathered to the root process. In this

case we introduce a new MPI Communicator, cmt CommWor k , local to the function corre-

sponding to the request in question. This communicator consists of the root process so as to

do the I/O and, if the root process is not the working one, another process. If the root proc-

ess is the one, t mp_dat a, t mp_dat a2 and t mp_dat a3 all have size

yext ent * zext end* el _si ze,

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 138

el _si ze being the natural size of the element; otherwise t mp_dat a2 has size 2 times as

much as the above. This is because t mp_dat a2 must hold the data in the MPI _Gat her

call and since the root process participates in the communicator as a receiver, it also par-

ticipates as a sender. It is noted that in this case the data in the first half of t mp_dat a2

must be discarded. This is executed in function get _wr i t e_pt r () , discussed in section

7.5.3.6. This communicator is used to gather data to the root process; the size of data col-

lected from each participating process equals the size of t mp_dat a.

In the case that data are scattered to the processes we avoid the overhead of creating and

deleting the new communicator. All the processes receive the data, but each process has

already determined whether the change affects its data set, using the same rule as above,

and only they make the necessary changes to their CA copies.

7.5.3.4.2 Uneven Decomposition Working Process Identification and Buffer Alloca-

tion

Given that the strips have various x-lengths, the calculation of the working process is not

straightforward in this case. The processes traverse the strips in the model comparing the x

top end of each strip to the value of pos[0] . This calculation is inefficient, but it is com-

bined with the calculation of the x displacement, discussed in section 7.5.3.5.2. The code is

shown in Table 18.

 i f (1 == my_x) {
 i nt t op = 1;
 i nt f ound = 0;
 s t r i p = 0;
 whi l e (st r i p < NFOLDS) {

 pr oc = 0;
 whi l e (pr oc < CPT_NPROCS) {
 t op += CPT_F_X[pr oc] [st r i p] ;
 i f (pos[0] < t op) {
 f ound = 1;
 } / * End i f (pos[0] < t op) * /
 i f (f ound) br eak;
 pr oc++;

 } / * End whi l e (pr oc) * /
 i f (f ound) {
 x_di sp += pos[0] - (t op- CPT_F_X[pr oc] [st r i p]) ;
 / * The di st ance f r om t he cur r ent st r i p st ar t * /
 br eak;
 } / * End i f (f ound) * /
 x_di sp += CPT_S_X[cmt Wor l dRank] [st r i p] ;
 s t r i p++; / * Thi s * must * be t he l ast command of t he l oop! * /

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 139

 } / * End whi l e (st r i p) * /

 i f (pr oc ! = cmt Wor l dRank) {
 wor k = 0;
 } / * End i f (pr oc ! = cmt Wor l dRank) * /

Table 18: The code for the identification of the working process in the case of uneven

decomposition.

Because in the case of uneven decomposition no collective communications are used there

is no longer a need for the cmt CommWor k communicator setup; t x_vi s_pack() is an

exception, because it uses the communicator so as to calculate the minimum and maximum

of the substate to be visualised (see section 8.6.2.1 for more).

Unlike the even decomposition case, t mp_dat a and t mp_dat a2 have size yex-

t ent * zext end* el _si ze, el _si ze being the natural size of the element and the size of

t mp_dat a2 need not vary according to whether process 0 is a working process or not, be-

cause the data are communicated point-to-point. Calling the functions get _wr i t e_pt r () ,

and get _scat t er _pt r () is not necessary either, as discussed in section 7.5.3.2.2, so the

pointer t mp_dat a3 is obsolete.

7.5.3.5 Data Access

Accessing the data in each of the processing elements requires knowledge of how they are

stored. In the current implementation data are stored with x fastest as mentioned in section

5.2. As discussed there, halo data are inserted in the following places in the dataset:

• before the first and after the last real element (z-axis);

• between planes (y-axis);

• between lines (x-axis);

• between strips (folded data).

In the general case, the displacement in the z-axis equals Radi us . This means that in order

to access the first real piece of element we must skip Radi us planes of size CPT_Y* CPT_X

each (i.e. planes including the per-line and per-plane haloes). If the entity we want to access

is not the whole model, then we must skip an extra pos[2] - 1 planes; thus, the displace-

ment equals Radi us+pos[2] - 1. The displacement in the y-axis is calculated similarly.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 140

Calculation of the x-axis displacement if we do not want to access the whole x-line is less

easy. The way to do that depends on whether even decomposition is assumed or not.

7.5.3.5.1 Even Decomposition x-Axis Displacement Calculation

Because of the per-strip haloes, the data in the process are not contiguous; and because of

the block-cyclic decomposition, they do not represent contiguous lines in the original

model. In the normal case where the whole of the model is assumed, the displacement

equals Radi us , since only the initial halo in each strip must be skipped.

We will now consider the case where a subset of the data on the x-axis are concerned. Sup-

posing that the right process is already located from the cmt CommWor k communicator

definition, and that the right plane and line are also located using the above rules, we have

to find the correct strip in the process and the correct column in the strip and access them

using a serial pointer. A Radi us displacement will skip the line halo. In order to find the

right strip we add

(pos[0] - 1) / (DI MX/ NFOLDS) * CPT_S_X,

since DI MX/ NFOLDS13 gives us the rank of the strip and multiplication by CPT_S_X takes

us there. In order to find the correct column we add (pos[0] - 1) %CPT_F_X, which gives

the displacement from the beginning of the strip. In summary, if pos[0] is not equal to 0,

the x-axis displacement equals

Radi us + (pos[0] - 1) %CPT_F_X + (pos[0] - 1) / (DI MX/ NFOLDS) * CPT_S_X

7.5.3.5.2 Uneven Decomposition x-Axis Displacement Calculation

As mentioned in section 7.5.3.4.2, this displacement is calculated at the same time as the

working processes are identified. As shown in Table 18, the corresponding variable

x_di sp is initialised to Radi us and then for each strip of the process traversed, it is in-

cremented by CPT_S_X[cmt Wor l dRank] [st r i p] , the total size of the strip (including

the halos). However, if the working cell is found, x_di sp is instead incremented in that

process by the distance from the currently examined strip start (pos[0] - (t op-

CPT_F_X[pr oc] [st r i p])).

13 We remind the reader that DI MX is the x size of the model before the decomposition, CPT_S_X is the
total strip x-size including the two per-strip haloes and CPT_F_X is the x-size of the strip’s real data.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 141

7.5.3.6 Data Mapping Functions

• voi d get _x_l i ne (Cpt Cel l * cp, i nt subst at e,

 u_char * t mp_dat a, i nt my_x)

This function gets the data from the CA Engine, where they are fragmented because of

the folded representation, and coalesces them into the pointer t mp_dat a. This func-

tion assumes that the cell pointer has been initialised to the first element of interest. It

loops over the strips and places the data contiguously in the appropriately initialised

t mp_dat a pointer passed to the function as an argument. It is executed by all the pro-

cesses in the communicator when the objective is to gather substate data to the root

process. The argument subst at e is used to identify the size of the elements and is

also passed as an argument to cpt _get _st at e() so as to return the corresponding

values. The argument my_x is the number of substate elements and it is used to iden-

tify whether the loop over folds should occur or there is only one element to be re-

turned.

N.B.: This function only removes haloes, it does not re-organise the data so as to be

contiguous for the external, natural representation of the model (see function

f ol d2l i ne() for more).

• voi d set _x_l i ne (Cpt Cel l * cp, i nt subst at e,

 u_char * t mp_dat a, i nt my_x)

This function moves the data for substate subst at e from the pointer t mp_dat a to

the CA Engine copy cp, and at the same time it inserts haloes to the folded, yet with-

out haloes data of the t mp_dat a pointer. This function assumes that the cell pointer

has been initialised to the first byte to be written. It loops over the strips and places the

data from the t mp_dat a pointer to the appropriate position in cp taking into account

the fold-derived haloes in the latter. It is executed when substate data have been scat-

tered from the root process to all the processes in the communicator. The argument

subst at e, used to identify the size of the elements, is also passed as an argument to

cpt _set _st at e() . The argument my_x is the number of substate elements and it is

used to identify whether the loop over folds should occur or there is only one element

to be set in the CA Engine.

N.B.: This function assumes that the data in t mp_dat a have been appropriately or-

ganised in folds (see function l i ne2f ol d()).

The following functions are only used when handling parts of the model in the case of even

decomposition code. Functions concerned with the whole model do not need these, as the

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 142

translation of data from normal lines to folded data and vice versa is incorporated to the

corresponding scatter and gather operations. See also sections 7.5.3.2 and 7.5.3.3.

• voi d f ol d2l i ne (const u_char * sour ce, u_char * t ar get ,

 s i ze_t e_si ze)

This function turns the contiguous, yet folded x-line data into a representation suitable

for external presentation. The data are originally stored in the sour ce unsigned char-

acter pointer and the resulting data are made available through the t ar get pointer.

e_si ze is the size of each of the elements represented as characters. The function

traverses the sour ce array in strides of length NFOLDS* st r i p_si ze and writes

st r i p_si ze chunks of data contiguously to the t ar get array. This function is only

called by the root process.

• voi d l i ne2f ol d (const u_char * sour ce, u_char * t ar get ,

 s i ze_t e_si ze)

This function turns the contiguous, x-line data into folded, internal representation data.

The data are originally stored in the sour ce unsigned character pointer and the result-

ing data are made available through the t ar get pointer. e_si ze is the size of each of

the elements represented as characters. The function traverses the sour ce array in

strides of length CPT_NPROCS* st r i p_si ze and writes st r i p_si ze (i.e.

CPT_F_X* e_si ze) chunks of data contiguously to the t ar get array, without leaving

gaps for the halo. This function is only called by the root process.

• voi d get _wr i t e_pt r (u_char * t mp_dat a2, u_char * t mp_dat a3,

 i nt t mp_dat a3_si ze, i nt x, i nt y, i nt z,

 i nt el _si ze, i nt wor k, i nt wor k_si ze)

This function is a wrapper14 for f ol d2l i ne() . The argument t mp_dat a215 contains

the original data in internal CA Engine format, and t mp_dat a3 is the target buffer for

f ol d2l i ne() . It is assumed that the former has been appropriately initialised to con-

tain folded data, whereas the latter points to an appropriately allocated memory block

of sufficient size to hold data for the whole of the automaton. el _si ze is the natural

size of the elements stored as unsigned characters in t mp_dat a2. The variable

t mp_dat a3_si ze is the size of the array t mp_dat a3 in the x dimension. The func-

tion loops over z and y in that order and sets x elements of t mp_dat a3 each time.

There are two cases for t mp_dat a3_si ze:

14 The implementation of this function has changed radically since release 1.0 of the software.
15 It may help the reader to note that we maintained the naming of the variables of the calling function (see
section 7.5.3.1).

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 143

− If t mp_dat a3_si ze equals DI MX then all the processes are working, therefore

f ol d2l i ne(t mp_dat a2, t mp_dat a3, el _si ze) is called;

− If it equals 1, then there is no need for data rearrangement (they are just an element)

el _si ze bytes are copied from t mp_dat a2 to t mp_dat a3.

There is a slight complication though, which justifies the existence of the wor k and

wor ksi ze arguments. The former is a flag denoting whether the root process was the

only member or if there was another process in the communicator. In the latter case,

the size of t mp_dat a2 is 2 and the data in the first half of t mp_dat a2, originating

from the root process, must be discarded since the second process contributed the cor-

rect data. This is achieved by advancing the t mp_dat a2 pointer by el _si ze before

entering the loop.

After each iteration, the source and target pointers must be advanced. The argument

wor k_si ze contains the size (number of processes) of the communicator, and the ar-

gument x is the size of each strip. Therefore, after each iteration t mp_dat a2 is ad-

vanced by x* wor k_si ze* el _si ze bytes and t mp_dat a3 is advanced by

t mp_dat a3_si ze* el _si ze bytes.

When the function exits, the argument t mp_dat a3 points to the rearranged data, suit-

able for the external representation of the system.

• voi d get _scat t er _pt r (u_char * * scat t er _pt r , u_char * t mp_dat a2,

 u_char * t mp_dat a3, i nt t mp_dat a2_si ze,

 i nt el _si ze)

Similarly to get _wr i t e_pt r () , this function is a wrapper for l i ne2f ol d() . It re-

turns the pointer scat t er _pt r (passed by reference) containing data in internal,

folded representation. The argument t mp_dat a2 contains the original data in internal

CA Engine format, and t mp_dat a3 is the target buffer for l i ne2f ol d() . el _si ze

is the natural size of the elements stored as unsigned characters in t mp_dat a2. Note

that we now use the variable t mp_dat a2_si ze which is the size of the array

t mp_dat a2. There are two cases for it, not three (DI MX or 2 or 1) as is the case when

writing data, since when reading data there is no reason to allocate extra space for the

root process, t mp_dat a2si ze is the number of data to be scattered to each process.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 144

− If t mp_dat a2_si ze equals DI MX then all the processes are working and the func-

tion calls l i ne2f ol d(t mp_dat a2, t mp_dat a3, el _si ze) and assigns

*scat t er _pt r to point to t mp_dat a3.

− If it equals 1, then there is no reason for data rearrangement (they are just an ele-

ment); *scat t er _pt r is set to point to t mp_dat a2.

N.B.: get _scat t er _pt r () differs from get _wr i t e_pt r () in that the former con-

cerns the whole of the model, whereas the latter is only applied to one x-line only.

7.5.4 Substate Related Functions

• i nt ser v_save_r equest (voi d)

This corresponds to the r eq_save_r equest () GUI function which requests that the

subst at e values for all cells in the CA Engine be written to file f i l ename. After

reading subst at e and f i l ename from the socket, the root process broadcasts the

state id to all the cells. The function cmt _wr i t e (section 7.5.8.1) is called then, to

perform the write to file.

• i nt ser v_set _l oad (voi d)

Set the subst at e values for all cells in the Engine to those listed in file f i l ename.

This is the inverse function of ser v_save_r equest . The same procedures as above

are followed and then the function cmt _r ead (section 7.5.8.1) is called to read the

data from the file and update the CA copies.

• i nt ser v_vi ew_st at e (voi d)

This function writes the data of a subset of the model to the socket. The root process

on the CA side reads the pos[] array containing the co-ordinates of the entity to be re-

trieved as well as the subst at e id through the socket. The array and substate are

broadcast to all the processes which calculate the loop extends as well as the tempo-

rary data storage size as described in section 7.5.3.2. Then the working cells are identi-

fied as described in section 7.5.3.4 and the participating processes allocate the tempo-

rary memory buffers. After the displacement has been calculated the working proc-

esses loop over z and y and the root process gathers and rearranges the data as de-

scribed in section 7.5.3.2 using derived datatypes as shown in Table 11, Table 12 and

Table 13. The pointer is advanced by calling CA_REF after every y iteration, rather

than by advancing the pointer using pointer arithmetic, as is the case when the whole

model is being handled (e.g. in function cmt _wr i t e()). Process 0 then writes back to

the GUI the current generation and executes one wr i t en call to write the data to the

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 145

socket. After completion of the task, the communicator, the derived datatypes and the

temporary memory buffers are freed.

• i nt ser v_set _st at e (voi d)

This handles the request that a substate of the entity in a plane array pos[] be set to

the value transmitted through the socket. The root process reads and disseminates the

details of the entity in question from the socket. The flow of the program differentiates

with respect to whether even decomposition is chosen.

In the case of even decomposition the processes allocate temporary buffers on a per-

line basis. Each process also determines whether it needs to work and defines the loop

extends. In contrast with ser v_vi ew_st at e() which needs one in the case of even

decomposition, no communicator is necessary. Inside the nested loop two copies are

accessed. The root process reads the data in x-line portions from the socket and scat-

ters them as shown in Table 15, after calling get _scat t er _pt r () to rearrange the

data on a per-line basis. All the processes that need to work call set _x_l i ne() twice

to update their CA array copies. Note that this function calls get _scat t er _pt r () as

many times as the loop iterations and set _x_l i ne() twice as many times. The loops

are shown in Table 15.

In the case of uneven decomposition, memory for data storage is allocated, as de-

scribed in section 7.5.3.4 for the full extent of the data. This effects only one r eadn

call to read the data from the socket. The send and receive vectors are created as de-

scribed in section 7.5.3.2.2 and shown in Table 16 and Table 17. As shown in Table

15, the data are written to the CA copies line by line.

In both cases, the temporary buffers are freed in the end.

• i nt ser v_set _par am (voi d)

The root process reads the number of parameters to be set and aborts if the number is

illegal. It then loops over no_of _par ams reading the index and setting the value of

the corresponding parameter. After this is done, the internal parameter array is broad-

cast to all the cells.

7.5.5 Program Flow Management

The PAUSE, LOOP, EVOLVE, FI NI SHED, EXI TCODE and RESUME r eq_codes are imple-

mented inside the r v() function (section 7.5.2).

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 146

• i nt ser v_t er mi nat e (voi d)

When TERMI NATE is called the visualisation and plane lists are deleted. This is dis-

cussed in the Visualisation section.

• i nt ser v_set _f ol d (voi d)

The root process reads the starting and ending active fold index in an integer array

with two elements, which it broadcasts to the other processes. If the specified folds are

invalid (i.e. not in the correct order or not in the range [0, NFOLDS- 1]) the function

returns I GNORED. If the start and end folds are 0 and NFOLDS- 1 respectively, then the

manual folds are terminated and the automatic inactive strip detection mechanism is

set. Otherwise, the mechanism is deactivated and the act i ve_st r i p[] internal array

is updated according to the active fold specification.

7.5.6 Visualisation Functions

• i nt ser v_add_pl ane (voi d)

• i nt ser v_del _pl ane (voi d)

• i nt ser v_set _mi nmax (voi d)

The functions concerned with the visualisation are discussed in the Visualisation section.

7.5.7 Configuration (Project) Related Functions

• i nt ser v_pr oj _r ead (voi d)

The f i l ename read through the socket is used as a root for the files to be read. The

root process truncates the extension of the filename and does not broadcast it to the

other processes as they do not need it. They all call cmt _r ead_al l () discussed in

section 7.5.8.1.

• i nt ser v_pr oj _save (voi d)

The root process reads the pathname of the files to be written. All processes call

cmt _wr i t e_gl obal () and cmt _wr i t e() , emulating cmt _wr i t e_al l () behav-

iour excluding the AVS field file functionality and index keeping. See section 7.5.8 for

more details on the functions previously mentioned.

• i nt ser v_per i odi c_save (voi d)

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 147

The root process reads the pathname of the files to be saved periodically, as well as the

period, save_st ep. The former is turned into a pathname and a filename stored re-

spectively in the global variables out _di r name and out _basename. The filename is

checked against the filesystem, by means of the function check_f s() , looking for al-

ready existing files which could be overwritten. The result of this search is written

back to the GUI, and can be either OVER_W if there are such files, or 0 (zero) if there

are not. The save_st ep is broadcast to all the processes and used by the r un func-

tion, unlike out _di r name and out _basename which are not needed in the other

processes. Periodic saving is handled by function r un() , as mentioned in section

5.1.2.7.

7.5.8 Auxiliary Functions

7.5.8.1 File I/O related

The following functions return 0 if execution is correct; otherwise, a negative value is re-

turned.

• i nt cmt _r ead_gl obal (char * f i l ename)

The root process reads a binary file containing all global CA information for the cur-

rent generation. The binary file f i l ename. cpj is needed for the function to work. It

contains data concerning the following:

− The dimension of the automaton;

− The x, y, z dimensions of the model;

− The current generation;

− The number of states;

− The number of folds;

− The number of global parameters and their values.

The data are collected in an eight element integer array with the exception of the pa-

rameter values which are stored in the appropriate array and are then broadcast to all

the processes. The function checks the correctness of the above values (except for the

generation and parameter values) against the ones already set and sets the generation

(the parameter values are set during the broadcast).

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 148

• i nt cmt _r ead_al l (char * f i l ename)

This function calls cmt _r ead_gl obal (f i l ename) in order to read the global pa-

rameters. It then calls cmt _r ead to handle the substate files. Let n be the number of

substates. The CA Engine expects the existence of n binary files named f i l e-

name[TLC] . cmt , [TLC] being a three-digit numerical identifier for each of the sub-

states. For example, the first substate will be associated with the file f i l e-

name000. cmt .

• i nt cmt _r ead (char * f i l ename, i nt subst at e)

Given that all of the CA Engine data on the substate are to be read from the file, the

temporary data storage structures are allocated maximum memory, as discussed in sec-

tion 7.5.3.2. The root process opens the file designated by f i l ename and reads the

data using only one call of the appropriate function, depending on whether XDR is

used or not (see section 5.2.2 for the use of XDR in CAMELot). The data are then

scattered to the processes using as few MPI calls as possible, as described in section

7.5.3.3 and shown in Table 14. In order for the processes to update their local data two

Cpt Cel l pointers are used, pointing to each of the two CA array copies because the

changes should be applied to both of them. The original displacements are minimum

(Radi us on each axis). The processes loop in parallel over z and y calling

set _x_l i ne() for both copies. After each y loop the CA pointer is advanced by

CPT_X, which is a line including fold and line haloes, and after each z loop it is ad-

vanced by 2* Radi us* CPT_X, which is a plane halo at the end of the current plane and

a plane halo at the beginning of the next plane. The temporary buffers and derived

datatypes are freed on exit from the function.

• i nt cmt _wr i t e_gl obal (char * f i l ename)

The root process writes a binary file containing all global CA information for the cur-

rent generation. The binary file f i l ename. cpj is created. The data it contains are the

same as those that cmt _r ead_gl obal () expects to read. Because the data written to

the file are global, this function performs no MPI communications.

• i nt cmt _wr i t e_al l (char * dname, char * bname)

Saves the global and substate data in files named using an index incremented every

time the function is called (static variable). It also updates the related AVS/Express

field file.

The global data are stored in a file named dname/ [TLC] bname. cpj , [TLC] being a

three-digit numerical identifier for the index, thus allowing for 1000 consecutive saves

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 149

before overwriting the initial file. This is done without warning the user16. The func-

tion calls cmt _wr i t e_gl obal () in order to write the global parameters.

The function then loops over the substate ids, calling cmt _wr i t e() , the filename fol-

lowing the above convention for prefixing the filename and the same convention as in

cmt _r ead() to handle substate files. For example, the first save of the first substate

will be associated with the file di r name/ 000f i l ename000. cmt .

If the function is called for the first time, cmt _cr eat e_f l d() is called to create the

necessary AVS/Express field files. The cmt _wr i t e_f l d() function is then called to

update the contents of the field file. Both these functions are explained below.

• i nt cmt _wr i t e (char * f i l ename, i nt subst at e)

The function writes to the file f i l ename the data for state subst at e. Given that all

of the CA Engine data on the substate are to be written to the file, the temporary data

storage structures are allocated maximum memory. The data are accessed through a

pointer to the CA Engine. The original displacements are minimum (Radi us on each

axis). All the processes then loop over z and y executing get _x_l i ne() , collecting

the data in t mp_dat a. After each y loop the CA pointer is advanced by CPT_X, which

is a line including fold and line haloes, and after each z loop it is advanced by

2* Radi us* CPT_X, which is a plane halo at the end of the current plane and a plane

halo at the beginning of the next plane. After the loop is finished the data are gathered

in the t mp_dat a2 pointer of process 0 (see section 7.5.3.2 for more details on the

gather strategy). The root process writes the data to the file with one call, using XDR

primitives if so selected by the user. The temporary buffers are freed on exit from the

function.

• i nt cmt _cr eat e_f l d (char * dname, char * bname)

This function creates an AVS/Express field file for each datatype of the substates. It

also writes the initial data containing the specification of the simulation (i.e. all the

data appearing before the first line tagged t i me). The format of these files appears in

Table 19. It uses the variable dt _l i st , of type st at e_dt _l i st (see section 5.1.1.4)

to loop over the various datatypes of the substates and create one field file for each of

them. The arguments of this function are used as described in the discussion of

cmt _wr i t e_al l () .

16 Warning against overwriting existing files is generated when assigning the filename for a periodic
operation. See section 7.5.7 for further details.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 150

The l abel field lists the names of all the states of a given datatype, expanding array

states (so myar r [n] is expanded to myar r [0] myar r [1] . . . myar r [n]). Be-

cause AVS does not accept the use of brackets ([and]), these are replaced bu under-

scores (the character ‘_’). Therefore for the example above the expanded list is

myar r _0_ myar r _1_ . . . myar r _n_. In order to avoid matching the modified

names with those of scalar variables, scalar variable names are postfixed with the un-

derscore character.

• i nt cmt _wr i t e_f l d (char * dname, char * bname, i nt t i me)

This function loops over the st at et ypes members of dt _l i st and for each of them

it loops over their states. It thus accesses the state type and index for each of the sub-

states and adds the var i abl e entries to the appropriate field files. Using the above

strategy, each field file is opened only once during a call to the function. The argu-

ments of this function are used as described in the discussion of cmt _wr i t e_al l () .

AVS f i el d f i l e
CAMELot gener at ed
nst ep = <number of expect ed17 saves>
ndi m = <model di mensi on>
di m1 = <x- di mensi on>
di m2 = <y- di mensi on>
di m3 = <z- di mensi on>
nspace = 3
vecl en = <number of associ at ed subst at es>
dat a = <dat at ype of associ at ed subst at es>
f i el d = uni f or m
l abel = <names of associ at ed subst at es>

t i me val ue = 1
var i abl e 1 f i l e = <f i l ename> f i l et ype = bi nar y
var i abl e 2 f i l e = <f i l ename> f i l et ype = bi nar y

. . .
EOT18

t i me val ue = 2
. . .

Table 19: Format of CAMELot Generated AVS Field Files

17 This could differ from the number of actual saves if the user ends the run prematurely
18 Starting with release 1.3 of the software, the EOT separator appears between blocks of data refering to
consecutive time steps

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 151

7.5.8.2 st at e_dt and st at e_dt _l i st Related

• voi d i ni t _st at e_dt (st at e_dt * st _dt _pt r , MPI _Dat at ype dat a)

This initialises the st at es member of st _dt _pt r to 0 and the dat a member to

dat a.

• i nt add_st at e (st at e_dt * st _dt _pt r , i nt st at ei d)

This adds the substate st at ei d to st _dt _pt r and increments its st at es member. It

also performs checks to st at ei d and its datatype as well as to st at es . If the checks

fail it returns -1, else it returns 1.

• voi d i ni t _st at e_dt _l i st (st at e_dt _l i st * st _dt _l _pt r)

This initialises the many member of st _dt _l _pt r to 0 and loops over the states of

the system calling add_st at e_dt () .

• i nt add_st at e_dt (st at e_dt _l i st * st _dt _l _pt r , i nt st at ei d)

This first searches the st at et ypes[] member of st _dt _l _pt r for an element with

the same dat a field as st at ei d. If it does not find one, it calls i ni t _st at e_dt ()

augmenting the active range of st at et ypes and increments the many member. It

then calls add_st at e() to add the state to the st at e_dt found. It also performs

checks to st at ei d as well as to many and the return value of add_st at e() . If the

checks fail it returns -1; otherwise, it returns 1.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 152

8. Visualisation

The CA Engine transmits periodically substate data to the GUI. Although the GUI defines

the planes and visualisation steps, this and GEN_NO are the only situations in which the CA

Engine initiates the transmission of data. Although the transmission follows the same pro-

cedure as any output to a file or socket, the implementation of the visualisation functional-

ity required the introduction of various data structures on the GUI and the CA Engine. The

protocol for the maintenance of the visualisation entities is slightly complicated because of

the variety of possible events. Moreover, a colour mapping strategy was devised.

8.1 Data Structures

8.1.1 Plane Definition

A plane in the CA context is generally defined by:

• Two Cartesian triples defining points in the CA space;

• A substate to be visualised;

• A visualisation step;

• A plane ID, unique to the system (i.e. a plane should be referred to by the same ID in

both the GUI and the CA side).

The convention for the spatial extent of the plane above can denote anything from a cube to

a point in the CA space. We decided to consider 2-D planes as the finest granules of the

visualisation procedure19.

In the initial release of the engine we only implement full extent planes, i.e. 2-dimensional

spaces occupying maximum area. We thus use only one point in space, the co-ordinates of

which should be zero except for one co-ordinate which should be greater than zero and less

than the maximum dimension. For example, (0,3,0) denotes a y-plane in position 3 if the

dimension of y is 3 or more. On the other hand, (-1,0,0) and (1,2,1) are illegal (the latter

generally denotes a point).

After the above discussion we introduce the following type definitions.

19 With the exception of 1-D models.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 153

t ypedef st r uct {

 i nt pos[3] ;

 } poi nt ;

The pos[] array holds the co-ordinates of the point defining the plane. It represents a 3-D

triple and the first field holds the x co-ordinate, the second the y and the third the z.

t ypedef st r uct {

 poi nt pt ;

 i nt subst at e;

 i nt v i s_st ep;

 i nt I D;

 pl ane_cl ass * cl ass_pt r ;

 } pl ane;

The pt member holds the spatial identity of the entity; subst at e is the visualised substate

id; vi s_st ep is the period of visualisation for the plane; I D is a unique identifier for in-

ternal plane representation and handling; cl ass_pt r is a pointer to the pl ane_cl ass

structure holding the class information for the plane in question. Plane classes are dis-

cussed next.

8.1.2 Plane Classes

Because of the way the plane was defined, two planes extending in the same area visualis-

ing the same substate will be considered different if they differ in the visualisation step. As

a result, the data for the plane will be sent more than once to the GUI if the current CA

Engine generation is divided by the visualisation steps of more than one plane of the above

described kind.

We therefore introduced the idea of a plane class, linking such planes with the last visuali-

sation performed. To implement this we introduce this type definition:

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 154

t ypedef st r uct {

 i nt no_pl anes;

 i nt l ast _vi s;

 } pl ane_cl ass;

The member no_pl anes denotes the number of planes in the class; l ast _vi s is the latest

CA Engine iteration when there has been a visualisation of a plane in the class. It should be

noted that plane classes are not maintained in the GUI side planes.

8.1.3 Plane Lists

Both sides of the system maintain a list of all the planes visualised. We introduced the fol-

lowing data structure for the purpose.

t ypedef st r uct {

 pl ane * * pl anes;

 i nt no_pl anes;

 i nt max_i ndex;

 i nt s i ze_of _l i st ;

 } pl ane_l i st ;

The pl anes member is the array of pl ane pointers we want to maintain; no_pl anes is

the number of planes currently in the list; max_i ndex is the number of planes added to the

list since its initialisation; si ze_of _l i st is the dimension of the pl anes array.

Plane lists play a most important role in the addition and deletion of planes.

8.1.4 Visualisation List

The CA Engine maintains a sorted list of visualisation generations containing exactly one

entry for each plane. This list is used to check whether the state of a plane must be trans-

mitted and to get a handle to this plane. The cells of this list have the following form:

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 155

t ypedef st r uct _cel l _ {

 pl ane * dat a;

 i nt gener at i on;

 st r uct _cel l _ * next ;

 st r uct _cel l _ * pr ev;

 } cel l ;

The dat a member is a pointer to the plane; gener at i on is the next visualisation genera-

tion of the plane; next and pr ev are links to the next and previous members in the list.

The list is then implemented as a type:

t ypedef st r uct {

 cel l * head;

 cel l * t ai l ;

 i nt s i ze;

 } l i s t ;

The first two members are pointers to the ends of the list; si ze is the number of elements

in the list. A plane enters this list when introduced to the CA Engine and it is removed

from it when a DEL_PLANE request is issued with its ID. This data structure plays a central

role in the visualisation process.

8.2 Global Variables

8.2.1 CA Engine Global Visualisation Variables

• l i s t v i s_l i st ;

A list of all the visualisation planes, maintained in ascending order with respect to the

CA Engine iteration when each will be visualised next.

• pl ane_l i st al l _pl anes;

A list of all the planes in the CA Engine.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 156

• doubl e mi nmax[NumOf St at es] [2] ;

The minimum and maximum value for each substate (updated only if the substate is

visualised and only with the union of the data subsets visualised). mi nmax[] [0]

holds the minima and mi nmax[] [1] holds the maxima.

8.2.2 GUI Global Visualisation Variables

• i nt nvi zwi ns

Number of currently-open Visualisation windows.

• VI ZWI N * vi zwi ns[]

A fixed-size array of pointers to all currently-open Visualisation windows' VI ZWI N

structures. When a Visualisation window is closed, the memory for the VI ZWI N struc-

ture is released and the corresponding vi zwi ns[] pointer set to NULL, although the ar-

ray element is not reused until the Simulation window is exited.

• VI ZWI NLI STNODE * pl ane2wi n[]

 In order to map visualisation planes received from the CA Engine to Visualisation

windows, a linked list of pointers to VI ZWI N structures is maintained for every cur-

rently-visualised plane. The head node of each list is pointed to by a fixed size array of

pointers (pl ane2wi n[]) indexed by plane ID.

• i nt pl aner ef cnt []

Used to keep a reference count of windows for each plane. When the reference count

for a plane reaches 0, i.e.., no window now shows this plane, a DEL_PLANE request is

sent to the CA Engine.

• pl ane_l i st al l _pl anes

Similarly to the al l _pl anes variable in the CA Engine this is a list to all the planes in

the GUI.

• buf f er v i z_buf f er

The buffer for visualisation plane reception.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 157

8.3 Relevant Files and Functions

8.3.1 File common.h

Contains the declarations of the following (as well as others, not related to visualisation):

• poi nt type and the respective functions (pl ane. c);

• pl ane type and the corresponding functions (pl ane. c);

• pl ane_l i st type and the related functions (pl ane. c);

• cel l and l i s t types and their functions (l i s t . c);

• buf f er type and functions (buf f er . c).

8.3.2 Files guicomms.h and guicomms.c

Contain the declarations and implementations of the visualisation-related functions of the

protocol discussed next. Additionally, the following functions are contained in the files.

• i nt consume_vi s_pack (voi d)

Consumes visualisation packets from the visualisation socket. It is used to remove ob-

solete visualisation packets when an event which stops normal execution occurs. It is

implemented by means of a loop over sel ect (3C) on the visualisation socket. If

there is a visualisation message, r v_vi s_pack() writes the data to a suitably initial-

ised buf f er (see section 8.6.3.1 for more). This static buffer is allocated memory

once throughout the program life, when consume_vi s_pack() is first called.

• voi d GUI _check_pos (i nt * pos)

Checks pos against xyzdi ms[] to correct unacceptable values. Correction is done by

setting the coordinate to 0. When the size of a dimension of the model is 1, it sets the

corresponding coefficient to 1 (rather than 0) to prevent identifying planes as cubes.

For example, (0,0,0) in a 2-D model will be turned to (0,0,1) which is a plane.

• i nt GUI _get _val _si ze (const i nt * pos)

Returns the number of elements specified by pos[] . This is done by multiplying the

assumed size (originally 1) by the size of the model's dimension if the corresponding

coefficient in pos[] is equal to 0.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 158

• i nt get _max_si ze (const unsi gned i nt * pos)

Returns the maximum of the possible products of 3 choose 2 elements of the 3-

element array pos[] . It is used to derive the maximum possible number of elements

for the visualisation buffer, taking as its argument the array xyzdi ms[] . It calculates

the three possible sizes and returns the maximum.

8.3.3 File macrocell.c

Contains the declarations and implementations of the visualisation-related functions listed

in section 5.1.2.5 and further discussed in this section. It also contains the following func-

tions:

• st at i c i nt t x_vi s_pack (cel l * , char)

• st at i c voi d col our _map (const u_char * , u_char * , i nt , i nt ,

 doubl e, doubl e)

These are discussed later in this section.

• st at i c voi d check_pos (i nt * pos)

Same as GUI _check_pos() , only that it checks against DI MX, DI MY, DI MZ, instead

of xyzdi ms[] .

• st at i c voi d check_pl ane (pl ane * pl _pt r)

This function checks and corrects the plane for spatial, substate and visualisation step

consistency. Calls check_pos() for the array consistency and makes a separate check

if the model is 1-D. If the plane is found illegal it sets its I D member to I GNORED, oth-

erwise it sets it to -1.

• st at i c voi d bcast _pl ane (pl ane * pl _pt r , MPI _Comm comm)

This function broadcasts the details of the plane as detailed in process 0 of the CA En-

gine to all the processes in the communicator. It does not set up a new datatype con-

taining the 5 integers which are broadcast (i.e., pl _pt r - >pt . pos[3] ,

pl _pt r - >subst at e, pl _pt r - >vi s_st ep).

• st at i c i nt get _val _si ze (const i nt *)

Similar to GUI _get _val _si ze() .

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 159

8.3.4 File plane.c

8.3.4.1 Related to poi nt

• voi d i ni t _poi nt (poi nt * pt _pt r , i nt x, i nt y, i nt z)

Initialises the point passed as an argument by reference with the given coefficients.

• i nt wr i t e_poi nt (i nt sockf d, const poi nt * pt _pt r)

Writes the point coefficients to the socket; calls wr i t en() only once. Returns 0 if

wr i t en() succeeds, -1 otherwise.

• i nt r ead_poi nt (i nt sockf d, poi nt * pt _pt r)

Similar to the above, only that it reads the point data.

• i nt pt cmp (const poi nt * cp_pt r 1, const poi nt * cp_pt r 2)

Loops over the coordinates and compares the coefficients of the two points. Returns 0

if they are equal, 1 otherwise.

8.3.4.2 Related to pl ane_cl ass

• voi d i ni t _pl _cl ass (pl ane_cl ass * cl _pt r)

Sets no_pl anes to 0, l ast _vi s to -1.

• del _pl _cl ass (pl ane_cl ass * * cl _pt r _pt r)

This decrements the no_pl anes member of the pointer to a pl ane_cl ass to be de-

leted, and if this then equals zero, the pointer is freed; thus the reason for passing it by

reference.

8.3.4.3 Related to pl ane

• voi d i ni t _pl ane (pl ane * pl _pt r , const poi nt * pt , i nt subst at e,

 i nt v i s_st ep)

Sets the corresponding members of the plane pointed by pl _pt r to those passed as

arguments. The I D is set to 0 and the cl ass_pt r is set to NULL.

• voi d di sc_pl ane (pl ane * * pl _pt r _pt r)

This function first calls del _pl _cl ass() to delete the cl ass_pt r member of the

pl ane struct and then frees the memory for the pl ane pointer passed to the function

by reference.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 160

• i nt wr i t e_pl ane (i nt sockf d, const pl ane * pl _pt r)

Calls wr i t e_poi nt () and then writes the subst at e and vi s_st ep members of the

plane to the socket. It does not write the I D, or the cl ass_pt r details, which are as-

signed separately on each side during the plane addition process.

• i nt r ead_pl ane (i nt sockf d, pl ane * pl _pt r)

Similar to wr i t e_pl ane() in action and behaviour.

• i nt pl cmp (const pl ane * cp_pt r 1, const pl ane * cp_pt r 2,

 pl ane_cl ass * * pl _c_pt r)

The function checks the two planes pointed by the constant pointers for equality of the

subst at e, vi s_st ep and pt 20 members. Moreover, if the pl _c_pt r plane class

pointer-pointer argument passed to the function is not 0, then the function performs a

check to find which of the two planes already belongs to the plane list and returns a

handle to its plane class through pl _c_pt r . This suggests that the GUI-side caller

function must pass the argument as 0.

The function returns:

− 0, if the two planes are equal;

− 1, if the two planes are in the same class;

− -1, otherwise.

8.3.4.4 Related to pl ane_l i st

• voi d i ni t _pl ane_l i st (pl ane_l i st * pl _l _pt r)

It allocates space for the MAXPLANES pl ane* elements of the pl anes array member

of the structure. Sets si ze_of _l i st to MAXPLANES, no_pl anes and max_i ndex to

0 and zeroes the pointers in the pl anes member.

• voi d cl ear _pl ane_l i st (pl ane_l i st * pl _l _pt r)

Removes all planes from a pl ane_l i st , without deleting it. It calls di sc_pl ane()

to discard each plane. It zeroes pl anes[i] , max_i ndex and no_pl anes , thus return-

ing the list to the state where i ni t _pl ane_l i st () leaves it.

20 It uses the trivially implemented pt cmp() function to this end.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 161

• i nt add_pl ane (pl ane_l i st * pl _l _pt r , pl ane * pl _pt r ,

 i nt * I D_same, i nt ch_cl ass)

• i nt r em_pl ane (pl ane_l i st * pl _l _pt r , i nt I D)

These are discussed extensively in the paragraphs about plane addition (8.4.2) and deletion

(8.5.2).

8.3.5 File list.c

8.3.5.1 Related to cel l

• voi d i ni t _cel l (cel l * c_pt r , const pl ane * pl _pt r ,

 i nt gener at i on)

This function zeroes the forward and backward pointers (next and pr ev) and sets the

dat a and gener at i on members to those passed as its arguments.

• st at i c voi d del _cel l (cel l * * c_pt r _pt r)

First calls di sc_pl ane() to discard the plane in the dat a member and then frees the

memory occupied by the cell. This function is not publicly available.

8.3.5.2 Related to l i s t

• voi d i ni t _l i st (l i s t * l _pt r)

Zeroes the head, t ai l and l _si ze members.

• voi d set _gen (l i st * l _pt r , i nt gen)

Resets the next visualisation generation of all the cells in the list to gen+1 and sets

l ast _vi s in all the plane classes of the planes in the respective dat a members to -1.

These two actions cause the planes to be visualised immediately. It is used when re-

starting the CA Engine and it assumes that the CA Engine iteration index is set to gen.

• voi d cl ear _l i st (l i s t * l _pt r)

This function deletes the cells of the list, but assumes that the plane members have al-

ready been deleted. It does not delete the list itself.

• cel l * f i r st (l i s t * l)

This function provides a pointer to the head of the list, or NULL if the list is empty.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 162

• i nt del _I D (l i st * l _pt r , i nt I D)

This searches the doubly-linked list for the cel l containing the plane with the given

I D. It removes this from the list and then calls del _cel l () to discard the plane and

free the cell's memory. del _I D returns DEL_PLANE if the plane is found or I GNORED

else.

• voi d r eor der (l i st * l _pt r , cel l * c_pt r)

This function removes the cel l pointed by its second argument and reinserts it in as-

cending order with respect to its gener at i on member. After amending the next and

pr ev pointers of the cell's previous and next neighbours respectively, the function

calls i nser t () for the actual reinsertion.

• voi d i nser t (l i s t * l _pt r , cel l * c_pt r)

The function inserts a cell in the list so as to maintain ascending order of the cells with

respect to their gener at i on member. It makes use of three trivial internal functions,

namely addhead() , addt ai l () and addmi ddl e() .

8.3.6 File buffer.c

A datatype we have not previously discussed is the buf f er . It is used by the visualisation

functions on the GUI side so as to enable one-off memory allocation for each of the planes

visualised. Its declaration is as follows:

t ypedef st r uct {

 u_char * dat a;

i nt s i ze;

} buf f er ;

There are two functions associated with this structure:

• i nt i ni t _buf f er (buf f er * buf _pt r , i nt s i ze)

This function allocates si ze bytes of memory for the member dat a and sets the si ze

member. It returns -1 if mal l oc fails or si ze is less than 1; otherwise it returns 1.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 163

• i nt expand_buf f er (buf f er * buf _pt r , i nt s i ze)

If the newly defined si ze is greater than the si ze member of the structure it uses r e-

al l oc to expand the dat a member and resets si ze. It returns -1 in case of failure, 1

otherwise.

8.4 Plane Addition

8.4.1 Addition Protocol

Plane addition is initiated by the GUI. It sends the point defining the location of the plane,

substate to be visualised and the visualisation step to the CA Engine (i.e. it transmits a

plane without an ID and a plane class pointer, using the wr i t e_pl ane() library function)

through the communication abstraction. This communication is performed through the

usual pr ot _sockf d socket. The CA Engine replies with the ID of the plane and acknowl-

edges addition. The normal case protocol is shown below:

Sender Token Type

GUI ADD_PLANE r eq_code

GUI pos[3] i nt *

GUI subst at e i nt

GUI vi s_st ep i nt

CA I D i nt

CA ADD_PLANE r eq_code

GUI VI S_PACK r eq_code

As we discuss next, the protocol is more complicated in the cases of adding an already ex-

isting plane.

8.4.2 The Function add_plane() and Other Related Functions

The desired effect is to add the plane pointed by pl _pt r to the plane list pointed by

pl _l _pt r . The prototype of the function is as follows:

i nt add_pl ane (pl ane_l i st * pl _l _pt r , pl ane * pl _pt r , i nt * I D_same,

i nt ch_cl ass)

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 164

The function is called from the plane addition functions of both the CA Engine and the

GUI. The last two arguments differentiate between the two cases. We note that the GUI-

side caller should pass zeroes (0) in the last two arguments, and defer the discussion for

later in this section. The behaviour of this function describes the plane addition strategy.

The function traverses the plane list searching for a plane which is exactly the same as the

one we want to add or belongs to the same class. In the case of the GUI, because the plane

classes are not maintained, the plane class check is not performed. This is denoted by

means of the ch_cl ass flag which should be cancelled if the caller is on the GUI side.

The plane comparison is performed by the function pl cmp. If it returns 0, then a NULL

plane pointer is added to the list, occupying the position and index. The I D member of the

plane pointer is updated with the negated value of the ID that the plane would have if it had

been added. Moreover, if the I D_same argument is not set to zero (i.e. the caller is the CA

Engine), then the ID of the plane that was found to be equal in the list is returned through

the argument. In this case the function returns I GNORED, exiting immediately.

If pl cmp() returns 1 or -1, then the search in the list is continued. In the former case the

plane class pointer returned through the pl _c_pt r argument of pl cmp() is stored. On

exiting the list traversal, the function adds the plane to the list and sets its I D field to the

value of the max_i ndex member of the list. The max_i ndex and no_pl anes members of

the list are then incremented. If the ch_cl ass flag is set and no plane in the same class has

been found, a new plane class instance is created. Its no_pl anes member is set to 0, but

its l ast _vi s member is set to –1 by means of the i ni t _pl _cl ass function. On the

other hand, if a plane class address has been stored during the traversal, the cl ass_pt r

member of the plane being added to the list is set to what that address points to and the

corresponding no_pl anes member is incremented. The possible combinations of the re-

turn value with pl _pt r - >I D are shown in Table 20.

Case Return ID

Successful addition

(in existing class or not)

ADD_PLANE

pl _l _pt r - >max_i ndex

pl _pt r already in list I GNORED - (pl _l _pt r - >max_i ndex)

mal l oc or other failure - 1 <Undefined>

Table 20: Combinations of the return value of add_plane() and the ID of the plane

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 165

8.4.3 GUI-Side Plane Addition

Addition on the GUI side is handled by the following function:

i nt r eq_add_pl ane (pl ane * pl _pt r , i nt * I D_same)

The function implements the protocol, by sending the data of the plane pointed to by

pl _pt r . There are two possibilities for the I D it then reads. If it is I GNORED, then this

means that the plane has been discarded on the CA Engine side. In this case the function

immediately returns the value 0, emulating the behaviour of get _ack() when the latter

receives I GNORED. If the I D is not I GNORED, it can still be negative, in the case that the

plane already existed in the CA Engine. The function calls add_pl ane() , which contains

all the necessary data to see if the plane already exists. The difference is that the I D_same

and ch_cl ass arguments of add_pl ane() must be passed zero, as discussed previously.

The id received through the socket is checked against pl _pt r - >I D which is set inside

add_pl ane() to ensure consistency between the two sides. Finally, if add_pl ane() re-

turns I GNORED, I D_same is read from the socket and 0 is returned; otherwise, get _ack()

is called with (effectively) ADD_PLANE as an argument and its return value is returned by

r eq_add_pl ane() .

The possible combination of the return value, the id assigned to the plane and the id of the

same plane found in the CA Engine (when applicable) are given in Table 21 below.

 Case Return ID read from socket ID_same (socket)

Successful addition get _ack(ADD_PLANE) >= 0 <not read>

pl _pt r illegal 0 I GNORED <not read>

pl _pt r already in list 0 < 0 >=0

other failure - 1 <Undefined> <not read>

Table 21: Combinations of the return value of req_add_plane(), the ID and ID_same

read from the socket

8.4.4 CA Engine-Side Plane Addition

This is handled by the following function:

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 166

i nt ser v_add_pl ane (voi d)

The root process of the CA Engine reads through the socket the details of the plane to be

added and creates the plane without the ID. Function check_pl ane() uses the I D field of

the newly-defined plane to identify an illegal plane by setting it to I GNORED. The other

processes call bcast _pl ane() to get the details of the plane. The following, with the

exception of the communication with the GUI, happen to all the processes.

If the plane definition is acceptable, add_pl ane() inserts it in the list, sets its I D again,

and also sets I D_same if the plane already exists. The I D is written back to the GUI in all

the cases and interpreted as shown in the previous paragraph. If the plane already exists in

the CA Engine add_pl ane() returns I GNORED, and I D_same is also written to the GUI.

Then immediate visualisation of the plane is enforced by calling t x_vi s_pack() with its

f or ce argument set to 1 (see section 8.6.2.1 for more). Finally the CA Engine discards the

plane and the function returns I GNORED. If the plane did not exist in the CA Engine, it is

added to the visualisation list. The function calls send_ack() to acknowledge the addi-

tion and reads VI S_PACK from the socket. It causes immediate visualisation as above and

ADD_PLANE is returned.

N.B.: The acknowledgement in this case is not handled by the calling function r v() .

The addition to the visualisation list requires the initialisation of the cel l . This is achieved

by the following function:

voi d i ni t _cel l (cel l * c_pt r , const pl ane * pl _pt r , i nt gener at i on)

This sets the forward and backward links of the cell to zero, and assigns the dat a and

gener at i on members of the cell to those passed to the function as arguments. This func-

tion assumes that the memory for the cell to be initialised has been allocated.

The gener at i on argument is passed equal to the current generation. The cell is then in-

serted in the visualisation list by means of the function i nser t () .

8.4.5 Why is the Protocol Complicated?

The developers realise that the above protocol is complicated. There are various reasons for

this. The I D_same token is necessary because the GUI may possibly visualise a plane more

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 167

than once, but there is no point in the CA Engine maintaining multiple copies of the same

plane.

The immediate visualisation feature was added to the system in response to a specific re-

quest from users who wanted to be able to visualise a plane even after the evolution of the

automaton had finished [Telford et al. 1999]. Instead of adding another option in the Simu-

lation Window menus we preferred to move the additional complexity to the underlying

protocol, which is invisible to the user. The reason why ser v_add_pl ane() calls

send_ack() itself whereas no other function does that, is to ensure that the GUI exits

consume_vi s_pack() (which it always calls when sending requests so as to prevent race

conditions). If this is not ensured, the immediate visualisation packet is consumed in the

GUI. To this end, VI S_PACK had to be added to the protocol as an acknowledgement that

consume_vi s_pack() has been exited.

8.5 Plane Deletion

8.5.1 Deletion Protocol

Plane deletion is initiated by the GUI by sending the ID of the plane to be deleted through

the usual pr ot _sockf d socket. The CA Engine deletes the plane with the specified ID

from both its lists and acknowledges the deletion. The protocol is shown below:

Sender Token Type

GUI DEL_PLANE r eq_code

GUI I D i nt

CA DEL_PLANE r eq_code

8.5.2 The Function rem_plane() and Other Related Functions

The function removes the plane with the given ID from the plane list. The prototype of the

function is as follows:

i nt r em_pl ane (pl ane_l i st * pl _l _pt r , i nt I D)

Given that the pl ane_l i st structure is implemented as an array, the plane to be removed

is trivially located. A removed plane is signified in the list by a NULL pointer. The function

checks if the I D is legally defined and if the corresponding pointer points to a plane. If this

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 168

is not true the function returns I GNORED. If the plane is found the pointer is set to NULL

and the no_pl ane member of the pl ane_l i st is decremented. DEL_PLANE is then re-

turned. Note that the function does not deallocate the memory space occupied by the plane.

This is done by the function di sc_pl ane() , which, as explained previously in the dis-

cussion of the pl ane and pl ane_cl ass functions, also calls del _pl _cl ass() to free

the only dynamically allocated member of the struct, cl ass_pt r .

8.5.3 GUI-Side Plane Deletion

Deletion on the GUI side is handled by the following function:

i nt r eq_del _pl ane (i nt I D)

This function writes the I D of the plane to be deleted to the GUI, then reads the acknowl-

edgement by means of the get _ack() function. If the acknowledgement is I GNORED, then

get _ack returns 0, in which case the function returns 0 as well. Otherwise, the function

calls di sc_pl ane() to free the memory and r em_pl ane() to remove its entry from the

al l _pl anes list. These must be called in that sequence, because the only handle to the

plane is al l _pl anes. pl anes[I D] ; if we remove it from the list first, we can no longer

access it to free its memory. We then compare the return value of r em_pl ane() with that

of get _ack() . If they are not the same then there is an inconsistency between the GUI and

the CA side and the program exits. Otherwise, DEL_PLANE is returned.

8.5.4 CA Engine-Side Plane Deletion

This is handled by the function

i nt ser v_del _pl ane (voi d)

The root process of the CA Engine reads through the socket the I D of the plane to be de-

leted and broadcasts it to the other processes. In addition to what the GUI has to do, the CA

Engine must remove the plane from the visualisation list as well.

To do this, it calls the function del _I D() . As mentioned when discussing the list-related

functions, del _I D() returns DEL_PLANE if the plane is found; otherwise it returns

I GNORED. In the former case, r em_pl ane() is called to remove the plane from the plane

list and its returned value is returned by ser v_del _pl ane() .

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 169

8.6 Plane Visualisation

8.6.1 Visualisation Protocol

The visualisation data transmission is initialised by the CA Engine. The GUI, via X, polls

the dedicated socket vi s_sockf d for the code indicating a visualisation packet

(VI S_PACK), then receives the plane ID and the actual data using eng_r x_cal l back()

and r v_vi s_pack() .

Sender Token Type

CA VI S_PACK r eq_code

CA I D i nt

CA val _si ze i nt

CA mi nmax[2] doubl e[]

CA [dat a] u_char []

8.6.2 CA Side Visualisation

Suppose that a plane has been added to the visualisation list of the CA Engine. After the

CA Engine runs a generation it checks the visualisation list for planes to be visualised in

this generation. When it is time for a plane to be visualised, it is popped from the visualisa-

tion list. Uniqueness of data transmitted is guaranteed by means of the plane class on the

CA Engine side. After the visualisation, the plane is reinserted with its cell’s gener at i on

member altered to match its next visualisation generation.

8.6.2.1 Function t x_vi s_pack()

The implementation of the visualisation protocol is handled by the function

i nt t x_vi s_pack (cel l * c_pt r , char f or ce)

The function verifies that the plane in the dat a member of the cel l passed as its argu-

ment has not been visualised in the current step. If the l ast _vi s member of the plane

class of the plane is equal to the current generation and f or ce is not set, the function re-

turns immediately with VI S_PACK as its exit code.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 170

In the general case when the plane is visualised, the processes execute the same steps we

have described in section 7.5.3.4, in order to determine which processes are working, as

well as the buffer and loop sizes and allocate memory accordingly. In addition, an unsigned

character array of size equal to the total extent of the data to be written to the socket (i.e.

the number of elements equals the number of cells in the model and the size of each of

them is that of an unsigned character) is allocated memory and is used for the colour map-

ping of the data as described in the next section (8.6.2.2). In order for the fourth item of the

protocol, namely mi nmax[2] , to be written, this must be first calculated by traversing the

cells which are going to be visualised according to the plane specification seeking the

minimum and maximum values for the substate. Traversal is executed in the same way that

the local CA copies are traversed for writing data on file. After these limits have been cal-

culated in each process, the results are combined with those of the other processes so as to

acquire the global minimum and maximum values for the substate in question. This step is

skipped if the user defines the minimum and maximum values manually, as described in

section 8.6.2.3. The data are colour-mapped in the processes where they reside before being

gathered in process 0, following the same strategy as ser v_vi ew_st at e() (see section

7.5.4). The root process writes to the GUI the first four items of the protocol shown in sec-

tion 8.6.1, followed by the data which are transmitted using one wr i t en call.

The function returns VI S_PACK on all cases, since all possible errors (failed wr i t e or

mal l oc , for example) are fatal and cause the program to abort.

8.6.2.2 Colour Mapping

As mentioned earlier, the minimum and maximum values for the visualised substates are

stored as double precision numbers globally in the processes. Their values are updated

every time the substate is visualised and their values are maintained throughout the life of

the program. By doing this we generally make the mapping consistent for the planes

throughout the life of the program and indicate how the substate changes with respect to

time. It is worth noting that, because the granule of visualisation is the plane, 3-D models

are broken down to planes on the GUI side in order to visualise them. Therefore, in the first

step of the visualisation the first plane of the cube visualised possibly sets the minimum

and maximum values to something different than the next planes and could be displayed

erroneously; in the next visualisation the minimum and maximum values and therefore the

colour mapping, are updated, “converging” to the correct values.

The colour mapping is performed in all the processes before gathering the data at the root

process so as to write them to the socket. It is done by means of the following function:

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 171

voi d col our _map (const u_char * or i g_dat a, u_char * mapped_dat a,

 i nt st at ei d, i nt no_dat a,

 doubl e gmi n, doubl e gmax)

The first argument contains the data and the second is an array initialised by the caller

function to contain the mapped data. The st at ei d argument of the function is used to

define the type of the data in or i g_dat a and no_dat a is the number of elements in it.

The minimum value of the substate in or i g_dat a is mapped to 1 and the maximum is

mapped to 255. The intermediate values are linearly projected to the 1-255 interval. This is

done using the obvious formula

In order to avoid multiple computations, we calculate 254/(gmax-gmin) at the beginning of

the function; nonetheless we need to compute this every time we call the function, i.e. once

for each process x-line. The above mapping leaves 0 as the background colour for 3-D

visualisations. In the palettes distributed with CAMELot, this corresponds to Black.

8.6.2.3 Manual Minimum and Maximum Definition

As described in [Telford et al. 1999], users of the system requested a facility to set the

minimum and maximum values of a substate manually, so as to be able to view a subset of

the visualised substate with greater detail.

To achieve this we introduced the character array aut o_map[NumOf St at es] , each ele-

ment of which indicates if the user has manually set the limits of the corresponding sub-

state. This can be done using the appropriate menu of the Simulation Window. By means

of the same menu the user can revert to the automatic calculation of the limits, using the

corresponding button.

The protocol request SET_MI NMAX on the GUI and the CA Engine is handled by the fol-

lowing functions respectively:

i nt r eq_set _mi nmax (i nt subst at e, doubl e mi n, doubl e max)

i nt ser v_set _mi nmax (voi d)

��
��
�

≠+
−

−

=

else. ,1

max;min if ,1
minmax

min][_
254

][_
gg

gg

gidataorig

idatamapped

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 172

The former writes its arguments to the CA Engine and then calls get _ack() , the value of

which it returns. The latter reads (on process 0) the data the GUI sends and broadcasts them

to the other processes. If the substate is acceptable and the minimum value received is less

than the maximum, the appropriate mi nmax[] [] elements are updated and that of aut o-

map[] is cancelled. The CA Engine reverts to the automatic mode if the limits read are

both equal to zero, in which case the corresponding element of aut o_map[] is set. It

should be noted that setting the limits manually yields performance benefits because the

corresponding search taking place in each plane visualisation of the substate as part of

t x_vi s_pack() is skipped.

8.6.3 GUI Side Visualisation

One global visualisation buffer, vi z_buf f er , is initialised by means of the

i ni t _buf f er () function, when dev_r un() is called. This is done when the user presses

the “Run” button and starts the simulation window, and the same buffer is used for all the

planes received.

When a packet is received at the vi s_sockf d socket, X calls eng_r x_cal l back()

which in turn calls eng_r x_packet () which, if the header is VI S_PACK calls

r v_vi s_pack() to read the data. The pl ane2wi n[] list corresponding to the plane ID of

the visualisation packet is then traversed and vi z_r ender _pl ane() called for all win-

dows currently displaying this plane. The “Current Step” field in the Simulation window is

then updated with the generation number in the visualisation packet. The last action is also

taken when a packet with the GEN_NO header is received.

8.6.3.1 Function r v_vi s_pack()

Another function contained in gui comms. c is

i nt r v_vi s_pack (r eq_code r equest , i nt * I D_pt r , doubl e * mi nmax,

 u_char * val ue_pt r)

This function is called by the GUI when it detects that the visualisation socket contains a

message. This message is passed to the function as the r equest argument, and is tested

against GEN_NO21 or VI S_PACK, the only acceptable values. In the former case it consumes

the generation number following the GEN_NO r eq_code by placing it in the space pointed

21 This is an addition from release 1.2 onwards to handle the introduction of the GEN_NO r eq_code.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 173

by the I D_pt r argument and exits. In this case, the return values of the mi nmax and

val ue_pt r by-reference arguments is undefined. If on the other hand the r equest equals

VI S_PACK, the I D of the plane visualised and the visualisation data are passed in the

I D_pt r , mi nmax and val ue_pt r arguments respectively. As described in the protocol

discussion earlier in this section, the size of the visualised entity is also passed through the

socket; this is used as the nbyt es argument of the r eadn() call issued to read

val ue_pt r .

The function returns -1 if the r equest is not GEN_NO or VI S_PACK or if any of the

r eadn() calls issued fail; otherwise it returns r equest .

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 174

9. Performance of the CA Engine

In this section we will discuss the results from benchmarking the CA Engine. We will ex-

plain why parallel computing is necessary for COLOMBO and see how well the model

scales. We will also assess the impact of the homogeneous systems optimisation, discussed

in section 6.2.1. The automatic inactive strip detection optimisation (section 5.6.2) could

not be tested using the bioremediation problem, because the model is not deterministic.

9.1 The Benchmark

We decided to benchmark the performance of the CA Engine on as many power-of-two

processors as possible. Apart from the scaling curve, this test also gives an idea of the time

taken for one processor to carry out the job and can yield a conclusion about the necessity

of parallel computers for the task in hand. Because the model is decomposed across the x

axis, the x size of the model defines the amount of parallelisation that can be applied.

The scenario we followed did not involve any visualisation or writing to disk, we were only

interested in testing the throughput of the program in a productive environment. The sys-

tem had to read in the initial configuration, and this time was accounted for in all cases. We

consider this normal, since state initialisation is inevitable overhead. In all cases we ran

100 iterations starting from the initial configuration provided by UNICAL and CRA. The

timings were taken using the built-in timing facility of CAMELot. In the case of multiple

processors, and therefore multiple readings, the comparisons were made using the timing

results of process 0.

For the benchmark we used the Cray T3E-900 based at EPCC. The system hosts 344 450

MHz processors, each with a peak performance of 900 MFlops. Most of these processors

have 128 MBytes of memory or more. It is worth bearing in mind that Cray is a distributed

memory machine and that it does not employ virtual memory; therefore the per element

total size of the executable and the memory dynamically allocated at run-time cannot ex-

ceed the physical memory size of the element.

We used two versions of the bioremediation code for the fluid dynamic layer, provided by

UNICAL and CRA. The first one is a 72x72x13 model with 60 states and 29 parameters.

The total size of the substates is approximately 32 Mbytes. The total size of the executable,

as estimated from the t op command on a Sun running Solaris 2.6 is 83 MBytes. In this

case, 64 processors was the highest power of two that we could use. However, there is no

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 175

point in extending the benchmark beyond 16 processors, because then the size of the

boundary data is disproportionate to that of the actual data. For example, in the case of 32

processors, the x-size of the actual data in most processors will be 2, which equals the x-

size of the boundary data. The scaling curve was drawn using the homogeneous system

optimisation, but we also ran the same benchmarks without employing it, so as to judge its

impact.

UNICAL provided another model with dimension 256x128x13. This model allowed to

extend the benchmarking to 32 and 64 processors (again 128 would be overkill). However,

the model was now too large to be accommodated in 1 processor (just the two CA copies

for the 60 states require approximately 410 MBytes of memory).

9.2 Benchmark Results

9.2.1 Scaling Curve

9.2.1.1 Small Model

The timings follow in Table 22. The Sum field contains the time taken for the update func-

tion, the boundary replication and the steering. The Total field also includes the time for

the initialisation of the system (building of communicators, memory allocation etc), the

substate initialisation, the update of the read copy after the application of the transition

function etc. A discussion of the timing facility is available from section 3.2.1.1.3.2. Only

two decimal places are quoted in the tables. Speedup is the ratio of Total with 1 processor

over Total with the number of processors in question.

Processors Sum (sec) Total (sec) Speedup Optimum

1 85.86 102.90 1 1

2 42.06 50.88 2.02 2

4 21.44 26.07 3.94 4

8 12.63 15.10 6.81 8

16 8.22 9.59 10.72 14.40

Table 22: Benchmark results for 1-16 processors on the Cray T3E-900

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 176

Because the x dimension of the model (72) is not divided by 16, the speedup that can be

gained ideally is not 16, but 72/
� �

16/72 =72/5=14.40. We used the Optimum column in

Table 22 to facilitate comparison with the ideal speedup. The scaling curve which yields

from Table 22 is shown in Figure 29.

Figure 29: Speedup (red, diamonds) and optimum speedup (green, crosses) scaling

curves for the small bioremediation model

9.2.1.2 Large Model

The size of the model caused some difficulties. Apart from the fact that 1 processor could

not accommodate the problem, in order to test 2 and 4 processor decomposition it was nec-

essary to employ the large (256 Mbytes) memory elements of the system. The processing

element memory size factor was not controlled in the other tests to facilitate scheduling of

the batch jobs. Because running the model on 1 processor was not possible, the baseline for

the speedup was the performance on 2 processors. The results appear on Table 23 and

Figure 30 depicts these timings. Unlike Table 22, the Optimum column in this case simply

facilitates the comparison between the performance of each case with the 2-processor base-

line.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 177

Processors Sum (sec) Total (sec) Speedup Optimum

2 280.31 332.94 1 1

4 136.31 164.04 2.02 2

8 67.78 81.46 4.08 4

16 35.29 42.56 7.82 8

32 20.42 24.41 13.63 16

64 12.41 14.77 22.54 32

Table 23: Benchmark results of the large model for 2-64 processors on the Cray T3E

Figure 30: Speedup (red, diamonds) and optimum speedup (green, crosses) scaling

curves for the large bioremediation model

9.2.2 Homogeneous Optimisation

In Table 24 we compare the times taken for the boundary copying with and without ena-

bling the homogenous optimisation for the small benchmark. Figure 31 depicts the results

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 178

for the boundary exchange. Similar figures were obtained from the large benchmark and

they are not listed as they would not add anything to the discussion.

Processors Boundary

Homog (sec)

Total

Homog (sec)

Boundary

Heterog (sec)

Total

Heterog (sec)

1 4.27 102.90 18.33 115.51

2 3.38 50.88 22.95 70.19

4 3.13 26.07 23.17 46.29

8 3.34 15.10 22.45 34.81

16 3.68 9.59 25.82 30.33

Table 24: Benchmark results for the homogeneous optimisation on 1-16 processors

Figure 31: Graph showing the benefit to the per formance of boundary replication

when employing the homogeneous optimisation (red, diamonds)

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 179

9.2.3 Discussion of the Results

9.2.3.1 Necessity of Parallel Computing

Although CAMELot is a general CA execution platform, the software was developed so as

to enable bioremediation modelling. The bioremediation code used as benchmark makes it

evident why parallel computing is essential in order to extract modelling results in reason-

able amounts of time.

The bioremediation code has two modes. In the first mode, the program runs until it satis-

fies a set of conditions, called the equilibrium. When this happens, the program changes to

the second mode where it works directly towards the bioremediation modelling result. This

mode is only maintained for one iteration of the CA Engine, and the system then reverts to

the first mode seeking the equilibrium conditions. Mode switching is controlled by means

of the steering facility.

The number of iterations required in order to reach the equilibrium dominates the running

time of the model. This depends on the conditions set and the required accuracy, but in

general the first equilibrium takes a lot longer than the subsequent ones. In the past EPCC

benchmarked an older version of the bioremediation code. That model was 256x53x5 and

consisted of 59 states. The first equilibrium was reached after 225,546 iterations, whereas

the next one only needed 1,273 iterations. We attempted to reach equilibrium with the large

model discussed in the previous sections. Using 64 processors on the Cray T3E with the

homogeneous optimisation enabled, it ran for 12 hours without reaching equilibrium. Ac-

cording to Table 23, this exceeds 290,000 iterations without reaching equilibrium. In such

cases the periodic state save facility of CAMELot and its ability to initialise its state from

these files are invaluable.

It is therefore evident that parallel computing is essential for realistic modelling of the bio-

remediation processes.

9.2.3.2 Scaling

The scaling curve in Figure 29 is quite satisfactory. The bioremediation model was only 72

cells long and as a result it could not serve as an ideal benchmark. The 25% difference be-

tween the ideal and the actual speedup in the case of 16 processors can be explained by the

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 180

fact that the number of actual cells is only 2-2.5 times22 more that the number of the

boundary cells in the macrocell. As it can be seen from Table 24, the boundary exchange

accounts for 38% of the total time taken for the model to run. This, and additionally the

fact that the curve of the boundary replication time (in the homogeneous case) of Figure 31

is almost flat, indicates that the boundary exchange is the limiting factor. Finally, the seem-

ingly abnormal speedup of 2.02 in the case of 2 processors can be attributed to better cach-

ing because the memory size of each macrocell is obviously smaller in this case.

Similar results can be extracted by studying Table 23. The superlinear speedup exhibited in

the case of 4 and 8 processors can be attributed to caching again; it would be very interest-

ing to see the results on one processor but this was impossible as mentioned earlier. The

boundary exchange is less of an issue in configurations up to 16 or even 32 processors and

it seems to affect the speedup drastically on 64 processors. However, when running on 64

processors the size of the boundaries per processor is already half the size of the model

portion on the element and still the execution is 65% faster than with 32 processors.

What has been established from these tests is that other the natural bottleneck of the

boundary exchange, the CA execution scales well as the number of available processors

increases while the size of the per processor data is more than half of the boundary data.

9.2.3.3 Homogeneous Systems Optimisation

This optimisation, discussed in section 6.2.1, has paid off, as it shows on Table 24 and

Figure 31. The curve when not enabling the optimisation appears to be rising as the number

of processing elements increases. Interestingly enough, the homogeneous optimisation

seems to benefit the boundary exchange since the timings appear to be dropping until 8

processors are used although the timing for 16 processors is still less than that for 1 proces-

sor. As for the times themselves, the optimisation appears to save from 77% to 86% for the

boundary exchange.

22 This is because the decomposition is uneven in this case and some macrocells have x dimension 4 and
others have 5

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 181

10. Benefits to Project and Open Issues

The benefits that Workpackage 3 provides to other Workpackages of the project are sum-

marised below.

10.1 Benefits to Partners

The software deliverable of Workpackage 3, CAMELot, was used for the development of

the bioremediation simulation code, as expected. The partners writing the bioremediation

simulation code for the needs of Workpackage 2 helped in the development by providing

input on the desired features and bug reports. It is fair to claim that CAMELot is tailored to

the bioremediation simulation code, while at the same time it has not attachments to it,

remaining a general CA programming and execution tool. CAMELot also contains input

from the CABIOR developers who were working on Workpackage 4.

CAMELot is also useful to the partners leading the exploitation Workpackage, 6. The ob-

tained results for the performance of the software were highly satisfactory, offering a good

negotiating point in the quest for an exploitation partner. The research publications submit-

ted to various internation conferences also help towards the same goal. Additionally, a

press release from EPCC attracted interest from bioremediation companies and the scien-

tific press. The effort is continuing after the end of the project.

10.2 Open Issues

The following issues are possible extensions and optimisations to CAMELot.

10.2.1 Port to Windows NT

As outlined in [Ironside Farrar 1999], most bioremediation companies interviewed would

be keen on using the CAMELot software, under the condition that no major modifications

or additions to their PC-based computing infrastructure would be necessary. A Linux ver-

sion of CAMELot is available, however even running Linux is probably not desirable for

bioremediation contractors. A more obvious choice would be to run it under an X Window

System environment for Microsoft Windows, such as Hummingbird Exceed, but this

would incur further performance penalties.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 182

Porting the software to run on Windows NT should be possible, given that X-Designer can

produce Windows MFC code and MPI implementations for NT exist. It should be noted

that such a port would benefit substantially the market position of CAMELot, as it would

make it readily available to its target market.

10.2.2 Single-Processor Optimisation

CAMELot can be used on single-processor systems, although it has been made evident that

the usual bioremediation problems are too demanding to run on a single processor system

in realistic time. The current implementation employs MPI even in the case of single-

processor runs, which incurs an unnecessary performance penalty. A version of CAMELot

stripped of MPI-related calls is expected to perform better than the current one in the sin-

gle-processor case, and should be considered in conjunction with the NT port (section

10.2.1). Extensive modifications are required for this optimisation.

10.2.3 Inactive Strip Detection Enhancements

CAMELot contains an automatic inactive strip detection mechanism, as discussed in sec-

tion 5.6.2. This mechanism could be enhanced in two ways, discussed below.

10.2.3.1 Automatic Fold Setting

In the current implementation the user must select the number of folds at compile time. It

would be useful of they could alter their selection at run time, both interactively and

through an appropriate steering statement. This facility would be quite hard to implement.

A more important but also more difficult extension, would be to devise an algorithm to set

and adjust the number of folds automatically at run-time. This could use the built-in timing

facility so as to get information about the performance of the system.

10.2.3.2 Switchable Fold Setting

Currently the user must declare the program as deterministic in order for the inactive fold

detection mechanism to take effect (see section 3.3.7). This disables the mechanism in the

case of the bioremediation code, because the update function changes after specific events.

If a piece of code changes arbitrarily, it is impossible to solve the problem. It is possible

however, to enrich the CARPET language with a statement which would denote the start of

a deterministic period of execution and another one to end it. Such a modification would

render the inactive strip detection mechanism useable in cases like the bioremediation

code, when the non-determinism is detectable or caused by the programmer.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 183

10.2.4 Timing Function

As mentioned in section 5.7.1.1, the memory copies at the end of each update are not ac-

counted for in any timer apart from the total one. These should be a part of the update func-

tion timer, but it is not straightforward to implement this because the memory copies take

place after the boundary copies, which in turn follow the updates. Because the order in

which these events happen cannot change, the only way to do this is to extent the interface

of the timing functions to include a function which starts adding to a given timer without

incrementing the number of calls, and another one to stop this.

10.2.5 Quiescent Substates

In many cases the CARPET programmer may define a set of states which do not change

over time at all. A good example of such use could be a substate describing the porosity of

the ground in a bioremediation field. This quality is local to each cell and cannot therefore

be represented with a global parameter and does not change as the model evolves at any

point. Such a state is called quiescent.

Currently the CA Engine does not discern between quiescent and normal states. This af-

fects the performance of the system in many ways. The arrays which store the CA data are

larger than they could be thus being heavier to communicate in both types of boundary rep-

lication and slower to copy in the read copy update after the CA update rule has been ap-

plied. Caching of the data to processor memory could also be affected.

This optimisation, suggested quite late in the CAMELot development, requires some modi-

fications to the parser, but the CA Engine code will be very drastically affected. It is how-

ever favoured to provide good performance benefits.

10.2.6 Visual cell substate value enquiry

A feature which was requested but could not be implemented within the project timescale

was the ability to ascertain the numerical value of a particular cell’s substate by selecting

the cell visually, using the mouse cursor over a Visualisation window. This would be non-

trivial to implement, and would only be useful when the dimensions of the CA are small

enough to allow individual cells to be rendered in the Visualisation windows.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 184

11. References

[AVS 1993] AVS User's Guide, CST 912, Manchester Computing Centre, University of

Manchester, January 1993.

[Baracca et al. 199] COLOMBO WP4: Functional Requirements and Software Package

Design, M.C. Baracca, P. Ornelli, G. Spezzano, D. Talia, November 1998.

 [Booth et al. 1999] COLOMBO WP3: WP3 Tasks T3.4/3.5 Workplan, S. Booth, L.Clarke,

K. Kavoussanakis, G.Smith, S.Telford, Version 1.1, April 1999.

 [Clarke et al. 1998] COLOMBO WP3: Parallel CA programming Environment, Deliver-

able DI3.1.8, L.Clarke, G.Smith, S.Telford, Version 2.0, May 1998.

[Ironside Farrar 1999] COLOMBO WP6: Scotland/United Kingdom Market Survey, Iron-

side Farrar, ref. 5631/MC, October 1999.

[Kavoussanakis et al. 1999] COLOMBO WP3: Performance of CAMELot 0.2, Deliverable

DI3.2.5, K. Kavoussanakis, S D Telford, S P Booth, Version 1.1, February 1999.

[MPIf 1995] MPI: A Message-Passing Interface Standard, Message Passing Interface Fo-

rum, Version 1.1, June 1995.

[Spezzano&Talia 1995] CABOTO WP3: CAMEL Environment User Manual, Deliverable

D5, G.Spezzano, D.Talia, December 1995.

[Smith 1998] COLOMBO WP3: CABOTO CAMEL Source Code Structure Report, Deliv-

erable DI3.1.3, G.Smith February 1998.

[Spezzano et al. 1995] CABOTO WP3: Design and Specification of CAMEL Extension,

Deliverable D2, G.Spezzano, D.Talia, S.Di Gregorio, June 1995.

[Stevens 1990] UNIX Network Programming, W. Richard Stevens, Prentice-Hall Software

Series, 1990.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 185

[Telford et al. 1998] COLOMBO WP3: Design for Portable, Parallel CA Software Envi-

ronment, Deliverable D6, S.Telford, G.Smith, M.C.Baracca, A.Longo, P.Ornelli,

G.Spezzano, D.Talia, May 1998.

[Telford et al. 1999] COLOMBO WP3: Extensions to CAMELot 1.0, Deliverable DI3.4.1,

S.Telford, K. Kavoussanakis, S Booth, Version 1.1, April 1999.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 186

I . CAMELot Release History

• 1.3 (2000/03/31)

Internal Software Deliverable SI3.6.1 (Software Deliverable S3). Relaxation of the

constraint in the CA Engine on the number of processes, folds and CA x-dimension

size; boundary datatype optimisation for homogeneous multiprocessor systems; pa-

rameter arrays added to CARPET; revised GUI parameter editor dialog; improved

AVS file compatibility, plus changes from 1.2.x releases.

SunOS 5.6, IRIX 6.2 (N32 ABI), Red Hat Linux 5.2 and Tru64 UNIX 4.0F binary

release.

• 1.2.2 (2000/03/15)

Revised SI3.5.1 release: increased default yacc parser stack size to 10000 for Tru64

UNIX, as default size is too small for large CARPET programs.

Tru64 UNIX 4.0F GUI/parser binary released only.

• 1.2.1 (2000/03/03)

Revised SI3.5.1 release. Added Tru64 UNIX 4.0F (Alpha) support and changes

suggested in COLOMBO WP3 Problem Report 19.

SunOS 5.6, IRIX 6.2 (N32 ABI), Red Hat Linux 5.2 and Tru64 UNIX 4.0F binary

release.

• 1.2 (1999/12/03)

Internal Software Deliverable SI3.5.1. Several bugfixes and optimisations; XDR-

format data file support; minor GUI improvements, more CARPET compiler warn-

ings; new cpt _save() CARPET steering function; revised C compiler option con-

figuration, plus changes from 1.1.x releases.

SunOS 5.6, IRIX 6.2 (N32 ABI) and Red Hat Linux 5.2 binary release.

• 1.1.2 (1999/10/20)

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 187

Revised SI3.4.2 release: changed user-definable C compiler command line argu-

ments to include - DCPT_I NCLUDE_FI LE= to allow different levels of quote-escaping

required for different MPI implementations (i.e. those with an mpi cc shellscript and

those without).

IRIX 6.2 GUI/parser binary released only.

• 1.1.1 (1999/10/07)

Revised SI3.4.2 release: parser bug fix for problem with incorrect array indexing

when using region reduction functions with array substates in CARPET programs.

Red Hat Linux 5.2 binary release (with Metro Link Motif 2.1) only.

• 1.1 (1999/06/10)

Internal Software Deliverable SI3.4.2. Many changes; see Report DI3.4.1. Bug-

fixes: "Parameter" dialog box now gives correct current parameter value, "Edit

Substate" no longer crashes CA Engine. Major efficiency improvements in CA En-

gine.

SunOS 5.5.1, IRIX 6.2 and Linux binary release.

• 1.0.1a (1999/06/08)

Revised SI3.3.4 release: Release 1.0.1 with parser recompiled due to buggy version

of yacc being used to build Linux CAMELot 1.0.1.

Linux GUI/parser binary released only.

• 1.0.1 (1999/06/07)

Revised SI3.3.4 release: parser fix to handle greater numbers of substates,

neighbourhoods and parameters, and to detect when the limits on these are ex-

ceeded.

SunOS 5.5.1 and Linux GUI/parser binaries released only.

• 1.0 (1999/03/08)

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 188

Internal Software Deliverable SI3.3.4 (Software Deliverable S2). Batch mode

added to CA Engine; bugfixes to CA Engine; memory leaks fixed; increased CA

Engine startup timeout to 20s; optimised visualisation rendering.

SunOS 5.5.1, IRIX 5.3 and Linux binary release.

• 0.2.1 (1999/02/16)

Revised SI3.2.4 release: parser bug fix to enable cel l _<substate> access globally

(CAMEL CARPET compatibility); added Di mX, Di mY, Di mZ, NPr ocs , NFol ds con-

stants to CARPET; cpt _t hr esh handling and random function bug fixes.

SunOS 5.5.1, IRIX 5.3 and Linux binary release.

• 0.2 (1998/12/09)

Internal Software Deliverable SI3.2.4 (Software Deliverable S1). Added 3-plane

isometric visualisation functionality, runtime CA Engine fold control and colour

map bar display. Many bugfixes and optimisations.

SunOS 5.5.1, IRIX 5.3 and Linux binary release.

• 0.1 (1998/10/16)

Internal Software Deliverable SI3.2.3. Added runtime CA Engine control, visuali-

sation functionality and CA folds.

SunOS 5.5.1 and IRIX 5.3 binary release.

• 0.0.1 (1998/08/04)

Revised SI3.2.2 release: Changed "MPI arguments" configuration option to "MPI

run command" - this now allows more of the command line to be specified. Slight

changes to font identifiers needed for IRIX X servers.

SunOS 5.5.1 and IRIX 5.3 binary release.

• 0.0 (1998/06/18)

First release, corresponding to Internal Software Deliverable SI3.2.2.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 189

SunOS 5.5.1 and IRIX 5.3 binary release.

Project COLOMBO (Project No.: 24,907) Version 2.0

29/05/2000 190

I I . CAMELot MPI Configuration

CAMELot 1.2 and later releases can be configured for various different implementations of

MPI using the "C compiler command line " and "MPI run command" dialog boxes. Imple-

mentations it has been successfully tested with are listed below:

MPICH 1.1

This is the MPI implementation that CAMELot is configured for by default. It is as-
sumed that the environment variable $MPI R_ROOT is set to the root directory of the ap-
propriate MPICH installation.

MPICH 1.2

This requires the following change to the default settings:
C compiler flags: change - DCPT_I NCLUDE_FI LE=\ \ \ " %s\ \ \ " to -
DCPT_I NCLUDE_FI LE=\ " %s\ " .

LAM 6.3

It is assumed that the environment variable $LAMHOME is set to the root directory of the
appropriate LAM installation. The following change to the default settings are also re-
quired:
C compiler name: change $MPI R_ROOT to $LAMHOME.
C compiler flags: change - DCPT_I NCLUDE_FI LE=\ \ \ " %s\ \ \ " to -
DCPT_I NCLUDE_FI LE=\ " %s\ " .
MPI run command: change $MPI R_ROOT to $LAMHOME.

SGI MPT 1.3 (IRIX 6)

This requires the following changes to the default settings:
C compiler name: set to cc .
C compiler flags: change - DCPT_I NCLUDE_FI LE=\ \ \ " %s\ \ \ " to -
DCPT_I NCLUDE_FI LE=\ " %s\ " and append - n32 if using IRIX 6.2 or earlier.
C libraries: append - l mpi .
MPI run command: change to mpi r un - np %d.

Sun HPC ClusterTools 3.0

This requires the following changes to the default settings:
C compiler name: set to t mcc .
C libraries: append - l mpi - l ns l .
MPI run command: depends on HPC ClusterTools environment (CRE or LSF).

