\\\\lll//

N

~
S
/

”~

COLOMpBO

7
//II|\\\\

/
”
/
S~
~
AN

PROJECT COLOMBO
(Project No.: 24,907)

REPORT D9:
CAMELot 1.3 Implementation and User Guide

(AVAILABILITY: Public)

Workpackage: 3

Task: 3.6

Authors: K. Kavoussanakis, S. D. Telford, S. Booth, L. Clarke, A. Smith,
A. Trew, A. Simpson, G. Spezzano, D. Talia.

Date of issue: 29 September 2000

d9.doc

Table of contents
1 EXECULIVE SUMIMAIY ..ottt s
1.1 OBJECLIVES.eieeeeterieetee ettt b e bttt et et sn e b e e nns
1.2 TOOISANA MEINOUScoueiieiieieie e
1.3 RESUITS ..ttt e e e ne s
1.4 Major Experiencesand LeSSONSLEarnedccooervrereneneneneneeee e
2. FNEFOTUCTTION .ttt e b e b e
2.1 CAMELOt COMPONENTS.....coiiiiiiiiinieesteere ettt n e s sn e sneenes
2.2 SOftWare COMPONENTSoiuiiieieieie ettt e e e b sreene e
2.3 SHUCIUI ..ttt e n e b b ae e sre e e e e e e nneenns
2.4 ACKNOWIEAGEMENTS.....c.eiitiiiiiieeee ettt

3.1 CAMELOt SAMPIE SESSIONcoueiiiiiiisie ettt
311 Sarting CAMELDL........coiiiiieieeesiesie st
3.1.2 Editing @ Program.....cccceeeeeeieiesiesie sttt sn e e
3.1.3 Program Compilationcccceierinerinineeeeeesee e s
314 BUIldiNg 8 Program........ccccccieieiineniesesieseseeee e s
3.1.5 RUNNING @ PrOgram......ccciiiieieiesiesie st
316 EXItING CAMELOLccoiiiiiiieieiesieste st

3.2 CAMELOGt FUNCELONAITTY OVEINVIEWceeiiiieiiieeieeeeie et
3.2.1 Devel opment WINAOW.ccveiiiiiirie s
3.2.2 SMUIATON WINAOW ..ot
3.2.3 VisualiSation WANGOW..........cceeiiiiiriinie e
3.2.4 Off-line CA ENGINE EXECULIONcc.oitiruiieirieeieeieie et

3.3 The CARPET Programming LanQUAagE.ccecueuerirerereneneneseesee e
3.3.1 Thetransition fUNCHIONcooiiiie e e
332 CAET ..ot
3.3.3 CEll_SSUDSLALESoceeceecece et
334 CPE_AIONT .t
.35 CPL_SAVE. ...t
3.3.6 CPL_SEL PAIAIM .. .coiiiieiieieeie e nn e
3.3.7 deterministic (aliaS determin)ccocevirererieeee e e
3.3.8 AIMENSION ... et
3.3.9 DIimX, DIMY, DIMZooiiiiieieiieiesie e s
3.3.10 GELX, GELY, GELZ.......ocuirieeiieieeiesiesie sttt sne e
3.3.11 neighbour (alias NEIGNDON)........ccooiiiiie e
BB L2 NFOIAS. ...ttt
3. L3 NPT OCS. .. ettt r et r e e e n e n e e nreennennne s

29/05/2000

3314 PAFAMELES ...ttt r e e nne e neenne s
T I T = | 11 SRR
G0 1 G = o (0] o USSR
3.3.17 randomise (alias randoIMiZE)...........ccerererereeierese e
R B = o o] o [T STSTORPPR PR
TG I LS £=0 o] o [0 o >SS
TG 102 05 - 110 (o] o USSR

GG oAt RS - | (<SR PR
RS (= 1 0o F USSP
BT A T (= o TSR

ICTIC 192271 1 === oo o SRR

BB 25 UPUALE......ceeeeeeeie ettt bbbttt e ne e

4. GUI IMPIEMENTALIONo.eeiiiicieeeeeee e e
I R @V V1=
4.2 Communication With the CA ENQINEccccoiiriririeeesese e
4.3 Visualisation WINAOWS..........ceiieiieieerieeieseeseeie e sseeaesseesseesesseesseesesseessesnsesseenns
S o TH | o =X o0 (o] =S
T I 1 = =
4.6 X SNEI WILGELS......oueieeiesitsee ettt nee s
4.7 Global variables and data StrUCIUIES.........cccoviiererieereses e
4.7.1 M@ Or data SLIUCTUIES.......ceeiverieieerierieeeeeeeee et
4.7.2 Major global variables...........ccoiiiiiiii e
4.7.3 Callback context variables...........cocooeririienenere e

2 T I K o) U T o
4.8.1 Functionsincamel ot _St UDS. C.vveeveeieeeee e
4.8.2 FUNCiONSINCAMEl Ot Vi Z. Cuvveeeeeee et

4.9 GUI-CA ENgine ProtoCOl REQUESES........ccoiiiirieiieee et
5. Cellular Automata Engine Implementation...........ccooveienenineneierese e
5.1 Program SITUCIUE.......ccuiiieieesieeesiee ettt
5.1.1 USer-DefiNed TYPES......ooueiuieieieiesiesie sttt
5.1.2 Functionsin MBCI OCEl | . C .o e
5.1.3 External FUNCtioN ProtOtYPEScccoviririerieeieieeese st
5.1.4 EXternal Variables..........ccceiiveieiieiece et
5.1.5 Global Variables.........ccooiiiiieiiiisie e

5.2 Data HaNAIiNGcooiiiiiiieieeeee et
5.2.1 Internal REPreSENtalion........cccoeieririereniereeeeee e
YA D T - N L SRR

5.3 ProcCess PlaCoMENT........oiiiiiiiieieeste s

29/05/2000

5.4 Data DECOMPOSITION ...c.eeiviiiiriieieiesiesie ettt se e n e e sne e 2

5.4.1 Uneven DECOMPOSITIONccveierieriiriesiesicsieseeee et s 2
5.4.2 INOBLTON......couiiiiiiitesieste sttt se b e ne e 2

5.5 Boundary REPICALIONccoeeiieiiiiiriisie sttt s 2
5.5.1 BoUNUAIrY COPY....cceiuiiririeriirieieniesie st sttt sttt s se s e e s 2
5.5.2 BOUNCAIY SVADooiviitiiiiiiieiieiesie ettt 2
5.5.3 Functioni ni t _boundari €S() ..o 2

5.6 Transition FUNCLION EXECULIONcccoviiiniirieiieeeeee e 2
5.6.1 CAENQINE SALES.......oiiriiiiieiieieie ettt sre s ne e 2
5.6.2 Automatic Inactive SIrip DELECHIONcc.evereeieierie e 2
5.6.3 FUNCHON T UN() cootiiiiiiiiieieeie et s 2

S T 2T T TSRO 2
5.7.1 Srategy for Timing the FUNCLIONS............ccocuriiieiiiereseseeeee e 2
5.7.2 Sructures and FUNCLIONSocoiirerencnereeeeee et 2

6 CARPET Parser Implementation ... 2
(T N (= T = USSP 2
5.2 PAISEN ... n e n e neens 2
6.2.1 Interfaceto MACIOCEIL.C......ccoiiiiriiereeee s 2
6.2.2 Seering Code GENENatioN........cccoveierirerieeeee et 2

6.3 Parser library iNterfate ... e 2
7. GUI—CA ENging COMMUNICALIONocueiuirieriinierieeeeieee et 2
7.1 GENEral REMAIKS.ccuiiiieieiieieee ettt b e e 2
7.1.1 Communication ADSIFACHION........ccorerireririeeere e 2
7.1.2 SOCKEL INSLANCES ..ottt 2
7.1.3 HEAUE! FOIMAL......ciiiiiiieieieiesee sttt sn e 2
7.1.4 Spatial ENLITIES......cceieieeieeeeese e 2

7.2 AUXITArY FUNCHONS ..o s 2
7.2.1 SOCKEL FUNCLIONS ...ttt 2
7.2.2 ACKNOWIEAGEIMENTSooueiiieeeeeseeste et 2

7.3 REQUESES ...ttt n e e r e e nn s 2
7.4 Implementation of GUI FUNCHONS........c.cooiriiiiieieesese e 2
741 SUDSIALE rElAEO 2
7.4.2 Program FIOW Managementoceeerereeeenene e s 2
7.4.3 Visualisation FUNCLIONS.........cccoiirireiinieieee e 2
7.4.4 Configuration (Project) Related..........ccocevirieiiiirirereseeeeeee s 2
7.4.5 Other fUNCHIONS......c.oiiiiiiieeese et 2

7.5 Implementation of the CA ENgiNe FUNCLIONS..........cccovivireninenieeeee e 2
7.5.1 General REMAIKS.......ccooiiieiiiesese et 2

29/05/2000 3

7.5.2 FUNCHON T V(1) totiriiitirienieieieenee sttt st 2

7.5.3 Fileand SOCKEL [/O......ccuieieecreccee sttt s neas 2
7.5.4 Substate Related FUNCLIONS..........c.cocieiieiiecee et 2
7.5.5 Program FIOW Managementc.ceeerererienenesese e 2
7.5.6 VisualiSation FUNCLIONS..........ccociieiiieeiie e sies ettt s eneeneas 2
7.5.7 Configuration (Project) Related FUNCLIONS..........ccooeveninenieeiee e 2
7.5.8 AUXIIAry FUNCHIONS........coiiiiieiisie st 2

8. VISUBLISALION......eciieccie ettt et e e e s b e e b e s e e ereesareesneesaneesneesnneeas 2
8.1 Dala@ SLTUCLUIES........eeee et ctee e ee et e et e e saee e st e e s e e e s s e e e sareeennseeennaeeennneesneeesnnes 2
8.1.1 Plane DEfINITIONccoviiiieeie et 2
8.1.2 Plan@ ClasSES.......ccceiiiiieecie et st ettt sre e sae b e san e e nreesareenreeenns 2

S R T o = Lo S PR 2
8.1.4 VisUaliSation LiSt.......ccccciieiiieiiieiie ettt sane e nnee e 2

8.2 Global VariabIES...........cccuieieieiee ettt naes 2
8.2.1 CAENgine Global Visualisation Variables.............ccccoovinininieiincicnene 2
8.2.2 GUI Global Visualisation Variables............ccccevieiveeiie i 2

8.3 Relevant Filesand FUNCLIONS.........ccoeiii it 2
8.3.1 FileCONMDN. N oo e e e 2
8.3.2 Filesgui comrs. h and gui COMTB. C...ceceveeiiiierieniesieeeee e 2
8.3.3 FIlemacCroCel | . C e e 2
8.3.4 FIlEPI @NE. C oo e 2
G TS T T 1= T S oS 2
8.3.6 FIle DU f @I . C oo e 2

8.4 Plan@ AdUitiONc.eeiiieeiecie ettt s e s e sr e e re e re e sreeaneas 2
8.4.1 Addition ProtoColcceeiieiiie ettt 2
8.4.2 TheFunctionadd_pl ane() and Other Related Functions...........ccc........ 2
8.4.3 GUI-SdePlane AdditioNccccueeiieeiiieiee e 2
8.4.4 CAENgine-SdePlane Addition.........cocooeriririenene e 2
8.4.5 Why isthe Protocol CompliCated?........c.ccoeririierinenene e 2

8.5 PlaN@DEELIONcceeeiiecie e e e nres 2
8.5.1 DEEion ProtOColccoeeiiiiiieiie ettt st e 2
8.5.2 TheFunctionr em pl ane() and Other Related Functions...........ccc....... 2
8.5.3 GUI-SAePlane DEEiONcccccvieciieceeeee et 2
8.54 CAENgine-SdePlane DElElioN.........cocuirerieieiene e 2

8.6 Plane VisUaliSAtiON.........ccecuieiieeiiecie et et ee et e et sre e e e sre e ere e saeesareenneas 2
8.6.1 Visualisation ProtOCOL...........ccceeiieiiiiecie et s 2
8.6.2 CA Sde VisUaliSatiON........cccecieeiieiieeciecitee et sre et e e e sreenree e 2
8.6.3 GUI SAeVisUaliSAtiON.......cc.cccveeiieiiiecie ettt 2

29/05/2000 4

0. Performance of the CA ENQINE ..ot
9.1 THEBENCHMAIKc.eiiiieiieieeeee e e
9.2 BenChmark RESUILSocuiiiiieeeeee e e

0.2 1 SCAlING CUMVE.......oiiieiieieeieeee ettt se b e
9.2.2 HOomogeneous OPtiMISALIONoveriererirerieierie e s
9.2.3 Discussion Of the RESUILS.........c.ooiririiieiereeeeee e

10. Benefitsto Project and OPen I SSUEScoeeerieriirieriese et
10.1 BENEfITSTO PartNErS.....coueeeeeeeieee et
10.2 OPEN I SSUES.....cueitierieiee sttt sttt ss e b e e s se e ss e e s e e e e s b e e aresseesne e s e annesreenns

10.2.1 POrt t0 WANAOWS NT ...ttt
10.2.2 Sngle-Processor OPtiMISALIONcceeeeeerierieriese et
10.2.3 Inactive Strip Detection ENhanCementsccovovereneneneeeesesese e
10.2.4 TIMING FUNCLION ..ottt
10.2.5 QUIESCENt SUDSLALES.........eeiveeeeieee e

11. R B O B0 ..o e aeaaaaaaaaaaaaaaaaaaaaas

l. CAMELOL REIEASE HISIONY ...ttt
. CAMELOt MPI CONfIQUraLION......cccoiiieiriesierieeieee e

29/05/2000

1. Executive Summary

1.1 Objectives

Workpackage 3 of the COLOMBO project aimed to produce a software tool for the pro-
gramming and execution of Cellular Automata on paralel computing platforms. The tool,
named CAMELot, was used within the Colombo framework for the programming and exe-
cution of bioremediation ssimulation software. Although this defines the current end-users
of the software and therefore influences largely the design, the final product is not biore-
medi ation-specific.

It was important for the software to be available on state of the art parallel computing plat-
forms, including Massively Parallel Platforms, like the Cray T3E and the Quadrics CS-2;
Shared Memory Platforms, like the Sun Enterprise-3500; and closely or loosely coupled
clusters of workstations or PCs, like Beowulf clusters or any local cluster of workstations
in atypical networked modern office environment. The scope of the underlying operating
systems was limited to Unix variants and that of the Graphical User Interface (GUI) to X-
Windows, although it would be desirable to devel op the software with aview to allow fur-
ther portability.

CAMELot was to be more user-friendly than its predecessor both in the user interface and
the associated programming language, CARPET. It was intended that the internals of the
underlying program which supports the parallel execution of the CARPET program be hid-
den from the user. It was also desired that parallel execution be straightforward to apply
and unrelated to the CARPET program. After these basic requirements were satisfied
within the predefined schedule, the onus fell on the requirements of the end-users (CRA,
ENEA and I1SI-CNR) which were only aiming towards a general CA programming tool. It
was also anticipated that the performance of the system would be adequate in order to ex-
ploit the enormous computational power of the intended architecture. Performance optimi-
sations were sought throughout the development of the tool.

1.2 Toolsand Methods

The CA program was developed in C, a widely available programming language. Parallel-
ism was achieved by means of the MPlI message passing standard. This provides support
for parallel execution without needing to incorporate the details of the processing elements
to the code. MPI implementations are also available in all the desired computer platforms.

29/05/2000 6

The graphical user interface was developed using X-Designer, a graphical tool which can
generate X-Windows code. The tool can also reuse the native code it has generated to pro-
duce MS-Windows code thus enabling portability further than the initial requirements. It
would be wrong to infer that porting to MS-Windows is straightforward though. X-
Designer only provides the windows; the functionality behind them has to be developed
separately and coded manually.

A similar GUI look-and-feel to the predecessor tool was intended, as no serious drawbacks
were identified. The users were invited to contribute ideas and share their views about the
quality of the software by means of a system which was also able to record the progress of
the interactions between end users and developers. This was not activated until the state of
the tool had been stabilised. Alpha and beta releases of the software were however made
available to the users according to the predefined plan [Clarke et a. 1998].

The above suggest an iterative software development method, namely evolutionary deliv-
ery, by which the architecture is defined initially and then a develop-deliver-feedback-
enhancements cycle is followed. This method has the advantage that it gives good visibility
to the project’s development and is flexible enough to produce good results even if the
original time and effort estimates prove to be inaccurate. The weakness of the model is the
idleness of the developers during the feedback solicitation period; this was handled by ex-
ploiting the time to develop the report documenting the use and implementation of the sys-
tem, aversion of which you are reading now.

The method for feedback is also specified in [Clarke et al. 1998]. EPCC implemented at a
specified stage (Workpackage 3.5) a system through which the users were able to report
bugs and submit enhancement requests. EPCC ran the system and assigned the reports to
the appropriate partner who reported back to the system about the progress of these reports.
This enabled tracking and archiving of the progress of the project after the point where the
initial design [Telford et a. 1998] stopped.

1.3 Results

The Workpackage produced three interrelated components:
* A Graphical User Interface for the development of CA code;
e A CA Engineto enablethe parallel execution of the CA code to parallel computers,

* A new version of the CARPET CA programming language.

29/05/2000 7

The software is available in al the architectures originaly targeted. It eliminates weak-
nesses of its predecessor, both in the user interface and CARPET. Finally, the vast majority
of the features requested by the users were implemented. The bioremediation simulation
code developers agree that the open issues identified in section 10 of this document were
not important for the fulfilment of their goals and were mostly dropped because of lack of
time.

The iterative development method was well suited to the project. The software was devel-
oped in time and the quality has satisfied its end-users, namely the partners in CRA and
Universita di Calabria who developed the bioremediation code. It aso worked well for the
extension of the project, which was viewed as another cycle of the iterative process. Addi-
tionally, the repetitive walkthroughs of the CA Engine software, caused by the iterative
devel opment mode, benefited the quality of the final deliverables.

The software has also been validated using the Purify tool, which checks for safe memory
manipulation. The claims for a bug-free environment are amplified by the rarity of bug
reports tracked by the problem report mechanism, none of which was left open at the end
of the project. Moreover, the software contains all the features the end-users have requested
during the lifetime of the project using the problem reports mechanism mentioned in the
previous section. The archive is available from the project’s webpage (please note this is
password protected):

http://ww. epcc. ed. ac. uk/ col onbo/ wp3/

The performance of the software was also highly satisfactory. Section 9 of this report is
devoted to benchmarking results. The following are highlighted:

* The performance of the software scales up well with the number of processors;

* The bioremediation modelling problem calls for parallelism because it involves inten-
sive calculations;

* The optimisations to the parallel code applied by EPCC improved the performance and
scal ability of the software.

1.4 Major Experiences and Lessons Learned

The most important issue in the lifetime of the project was probably the delay to produce
the first software and documentation deliverables. This must be attributed to the aggressive
schedule in the initial phases, which failed to predict the difficulty in the initial implemen-

29/05/2000 8

tation and the volume of the work that had to be done. The initial schedule was aso at
fault, since the write-up of the first version of this document coincided with the Christmas
of 1998. The reason why the schedule was so optimistic was the need for the other partners,
the end-users of the deliverables, to use the software.

The iterative development method used came to rescue. EPCC, in association with the
partners, preferred to delay the delivery rather than compromise the quality of the early
deliverables. This was an important decision, given that software S1 and report D7 were
the backbone of the final deliverables. The schedule did not deviate unacceptably though,
since, in agreement with the partners, two internal delivery cycles were compacted into
one, saving time for delivery preparation overheads without compromising the quality.

Another beneficial feature of the project was the excellent relationship between the part-
ners. Especially for Workpackage 3 there was constant communication both for extra fea-
tures and for problems with the software and the documentation. This was encouraged
mainly by the problem report mechanism; however the frequent meetings made things eas-
ier and helped particularly to bridge the cultural gap between the partners.

Finally, we should not forget to stress the value that conferences added to the project. Apart
from the obvious yet desirable effects of publicity and exposure a conference publication
provides, the attendance helps put the project into context and import new ideas. The bold
idea for computed fold boundaries, which never made it to be delivered because of lack of
time, is a good example of high quality features that fertile conference attendances can
suggest. Also, computational steering was put into context in an international “Problem
Solving Environments” conference.

On the technical side of things there are many issues that Colombo highlighted and will be
taken on board in the future. The availability of the software on various platforms was im-
portant but each platform should not be viewed in isolation. The use of XDR made
CAMELot results portable as well as its code, providing a significant commercia advan-

tage.

Another feature which was not seen initialy as an important one, was the ability to run the
software as a batch program without user interaction. This batch mode was central to the
benchmarking of the software. It is aso inevitable for the intended use of the software on a
highly productive computing platform where submission queues are the only method avail-
ablefor the user to access resources.

29/05/2000 9

Computational steering is also an important issue. The functionality is heavily used in the
bioremediation simulation code. It must be stressed though that the availability of computa-
tional steering is an important and very desirable feature of many problem solving envi-
ronments and is never straightforward to implement.

Perhaps one of the most important lessons learned has to do with the decomposition
method use for Colombo. The initial regular decomposition assumed to be sufficient was
anything but useful to the users who had to worry about the x-dimension divisibility with
the number of processors (and folds). The issue was remedied in the last release of the
software.

29/05/2000 10

2. Introduction

CAMELot is an environment for the programming and seamlessly parallel execution of
Cellular Automata. The system supports CARPET, a purpose-built language for CA pro-
gramming. It offers a programming environment and a Graphical User Interface which en-
ables the user to interact with the system while running a simulation and to view visualisa-
tions of the simulated data. It also includes a customisable facility to produce traces of the
simulation in a specified format thus alowing to post-process the output of the run by
means of an external tool. The system has been developed as part of the COLOMBO Pro-
ject. It is a follow-up to the CAMEL software, implemented for the CABOTO project
[Spezzano et al. 1995].

This document is the report on the implementation of CAMELot Release 1.3: Deliverable
D9, Internal Deliverable DI3.6.2.

2.1 CAMELot Components

CAMELot consists of three mgor components:

* The CA Engine, incorporating a compiled CARPET CA model. This comprises one or
more paralel processes called macrocells and uses an MPI-1-compliant message-
passing library;

* The X/Motif-based graphical user interface (GUI), including the GUI/CA Engine
communication library;

¢ The CARPET parser, which isintegrated with the GUI.

An overview of the structure of CAMEL ot and the communication between its components
during arunning simulation is shown in Figure 1.

2.2 Software Components

The CAMEL ot implementation includes the following software components:
* nacrocell.c

The CA Engine module. Also contains code for the statistics output and random num-
ber generators.

29/05/2000 11

i bcnt gui comms. a
A library containing the GUI-related GUI-CA Engine communication functions. The
sourcefilesare:

— guicoms. h
- guicoms. c

l'i bcnt common. a
A library containing functions used in both the GUI and the CA Engine. The source
filesare:

- common. h

- constants. h
- list.c

- plane.c

- buffer.c

- sock.c

i bcpt _parse.a
Thelibrary of CARPET parser-related functions. The sourcefiles are:

- parser.h

- parser.c

- cpt_parse.h
- Ccpt_parse.c
- yylex.|

- yyparser.y

canel ot
The main CAMELot executable, including the GUI and parser. It is linked with the
three libraries listed above, and is built from the following source files:

- canelot.h

- canelot.c

— canel ot _stubs.c
- canmelot_viz.c

29/05/2000 12

— canel ot _gl obals.c
2.3 Structure

The rest of this report discusses the components in turn. Section 3 contains the CAMEL ot
User Manual. In section 4 we discuss the GUI implementation. In section 5 we deal with
the CA Engine and in section 6 we give a brief description of the Parser. The communica-
tion protocol is discussed in section 7 and the Visuaisation facility in section 8. Section 9
provides benchmarking results for the CA Engine and section Errore. L'origine riferi-
mento non e stata trovata. lists the open issues of CAMELot. The release history is avail-
able from appendix |. The possibilities for MPI configuration can be found in appendix I1.

2.4 Acknowledgements
The authors would like to thank Dr Mark Bull and Mr John Fisher for their contribution in

this document. Dr Mark Bull has also contributed towards the testing and validation of the
software.

- Y CcA Engine requests/acknowledgements (Master]
macrocell =
process CA state update data process
- (TCP/P)
8 [|
2
: Macrocell e |
;:; process
AN 7
g
- N 3
) ‘
; Macrocell
server : i
: process
CA Engine -
=
Macrocell e |
process

Figure 1. Overall structure of CAMEL ot

29/05/2000 13

3. User Manual

In this section we describe the functionality of CAMELot. We first provide an example of
how CAMELot is run and use some of its basic features. We then give a detailed overview
of CAMELot and finally we list and discuss the CARPET directives.

3.1 CAMELot Sample Session

3.1.1 Sarting CAMELot

Assuming the current working directory is the top directory of the CAMELot binary distri-
bution, CAMEL ot isinvoked from a UNIX shell using the command:

platformy/ canel ot [Xoptions] [filename]

Where platform is the platform identifier (the supported platforms are sunos5, | i nux,
i rix6 andtru64); filenameis a CARPET source file; and X options are the standard X
application command line flags (- di spl ay, - geonetry, -i coni c, -fn etc). These
command line arguments are optional. The CAMELot Development Window appears on
the screen. It consists of three sections:

e A MenuBar;
e An Editor subwindow with a scroll bar in each direction;
e A three-Button bar.

3.1.2 Editing a program

A user may write a program using the editor window. Alternatively, they may open a pre-
viously saved program file using the Open option of the File menu. After any modifications
the file must be saved using the Save or Save As option of the File menu; if afilename has
been provided, this is done automatically when pressing the Compile button.

Program editing is facilitated with the use of the Cut, Copy and Paste Options of the Edit
menu. Shortcuts are available for al these functions.

29/05/2000 14

[@][2] B¢ CAMELot: CARPET Development — block3d.cpt

File Edit

Tcadef

{ dimension 3;
radius 1;
state (float wall;
neighbor M[E] ([-1,0,017eft, [+1,0,0]right, [0,-1,01down, [0,+1,00up, [0,0,-
deterministic;

3

float newwal;
if {0 == step) £

newyal = Geti+GefY+0etZ;

3 else §
newyal = N[O]_val;

updatefcell_val, newwall: =

]

Campile

Figure 2: The Development Window

3.1.3 Program Compilation

When the program is ready, the user may compile it by clicking the Compile button. A suc-
cessful compilation is followed by a pop-up window dismissible by clicking its Dismiss
button. An erroneous compilation causes a beep and a pop-up window provides informa-
tion about the error.

CARPET compilation successful

Dismiss

Figure 3: Successful Compilation Pop-Up Window

29/05/2000 15

3.1.4 Building a Program

The Build operation generates a Unix executable file for CA execution. In order to build a
file the user must first set the configuration parameters by using the Configure menu. These
define:

* The Dimensions of the CA Engine;
* The number of Processes to handle the task;
* The number of Folds (see section 5.4 for more on folds) into which the task is divided.

The user can then build the executable by pressing the Build button. The output of the C
compiler is shown to the user in a pop-up window.

(@[2] CANMELot: C compiler output

block3d. c: —
macroce]l. c:
[ok]

Dismiss

Figure 4: Successful Build Pop-Up Window

3.1.5 Running a Program

The Configure menu of the Development Window includes a menu by which the user can
initialise the collection of statistics for the basic functions of the CA Engine. This should
be enabled before clicking the Run button. After successful compilation and building the
program, the user can invoke the executable by clicking the Run button. This pops up the
Simulation Window which consists of three parts, a Menu bar, a Display part and a Button
bar.

29/05/2000 16

(@] [2] [CAMELot: Simulation — black3d

state Setup Help |
CA Dimensions: Current Step: = Folds: 1

Width (%) 36

Height (: 24 .

Depth (7). 12 Storage Interval: CAMELot

G0 I Loop | Pause| Hesume| Visualise|

Figure5: The Simulation Window

The State menu contains an Initialise and a Save Option. The user may initialise a substate
or the whole state of a CA using an existing file, or save the current status of the CA. The
Setup menu allows the definition of the number of CA evolutions to be run as well as other
more advanced features, which are described later in this section. The display part of the
window contains information about the configuration of the CA and updates the current
step when the CA isrunning.

There are 5 buttons on this window. The Go and Loop buttons initialise the CA execution,
the former for a number of steps defined from the Setup menu, the latter indefinitely (in
fact for | NT_MAX" steps). The Pause button temporarily suspends CA execution and al-
lows visualisation window examination, state saving or editing etc. The user may continue
the CA execution by clicking on the Resume button or restart the execution by clicking Go
or Loop. The Visualise button allows the visualisation of a substate in various formats. The
statistics for the functions of the system are output periodically during the run or after stop-
ping the CA Engine execution, according to the user’ s request.

3.1.6 Exiting CAMELot

The user may close the Simulation Window and terminate the CA Engine execution by
selecting the Close Option of the State menu. In order to exit CAMEL ot the user must se-
lect the Exit option in the File menu of the Devel opment window.

ie 2% -1 on 32-bit systems

29/05/2000 17

3.2 CAMELot Functionality Overview

The CAMELot environment supports 3 different types of Windows. We will examine them
in order of appearance when using the environment.

3.2.1 Development Window

The Development Window pops up when running CAMELot and, when it is closed,
CAMELot exits. It consists of three parts, a Menu Bar, the CAMELot Editor and a 3-
Button Bar.

3.2.1.1 Menu Bar

There are 4 pull-down menus.

File Edit o Help

Figure 6: The Development Window Menus. Note that the Configure Menu is greyed out
since the screenshot was taken before compiling the file in the Editor.

* Filg

e Edit;

e Configure;
* Heép.

32111 File

The File menu offers the following options:

* Openafileg

e Saveafilg

* SaveafileAs,

* Load configuration;
e Save Configuration;
e Exit CAMELoat.

The Open and Save As options pop up awindow which allows the user to navigate through
the filesystem and select the desired filename. For a file to be visible by Open, its name

29/05/2000 18

must have the extension . cpt . The Save option is only available if a filename has been
specified for afile being edited. The Exit button exits CAMELot; the Delete button usually
available on X Window titlebarsis disabled for this window.

|Open...
Save
Save as...

Load configuration...
Save configuration...

Exit

Figure7: TheFileMenu

The characteristics of the program which are set under the Configure menu of the Devel-
opment Window are automatically saved in a file named pr ognane. cnf , pr ognane
being the full pathname of the CARPET file, every time the users saves the CARPET file.
They are automatically retrieved when the CARPET file is Opened. In addition to this
automatic facility, the Save and Load Configuration options allow the user to explicitly
save and retrieve the configuration of the model®.

3.21.1.2 Edit

The Edit menu contains the usua options. Keyboard short-cuts or “accelerators’ (in brack-
ets) are available for all options:

* Cut (Ctrl-X);

* Copy (Ctrl-C);

* Paste (Ctrl-V);

* Find (Ctrl-F);

* Find next (Ctrl-G);
* Replace (Ctrl-R).

Paste is only available after a Cut or Copy has been issued.

% Note that the . cnf file format was extended in CAMELot 1.2. . cnf files saved by CAMELot 1.1 are not
compatible with CAMELot 1.2. When opening a CARPET file in CAMELot 1.2 which has a corresponding
.cnf file saved by CAMELot 1.1, immediately check the Configuration menu settings and use “Save
Configuration...” to overwritetheold . cnf file.

29/05/2000 19

Cut Cirl+3
Copy Cirl+iC

Find... Cirl+F

fit fiEd

Replace.. Ctrl+R

Figure 8: The Edit Menu

3.2.1.1.3 Configure

The Configure menu is made available after a successful compilation. It alows the user to
modify the following parameters.

¢ TheDimensions of the CA (x-Length, y-Height, zWidth);

* The number of Processesto handle the task;

¢ Thenumber of Foldsto which the CA isdivided in the Length axis.
* The C compiler pathname and flags;

* TheMPI run command,

e The Timing output.

|.f-‘-.ut|:|mata dimensions...
Mumber of processes...
Mumber of folds...

C compiler command line...
MPI run command. ..

Timing output...

Figure9: The Configure Menu

It isworth noting that:

* For best performance the Length of the CA must be an exact multiple of the product of
the number of Processes with the number of Folds;

* A 1-D CA has only the x axis available and a 2-D CA has only the x and y axes avail-
able.

29/05/2000 20

3.2.1.1.3.1 Controlling XDR Output

Starting from release 1.2 of CAMELot, XDR is used for thefile I/O, this alows CAMELot
data files to be portable between different machine architectures. The user can control the
use of XDR through the use of the C compiler command line option of the Configure
menu, shown in Figure 10.

C compiler name:

BMPIR_ROOT /hindmpi co

C compiler flags
("¥%s" will be replaced by generated header file name):

0 -DOPT_INCLUDE_FILE=%%Y "Eshhy"

C libraries:

=m -1socket

Dk, Cancel

Figure 10: The C compiler command line option pop-up menu

* If the user wants to disable XDR for the operations related with reading from file, they
should define - DNO_XDR_READ in the C compiler flags of the C compiler command
line option pop-up menu;

* If the user wants to disable XDR for the operations related with writing to file, they
should define- DNO_XDR _WRI TE.

The user can use this facility to trandate native binary project or substate files to XDR by
applying the following:

* Load and compile the corresponding CARPET file;

* Specify the appropriate dimensions and define - DNO_XDR_READ in the C compiler
flags of the C compiler command line option pop-up menu, then build;

* Click the Run button, load the configuration or substate files in question and then save
them without running any iterations.

Please refer to the following sections for information about the steps mentioned in the
above discussion.

29/05/2000 21

3.2.1.1.3.2 Noteson Timing

W Enahle timing output

Set timing step: |EI:|

W Output to stdout

Cancell

Figure1l: The Timer Configuration Menu

The CA Engine times its basic functions, namely the execution of the update statement,
steering, visualisation, writing the system state on file and the total time spent excluding
the time spent paused or stopped. The user can use the menu shown in Figure 11, which
appears when the user clicks the Timing output option of the configure menu, to enable or
disable the output of such results, set the period for printing them and direct the output to a
file or the standard output of the terminal from which CAMEL ot was started. The format of
the output is shown in Table 1.

Process: O Cener ati ons:

Updat e Function :
St eering :
Boundary Conm
Vi sual i sation
Peri odi c Save

Sum :
Total Execution Tine:

Table 1: Output of Timing Statistics

Setting the timing step to zero results in the output being printed once after the CA Engine
has been terminated (not at the end of the run). If the timing step is set to a value greater
than zero, then the statistics are generated in the specified period. The time is accounted
using double precision real numbers and is printed in floating-point representation in the
standard C format (6 decimal digits), the measuring unit being seconds.

29/05/2000 22

The Generations field contains the number of generations the output concerns. The field
Cdlls counts the number of calls to each of the functions. Time is the total time taken for
the callsin the Calls field. Best and Worst give the best and worst times for the function in
question. The functions accounted are obvious. One remark is that after each iteration of
the CA Engine, the read copy of the CA is updated by means of a menctpy call. Note that
the time taken by this call is not accounted for by the Update Function timer. Sum gives the
sum of the above times, whereas Total Execution Time counts the time total time taken,
excluding the time spent paused or serving user requests. The Time field of Total can be
less than the time shown in Sum, if the number of iterations is small, in which case the
time taken for the initial boundary exchange is significant compared with the total execu-
tion time. Thistime is part of the Sum time but not part of Total.

3.2.1.1.3.3 Notes on Other Settings

The following settings can be made using the -D pre-processor flag in the “C compiler
command line” menu option:

PROFI LI NG This directive enables gpr of profiling output. Its use is explained in

[Kavoussanakis et al. 1999]. It should be noted that in order for this flag to be effec-

tive, the MPI libraries must be compiled with the gpr of compiling enabled. The ap-

propriate flag must be set in the “C compiler command line” as well.

* DEBUG Provides assorted debugging messages

e DEBUG CALC X SI ZES: Ditto for functioncal ¢_x_si zes() (section5.4.1).

e DEBUG_CMI_READ: Ditto for functioncnt _r ead() (section 7.5.8.1).

e DEBUG _CMI_WRI TE: Ditto for functioncmt _wri te() (section7.5.8.1).

e DEBUG _CMI_BOUNDARY_SWAP: Ditto for function cnt _boundary_swap()
(section 5.5.2).

e DEBUG_RUN: Ditto for functionr un() (section 5.6.3).

e DEBUG TX VI S PACK: Ditto for functiont x_vi s_pack() (section 8.6.2.1).

e DEBUG_SERV_VI EW STATE: Ditto for function serv_vi ew_stat e() (section

7.5.4).

e DEBUG SERV_SET_STATE: Ditto for function serv_set state() (section
7.5.4).

* DEVELOP: More assorted messages, it was used in the initial stages of developing the
program.

* EVEN_DECOWP: Assumes that even decomposition of the model is possible. The ef-
fects of this are discussed extensively in sections 5.4 and 7.5.3 of this document.

29/05/2000 23

* HOMOGENEQUS: A non-portable performance optimisation which is discussed in sec-
tion 6.2.1.

3.2.1.1.4 Help

The details of the product authors are available from the About CAMELot option of the
Help menu.

Figure 12: The Editor of the Development Window. Note the two errors, the dimension
of the nei ghbor vector and the undefined Get directive which will be detected in the
Compile and Build processes respectively.

3.2.1.2 Editor Window

The user may Open afile and use the Editor to view and modify it (Figure 12). If the file
exceeds the length (80 characters) or the height (24 characters) of the window, the user
may use the respective scrollbars or the keyboard arrow keys.

3.2.1.3 Button Bar

The available buttons are;

e Compileg

29/05/2000 24

e Build;
e Run.

Campile

Figure 13. The Button Bar of the Development Window. The only available button is
compile since the screenshot was taken before compiling the file in the Editor and there
was no configuration file available for this program.

Compile

This button compiles the current program in the Editor. This compilation checks for
CARPET syntactic errors and generates the C source and header files for the specified CA
model. The compiler handles both C (/ * */) and C++ (/ /) style comments. A failed
compilation is accompanied by a beep; a window is popped up containing the error mes-
sages and the cursor in the Editor is positioned at the first line reported to contain an error.
If there is abeep but no error message is displayed then the automatic Save has failed.

[@][2] B¢ CAMELot: CARPET compiler output

Dismiss

Figure 14: Error Message on the CARPET Compiler Output Window

If a compilation fails, the Build and Run buttons as well as the Configure menu are un-
available to the user.

N.B.: Clicking the Compile button in CAMELot 1.0 implicitly saved the CARPET file.
This feature has been disabled in release 1.1 of the software to meet the users’ request.

29/05/2000 25

Build

This button compiles and links the CA Engine code with the generated C source and header
filesfor the CA. It invokes the C compiler specified in the Configure menu and redirectsits
output to the pop-up window generated. Starting from release 1.1 of the software, the pop-
up window contains an [OK] or [ERROR] line at the end of the message generated by the
compiler, to provide feedback about the status of the finished compilation. This is helpful,
because if the compilation is successful, the UNIX C compiler cc(1) usually generates no

messages.
While the building of the program fails, the Run button is greyed out.

Run

This button spawns the CA Engine processes specified in the Configuration menu using the
MPI run command as it appears in the respective option of the same menu. It also spawns
the Simulation Window discussed next and makes the Build and Run buttons unavailable.

(@[2] CANMELot: C compiler output

®

block3d. c:

"block3d.c", Tine 19: undefined symbol: Get
cer acomp failed for block3d.

macrocell.c:

[ERROR]

Dismiss

Figure 15: Error Message on the Build (C compiler) Output Window

3.2.2 Smulation Window

The Simulation Window comprises
* aMenu bar;

e aDisplay subwindow;
* aButton bar.

29/05/2000 26

3.2.2.1 Menu Bar

The Menu Bar contains three menus:

* State
* Setup;
* Hep.

state Setup Help

Figure 16: The Menu Bar of the Simulation Window

3.2.2.1.1 StateMenu

This allows the whole state or specific substates to be initialised or saved. The Close option
closes the Simulation Window as well as al the Visualisation Windows and terminates the
execution of the CA Engine.

A Substate can be saved in abinary file using the State-Save-Substate sequence of options.
In order for the file to be subsequently detected as a substate file, it must be saved with the
extension . cnt . Saving the Configuration involves saving status-specific data in a file
with the extension . cpj , aswell as all the substates in files with filenames constructed as
follows: if the Configuration filename is cf n. cpj the substates are saved in filenames
named cf n000. cnt, cf n001. cnt , etc.

Initialize [

Save -

Close

Figure 17: The State Menu

The data contained in a configuration file are:

* The number of Dimensions,

* The per-dimension Sizes;

* The current Generation of the CA Engine;
* The number of States;

* The number of Folds;

29/05/2000 27

e The number of Global Parameters;
e Thevaues of the Globa Parameters.

Information stored in configuration or substate files can be loaded into the CA Engine us-
ing the State-Initialise options.

3.2.2.1.2 Setup Menu
The Setup Menu allows the following to be adjusted:

e Stepsto run the Engine;

e Storageinterval,

* Substate editing (one cell);

e Parameter editing;

e Active Fold setting;

e Manua setting of the per-substate minimum and maximum values for colour mapping.

Seps: Sets the number of CA Engineiterations to be run if the user presses the Go button.

|Set humber of steps...

et storage interval...

Edit substate. .
Parameters...

Folding...

hindmax substate values. .

Figure 18: The Setup Menu

Sorage Interval: Enables automatic CA Configuration saving with the set period. This
involves saving the global parameters and other state variables in a binary file with the ex-
tension . prj and saving the substate data in files following the convention described ear-
lier in the State Menu discussion. In addition to what stated there, the filename is prefixed
with three characters denoting the sequence of the automatic save, starting with 000. If
more than one thousand® consecutive automatic saves take place, the system overwrites the
first without warning.

In addition to the above, an AVSfield file is saved for each substate datatype, for each in-
vocation of the macrocell executable (not each run, the file stops being updated when the

% In CAMELot 1.0 this limit was set to 100

29/05/2000 28

Simulation Window is closed). These contain information to be used by the post-
processing tool which is based on AV S/Express. The format of the field files, based in the
AV S description [AVS 1993] is shown in Table 2.

To summarise the above, the following files are saved as a result of periodic configuration
saves:

* Ineach save, aproject file with the extension . cpj ;
* |neach save, adatafile for each substate with the extension . cnt ;
* |neach smulation, afield file for each substate datatype with the extension . f | d.

AVS field file
CAMELot generated
nstep = <nunber of expected* saves>

ndi m = <nodel di nensi on>
dim = <x-di nensi on>
di M2 = <y-di nensi on>
di B = <z-di nensi on>

nspace = 3
vecl en = <nunber of associ ated substates>
data = <dat atype of associ ated substates>
field = uniform

| abel = <nanmes of associ ated subst at es®>
time value = 1
variable 1 file
variable 2 file

<filenane> fil etype
<filenane> fil etype

bi nary
bi nary

EoT
time value = 2

Table 2: Format of CAMEL ot Generated AVS Fidd Files

For example, if the filename for the periodic configuration is f nanme and the system has
three substates, two of which are of type char and one of typef | oat , one periodic save
will result to the following files being saved on disk:

000f narne. cpj

* This could differ from the number of actual savesif the user ends the run prematurely

®> The format of the label list is described in the discussion of function cnt _create fld() in section
7.5.8.1.

® Starting with release 1.3 of the software, the EOT separator appears between blocks of data refering to
consecutive time steps

29/05/2000 29

000f nanme000. cnt
000f nanme001. cnt
000f nanme002. cnt
fname_char.fl d

fname_float.fld

It should be noted that after choosing the filename for the Project save, the CA Engine gen-
erates a warning if this choice will lead to files already on disk being overwritten. If the
program is not running in Batch mode (see section O for details), this warning is also dis-
played in a pop-up window. The user can change their preference by repeating the opera-
tion described above; otherwise, the saves will occur.

Substate Editing: Allows the user to view and set the values of the substates of one cell
manually. The possible substate names are made available through a menu.

Select substate:
pap

fiu

ermig [0]
emig[1]
emrig[2]

et g [3]

Substate value:

Apely

Dizmiss

Figure 19: The Substate Editing Menu

Parameter Setting: Allows the adjustment of a global parameter. Parameters can be ad-
justed using the names they have in the program. The possible names are made available
through a menu similar to the one shown in Figure 19.

Active Fold Setting: Allows the definition of the first and last active fold. Thisimplies that
the active regions can only be considered contiguous. Folds are numbered from O to
NFol ds-1; illegal values are disallowed. Alternatively, the automatic inactive region de-
tection mechanism implemented in CAMELot allows non-contiguous active regions and

29/05/2000 30

offers finer granularity. The mechanism is automatically activated if the CARPET program
contains the statement det er m ni sti ¢ and the user has not set the folds manualy.
Once deactivated, the automatic inactive region detection mechanism can be reactivated if
the active folds are set to maximum range under the condition that the det er m ni sti c
keyword exists in the CARPET program.

Select substate:

val

Cancel

Figure 20: The Substate Selection Menu

Manual setting of the per-substate minimum and maximum values for colour mapping:
This option alows the user to override the automatic per-substate minimum and maximum
calculation executed as part of the colour mapping strategy. Specifying the minimum and
maximum enables visualising parts of the data with greater detail. This does not affect the
evolution of the model, athough it speeds up the visualisation process. The system reverts
to the automatic mechanism if the users clicks on the Auto button of the menu (Figure 21).

kAL

A B mum:

| (0] I &uto |Cancel|

Figure 21: Manual Per-Substate Minimum and Maximum Value Setting Menu

29/05/2000 31

3.2.2.2 Display Screen

Displays the current values of the following:

* TheDimensions,

e The Current Step of the CA Engine’;

* The Periodic Storage Interval;

* The number of Folds. N.B.: “Folds: 1” indicates that no partitioning into multiple folds
was done at compiletime; i.e.. the CA is considered to consist of one single fold.

CA Dimensions: Current Step: = Folds: 1
YWidth (4 36

Height (: 24 .

Depth (2] 1z Storage Interval: CAME!L ot

Figure 22: The Display Part of the Simulation Window

3.2.2.3 Button Bar

The available buttons are:

e Go;

* Loop;

* Pause

* Resume
* Visudise

G0 | Loop | F'ause| Hesume| Uisualise|

Figure 23: The Button Bar of the Simulation Window

Go: Starts the CA Engine until the generation counter reaches the number of iterations
specified in the corresponding Setup menu option. It can be interrupted by State or Setup

" In the initial versions of the software this was available only if planes were visualised and only at the
visualisation intervals. From release 1.1 thisis available at all steps regardless of the existence of visualisation
windows.

29/05/2000 32

menu options as well as pressing any other buttons on the Button Bar not including Re-
sume.

Loop: Same as Go except that it starts an infinite (I NT_MAX iterations) CA evolution.

Pause: Temporarily suspends CA Engine execution. This can be restarted with any of three
buttons.

* Gowill restart the Engine until it reaches the specified number of iterations;

* Loop will restart the Engine for infinite iterations,

* Resume will continue the operation of the Engine from the step where it stopped. It will
Loop if Loop was selected before Pause was pressed, or continue until the specified
(possibly revised) finishing point is reached otherwise.

Visualise: Allows the initialisation of a Visualisation window. The user is prompted to set
the visualisation period and select the substate to be visualised. In the case of a 3-D model
the user has to select one of the three available visualisation formats discussed in the Visu-
alisation Window Section.

N.B.: Asof therelease 1.1 of the software, Go and Loop no longer zero the iteration coun-
ter.

3.2.3 Visualisation Window

The Visualisation Window comprises two basic parts:

* theVisualisation Space;
* the Button Bar.

Important information is aso displayed in the title bar of the X window, namely the
CARPET program filename, the Visuaisation Step, the name of the visualised Substate,
and the entity Coordinates.

3.2.3.1 Visualisation Space

This occupies an area of 640x640 pixels (not including the colour palette bar ared). The
visualised entity is scaled so as to fit in the window. If the size (in cells) of the visualised
entity is too big to represent each cell by at least one pixel, then the cells of the entity are

29/05/2000 33

sampled at regular spatia intervals. These sampled cells are drawn as single pixels. No
averaging over the interval is performed.

The user can resize the visualisation window. Thisis achieved by means of the correspond-
ing facility of the user’s Window Manager. If the user decreases the visualisation space,
scroll bars appear at the right-hand and bottom sides of the window. The default size of the
window is the maximum; increasing the size further does not make the visualisation larger.
However, it is meaningful for a decreased window to be enlarged at will, until it reachesits
maximum size. This happens because resizing the window does not cause the visualised
entity to be zoomed in or out, it only moves the borders of the window.

The colour palette currently in use is shown as a horizontal bar at the bottom of the Visu-
alisation Space of the window. The minimum and maximum values for the visualised sub-
state are shown above this bar.

The possible types of visualisation depend on the number of dimensions of the model:

1-D Models: The visudisation is drawn in horizontal lines from left to right. The vertical
dimension of the window corresponds to time. The user can therefore see how the model
changes with time. When the vertical dimension of the screen is exhausted, the visualisa-
tion restarts from the first line overwriting the first visualisation.

2-D Models. They are represented in an orthogonal manner, x running horizontally and y
running vertically, the origin being the bottom left corner of the window.

_) Orthographic - Ky
(@ lsometric (1-plane) || _ix-z
_ M sometric (3-plane) || -2

Cancel

Figure 24: The Possible Types of Visualisation of a 3-D M odel

3-D Models: x-y, x-z or y-z planes of a 3-D model can be displayed either as orthographic
(as above) or isometric projections. The coordinate of the plane (i.e.. z value for an x-y
plane, y value for a x-z plane etc) is specified by the user via a dialog box with scale wid-
gets.

29/05/2000 34

In the orthographic case, x-y planes are displayed as above, x-z planes are displayed with a
horizontal x-axis and vertical z-axis, and y-z planes are displayed with a vertical y-axis and
horizontal z-axis. In the isometric case, the y-axis is oriented vertically, the x-axis is ori-
ented upper-l€eft to lower-right and the z-axis lower-left to upper-right.

Select co-ordinates:

Jhk
| I
X
24
| e
¥
1
(1]

k. Cancel

Figure 25: Plane Coordinate Dialog Box

A 3-plane isometric view is available for 3-D models. In this case, an x-y, x-z and a y-z
plane are selected by the user. If the coordinates of these planes are denoted z;, yi1, and x;
respectively and the size of the CA in the z dimension iS Zn.x then the x-y plane from x=0 to
x=x; and y=0 to y=y;, the x-z plane from x=0 to x=x; and z=z; t0 z=Zzux and the y-z plane
from y=0 to y=y; and z=z; t0 z=zx are displayed as three faces of a cuboid with the axes
oriented as for the 1-plane isometric case. The origin is thus the lower |eftmost visible ver-
tex, i.e.. a“left-handed” coordinate system is used.

From the above it can be deduced that in order to visualise a substate for the entire 3-D
model, the user has to select the x and y coordinates to be equal to the maximum value for
the x and y dimensions respectively and z=1 (X1=Xmax, Y1=Ymax, Z2=1), & shown in Figure
25.

3.2.3.2 Button Bar

This contains two buttons:

29/05/2000 35

e Colours;
e C(Close.

Colours: Allows the user to set the 256-colour palette to match their preference. The de-
fault is coloured from blue (lowest value) to red (highest value), the intermediate values
mapped to cyan, green and yellow in ascending order. A monochrome (greyscale) palette
ranging from black to white is also available. The files specifying the palette are stored
with the extension . pal and contain 256 lines with 3 space-separated unsigned 16-bit
hexadecimal values for Red, Green and Blue respectively, in each line. The colour in the
first lineis used for background. The palette selected is shown in the colour palette bar.

Close: Closes the Visualisation Window; this does not affect the CA Engine execution.
The user may aso close the Window from the Delete button of the Window Manager.

A screenshot of the Visualisation Window for the model in Figure 12 is shown in Figure
26.

29/05/2000 36

CAMELot: Visualisation - block3d, substate val, =36, y=24, z=1 (step: 1)

Close |

Figure 26: The Visualisation Window. Thisisthe output of the model in Figure 12
after 10iterations of the CA Engine.

3.2.4 Off-line CA Engine Execution

The CA Engine can be invoked outside the CAMEL ot environment. Limited functionality
is supported. In the following discussion we assume that the user has built the CA executa
ble either using the CAMEL ot environment or using the Makefile.batch makefile available
with the distribution.

The command-line arguments available to the user are as follows:

-18<no_of state> <fil enane>

8 Thisisthe letter “el”. No space exists between the “I” and the state index.

29/05/2000 37

Initialise substate <no_of _subst at e> from <f i | enane>. This suggests that the user
knows the substate index allocation done transparently in the CARPET parser. These indi-
ces can be deduced from the st at e CARPET statement, as they are parsed sequentialy,
i.e. the first substate given isindexed O, the second 1 etc.

-0

Thisinitialises all substates to O.

- n<num gens>

Set the number of generations to be runto <num _gens>.

-s<save_step> <fil enane>

Enable periodic project save to files with basename <f i | enanme> (according to the con-
ventions for saving a project) with period <save_st ep>. See section 3.2.2.1 for more
details.

-t<tinme_step> <fil enane>

Enable periodic timing statistics output to file <f i | enane> with period <t i ne_st ep>.
If <ti me_st ep> equas zero, then the results are output at the end of the simulation. If
<fi | enane>issetto -, then the results are written to the standard output of the terminal
window where CAMEL ot was started. See section 3.2.1.1 for more details.

<fil enane>

Initialise the project from <f i | enanme>. This has no parameter to identify it and it must

be the last argument. If - | or - O have been specified it isignored.

3.3 The CARPET Programming Language

CARPET is a programming language for the definition of cellular automata-based models
and their transition functions, designed as an extension to ANSI C. A CARPET program
consists of the following sections: a global declaration section, known as the cadef (CA
DEFinition) section; atransition function; and an optional steering function.

The genera layout of a CARPET program is as follows:

29/05/2000 38

cadef

{

declarations

[transition function local variable declarations and subroutine prototypes)

transition function code

[transition function subroutines]

[

steering

{

steering function code

where itemsin [...] brackets are optional. Note that the steering function must be located
after the transition function and any subroutine functions called by the transition function.

The extensions to C defined in the CARPET language are described below.

3.3.1 Thetransition function

The transition function (and its subroutine functions, if any) may contain the following
CARPET statements, in addition to C code:

e cell _substate
e DinX, Din¥, DnZ
* CGetX, GetyY, CGetZ

* NFol ds
* NProcs
* random()

* random se()

29/05/2000 39

srandom()
* step

updat e()
* parameter references

3.3.2 cadef

Syntax
cadef
{
decl arati on;
decl arati on;

decl arati on;

Remarks
This is the declaration section of the program; it must precede any statement except
for C pre-processor ones. decl ar at i on can be any of the following statements:

e determnistic
e dinension
* nei ghbour
* paraneter

* radius
* region
* state

e threshold

29/05/2000 40

Example

cadef
{
di mensi on 3;
radi us 1,
region Inside (start+l:end-2, :,:);
state (float val; int val2);

nei ghbour N[6] ([-1,0,0]left,[1,0,0]right,
[0,-1,0]down, [O,1,0]up,
[0,0,-1]in, [O,0, 1] out);

paranmeter (pi 3.14159);

determ ni sti c;

threshold (cell _val == 3);

3.3.3 cdl_<substate>

Syntax
cel |l <subst at e>
Remarks
A user may refer to a specific substate of a cell by using the string “cel | _” fol-

lowed by the name of the substate.
N.B.: A user may modify the value of a substate using the updat e function (sec-

tion 3.3.25).
Example
cadef
{
state (float tenp);
}
float val;
val = cell val +3;

29/05/2000 41

3.3.4 cpt_abort

Syntax
cpt _abort ()

Remarks
Calling this function causes the program to stop. It is only available inside the
st eeri ng block of the program.

Example
An exampleisavailable in section 3.3.22.

3.3.5 cpt_save

Syntax
cpt _save (char *fnane)

Remarks
This function saves al the CA Engine data to project and substate files. It does not
save the AVS/Express related files. It is only available for steering. It uses the
f name argument as a root for the generated files, as described in section 3.2.2.1.2
(omitting the AV S/Express related discussion).

Example
An exampleisavailable in section 3.3.22.

3.3.6 cpt_set_param

Syntax
cpt _set _param (float *par, float npar)

Remarks
This function alters the value of the global parameter pointed by par to that of
npar . It is only available inside the st eer i ng statement. See section 3.3.14 for
the definition of global parameters.

Example
An exampleisavailable in section 3.3.22.

29/05/2000 42

3.3.7 deterministic (alias determin)

Syntax
determ ni stic;

Remarks

This statement signifies the commitment of the programmer that the cell update
function is deterministic [Telford et a. 1998]. A deterministic program is one
where the state of a cell is guaranteeed to be unchanged if the state of its local
neighbourhood is unchanged. This is one of the necessary conditions for automatic
inactive region detection (the other being that the user has not set active folds
manually).

N.B.: A program whose update rule depends on st ep or random functions is non-
deterministic (except if this only happensin step 0). Starting with release 1.2 of the
software, detection of the det er m ni sti ¢ keyword and the keyword st ep or
any random function in aprogram is flagged by the parser as awarning (non-fatal).

Example
The example below gives an example where the incorrect use of det er m ni s-
t i ¢ leadsto erroneous program execution.

cadef {

state (float val);
determ ni sti c;

}
fl oat newal ;
{
if (0 == step) { Il K
newal = Get X+Get Y+Cet Z;
} else if (step < 20) { /1 not determnistic!
newal = 0.51*cell val;
}
updat e(cel | _val, newal);
}

29/05/2000 43

3.3.8 dimension

Syntax
di mensi on <n>;

Remarks
Defines the number of dimensions of the CA Engine. It ranges from 1-3.

3.3.9 DimX, DimY, DimZ

Syntax
DmX, Dimy, D n¥Z

Remarks
These values are the CA Engine dimension of the X, y and z axis respectively. Note
that for x, which is split according to the number of processes, thisis the size of the
whole model.

Example
cadef {

state (int st);

}
{
DnX = 5; /'l This is illegal!
if (DmMX == cell _st) {
update(cell _st, D nv);
}
}

29/05/2000 44

3.3.10 GetX, GetY, GetZ

Syntax
Get X, CGetyY, CGetz

Remarks
These values are the global X, y and z coordinates of the cell respectively.

Example
cadef
{
state (float dist);
}
float val;
{
if (0 == step) {
val = Get X+Get Y+Cet Z- 3;
updat e(cel | _di st, val);
}
}

3.3.11 neighbour (alias neighbor)

Syntax
nei ghbour <Nnanme>[<n>](<[x,y,z] alias> ...,
<[x,y,z] alias>);

Remarks
This statement defines a logical neighbourhood. The x, y, z values must remain
within the [- radi us, radi us] interva defined in the cadef statement. The
alias for each neighbour is not compulsory; a cell can refer to its neighbour using
theNnane[i] notation.

29/05/2000 45

Example
cadef {
di rensi on 2;
radi us 1,
state (float dist);

nei ghbour Neumann[4] ([0,-1] North, [O,1], [-1,0],

}
float v1, v2;
{
vl = North _dist;
v2 = Neunmann_di st[O0];
}
3.3.12 NFolds
Syntax
NFol ds
Remarks

Returns the number of folds.

Example
cadef

{

[1,0]);

[/ Should be the sane!

NFol ds = 3; /1 illegal!

if (1 == NFolds) {

3.3.13 NProcs

Syntax

NPr ocs

29/05/2000

46

Remarks
Returns the number of processes to which the CA is split in the x axis.

Example
cadef

{

Nprocs = 2, /'l illegal!
int strip_|length;

strip_length = DimX/ (NProcs * NFol ds);

3.3.14 parameter

Syntax

par anmet er (paramdef _|ist)

where param def |ist is a commaseparated list of parameter definitions,
where each parameter definition has one of the following forms:

* param nanme

* param nane val ue
where val ue isa fl oat,inanyC fl oat syntax.

e paramarray[dim

e paramarray[dinm {array_list}
where array |ist is a commaseparated list of floats, in any C
fl oat syntax,anddi misani nt eger index greater than 1.

Remarks
Declares and defines global CA parameters. Their values can only be changed dur-
ing the run from the GUI, or by means of thecpt _set par an{) primitive (sec-
tion 3.3.6), since they are global to all the cells. They are of type f | oat . Parame-
ters are accessed in a CARPET program directly through their symbolic name. The
maximum number of parameters (counting each element of parameter arrays) is
500, as set by the MaxNunmPar amvariable in thefile par ser . h of the parser. The
same file contains the definition of the maximum length of a parameter name (30

29/05/2000 47

characters, including the array indices) MaxLenPar am The array list may have
fewer than di melements, in which case the additional values default to zero (non-
initialised parameters default to O in any case).

Example
cadef {

paraneter (nypar 2.0, par_array[3] {1.0, 4.0});

3.3.15 radius

Syntax
radi us n;

Remarks
Defines the radius of the neighbourhood of the cells.
N.B.: radi us islimited to

e 60, ifdi nensi onisli;
e 2 ifdi nensionis2;
e 1, ifdi nrensi onis3.

3.3.16 random

Syntax
random (n);

Remarks
Returns a pseudo random integer between 0 and n, n being a positive integer.
N.B.: randon() returns the same sequence of numbers every timeit iscalled. To
avoid this, the user may use the r andom se() function. The use of this function
could make a program non-deterministic (see section 3.3.7).

3.3.17 randomise (alias randomize)

Syntax
random se() ;

29/05/2000 48

Remarks
Creates a new seed for the random number generator.

3.3.18 region

Syntax
regi on <region-name> (<m n_x>: <max_X>, <m n_y>: <max_y>,
<m n_z>: <max_z>);

Remarks

The user specifies aregion as part of the cadef block of the program, using a dec-
laration of the above form. Thisis used to allow global reduction operations within
the steering block of the CARPET program. There is no limit to the number of re-
gions that can be specified by the user. If the lower or upper bound of a co-efficient
of the region is not defined, the specification defaults to the corresponding mini-
mum or maximum for the respective dimension. The bounds of the region range
from 1 to the size of the corresponding dimension. The keywords st art and end
are defined to be the minimum and maximum of the dimension in which they are
found, thus allowing flexible region specification.

Because the dimensions of the model are specified at build time while the regions
are declared at compile time, full error checking is not possible. Nonetheless, the
following conditions are flagged as errors:

e Specifying minimum and maximum values for dimensions not used by the
mode!;

* Specifying anegative integer as arange boundary;

e Specifying a maximum value less than a minimum value (this check is possible
if the region boundaries are explicitly defined).

Example
cadef {
di mensi on 3;
region nyregion (start+2:end-2,:,3:);
}

29/05/2000 49

3.3.19 region_<op>

Syntax

Remar

Note: t

regi on_<op> (<regi on-nane>, <state>);

ks

Ther egi on_<op>() function is available inside the steering function. It returns
avaue of the same type as its st at e argument. It applies the reduction operation
op to state st at e al the cells in region r egi on- name. The supported opera-
tionsare asfollows:

* max
* mn

* sum
* prod

* | and (logica and)

* band (binary and)

* | or (logical or)

* bor (binary or)

* | xor (logical exclusiveor)
* bxor (binary exclusive or)

The user can supply a global reduction operation inside their CARPET program to
cater for operations other than the ones above. The prototype of a global reduction
function corresponding to the r egi on_<op>() function must comply with the
following:

<dat at ype> cpt _<dat at ype>_<op> (int mn_x, int max_x,
int mn_y, int max_y, int mn_z, int max_z, int stateid,
CptCel |l *cp)

N.B.: The automatically generated functions assume that the co-efficients of the
model areinthe[O, DI Mw 1] range, w [{ X, Y, Z}, in other words, they range
from O to the maximum dimension of the model minus 1.

he importance of the neutral element
When developing a global reduction function the user should take into account that
aregion can be defined so that the data in it are outside the domain of one or more

29/05/2000 50

processes. The functions automatically generated provide an algorithm which pre-
vents erroneous calculation. However, because the operations are global, al the
processes contribute to the global reduction of the result. In order to avoid incorrect
global reduction of the data, the user can set theinitial value of the variable contain-
ing the per-process result of the function to be equal to the neutral element for the
corresponding operation.

Example
Examples of such functions are the ones automatically generated by the parser.

3.3.20 srandom

Syntax
srandom (n);

Remarks
Same asr andom se(), only that the programmer may choose the seed argument
through n.

3.3.21 state

Syntax
state(type substateAl, substateA2, .., substateAn,
type substateBl, substateB2, .., substateBn, .);

Remarks
The state of acell consists of various typed substates. The allowed types are:

* (unsigned) char;

* (unsigned) short;

* (unsigned) int;

e float;

* double

e arrays of the above.

29/05/2000 51

3.3.22 steering

Syntax
steering {
st at enent ;
st at enent ;
}
Remarks

The steering function is an optional feature of a CARPET program by which the
user can affect the flow of the program as aresult of global reductions on regions of
the model (see section 3.3.18 for the definition of regionsin a CARPET program).

The steering function is defined in a separate section of the CARPET program,
similarly to the update function. The main difference is that the update function is
applied separately in each cell, whereas the steering function is global for the
model. Any code inside the st eer i ng statement is copied verbatim to the gener-
ated file, with the exception of ther egi on_<op>() statements which are trans-
lated to a global reduction function, as shown in section 3.3.19. The user can mod-
ify the flow of the program inside the steering section in either of the following two

ways:

¢ cdl the function cpt _set _param (float *old_p, float new p),
which sets the global parameter pointed by ol d_p to the value of new _p;

e cdl thefunctioncpt _abort (), which terminates the execution of the program
without exiting the CA Engine.

Inside the steering code, the user has access only to the following CARPET defined
variables:

e D nmX, D mY, Di n¥Z;

* step;
¢ globa parameter values.

29/05/2000 52

Example

cadef {
di mensi on 3;
region Inside (start+2:end-2,:,:);

state (float val);
paranmeter (pi 3.141);

steering {
float mn = region_mn (Inside, val);
if (mn < 4.0) {
cpt _set _param (&pi, 3.14159);
} elseif (mn > 100.0) {

cpt _save (“aborted”);
cpt _abort ();

3.3.23 step

Syntax
step

Remarks

This denotes the current CA Engine iteration. The initial value is 0. Allows time-
dependent update function devel opment.

3.3.24 threshold

Syntax
t hreshol d (expression);

29/05/2000 53

Remarks
Defines a C expression, which, if satisfied, is equivalent to the cell being idle for
the past CA Engine evolution. It is used in conjunction with det er m ni sti c for
the inactive region detection.

Example
cadef
{
state (float val; int val2;);
threshold (cell _val == 3);
}

3.3.25 update

Syntax
update (cell _substate, val ue);

Remarks
This is the only way to set the value of a cell substate by means of the program.
Thisis donein order to ensure that the state of all cellsis set in lock step in the next
generation after the update has been issued, thus preventing race conditions.

29/05/2000 54

4. GUI Implementation

4.1 Overview

The CAMELot GUI is a Motif application written using Imperial Software Technology's
X-Designer 4.6 and 5.0 GUI builder tool, which is a tool for designing GUIs graphically.
Thistool generates (in this case) C code which implements a GUI using the Motif library.

This approach was taken to allow rapid prototyping and development. Since X-Designer
also has facilities for generating C++ (using Motif or Microsoft MFC libraries) or Java
(using the AWT library), this may also ease any future porting of CAMELot to other plat-
forms.

Thistool has been used to generate code to implement the visual elements of the GUI (text-
editing widget, menus, buttons, etc). The rest of the GUI functionality (CARPET file read-
ing and writing, CARPET compilation and building, communication with the CA Engine,
visualisation) was coded by hand and integrated with the X-Designer-generated code by
means of X callback interfaces. The CARPET parser and the CA Engine communication
module were written as separate libraries linked with the GUI. These are described else-
wherein this document.

4.2 Communication with the CA Engine

Communication with the CA Engineis viatwo Internet-domain sockets, pr ot _sockf d for
CA Engine requests and acknowledgements and vi s_sockf d for receiving visualisation
data and the current generation number in each step. These are opened when the CA En-
gineis spawned and closed when it is terminated.

The incoming visualisation data socket is multiplexed into the X event loop using the
Xt AppAddl nput () X Toolkit function.

4.3 Visualisation Windows

The Visuaisation window’s main graphics area is implemented in hand-coded Xlib pix-
map code (for efficiency) within an XmDrawingArea widget.

29/05/2000 55

CAMELot uses the default X Visual for the X Screen it is displaying on. CAMELot sup-
ports the following types of Visuals: PseudoColor, DirectColor or TrueColor with colour
depth of at least 8 hits. A separate colormap for each Visualisation window is set using
XSet W ndowCol or map() ; this alows different windows to use different colour palettes
if desired. Hence, a display of a depth greater than 8 bits is recommended to avoid color-
map switching when changing window focus.

The default colormap is a red/yellow/green/blue spectrum plus black for the background.

4.4 Source codefiles

The following source files comprise the GUI:

* canel ot. c (partly X-Designer generated)
This contains the mai n() function. This file has been hand-edited to set a fallback X
resource in order to override the CDE Motif default * Font Li st resource and to open a
CARPET sourcefile on startup if oneis specified on the command line.

* canelot.h
This contains globa cpp definitions and declarations. Some of the optional compile-
time cpp flags defined in thisfile are:

DEBUG_CRQAKS: Enables assorted debug trace statementsto st der r

DEV_CONFI G Development configuration (e.g. no “Save CARPET file?’ dialog box
on exit)

LOCALHOST _SOCKET: Hardwire front-end hostname to “I ocal host ” (thisis the host-
name passed to the CA Engine in order for it to initiate the connection to the GUI).
Thisisauseful optimisation if the GUI and CA Engine run on the same IP host.

* canel ot _ext. h (X-Designer generated)
Widget declarations.

e canelot _globals.c
Global variable definitions.

29/05/2000 56

e canel ot _gui.c (X-Designer generated)
Widget creation/deletion code.

* canel ot _stubs. ¢ (partly X-Designer generated)
X-Designer-generated GUI callbacks plus al non-X-Designer-generated code, except
for Visualisation window code.

* canelot_viz.c
Visualisation window code.

* Makefile.{sunos5,irix6,inux,tru64} (partly X-Designer generated)
Makefile for the CAMELot GUI for various platforms (SunOS 5.6, IRIX 6.2, Red Hat
Linux 5.2 and Tru64 UNIX 4.0F respectively).

45 Libraries

The GUI is linked with the following libraries, which form part of the whole CAMEL ot
system. These are described elsewhere in the document:

* |ibcpt _parse The CARPET parser
* |ibcntgui comms CA Engine communication interface
* |ibcntcommon Code common to GUI and CA Engine

4.6 X Shell Widgets

Thefollowing X shell widgets are defined in the X-Designer design:

e dev_shell
Devel opment window.

* simshell
Simulation window.

29/05/2000 57

vi z_shel

Visualisation window. A shell widget for each Visualisation window opened by the
user is created by calling the X-Designer-generated function creat e_vi z_shel | ()
invi z_open() .

devdi nms_shel
Devel opment window Configure menu “ Automata dimensions...” dialog box.

devcc_shel
Development window Configure menu “C compiler command line...” dialog box.

devnpi _shel |
Devel opment window Configure menu “MPI run command...” dialog box.

devr epl ace_shel
Development window Edit menu “Replace...” dialog box.

devconp_shel
CARPET parser (compiler) output window.

devbui | d_shel |
C compiler output window.

about _shel |
“About CAMELot...” message box.

filesel _shell
File selector dialog box.

subst at e_shel
CA substate selector dialog box.

cell _shell
CA cell selector dialog box (X, y, z coordinate scales).

29/05/2000 58

fol d_shel |
CA active fold selector dialog box (Simulation window Setup menu “Folding...” dialog
box).

di sptype_shel |
Display type (orthographic, isometric 1-plane or isometric 3-plane) selector dialog box.

m nmax_shel
Simulation window “Min/max substate values...” dialog box.

ti m ng_shel
Development window Configure menu “Timing output...” dialog box.

si medi t _shel
Simulation window “Edit substate...” dialog box.

si nmpar ans_shel |
Simulation window “Parameters...” dialog box.

di al ogl_shel |
Generic one-field dialog box.

nmsgbox_shel |
Generic message box with “Dismiss’ button.

confirmshell
Generic confirmation dialog box with “Yes” and “No” buttons.

4.7 Global variables and data structures

4.7.1 Major data structures

VI ZW N

For each Visualisation window opened, a VI ZW N structure is allocated. This holds all
the attributes associated with a Visualisation window: Xlib data (pixmap, GC, color-
map, etc.), pointer to corresponding shell widget, display type, scaling factors, plane
IDs of planes displayed in window, etc.

29/05/2000 59

* VI ZW NLI STNCDE
Structure used for plane-to-window mapping linked lists (see pl ane2wi n[] descrip-
tion).

4.7.2 Major global variables

* (Cpt CADef cadef
CA definition structure used by CARPET parser. Information on CA dimensions, sub-
states and parameters declared in CARPET source is entered into it by the parser during
CARPET compilation.

®* unsigned int xyzdi nms[3]
Current dimensions of CA, as defined via the Development window menu item “Con-
figure->Automata Dimensions...”.

If the CA is1-D or 2-D, then xyzdi ns[zDI M =1, if 1-D, xyzdi ns[YDI M =1 also.

® int nvizw ns

* VIZWN *vizw nsJ[]

®* VIZW NLI STNODE *pl ane2wi n[]
* int planerefcnt[]

* plane_list all_planes

These are further discussed in the Visualisation section 8.2.2.

4.7.3 Callback context variables

In order to associate a single callback function with generic dialog boxes such asfi | e-

sel _shel | anddi al ogl_shel |, global context variables are set before the dialog box is
popped-up. These variables preserve state required for the callback function. The following
context variables are used:

* Wdget dial og_context
Pointer to widget (menu item or button) responsible for popping-up di al ogl_shel | .

29/05/2000 60

* int substate_context
Saved CA substate ID when selecting substate and file.

®* int substatendx_context
Saved CA substate index when selecting substate.

* int disptype_context
Saved display type (orthographic, isometric 1-plane, isometric 3-plane) when opening
new Visualisation window.

* int dispplane_context
Saved display plane (x-y, X-z or y-z) when opening new Visualisation window.

®* int paramcontext
Saved CA parameter ID when setting parameter.

* int cell_context]3]
Saved cell coordinates when selecting cell.

* VIZWN *vi zwi n_cont ext
Saved VI ZW N struct pointer when setting Visualisation window colormap.

4.8 List of Functions

4.8.1 Functionsincanel ot _stubs. c

e void dev_file open(Wdget w, XtPointer client _data, XtPointer
xt _call _data)
Callback for Development window “File->Open...” menu item.

e void dev_file save(Wdget w, XtPointer client_data, XtPointer
xt _call _data)
Callback for Development window “File->Save’ menu item.

29/05/2000 61

* void dev_quit(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for Development window “File->Exit” menu item.

* void dev_save_and_quit(Wdget w, XtPointer client_data,
Xt Poi nter xt_call _data)
Callback for confi rm shel | dialog“Yes' button.

* void dev_quit_confirm Wdget w, XtPointer client_data,
Xt Poi nter xt_call _data)
Callback for Development window “Exit” menu item.

* void dev_edit_cut(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for Development window “Edit->Cut” menu item.

* void dev_edit_copy(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for Development window “Edit->Copy" menu item.

* void dev_edit_paste(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for Development window “Edit->Paste” menu item.

* void dev_config_popup(Wdget w, XtPointer client_data,
Xt Poi nter xt_call _data)
Callback for buttons which pop-up the 1-field dialog box (di al ogl_shel I).

* void dev_config_set(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for dialogs popped-up by Development window “Configure” menu items and
some Simulation window “Setup” menu items (devdi ns_shel | , devcc_shel |,
devnpi _shell, fold_shell, timng_shell, mnmax_shell or dia-
| ogl_shel |). Usesdi al og_cont ext fordi al ogl_shel | dialogs.

29/05/2000 62

®* void dev_conpil e(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Cdlback for Development window “Compile” button - calls CARPET parser via
cpt_init(),cpt_parse() andcpt _finalize() functions.

Some support for an external CARPET parser, used in early development of CAMEL ot
remains in the source code (#i f def "d out), but has not been tested recently.

® void dev_build(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for Development window “Build” button - runs C compiler.

* void dev_run(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for Development window “Run” button - opens Simulation window, initial-
ises sockets, spawns CA Engine, initialises visualisation data.

* void dev_spawn(W dget textw dget, char *cndline)
Spawn cndl i ne using popen(3) and feed st dout into XmText widget t ext wi d-
get , keeping cursor at, and showing, end of text. Used by dev_bui | d() .

® void dev_conpile_errhndlr(int code, int |ineno)
Error handler callback for CARPET parser. Callscpt _error_nmessage() to get error
message string from CARPET parser, inserts this into a message box XmText widget;
also calls XBel | () and moves the cursor of the Development window XmText widget
to the offending line for the first error of a parse only (when global variable
cpt _err_occurr ed==FALSE).

* void dev_set _wintitle(void)
Sets window title on Development window, appending | ast _carpet _fil e. Called
byfile_save() andfile_open().

* int file_open(char *filenanme, Wdget textw dget)
Opensfilefi | ename and reads contents into XmText widget t ext wi dget . Also up-
dates global variable| ast _car pet _fi | e and attempts to load configuration file from
same directory with same base name asf i | enane but with a. cnf extension, ignoring
errors. Returns -1 on error, otherwise 0.

29/05/2000 63

* int file_save(char *fil enane, Wdget textwi dget, int conf_flag)
Writes contents of XmText widget t ext wi dget tofilefil enane. If conf _fl agis
TRUE, adso cals conf_save() to save a configuration file to same directory with
same base name as f i | enane but with a. cnf extension. Returns -1 on error, other-
wise 0.

* void simgo(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for Simulation window “Go” button. Sends EVOLVE request to CA Engine.

* void simloop(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for Simulation window “Loop” button. Sends LOOP request to CA Engine.

® void simpause(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for Simulation window “Pause” button. Sends PAUSE request to CA Engine.

* void simresune(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for Simulation window “Resume” button. Sends RESUME request to CA En-
gine.

* void simexit(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for Simulation window “Exit” button. Closes al Visualisation windows,
sends EXI TCODE to CA Engine and closes sockets. Also called from various places to
terminate CA Engine.

* void file_select(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for buttons which pop-up the file selector dialog (f i | esel _shel I').

29/05/2000 64

void file_selected(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for file selector dialog (fi | esel _shel I).

voi d substate_sel ect (Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Pops up the substate selector dialog (subst at e_shel |).

voi d substate_sel ected(Wdget w, XtPointer client_data,

Xt Poi nter xt_call _data)
Cdlback for substate selector dialog (subst at e_shel |) and substate editor dialog
(si medi t _shel I).

void cell _select(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Pops up cell selector dialog (cel | _shel |) with scales set from xyzdi ns[] .

void cell _sel ected(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for cell selector dialog (cel | _shel).

voi d param sel ected(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for parameter editor dialog (si npar ans_shel |).

voi d di sptype_sel ected(Wdget w, XtPointer client_data,
Xt Poi nter xt_call _data)
Callback for display type selector (di spt ype_shel |).

voi d di sptype_toggl e(Wdget w, XtPointer client_data, XtPointer
xt _cal |l _data)

Enable or disable plane selection radiobox according to di sptype_i so3_toggl e

value.

voi d popup_nsgbox(XnString string)
Pops up message box dialog shell (msgbox_shell) with XmLabel text set to
string.

29/05/2000 65

® void viz_button(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Callback for Visualisation window buttons.

* void simreset_gen_count (void)
Set initial Simulation window step number label to “ - .

* void sinmedit_init(void)
Initialises substate editor dialog (si medi t _shel |) and popsit up.

® void sinparanms_init(Wdget w, XtPointer client_data, XtPointer
xt _cal | _dat a)
Initialises parameter editor dialog (si npar ans_shel |) and pops it up.

®* void eng_rx_call back(XtPointer xtp, int *source, Xtlnputld
*xtinid)
Xt AppAddl! nput () callback for receiving messages from CA Engine.

®* req_code eng_rx_packet (void)
Receives packet from CA Engine and handles it appropriately. Returns packet header
(reqg_code) or | GNORED on error.

®* reqg_code eng_wait_vispack(void)
Block until data received from the CA Engine (or timeout occurs). If packet received,
cal eng_rx_packet () and repeat until it is a VI S_PACK. Returns VI S_PACK on
success or | GNORED on failure. Called from vi s_open() to receive and display ini-
tial VI S_PACK.

* void text_search(Wdget w, XtPointer client_data, XtPointer

xt _cal | _dat a)

Callback for Development window "Find next® button (also called from
dev_config _set() after "Find" button selected). Searches XmText widget
dev_shel | ->dev_t ext 1 for text fi ndtext (global variable). If caled back from
dev_find_button, stat a beginning of text, else if caled back from
dev_findnext _button, start a cursor position. If found, moves cursor to start of
text.

29/05/2000 66

void text_replace(Wdget w, XtPointer client_data, XtPointer

xt _cal | _dat a)

Cdlback for Development window "Replace text" dialog. Searches XmText widget
dev_shel | - >dev_t ext 1 for text in XmText widget devr epl ace_t ext 1 and
replaces all occurrences with text in devr epl ace_t ext 2. Also setsf i ndt ext to
contentsof devr epl ace_t ext 1.

i nt conf_l oad(char *filenamne)

Load Development window configuration dat a (xyzdi ns[], nprocs, nfolds,
timng flag, tinming_step, ccnane, cflags, clibs, npicnd, tim
ing_file)fromfilefil enane. Sets appropriate widgets to the new values. Returns -
1 on error, otherwise 0.

i nt conf_save(char *filenane)

Save Development window configuration dat a (xyzdi ns[], nprocs, nfolds,
timng flag, tinming_step, ccnane, cflags, clibs, npicnd, tim
ing_file)tofilefil enane. Returns-1 on error, otherwise 0.

4.8.2 Functionsincanel ot _vi z.c

void viz_open(int x, int y, int z)
Create a new Visualisation window and corresponding VI ZW N struct; tell CA Engine
about new plane(s) to visualise.

void viz_exit(Wdget w dget, XtPointer closure, XtPointer

cal |l _data)
Window manager Delete callback for Visualisation windows (also called from “Close”
button callback).

void viz_render_plane(VIZWN *vizwin, int id, unsigned char

*dat a)
Renders a plane with ID i d in a Visuaisation window which corresponds to vi zwi n
from data pointed to by dat a.

29/05/2000 67

® void viz_set_def_col map(VIZWN *vi zwi n)
Set colormap of window vi zwi n to default palette (red-to-blue spectrum). Sets color-
map of both XmDrawingArea and shell widget.

* void viz_|load_col map(char *fil enane)
Opens palette filef i | ename and sets colormap of Visualisation window pointed to by
vi zwi n_cont ext according to contents of file.

Palette files are in ASCII format and consist of 256 lines each containing three space-
separated unsigned 16-bit hex numbers specifying the R, G and B values respectively
of the palette entry corresponding to the line number (counting from 0). The first line
specifies the colour to be used for the background.

® void viz_draw_col scal e(VIZWN *vi zw n)
Draws horizontal colour palette bar of height VI ZCOLSCALEHEI GHT across the bottom
of Visualisation window pixmap.

® void viz_draw colscale_limts(VIZWN *vizwi n, double mn, dou-
bl e max)
Draw numeric upper and lower limits above colour palette bar in Visualisation window
pixmap using colour from middle of colormap. Store limit values, strings and string
metricsin VI ZW N struct for next call.

® void spectrun(int idx, XColor *col or)
Returns a colour in col or corresponding to the value of i dx compared to VI ZCOLS
(the number of colours to be used for visualisation). 0 < i dx < VI ZCOLS. The colour
range is a spectrum from blue to red.

4.9 GUI-CA Engine Protocol Requests

All requests to the CA Engine are sent using the macros in Table 3. They are defined in
canel ot . h.

These macros send the request code, call consune_vi s_pack() to discard outstanding

visualisation packets (except for REQ EXI T) and then call the corresponding req_*()
functioninl i bcnt gui comms if present.

29/05/2000 68

Macro

Request code

REQ SAVE_REQUEST
REQ SET_FOLD
REQ SET_LOAD
REQ VI EW STATE
REQ SET_STATE
REQ GET_PARAM
REQ SET_PARAM
REQ EVOLVE

REQ LOOP

REQ RESUVE

REQ TERM NATE
REQ PAUSE

REQ ADD_PLANE
REQ DEL_PLANE
REQ PROJ_READ
REQ PRQJ_SAVE
REQ PERI ODI C_SAVE
REQ SET_M NVAX

REQ EXI T

Table 3: Correspondence between CAMEL ot GUI macrosand r eq_codes

SAVE_REQUEST
SET_FOLD
SET_LQOAD

VI EW STATE
SET_STATE
GET_PARAM
SET_PARAM
EVOLVE

LooP

RESUVE

TERM NATE
PAUSE
ADD_PLANE
DEL_PLANE
READ_PRQJECT
SAVE_PRQJECT
PERI ODI C_SAVE
SET_M NVAX

EXI TCODE

29/05/2000

69

5. Cdlular Automata Engine | mplementation

The CA Engine component of the program performs the evolution of the model specified
in the CARPET program. Because of the computational intensity of bioremediation models
and the inherently parallel characteristics of Cellular Automata, the CA Engine is imple-
mented as aparallel program adhering to the Single Program Multiple Data paradigm. Each
process thus created is caled a macrocell and can apply the transition function of the
model locally to a subset of the model, under the assumption that it holds locally al the
data that it requires. This suggests the introduction of boundary data which are maintained
in neighbouring macrocells and communicated to the process after each evolution.

This communication is implemented using MPI-1 [MPIf 1995], a portable interface for
paralel programming. The CA Engine aso needs to communicate with the GUI. This
communication is executed between one process and the GUI using a purpose-built proto-
col on top of sockets, as explained in section 7. The process communicating with the GUI
is commonly called the root process and is selected as the one with rank O in the
MPI _COVM_WORLD MPI Communicator. It coordinates the other processes in order to serve
the GUI requests. In this section we discuss the macrocell process implementation and
leave the protocol and MPI interaction to section 7.

In addition to the application of the transition function, a steering function is available, by
which global reductions are performed after each iteration. This is described in section
5.6.3. The system also performs periodic state saves (section 7) and substate visualisations
(section 8), aswell astiming of the main functions (section 5.7).

5.1 Program Structure

The main CA program component is contained in the file macr ocel | . c. This references
globa variables, external function and variable declarations in the CARPET generated
program and also contains shared and static function prototypes and their code and the
mai n() function. The CA Engine functions which implement the communication protocol
are aso included in the same file but their discussion is deferred until section 7.4. The CA
Engine aso uses objects defined inthel i bcnt conmon library.

5.1.1 User-Defined Types

Apart from the predefined C types, the following types are used in macr ocel | . c.

29/05/2000 70

5.1.1.1 Cpt Cel |

The type depends on the definition of the cell in the CARPET program. The code for the
struct is written by the parser into the generated header file. The generated type definition
for the “Game of Life” example model, which has one substate | i f e of type char, isas
follows.

typedef struct _CptCell

{

char life ;
}
Cpt Cel | ;

5.1.1.2 pl ane and pl ane_| i st

These types are used for the visualisation facility on both the GUI and the CA Engine.
They areincluded in pl ane. c. We discuss them in section 8.1.

5113 tiner andstats

These are used in conjunction with the statistics output of the CA Engine. Their definitions
areincluded in macr ocel | . c; they are asfollows.

typedef struct {

doubl e start;

doubl e st op;

doubl e sum

doubl e best;

doubl e wor st ;

u_char started;

unsi gned | ong call ed;

char title[TlI TLE_LENGTH ;
} tiner;

typedef struct {
timer func;
timer vis;
timer prj;
ti mer bound;

29/05/2000 71

ti mer steer;
timer total;
i nt rank;
unsi gned | ong gens;
int start_gen;
u_int period;
u_char work;
FI LE *outfil e;

} stats;

Thet nr _code typeisalso used in the context of the above structures.

typedef enum {
FUNC = 9999,
VI S,
PRJ,
BOUND,
STEER,
TOTAL

} tnr_code

5.1.14 state dt andstate_dt |i st

These types are used for the output of the AVS/Express field files, discussed in section
7.5.8. Their definition follows:

typedef struct {

MPI _Dat at ype dat a;

int states;

int state_ind[NumOf St at es] ;
} state_dt;

typedef struct {
state_dt statetypes[NuntX St at es];
i nt many;

} state_dt _|ist;

29/05/2000 72

5.1.2 Functionsin macrocell.c

5.1.2.1 Filel/O Related

static int cnt_read (char *, int);

static int cnt_read_gl obal (char *);

static int cmt_read_all (char *);

static int cnt_wite (char *, int);

static int cnmt_wite_global (char *);

static int cnt_wite_all (char *, char *);
static int cnt_create_fld (char *, char *);
static int cmt_wite fld (char *, char *, int);

static int check_fs (char *, char *);
int cpt_save (char *);

Function cpt _save() isused in conjunction with steering (see section 3.3.5 for more).

5.1.2.2 state_dt andstate_dt_|ist Related

static void init_state _dt (state_dt *, MPlI_Datatype);
static int add_state (state_dt *, int);

static void init_state dt _list (state_dt_list *);
static int add_state_dt (state dt _list *, int);

5.1.2.3 Boundary Exchange

static int cnt_boundary_copy (CptCell *);
static int cnt_boundary_swap (CptCell *);
static void init_boundaries (void);

5.1.2.4 Fold Related

static void get_ x line (CptCell *, int, u_char *, int);
static void set_x line (CptCell *, int, u_char *, int);
static void cal c_x_sizes (void);

static void line2fold (const u_char *, u_char *, size_t);
static void fold2line (const u_char *, u_char *, size_t);
static void get_wite_ptr (u_char *, u_char *, int, int, int,

int, int, int, int);

29/05/2000

73

static void get_scatter_ptr (u_char **,

int , int);

5.1.2.5 Visualisation Functions

stati
stati
stati
stati

o O O O O

stati

static
static

nt
nt
nt

nt

serv_add_pl ane (void);
serv_del _plane (void);
tx_vis_pack (cell *, char);

serv_set _mnnmax (void);

voi d col our _map (const u_char *,

doubl e, doubl e);

voi d check_pl ane (plane *);

voi d bcast _pl ane (pl ane *,

5.1.2.6 Protocol Service

stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati

O O O O O o o o o o o o

stati

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

nt

rv (reg_code);
serv_save_request (void);
serv_set _fold (void);
serv_set _load (void);
serv_view state (void);
serv_set _state (void);
serv_set _param (void);
serv_ternminate (void);
serv_proj _read (void);
serv_proj _save (void);
serv_peri odi c_save (void);
send_ack (int);

5.1.2.7 CA Execution Function

static int

run (void);

5.1.2.8 Random Number Generators

voi d cpt_random ze (void);

void cpt_srandom (unsigned int);

29/05/2000

u_char *,

u_char *,

WPl _Conm) ;

u_char *,

int, int,

These functions provide pseudo-random number generators and are the only shared (pub-

lic) functions defined in macr ocel | . c.

5.1.2.9 Statistics Output

static void init_tnr (tiner *, const char *);
static int start_tnr (tinmer *);

static int stop_tmr (timer *);

static void print_tnr (const tiner *, FILE *);

static void init_sts (stats *, int, u_char, u_int, const char *);
static void reset_stats (stats *);

static int start_one_timer_sts (stats *, tnr_code, int);

static int stop_one_tiner_sts (stats *, tnr_code, int);

static void print_sts (const stats *);

static void close_file_sts (const stats *);

5.1.2.10 Other Functions

static void check_pos (int *);
static int get_val _size (const int *);

5.1.3 External Function Prototypes

extern void cpt_hook_init (void);

extern void cpt_func (CptCell *, CptCell *);

extern void cpt_set_state (CptCell *, int, void *, int);
extern void cpt_get _state (CptCell *, int, void *, int);
extern void cpt_npi_type_cell (MPI_Datatype *);

extern void cpt_hook_finalize (void);

extern int cpt_thresh (CptCell *);

extern req_code cpt_steering (CptCell *);

5.1.4 External Variables

extern fl oat cpt_gl obpar[NunOFf d obPar]; /* CARPET paraneters */

extern const size_t cpt_state_size[NunCX St at es];

/* Substate bytesizes */

29/05/2000

75

extern MPI _Datatype cpt_state_npidt[NunOf St at es+1] ;

/* Substate MPI Dtypes */
extern bool _t (*cpt_state XDRfn[NumOf States])();

/* Substate XDR function*/
extern const int cpt_determn; /* Deterministic flag */
extern const char *cpt_state_nanme[Nunmf St at es] ;

/* Nanmes of states */

5.1.5 Global Variables

Cpt Cel | *cal; /* 1st copy of Cellular Automata */
Cpt Cel | *ca2; /* 2nd copy of Cellular Automata */
int cpt_dinx, cpt_diny, cpt_ding; /* Local CA dimsizes */
int cpt_x, cpt_y, cpt_z; /* Current coordinates, X, Y, Z

Must be gl obal for Get[XYZ] */
char *out_basenane = NULL; /* Root of periodic save filenanme */
char *out _dirnanme = NULL; /* Path of periodic save filenanme */
int save_step = | NT_MAX; /* Period of saves */
int num gens; /* Remaini ng generations to run */
int cpt_generation = 0; /* Must be initialised for vis_list */
char in_steering = 0; /* Flag for steering statenent */

int cmtWorl dSi ze, cntWrl dRank;
/* MPI world size and | ocal rank */
i nt cmt PrevRank, cmt NextRank; /* Ranks of nei ghbour macrocells */
MPI _Conm cnt ComrmConmmrand, cnt CommBoundar y;
/* MPlI contexts: data & control */
MPI _Dat at ype cmt BoundaryType; /* MPlI datatype for boundary data */
int prot_sockfd = 0, vis_sockfd = O;
/* protocol and visualisation socket
fd, global for comm abstraction
i ndependence */

list vis_Ilist; /* List of visualised planes */
pl ane_list all_planes; /* List of all planes in the Engine */
int alt_intnl_bound[2] [NFOLDS] ;
/* Left/Right internal boundary
altered flag for each strip */

29/05/2000 76

int alt_strip[NFOLDS]; /* Internal cells altered flag */
int active_strip[NFOLDS]; /* Active Strip flag */

int manual _folds = 0; /* Flag to examine (in)active folds */
doubl e m nmax[NunOf States][2]; /* M ni mum Maxi mum val ue for

each state. */

char aut o_map[NunT¥ St at es] ; /* Flags for automatic col our nap */
stats statistics; /[* Statistics for timers */
state_dt _list *dt _list = 0O; /* state_dt _list for AVS files */

#i f def EVEN_DECOWP®

#el se

int CPT_DI MX [CPT_NPROCCS] ; /* Actual x data in process */

int CPT_F_X [CPT_NPRCCS][NFOLDS]; /* Actual x data per Strip */

int CPT_S X [CPT_NPRCCS][NFOLDS]; /* Total Strip x-size */

int first_small _strips_ind[CPT_NPROCS]; /* Index of first strip of
process to have smaller size */

#endi f

5.2 Data Handling

5.2.1 Internal Representation

Each cell can be thought of asa 3-D (X, y, 2) triplet of co-ordinates with an associated set of
substate values. In [Telford et a. 1998] it was decided that cells would be represented as C
structs. The CA is represented as an array of such cells. If the program is run on more than
one process, each process contains a fraction of the model data. The decomposition of the
data to processing elements is discussed in section 5.4. Because of the way the CA execu-
tion function works, each process maintains two such arrays, one to contain the data of the
previous iteration and another where the output of the transition function is written. After
the transition function has been applied to al the cells of a macrocell, the read copy is up-
dated. This is necessary for the correct execution of the program, despite the fact that the
read and write copies are toggled after each step. A good example of a program that failsis
one that updates the cells with odd x-coefficient on the odd generations and the even ones
on the even generations.

° The EVEN_DECOMP macro definition is explained in section 3.2.1.1.3.3.

29/05/2000 77

The cells are accessed through the following macro, defined in the filecpt _ccdef s. h.

#define CA REF(ca, z, y, x) ((ca) + (z)*CPT_Y*CPT_X + (y)*CPT_X + (X))

As we discuss later in the section, duplicate, boundary data are incorporated in the real CA
data to allow the execution of the transition function. CPT_X and CPT_Y are the total di-
mensions across the x and y axis of each process respectively, including the real and repli-
cated data. The above macro implies that the x-axisis “moving” fastest when accessing the
cells and because the decomposition is done across the x-axis, boundary data are located
between two consecutive x-lines in the dataset of each process. Therefore, the data are
fragmented thus reducing the expected benefit from processor read-ahead and caching op-
timisations when applying the transition function [Telford et a. 1998]. It should be noted
that whether performance could be improved by running the z-axis fastest depends on the
model size and the decomposition, since boundary data are replicated across all axes.
Moreover, this approach effects non-contiguous boundaries, thus necessitating the intro-
duction of MPI boundary datatypes which contain non-contiguous data. This also possibly
affects the performance of the CA Engine, as discussed in [Kavoussanakis et a. 1999], but
no conclusive evidence has been found during the profiling of the software.

5.2.2 Datal/O

CAMELot supports state initialisation from files as well as saving the state to files. Files
output to disk can be used for state initialisation at a later stage without any transformation.
Data transfer occurs aso between the CA Engine and the GUI both in order to control the
execution and to provide visualisation of the states.

Starting from release 1.2 of the software, the XDR data representation standard is sup-
ported for file I/O only. The use of XDR for read-related operations is discerned from that
for write-related operations, as they are controlled by means of different C pre-processor
definitions in macrocell.c (NO_XDR_READ and NO_XDR_WRI TE respectively). This alows
the user to use the system as afilter to trandlate old binary files to XDR-based ones by de-
fining the NO_XDR_READ flag, as shown in section 3.2.1.1.3.1. In order to achieve this, the
cpt _state_ XDRfn[] pointer-to-function array is generated from the parser and defined
in the C file. This provides the appropriate XDR primitives to translate the substate ele-
ments to their corresponding external representation.

File 1/O is effected with one call, both when XDR is used and otherwise. The correspond-
ing functions (cnt _read() and cnt_write()) use adequately large buffers to fit the

29/05/2000 78

data, as discussed in section 7.5.3.1. Most of the times I/O to the socket is also done with
onecall.

5.3 Process Placement

The user defines the number of processes from the Configure Menu of the Development
Window. These processes are then arranged in a 1-D, periodic Cartesian topology repre-
sented by MPI Communicator cnt CormBoundary, to enable boundary exchange. The
physical allocation of processes to processing e ements is hidden by the system. As far as
the programmer is concerned, each process has a known couple of neighbours, cit Nex-
t Rank and cnt Pr evRank, identified by their rank (for processi in a n-process system, the
previous has rank (i-1) mod n, the next has rank (i+1) mod n). An additional, unordered
Communicator, cnt CommConmand, is aso created for controlling the processes. The rank
of each process, cnt Wor | dRank, as well as the total size of the system, cnt Wor | dSi ze,
are stored as global variables in each process. They are acquired by means of standard MPI
calls. The Cartesian arrangement of processes and the creation of the two Communicators
are also achieved using MPI calls.

5.4 Data Decomposition

The CABOTO project introduced a form of block-cyclic decomposition aiming to reduce
load imbalance [Spezzano et a. 1995]. The idea, which was also implemented in CAME-
Lot, was to split the model virtually in a number of folds and then assign equal parts (if this
is possible) of each fold to each of the processes (Figure 27). This can lead to load balanc-
ing under the condition that the resulting granules (further referred to as strips) are fine
enough to ensure that the uneven load distribution across folds statistically is insignificant
across processes. It should be noted though, that the numbers of folds and processes should
be chosen with caution during the executable build phase, since the more the strips, the
bigger the communication overhead among the processing e ements.

The model is decomposed across the x-axis; this suggests that, in order to utilise the avail-
able resources, 1-D models should be considered as x lines and 2-D models should be
viewed as x-y planes. The fold and process numbers are defined by the user through the
Configure Menu of the Development Window and they are passed to the CA program as
compiler line arguments using the - D option. The radius of the neighbouring cells is de-
fined in the CARPET program through ther adi us statement (see section 3.3.15).

29/05/2000 79

DIMX

CPT_DIMX

= = = Fold

F1 F 2

|
P 1 2 I Process
|
[N N J [N N J [N N J 1
1= = | y
|
1 X
P 1 P2
CPT_S X Radius
| Dt
F 1 F 2 B f F 1 F2 F f
cet_r_x | # oee oo oee

CPT_X

Figure 27: Block-Cyclic Decomposition in CAMEL ot. The figure and the notation as-
sume even decomposition.

5.4.1 Uneven Decomposition

For CAMELot releases prior to 1.3 it was necessary for the product of the number of folds
times the number of processes to divide the total x-size of the model. This condition was
relaxed in CAMELot 1.3. It should be noted that the former implementation is more effi-
cient since it carries less overhead, whereas the latter is more general. As aresult of uneven
decomposition, some processes may have their x-dimension larger than others by one.
Similarly, some stripsin a process may have their x-dimension larger by one.

The definition of the x-sizes of the processes and strips takes place in function
cal c_x_si zes() . The strategy for processes is that the root process will have at most as
many elements as the others, on the grounds that it has extra workload because of the
communication duties. On the contrary, strips are alocated extra elements in their x-
dimension starting with strip O.

There are two useful corollaries from the above discussion:

* In each process there is a strip which has the lowest index of those with less elements
than the others and the index of small strips range from thislowest index to NFOLDS- 1.

29/05/2000 80

This index for each process is stored in the file macrocel | . ¢ in the global array
first_small _strip_i nd[CPT_NPROCS] . In the case of even decomposition, this
index defaultsto O.

* Thesize of the smallest strip isthe size of strip indexed NFOLDS- 1 in the root process.

Example: Suppose that the total x-dimension of a 1-D model is 50, divided in 3 processes
and 3 folds. Processes 1 and 2 will have 17 elements each, whereas process O will have 16.
In processes 1 and 2 strips 0 and 1 will have 6 elements each, whereas strip 2 will have 5.
In process O strip 0 will have 6 elements and strips 1 and 2 will have 5 each. Also, the fol-
lowing istrue for the per-process array of indicesto small strips.

first_small _strip_ind[3] = {1, 2, 2}

CPT_NPROCS Number of processes

NFCOLDS Number of folds

DI MX Total number of data on the x-axis of the model

DI MY Total number of data on the y-axis of the model

DI MZ Total number of data on the z-axis of the model

CPT_DI MX Number of actual data on the x-axis of a process

CPT_F X Number of actual data on the x-axis of astrip

CPT_S X Total number of data on the x-axis of a strip (including boundary
duplicates)

CPT_X Total number of data on the x-axis of a process

CPT_Y Total number of data on the y-axis of a process

CPT_Z Total number of data on the z-axis of a process

Table 4: Modd Definition Notation

5.4.2 Notation

CAMELot supports two implementations for the data decomposition depending on whether
this is even or not. The code selected for each case is controlled by the C pre-processor
definition EVEN_DECOMP. If this is defined, then the program assumes that the product of
the number of folds times the number of processes divides the total x-size of the model.
However if the assumption is false, the program exits with a warning message returning -1.

29/05/2000 81

Otherwise, and this is the default behaviour, the program assumes uneven decomposition
of datato processes.

The constants (or macros) in Table 4 define the model. The type of each of the definitions
in this Table differs according to the definition of the EVEN_DECOVP macro. Thisis shown
in Table 5 and Table 6 below. Note the difference in the definitions of CPT_DI MX,
CPT_F_Xand CPT_S X, in the case of even decomposition they are straightforwardly cal-
culated and stored as macros in the cpt _ccdef s. h header file, otherwise they are defined
asarraysstored in macr ocel | . ¢ and calculated by the function cal ¢c_x_si zes().

#define CPT_DI MX (DI MX/ CPT_NPRCCS) /* Actual x data in each process */

#define CPT_F_X (CPT_DI MX/ NFCLDS) /* Actual x data in each Strip */
#define CPT_S X (CPT_F _X+(2*Radius)) /* Total Strip x-size */

#defi ne CPT_X (CPT_S X*NFOLDS) /* Total process x-size */
#define CPT_Y ((DI M) +(2*Radi us)) /* Total process y-size */
#define CPT_Z ((DI Mz)+(2*Radi us)) /* Total process z-size */

Table 5: CA Engine Size Definitions (EVEN_DECOVP defined)

i nt CPT_DI MX[CPT_NPROCS] ; /* Actual x data in process */
i nt CPT_F_X[CPT_NPROCS] [NFOLDS]; /* Actual x data per strip */
i nt CPT_S X[CPT_NPROCS] [NFOLDS]; /* Total Strip x-sizes */
#def i ne CPT_X (2*Radi us* NFOLDS+CPT_DI MX[cnt Wor | dRank])

#define CPT_Y ((DI M) +(2*Radi us))

#define CPT_Z ((DI Mz)+(2*Radi us))

Table 6: CA Engine Size Definitions (EVEN_DECOVP undefined)

5.5 Boundary Replication

Data decomposition effects the introduction of duplicate boundary data. The reason is that
splitting the model into strips and allocating contiguous strips to different processes causes
some cells to lose immediate neighbours. Given that the strips divide the model across the
x-axis, the cells which are located in r adi us distance from the x-edges of the strips have

29/05/2000 82

lost their neighbours lying outside the strip and they are thus unable to execute the CA evo-
lution rule.

Moreover, al cells within Radi us distance from any edge have no defined neighbours
outside the model domain. In order to remedy this, we implement cyclic boundaries. This
means that data are “wrapped round” in each dimension, so that cells a one edge are
neighbours of cells at the opposite edge in the same dimension. This ensures cyclic interac-
tion and execution of cells. The effect to the topology of the model is the following.

* 1-dimensional models are effectively circular;
* 2-dimensional models have the shape of the surface of atorus;
e 3-dimensional models are shaped as a 3-D torus.

The above approach suggests four types of halo:

* Dbeforethefirst and after the last real element (z-axis);
* between planes (y-axis);

* Dbetween lines (x-axis);

* between strips (folded data).

The first three haloes conceptualy form a shell around the model, whereas the last in-
creases its x dimension. This is depicted in Figure 28. We will discuss the effect of the ha-
loes on the internal representation of the CA.

The first type of halo consists of Radi us planes of size CPT_X* CPT_Y on each z-side of
the CA model. It is implemented by prefixing and postfixing the data with contiguous
planes of halo data. The plane halo is Radi us lines of size CPT_X on each y-side of the
model. It isimplemented by adding lines of haloes between planes of data. Similarly, there
Is a Radi us sized halo introduced on either side of the model, corresponding to the line
halo.

29/05/2000 83

AT

Y L z-axis halo

lﬁx £$5g y-axis halo

z 7/ x-axishalo
=

folded data halo

Figure 28: Haloreplication: A 2-fold, 2-process decomposition is shown.

The above discussion suggests two different kinds of boundary replication. Across the y
and z axes the data can be replicated internally in macrocells. We call this a boundary copy.
Across strips (this effects x-axis halo replication as well) the data must be exchanged be-
tween consecutive processes using MPI. We cal this boundary swap. Boundary data are
copied across axes and swapped between strips after the execution of a step.

5.5.1 Boundary Copy

Thisis achieved with the following function:
static int cnt_boundary_copy (CptCell *ca)

This function replicates the local boundary data across the non-distributed dimensions. It is
dependent on the cell access macro. It returns zero on completion. Note that this function
only performs the boundary copy on one CA array copy.

The z-axis (slowest) boundary exchange, is performed with two mentpy calls, each copy-
ing Radi us* CPT_Y* CPT_Z elements, i.e. Radi us x-planes. For the y-axis copy it loops
over z with two nenctpy calls in each iteration. Each mentpy handles Radi us* CPT_X
elements, i.e. Radi us x-lines.

29/05/2000 84

5.5.2 Boundary Swap

Thisis done with the following function:
static int cnt_boundary_swap (CptCell *ca)

This function uses MPI to exchange x-axis boundary data between the strips. If the auto-
matic inactive strip detection mechanism is activated, it also exchanges information about
the activity of the internal boundaries of its neighbouring cells so as to determine its own
activity. The implementation depends on the cell access method (CA_REF) and only repli-
cates the datafor one CA array copy passed to it as an argument.

In order to define the recelver and the sender of messages we use the global variables
cnt PrevRank and cnt Next Rank returned from the call of the Cartesian Topology crea-
tion functionsof MPI, MPI _Cart_create() and MPl _Cart _shift (). Wethusdefinea
global MPI Communicator, cnt ConmBoundary, used for boundary swapping. We aso
define a derived datatype, cnt Boundar y Type, for the boundaries to be exchanged. Thisis
avector datatype created using the MPI _Type_vect or () function of MPI. It allows refer-
ence to the stridden boundary by specifying only the starting point of the data to be re-
ceived or sent. It consists of CPT_Z* CPT_Y blocks cells, each of which has length Radi us;
the stride between consecutive blocks is CPT_X. This communicator is global to our pro-
gram.

In order to exchange activity and boundary data, two similar blocks of communication
primitives have been developed which differ only in the data they exchange. Each of the
blocks contains two |oops over the number of strips in the process, one to receive and one
to send the data. The activity data received from the previous neighbour for strip i are
stored in prev_active[i] and the data from the next in next _acti ve[i]. The corre-
sponding tags for the messages are 2*i and 2*i +1.

The definition of the index for the data to be sent is less straightforward. The genera rule
for sending data to the next process is to send the right internal boundary to the strip of the
same rank on the right of the sender. From the above we see that the receiver strip i waits
for a message tagged 2*i . This means that the message to the next process contains
alt_intl_bound[1][i] and is tagged 2*i . The former does not hold for process
cnt Wor | dSi ze- 1 whose next neighbour is process 0, since this must send the data of the
previous rank to process 0 (see Figure 27) in order to implement cyclic boundaries. Thus,

29/05/2000 85

the data sent to process 0 are al t _i nt nl _bound[1] [(i - 1) 9NFOLDS] *°. Similarly, the
data sent to the previous process are stored in al t _i nt nl _bound[0] [i] except for pro-
cess 0 which sends the data stored inal t _i nt nl _bound[0] [(i +1) %\NFOLDS] . In both
cases the message istagged 2*i +1.

The above hold for the actual boundary swapping block as well. Reception from the previ-
ous strip starts from CA_REF(ca, 0, 0,i *CPT_S_X), and is tagged 2*i ; reception from
the next strip startsat CA_REF(ca, 0, 0, (i +1) *CPT_S_X- Radi us) , tagged 2*i +1. Data
to the next process are tagged 2*i and start at CA_REF(ca, 0, 0, CPT_F_X+i *CPT_S_X)

except if the sender is process cmt Worl dSi ze-1 which sends data starting at
CA REF(ca, 0,0, CPT_F_X+((i-1)%\FOLDS)*CPT_S_X) . Datato the previous process
start at CA_REF(ca, 0,0, i*CPT_S X+Radi us) except for process 0 which sends data
that start at CA REF(ca, 0, 0, ((i +1) %\FOLDS) * CPT_S_X+Radi us) . The execution of
this block does not start until all the activity data have been received from the previous
process, when the receives from the previous and next neighbour are issued, ac-

tive_strip[i] isupdated accordingtoprev_active[i] andnext _active[i].

Although immediate sends and receives have been used for the implementation of bound-
ary swaps, the current implementation does not execute the transition function for interna
cells while boundaries are exchanged, as suggested in [Telford et al. 1998]. Efficient
boundary swapping, taking into account whether each strip is active or not, has not been
implemented either.

5.5.3 Functioni ni t _boundari es()

In order to facilitate boundary exchange when the system is restarted we implemented the
following function.

static void init_boundaries (void)

This function assumes that the system has been brought to a new state and cancels all of the
strip activity data previously defined by the automatic mechanism. It thus sets ac-
tive strip[] and alt_intnl_bound[][] for al of the strips before calling
cnt _boundary_copy() andcnt _boundary_swap() on both copies of the CA array. It
then cancelsal t _intnl _bound[][] andalt_strip[].

10 |n fact the code reads al t _i ntnl _bound[1] [(i - 1+NFOLDS) %FOLDS] to ensure correctness of the
modul us operator.

29/05/2000 86

N.B.: This function must only be used when the system is brought to a new state, asiit af-
fects the strip activity variables. Nonetheless, if called at any point, it does not affect the
correct execution of a deterministic program.

5.6 Transition Function Execution

5.6.1 CA Engine States

The CA Engine can bein any of the following states:

* Running;

e Serving Protocol Requests;
* Paused,

e Stopped.

Protocol requests (including PAUSE and TERM NATE which effect the two last states) can
be received at any point, but they are only handled before a CA Engine iteration. These are
implemented with static variablesinther v() function, discussed in section 7.5.2.

5.6.2 Automatic Inactive Strip Detection

CAMELot contains an automatic inactive strip detection mechanism, used to isolate inac-
tive regions and avoid applying the function to idle strips. The block cyclic decomposition
suggests that load imbalance emanating from this strategy will be insignificant in the gen-
era case, given that contiguous areas of the model are transparently distributed to proc-
esses. Automatic inactive strip detection can be disabled by manually choosing a set of
active folds as described in section 3.2.2.1. Thefinest grain in this caseisthefold, whichis
generaly larger than the strip, and the strategy is error prone as it depends on the user's
vigilance. Moreover, manua fold selection cannot isolate inactive regions located in the
middle of the model even if the granularity suffices, because the active range defined is
continuous. The implementers do not recommend manual fold selection. We will discuss
the implementation of the automatic inactive strip detection mechanismin 5.6.3.1.

5.6.3 Functionr un()

Therun() function of the program loops over the requested number of CA Engine genera-
tions and applies the update function to all the cells. It also executes the steering function,
transmits the current generation number to the GUI and initialises the visualisation and
periodic saves which are due in this iteration. Before each iteration the root process polls

29/05/2000 87

the socket for pending messages by means of asel ect (3C) call. If amessage is present it
broadcasts it to the other processes. The control at this point is passed to ther v() function,
discussed in section 7.5.2. The processes synchronise loosely by means of this MPI _Bcast

call as they exit this loop and enter running mode when all pending requests have been
served.

At the end of the iteration the boundaries are replicated on the write copy of the CA array
and thisis then copied to the read copy by means of anencpy call. The steering functionis
applied to one copy of the automaton only. This does not affect the execution of the model,
because the steering function cannot ater the state of cells. Immediately before calling the
external steering function cpt _st eeri ng() we set the global variablei n_st eeri ng so
as to enable the execution of the steering related functions. We aso synchronise the proc-
esses so as to avoid race conditions in the update of global parameters. The variable
i n_steering iscleared immediately after exiting the steering function to disable access
to the steering related functions. We discuss the steering function later in this section.

After the steering function has been executed, the visualisation list is checked for planes
waiting to be visualised; if there are any, t x_vi s_pack() iscaled with the f or ce argu-
ment set to 0. After each visualisation, the gener at i on member of the cell is set for the
next visualisation, and the cell is inserted in the correct position in the visualisation list,
using the function r eor der (), discussed with the | i st functions, in section 8.3.5. Then
the current generation number is written to vi s_sockf d. Finally, periodic project saves
are performed by means of thecnt _write_al | () function if the incremented generation
is divided by the save_st ep. If the generation run is the last one requested, and periodic
saves are enabled, but no periodic save has occurred in the current step, then
cnt_write_all () iscaledtosavethefinal configuration of the CA.

The implementation of functionr un() isshown in pseudocodein Table 7.

for (num.gens) {
do {
get _request();
} while (no_request || stop);

if (stop)
return;

cp = CA REF (ca, Radius, Radius, 0);

29/05/2000 88

for (cpt_z) {
for (cpt_y) {
for (strip) {
cp += Radi us;
for (x) {
cal culate (cpt_x);
updat e(cel l);
if (x < |_bound)
check_| _i ntnl _bound()
else if (x > r_bound)
check_r _i ntnl _bound()
el se
check_intnl _strip();
Cp++;
} /[* End for (x) */
cp += Radi us;
} /* End for (strip) */
} /* End for (cpt_y) */
cp += 2*Radi us* CPT_X;
} /* End for (cpt_z) */

updat e_boundari es(ca);
updat e_copi es (ca);

synchr oni se_procs;
cpt_steering (ca);

if (visualisation_due)
tx_vis_pack();

if (configuration_save_due)
cnt_wite all();

write_gen_no();

} /* End for (num.gens) */

29/05/2000

89

if (configuration_not_just_saved)
cnmt_wite_all();

Table 7: Function run() in pseudocode

5.6.3.1 Application of the Transition Function

The transition function is applied to all the cells of a process without any interruption. The
processes communicate again for the necessary interaction for boundary swapping. The
next step is to identify which of the two pointers to the CA represents the read and write
copy by means of the parity of the CA generation and then the function loops over the
strips skipping the haloes and applies the transition function cpt _f unc() toitscells.

During this phase the cells in strips are examined in order to decide their activity status.
Initially, all the strips are considered active. The system attempts automatic inactive strip
detection under the condition that the user has characterised the transition function as de-
terministic through the CARPET statement det er mi ni sti c [Telford et a. 1998]. After
the transition function has been applied to a cell, the cell is checked against
cpt _thresh() and the previous values of al its substates. If a substate has changed and
cpt _thresh() returns false, then the whole strip is characterised as active for the next
generation and the check is not performed for any other cells of the strip. Even if al the
cells of astrip are classed as inactive, the strip is not considered inactive unless the bound-
ary cellsto be received by each of the neighbours are also inactive.

In order to achieve the above we virtually split the strips in three components, a block of
internal cells and two blocks of internal boundaries on either of its x sides. The internal
boundaries are part of the strip's cells but they are of special interest as they are communi-
cated to the strips lying on their externa sides. Their dimensions are the same as those of
the boundary data. During the boundary swap the processes exchange information with
their neighbours about the activity status of the incoming boundaries and combine the re-
sults with those emanating from the internal cell check to decide on the activity status of
their strips.

Haloes are skipped as follows: before the function enters the loop the first z and y haloes
are skipped. In the first strip the x halo is skipped and then the application of the function
begins. If the strip isidle, the pointers are advanced by CPT_F_X, which is the x-size of a
strip; otherwise, for each of the CPT_F_X applications of the function the pointers are ad-
vanced by 1 position. At the end of the strip line traversal, the pointers are advanced again

29/05/2000 90

by an x halo. This |leaves the pointers at the beginning of the first x halo of the next strip.
After the end of the plane (and the y iteration of the loop) the pointers are incremented by
2* Radi us* CPT_X, which skips both the y halo at the end of the current plane and that of
the next plane.

In addition to the above, the position of the cell updated is recorded by means of the
cpt_x, cpt_y and cpt _z globa variables. This follows the convention that the co-
ordinate of the first cell in each dimension is 1. We also take into account the decomposi-
tion of cellsin folds and processes so as to enable correct cpt _x calculation. The user can
access the values of cpt _x, cpt _y and cpt _z in their program using respectively the
Get _X, Get _Y and Get _Z CARPET statements (see section 3.3.10), thus enabling posi-
tion-dependent update functions.

5.6.3.2 Calling the Steering Function

After the two CA copies have been updated, the steering function is being called. Thisis
external to macr ocel | . c. Nonetheless, it is important for the program to set the global
variablei n_st eer i ng before calling the steering function and clear it after exiting it. This
is externa to the CARPET-generated C file, and allows the globa reduction functions to
be executed. We chose to control this flag from nmacr ocel | . c, rather than the generated
cpt _steering() function to avoid possible problems if the CARPET program contains a
return cal inside the st eeri ng statement. The processes synchronise by means of the
MPI MPI _Barri er call before executing the steering function, so as to avoid possible race
conditions.

5.7 Timing

From release 1.1 of the software onwards, the basic functions of the CA Engine are timed.
The functions timed are as follows:

e Trangition function;

* Visudisation;

* Project save;

* Boundary replication;
e Steering.

29/05/2000 91

The user can define how often the results are output (see section 3.2 for more details on
this). Regardless of this setting, the execution is timed in each step. For each of the func-
tions timed, the following features are monitored and reported:

* Thenumber of cdls;
* Thetotal time taken by this function;
* The best and worst time recorded for this function.

The sum of the above times is also reported. Additionally, a timer instance collects statis-
tics for the duration of the period of each run. The format of the output is seenin Table 8.

5.7.1 Strategy for Timing the Functions

There are several ways in which a function can be timed. In this section we describe the
strategy used for each of the functions.

Process: O Cener ati ons:

Updat e Function :
St eering :
Boundary Conm
Vi sual i sation
Peri odi c Save

Sum :
Tot al Execution Tine:

Table 8: Output of Timing Statistics

5.7.1.1 Transition Function

The transition function is timed inside function r un() . We start the corresponding timer
before entering the nested loop traversing the elements of the model and stop it immedi-
ately after exiting it. This provides a per-PE granularity. As mentioned in section 5.6.3,
after each iteration of the CA Engine, the read copy of the CA is updated by means of a
mencpy call. Note that the time taken by this call is not accounted for by the update func-
tion timer, yet it appearsin the total timer discussed in section 5.7.1.6 below.

29/05/2000 92

Our initial implementation timed each call to function cpt _f unc() , but the overhead was
unacceptable. More specifically, removing the timing functions in a trivial 1000x1000
model running in 1 processor, 1 fold for 10 steps yielded a 70% performance benefit.

5.7.1.2 Visualisation

The visualisation timer is started when entering function t x_vi s_pack() (see section
8.6.2.1) and stopped before exiting it.

5.7.1.3 Project Save

The project save timer is associated with function cnmt _write_al | (). This alows the
timing of the project saves even when the program is running in batch mode (see section
0). This function initialises the writing of all the configuration related files, as described in
section 7.5.8.1.

5.7.1.4 Boundary Replication

The start and stop calls for this timer enclose calls to cnt _boundary_copy() and
cnt _boundary_swap() . These two functions are a\ways called together.

5.7.1.5 Steering

The timer is started after explicitly synchronising the processes for the execution of the
steering statement and stopped immediately after it has been executed. The time taken for
the synchronisation of the processes is not taken into account.

5.7.1.6 Tota Time

This timer is started when entering the r un() function and it is kept running while the CA
Engine is running. It stops when rv() is called to serve user requests (see section 7.5.2)
and it is restarted when r v() returns. The timer is running when print _al | _stats(),
discussed in section 5.7.2.2, is called but it is stopped and restarted so as to allow for cor-
rect statistics gathering in process 0.

29/05/2000 93

5.7.2 Sructures and Functions
5.7.2.1 Structuret i ner

We designed the structure ti ner which contains all the necessary data for each of the
timed functions.

typedef struct {

doubl e start;

doubl e st op;

doubl e sum

doubl e best;

doubl e wor st ;

u_char started;

unsi gned | ong call ed;

char title[TlI TLE_LENGTH ;
} tiner;

The associated functions are as follows;

® static void init_tnr (timer *tp, const char *title)
Thisinitialisesati mer struct. It assumes that memory has previously been allocated
for it. All the members are set to O, with the exception of ti t | e which takes the value
of the argument™ and best which is set to DBL_ MAX.

e static int start_tnr (tiner *tp)
This startsthe t i mer pointed to by t p. It increments cal | ed, setsst art ed and as-
signstost art thevauereturned by MPI _W i me() .

It returns O if the timer was already started, or 1 otherwise.

* static int stop_tm (timer *tp)
This stops the t i mer pointed to by t p. It clears st art ed and assigns to st op the
value returned by MPI_W i ne(). It also adds the time between st opped and
st art ed to sumand checksif the current record isabest and/or wor st time.

“ifthetitl e argument equals NULL, theti t | e member is not set. The function in this case is used to
reset the members of the structure.

29/05/2000 94

Thisreturns 0 if the timer was aready stopped, or 1 otherwise.

® static void print_tnr (tiner *tp, FILE *f)
Thischecksif t p isst art ed, in which case it prints awarning. It then printsthet i -
t1 e, followed by one tab and cal | ed followed by one or two tabs according to its
length. It then prints the sum best and wor st separated by a tab character and fin-
ishes with anewline character. All the output isin oneline.

5.7.2.2 Structurest at s

This structure is a collection of timers. It includes a pointer to a FI LE variable which iden-
tifies the file where the data are written. It encapsulates various characteristics of the “in-
stance”, including a flag indicating whether statistics are taken (wor k), the per i od of out-
putting the statistics, the number of generations for which statistics are produced (gens)
and others, as seen below.

typedef struct {
timer func;
timer vis;
timer prj;
ti mer bound;
timer steer;
timer total;
i nt rank;
unsi gned | ong gens;
int start_gen;
u_int period;
u_char work;
FI LE *outfil e;
} stats;

The associated functions are as follows:
* static void init_sts (stats *stp, int rank, u_char work,
char *fnane)

Thisinitialisesast at s structure. Thet i mer members areinitialised with thetitles as
set inside the function (not passed as a set of arguments). The out fi | e member is

29/05/2000 95

opened in process 0 and set to NULL in all other processes. The rest are straightfor-
ward.

* static void reset_sts (stats *stp)
This is applied only to structures where the wor k flag is set. It is used by function
print_all _stats() discussed below. All the ti mer members are restarted with
the titles argument set to NULL (see functioninit _t nr () above) and gens is set to
0.

e static int start_one_tinmer_sts (stats *stp, tnr_code tnr,
int gen)
This startsthe t i mer denoted by t nr. If t nr isnot TOTAL, it calls the corresponding
start _tnr () cal and returns what that returns. If it is TOTAL it also checks and sets
thest art _gen member of thest ati sti cs structureto gen.

It returns O if the st ati sti cs entity does not wor k or if the request is ignored (see
the discussion of start _t nr () above), a negative value if the arguments are unac-
ceptable or 1 otherwise (successful termination).

* static int stop_one_tiner_sts (stats *stp, tnr_code tnr,
int gen)
This startsthe t i mer denoted by t nr. If t nr isnot TOTAL, it calls the corresponding
stop_tnr () cal and returns what that returns. If it is TOTAL it also checks and sets
itsgens member to gen- st p- >st art _gen.

It returns O if the st ati sti cs entity does not wor k or if the request is ignored (see
the discussion of st op_t nr () above), anegative value if the arguments are unaccept-
able or 1 otherwise (successful termination).

* static void print_sts (const stats *stp)
This prints al the members of the st at s structure. It produces the output shown in
Table 8. The Sumfield is the sum of the summembers of all the timers with the excep-
tion of TOTAL.

* static void close file_sts (const stats *stp)
This closes the output file for the stats structure, except if thefileisst dout .

29/05/2000 96

The following function is written using the above library of functions. It aso makes use of
the associated global variableal | _stat s[].

* static void print_all_stats (void)
This collects and prints the statistics from all the processes at the root process. It cre-
ates a derived MPI _Dat at ype for the st at s type, which requires a datatype for the
ti mer type aswell, to gather the statistics instance at the root process. Requires care-
ful handling of the TOTAL timer because periodic saves mean that this timer is not
stopped when printing the data.

29/05/2000 97

6. CARPET Parser Implementation

CARPET programs are tranglated into C programs that define the global parameters and
transition function of the CA. This trandlator, usually referred to as the parser, is composed
of a tokeniser and a parser generated using the UNIX tools f | ex and yacc (or bi son).
Note that the use of the standard UNIX | ex tool results in a tokeniser which handles com-
ments incorrectly.

This parser is derived from the one used in the CAMEL software developed in the
CABOTO project [Smith 1998]. It has been enhanced with various features according to
the users’ requests[Telford et al. 1999].

6.1 Tokeniser

The tokeniser (yyl ex. 1) reads in text from the CARPET source file. It uses eight Left
Context states to control the way it interprets text:

* <ZERC>

Default start state. Reverted to in body of transition function. When the keyword
“st eeri ng” isread, the state changes to <STEERSTATE>.

* <UNC>

After reading “cadef ”, CARPET keywords are expected and are passed to the parser
as tokens. All other strings are interpreted as identifiers, integer values, or real values
and are passed as tokens, with the name or value being passed by global variables. A
“t hr eshol d” keyword changes the state to <Cl NQUE>. When the C block close sym-
bol “}” isread, indicating the end of the cadef block, the state changes to <TRE>.

e <DUE>

Once the string “updat e” has been read, this state handles the parameters, i.e. the fol-
lowing symbols are interpreted as two comma-separated C expressions enclosed by “(”
and “) . The state is then reset to <ZERG>.

29/05/2000 98

* <TRE>

All symbols are ignored and passed through to the output file except:

— the state is changed back to <ZERO> after the C open block symbol “{” is read; to-
ken YSTARTCODE is generated,;

— “struct”,“enunf, “uni on” or “=" change the state to <QUATTRO>.

e <QUATTRO>

Reads array initialisers, enum struct and uni on declarations between the cadef
block and the transition function body (the transition function's local declarations). Re-
turnsto <TRE> upon reading a“; ”.

e <Cl NQUE>

Reads parameter of “t hr eshol d” directive in cadef block, similarly to state <DUE>.
Revertsto state <UNC> onreadinga“; .

®* <STEERSTATE>

Reads the name of the defined region and changes to state <REDARG>.

* <REDARG

Reads the limits of the defined region.

In addition, two exclusive start states are used to handle comments; <COMVENT> for C-
style“/* ... */” commentsand <COMVENT2> for C++-style®// ...” comments.

29/05/2000 99

6.2 Parser

The parser (yypar ser. y) isimplemented as a combination of a grammar with embedded
C code.

After the cadef block is parsed, the functions cadef check(), cadef _h_code(),
cadef _c_code() and cadef _desc() are caled. Respectively, these check for missing
or inconsistent cadef declarations, generate the header file, generate the transition func-
tion code in the output C file and fill in the Cpt CADef state table returned by the parser.

At the start of the transition function body (marked by the token YSTARTCODE),
nei gh_code() is caled to generate the symbolic neighbourhood mapping code. The
parser also transforms the updat e() statements in the transition function body into the
appropriate C code.

After the update function, the steering code is generated by means of the function
cpt _steering code().

6.2.1 Interfaceto macrocell.c

As mentioned in section 5.1.3, there is a number of functions defining the interface of the
parser-generated model to macr ocel | . c. Their description follows.

e extern void cpt_hook init (void);
It defines the variables cpt _di nx, cpt _di ny and cpt_di nz which are equa to
CPT_X, CPT_Y and CPT_Z respectively. More importantly, in the case of uneven de-
composition, it defines the array of neighbours, cpt _N[] ; in the even decomposition
case this array is defined on declaration, but this is not possible in the case of uneven
decomposition because its initialisation values depend on variables defined at run-time.

e extern void cpt_func (CptCell *, CptCell *);
This defines the update function code. Itsfirst argument is a pointer to the read copy of
the cell to be updated, whereas the second argument is a pointer to the cell to be up-
dated in the write copy of the model.

29/05/2000 100

® extern void cpt_set_state (CptCell *, int, void *, int);
This function is used to set the values of a given substate on contiguous cells to speci-
fied values. The starting cell is pointed to by the first argument of the function, the
state id is the second argument, the voi d * pointer contains the new data and the last
argument defines the number of contiguous cells this operation affects.

* extern void cpt_get_state (CptCell *, int, void *, int);
Similarly to cpt _set _state(), this function returns the substate values of a set of
contiguous cells to the pointer defined in the third argument. Note that this pointer must
be suitably initialised by the caller function.

* extern void cpt_npi _type_cell (Ml _Datatype *);

This function defines the derived datatype corresponding to a cell, which isin turn used
to define the boundary vector datatype. The obvious way to define the cell type is by
treating it as a struct, thus employing MPI _Type_st ruct . Thisapproach is correct and
guarantees that the datatype is defined correctly even when the underlying architecture
consists of CPUs with various datatype representations. Portability comes at a price
though. When memory for a C st r uct is allocated, there is a possibility that holes are
introduced between consecutive fields. This is reflected in the derived datatype and
causes MPI to call internal functions more times than it would in order to communicate
these derived datatypes. To avoid this performance deterioration, the user can define
the HOVOGENEQUS C pre-processor macro, which defines the derived datatype as an
appropriately sized contiguous block of memory. This definition is not the default, be-
cause it is not portable; it assumes that the underlying architecture is homogeneous.

* extern void cpt_hook_finalize (void);
Reserved function to be executed when exiting the program. It does nothing at the mo-
ment.

* extern int cpt_thresh (CptCell *);
It returns the threshold condition defined by the user (see sections 5.6.3.1 and 3.3.24 for
more on the threshold condition).

29/05/2000 101

6.2.2 Seering Code Generation
6.2.2.1 Steering Related Types

The following structure types are defined in yypar ser . y:

6.2.2.1.1 Cpt Regi on

typedef struct _CptRegion {
char *name;
i nt bounds[6] ;
struct _Cpt Regi on *next;

} Cpt Regi on;

This defines a single-link list containing the data for each of the defined regions. The asso-
ciated functions are as follows:

static CptRegion *cpt_nmke region (char *nanme, int bounds[6],
Cpt Regi on *list)

This function adds a region to the list pointed by | i st , having the members pointed by

the first two arguments of the function. It returns a pointer to the head of the list.

e static void cpt_free region (CptRegion *list)
This frees the dynamically allocated memory of the contents of the list pointed by
l'ist.

e static CptRegion *cpt_find region (char *nane, CptRegion *|ist)
Thismakes asearch in | i st for aregion with the same name member as nane. It re-
turns a pointer to such a Cpt Regi on if found, or NULL otherwise.

* static void cpt_check region (CptRegion *list, int dinm
This checks the regions in | i st to verify that if the model is 1-dimensiona or 2-
dimensional. The bounds of the regions are not specified for unused dimensions.

29/05/2000 102

6.2.2.1.2 Cpt Reducti on

typedef struct _CptReduction {
char nane[BUFSI Z] ;
int type;
i nt unsign;
char *neutral;
struct _Cpt Reduction *next;
} Cpt Reducti on;

This is a single-link unordered list, with descriptions of the reduction operations in the
CARPET program. The t ype member is a handle to the datatype of the arguments in the
reduction operation and unsi gn is a flag whether the datatype is unsigned or not. The
neut ral member is the neutral element for the reduction. We briefly discuss the related
functions.

e static CptReduction *cpt_make reduction (char *nane, int type,
i nt unsign, CptReduction *|ist)
This function checks the reduction operations aready in | i st for areduction with the
same characteristics as the one to be inserted. All the details of the new reduction are
available from the argument list of the function with the exception of the neutral ele-
ment, provided by the get _neut ral () function discussed below. Returns a pointer to
the head of thelist.

e static void free_reduction_list(CptReduction *list)
Thisfreesall theelementsinl i st .

e static void enit_red func (CptReduction *p)
This routine outputs the reduction function corresponding to the reduction pointed at by
p to the generated C file. Information about the prototype and how to write a reduction
function is available from section 3.3.19.

e static char *get neutral (CptReduction *p)
This function returns the neutral element for the reduction pointed at by p. The neutral
element depends on the type of data and the reduction operation. If the combination of
the two above members is not matched in the function code, NULL is returned. In this

29/05/2000 103

case the user supplies the neutral element for the operation implicitly in the reduction
function that they provide. See section 3.3.19 for the importance of the neutral element.

® static int print_red func (CptReduction *p)
This function prints only one line in the generated C file, containing the operator corre-
sponding to the reduction pointed by p. For example, if the function is max, it prints the
following:

res = MAX (res, tnp_data[i]);

The definitions of the macros M N and MAX are emitted in the generated file when the
cpt_write_reductions() function is caled. The function returns -1 if the opera-
tion isunknown, or 1 in the normal case.

® static void print_all_reduce (CptReduction *p)
This function aso prints only one line in the generated C file. It outputs the MPI global
reduction statement.

6.2.2.2 Steering Related Global Variables
The following global variablesinyypar ser . y arerelated to the steering code generation:

* static CptRegion *cpt_region_list=NULL;
Thelist of al theregions, initialised by cpt _nmake_regi on() .

® static CptRegion *current_region;
A pointer, used when outputting the steering function.

* static CptReduction *cpt_reduction_list=NULL;
Thelist of al the reductions, initialised by cpt _nmake_reducti on().

® static char redop_nane[BUFSI Z] ;
This is used to store the reduction operation name when outputting the reduction func-
tions.

29/05/2000 104

6.2.2.3 Steering Related Functions

The functions in yypar ser . y associated with the generation of the steering code are as
follows:

* static void cpt_steering_code (void)
This function outputs the cpt _abort () and cpt _set _paran() functionsin the gen-
erated Cfile.

* static void cpt_wite reductions (void)
This function writes the following to the generated C file:

- alist of steering-related standard header files which should be included;

— alist of definitions used internally, such asM N and MAX;

— the reduction functions, by caling emit _red_func() for al the members of
cpt _reduction_list.

It also writes the prototypes of the generated reduction functions to the generated
header file and freesthelist by meansof f ree_reduction_list().

6.3 Parser library interface

The parser is built as alibrary (1 i bcpt _par se) with the following interface (declared in
cpt _parse. h):

® int cpt_init (const char *carpet file, const char *c file,
const char *h file,
void (*error_handler)(int code, int line))
This function is called to start the parsing process. It opens the pathname car -
pet _fil e astheinput CARPET sourcefile, c_fil e asthe output Cfile,andh_fil e
as the output C header file. The tokeniser and parser are initialised.

error_handl er () is a pointer to user-supplied callback function which is called
when a parser error occurs. The parameters passed to er r or _handl er () arethe error
code and CARPET source file line number respectively. If | i ne is O, the error is of a
global nature (i.e. failed to open file); codes 900 and above are considered warnings
and do not prevent the output files from being generated.

29/05/2000 105

Returns -1 on error or O otherwise.

* int cpt_parse (Cpt CADef *cadef)
This function is called to perform the parsing process. The output files specified in the
cpt _init() cal arewritten to and the state table pointed to by cadef isfilled in with
information about the CARPET program. Note that the cadef - >st and cadef - >pt
tables are alocated by the parser and must be freed by the user when no longer re-
quired.

Returns 0 on success or number of errors found.

* int cpt_finalize (void)
Thisfunction closes the threefilesgiveninthecall tocpt _init ().

Always returns 0.

* void cpt_error_nessage (int code, char *nessage, int |ength)
This function copies up to | engt h characters of an error message corresponding to er-
ror code code into the user-supplied buffer pointed to by message. Error messages are
defined by the parser library.

29/05/2000 106

7. GUI-CA Engine Communication

This section presents the design of the protocol implemented for the communication be-
tween the GUI and the CA Engine of CAMELot. The implementation of the corresponding
functionsis aso discussed in detail.

7.1 General Remarks

7.1.1 Communication Abstraction

It was decided to implement the protocol using BSD sockets. The reason for choosing
sockets is that they provide a simple programming interface. This interface is more ad-
vanced and better documented than those of pipes or FIFOs. MPI-1 could not be used be-
cause its specification does not allow processes to start at different times, which is essential
for the application since the GUI spawns the macrocell processes. The reason for choosing
Berkeley sockets instead of TLI is that they have been established over the past years and
are widely supported across platforms [Stevens 1990].

Our protocol was implemented over TCP, which provides a bi-directional, connection ori-
ented channel of communication. The connection is established at the beginning of the run
and is not terminated until arequest to exit the program is received (EXI TCODE).

The functions implemented are not socket dependent. Their prototypes do not contain the
sockets as arguments and are thus easily modifiable.

7.1.2 Socket Instances

There are two socket instances in each of the GUI and CA Engine, one for visualisation
and one for the other protocol requests, named vi s_sockf d and pr ot _sockf d respec-
tively. In both cases, the GUI acts as a server, which is expected since the GUI process
spawns the CA Engine.

On the GUI side, the program calls socket , bi nd (with si n_port set to 0 so asto have
the system assign the port number), | i st en, then spawns the CA processes and calls ac-

cept twice on the initial socket to get prot _sockfd and vi s_sockf d respectively. On
the CA Engine side, the program calls socket and connect twice, in order to initialise
prot _sockfd and vi s_sockf d. Thisis done by calling the function st art _cl i ent ()

twice.

29/05/2000 107

The name of the host and the name of the port are passed to the master macrocell process
through the - Hand - P command line arguments of the macrocell program, respectively.

7.1.3 Header Format

In order for the two sides to exchange messages, the communication initiator must send a
valid r eq_code as defined in the header file const ant s. h and shown in Table 9. Of
those, FI NI SHED and BATCH are reserved for internal usein macr ocel | . ¢ and | GNORED
Is used as an acknowledgement only. VI S_PACK is used by the CA Engine to communi-
cate visualisation data, and GEN_NOto send generation numbers. OVER_Wis only transmit-
ted from the CA Engine in the speciad case described in the discussion of
serv_periodi c_save() insection 7.5.7. All other codes are used only by the GUI. The
receiving side ignores messages which do not have avalidr eq_code.

7.1.4 Spatial Entities

The co-ordinates of a spatial entity (plane, line or cell) are uniformly passed to the function
by means of the integer array, pos[3]. The exception to this rule is function
req_add_pl ane(), which encapsulates the array to its pl ane argument, as explained in
section 8.4.3. This convention implies that an entity will always extend to its maximum
dimensions, thus leaving sub-entity display for the GUI. Since valid co-ordinates for each
dimension range from 1 to the maximum number of cells in the axis, in order to “free” a
dimension the appropriate element of the position array has to be set to 0.

7.2 Auxiliary Functions

7.2.1 Socket Functions

The following are the socket-related functions of the CAMEL ot software. They are imple-
mented in file sock. ¢, and their prototypes can be found in conmon. h.

® int readn (int fd, char *ptr, int nbytes)
Reads nbyt es bytes from file descriptor f d into the supplied buffer pt r. It assumes
that the file descriptor has been opened and the pointer is appropriately initialised to
hold the data. This function is a wrapper for r ead(2) . It returns the number of bytes
actually read.

29/05/2000 108

typedef enum {1 GNORED = I NT_M N,
EXI TCODE = -13,
FINI SHED = 1,
OVER_W = 333,
SAVE _REQUEST = 1111,
SET_FOLD,
SET_LQOAD,

VI EW STATE,
SET_STATE,
SET_PARAM
GET_PARAM
EVOLVE,

LOOP,

RESUME,

TERM NATE,
PAUSE,
ADD_PLANE,
DEL_PLANE,
READ_PRQJECT,
SAVE_PRQJECT,
PERI ODI C_SAVE,
VI S_PACK,
GEN_NO

SET_M NVAX,
BATCH} reg_code;

Table9: Enumerated typer eq_code

* int witen (int fd, char *ptr, int nbytes)
Writes nbyt es bytesto file descriptor f d from the supplied buffer pt r . It assumes that
the file descriptor has been opened. This function is awrapper for wri t e(2) . It returns
the number of bytes written.

® int start_client (u_short port, char *hostnane)
This function initialises a client by connecting to the process running on port port on
host host nane. It assumes that a TCP connection must be made and takes the address

29/05/2000 109

of the host using the get host byname(3N) function. In the normal case it returns the
socket descriptor returned by socket (5), after achieving a connection using con-
nect (3N) . In the case of our application, the client is the CA Engine. The function re-
turns a negative integer if any of the callsfails.

7.2.2 Acknowledgements

Depending on the function executed, the CA Engine should return an acknowledgement to
the GUI, regarding the success of the requested action.

Acknowledgements are handled by the following two functions.

* static int send_ack (req_code ack)
This function, local to macr ocel | . ¢, transmitsther eq_code that initiated the action
as an acknowledgement for a successfully executed task, or a negative error code if the
caler function failed. The function returns ack, except if witen() fails, in which
case it returns a negative value. The specia negative r eq_code, | GNORED might also
be transmitted and thus returned. This does not indicate afailure of the function.

Acknowledgements are handled in the GUI-side by the get _ack() function, which
compares the received acknowledgement code with the one expected in each case.

* int get_ack (reg_code request)
The function is implemented in file gui comms. c; its prototype is listed in gui -
coms. h. [t returns:

— request, if thisisthe vaue of the message read;
— 0, if the message read is | GNORED;
— anegative integer, otherwise.

7.3 Requests

Here we describe protocols and the implementations of the functions on each side, with
respect to each of the values of r eq_code.

29/05/2000 110

SAVE_REQUEST

The GUI requests that the values for a certain substate be written to a file whose name is
transmitted. An acknowledgement is expected at the GUI side.

Sender Token Type

GUI SAVE REQUEST req_code
GUI substate i nt

GUI strlen (fnane) int

GUI f nanme char *
CA SAVE REQUEST req_code
SET_FOLD

This is a request to set the active folds manually. An acknowledgement is expected after
completion of the action.

Sender Token Type

GUI SET_FOLD req_code

GUI start_fold i nt

GUI end _fold i nt

GUI f nanme char *

CA SET_FOLD / req_code
| GNORED

SET_LOAD

The GUI requests that the specified substate values of all cells in the CA Engine be set to
those listed in the specified file. An acknowledgement is expected from the CA Engine.

29/05/2000 111

Sender Token Type

GUI SET_LOAD req_code
GUI substate i nt

GUI strlen (fnane) int

GUI f nanme char *
CA SET_LOAD req_code
VI EW STATE

The GUI transmits the co-ordinates of an entity and gets the data for the substate and the
generation that the data were collected. This request is used by the “Edit Substate” GUI
facility.

Sender Token Type

GUI VI EW STATE req_code
GUI pos int[3]
GUI substate i nt

CA cpt _generation int

CA dat a char *
CA VI EW STATE req_code
SET_STATE

The GUI transmits appropriate values and requests that the substate be set in the CA En-
gine. An acknowledgement finishes the communication. This request is used by the “Edit
Substate” GUI facility.

29/05/2000 112

Sender Token Type

GUI SET_STATE req_code
GUI pos int[3]
GUI substate i nt

GUI dat a char *
CA SET_STATE req_code
SET_PARAM

This request concerns the modification of cadef globa CARPET parameters. More than
one parameter can be set, as their number is written to the socket. The reply from the CA
Engine is an acknowledgement.

Sender Token Type
GUI SET_PARAM req_code
GUI no_of parans i nt
for (i)

GUI param.id[i] i nt

GUI val ue[i] fl oat
end for
CA SET_PARAM req_code
GET_PARAM

This request gets the value of one global CARPET parameter. There is no acknowledge-
ment in this case.

Sender Token Type

GUI GET_PARAM req_code

GUI param.i d i nt

CA paranf param.id] / int /
| GNORED reqg_code

29/05/2000 113

EVOLVE

The GUI requests the evolution of the CA Engine for a given number of generations. No
reply is expected.

Sender Token Type

GUI EVCOLVE req_code
GUI num gens i nt

LOOP

Thisisarequest for CA Engine execution until further notice. No reply is anticipated.

Sender Token Type
GUI LOOP reqg_code
TERM NATE

This request terminates CA Engine execution, but it does not cause the program to exit.
The user can instruct a new run of the Engine. Visualisation planes are removed from the
data structures and the generation is zeroed. An acknowledgement that execution has
stopped is returned to the GUI through the communication channel.

Sender Token Type

GUI TERM NATE req_code

CA TERM NATE / req_code
| GNORED

PAUSE

This requests the CA Engine to pause execution. Its difference from TERM NATE isthat in
this case the visualisation planes are not affected and the generation is not zeroed. When
paused, the CA Engine can accept requests and can then be restarted by:

* EVOLVE or LOOP, in which case the visualisation list will be reinitialised but not emp-
tied (unlike TERM NATE). This effects to the planes being displayed immediately;

29/05/2000 114

* RESUME, in which case no changes to the lists are imposed, except those explicitly re-
quested while the Engine was paused.

No acknowledgement that the Engineis paused is transmitted to the GUI.

Sender Token Type
GUI PAUSE req_code
ADD_PLANE

This is a request to add a visualisation plane to the CA Engine. An acknowledgement is
expected at the GUI side except if the plane is | GNORED. The protocol for ADD_PLANE is
explained in Section 8.4.

Sender Token Type
GUI ADD_PLANE reg_code
GUI pos int[3]
GUI substate i nt
GUI vis_step i nt
CA ID/ int /
| GNORED reqg_code
CA | D_sane / req_code
(NOTHING)
CA ADD PLANE / req_code
(NOTHING)
GUI VI S_PACK req_code
DEL_PLANE

The GUI requests the deletion of a plane identified by its ID. An acknowledgement is sent
to the GUI.

29/05/2000 115

Sender Token Type

GUI DEL_PLANE reg_code

GUI I D i nt

CA DEL_PLANE / reg_code
| GNORED

READ PRQJECT

Requests that the CA Engine initialise its state from the data in the file whose name is
transmitted. Communication is finished with an acknowledgement.

Sender Token Type

GUI READ PRQIECT req_code

GUI strlen (fnane) int

GUI f name char[strlen(fnane)]
CA READ_PRQIECT req_code
SAVE_PRQJECT

The GUI requests that the current state of the CA Engine be saved in a set of project files.
The resulting files can be used for the READ_PRQJECT operation, aswell as SET_STATE.

Sender Token Type

GUI SAVE_PRQIECT req_code

GUI strlen (fnanme) int

GUI f name char[strlen(fnane)]
CA SAVE_PRQIECT req_code

PERI ODI C_SAVE

The GUI initiates periodic saving of project data.

29/05/2000 116

Sender Token Type

GUI PERI ODI C_SAVE req_code

GUI strl en(fnane) i nt

GUI f name char[strlen(fnane)]
GUI save_step i nt

CA OVER W/ 0 req_code

CA PERI ODI C_ SAVE req_code

SET_M NMAX

The GUI sets the minimum and maximum values for the colour mapping of a substate.

Sender Token Type

GUI SET_M NVAX reqg_code

GUI substate i nt

GUI | _m nmax doubl e[2]

CA SET_M NVAX |/ reqg_code
| GNORED

| GNORED

According to the state of the Engine, the following requests are | GNORED:

* TERM NATE and PAUSE, if the Engine is Stopped;
* PAUSE, if the Engineis Paused;

* EVOLVE and LOCP, if the Engineis Running;

* RESUME, if the Engineis Running or Stopped;

* FI NI SHED, if the Engine is Paused or Stopped.

Sender Token Type

CA | GNORE req_code

Other reasons for the CA Engine to transmit | GNORED are as follows:

29/05/2000 117

* if theplaneto be added is aready in the visualisation list;

* if the planeto be deleted does not exist;

* if the transmitted spatial entity isinvalid;

* if the parameter id for the parameter to be transmitted isinvalid;

* if the suggested minimum or maximum values for the colour mapping of a substate are
inadequate.

If in any of these cases an acknowledgement is expected, | GNORED is transmitted to the
GUI.

EXI TCODE

This request causes the CA Engine program to exit.

Sender Token Type
GUI EXI TCODE req_code
FI NI SHED

Thisis not available on the GUI side; it is used in the CA Engine after an EVOLVE request
has been completed so as to reset internal variables.

Sender Token Type

Not Transmitted

RESUME

This is one of three ways to restart the CA Engine after it has been Paused. Explained un-
der PAUSE.

Sender Token Type
GUI RESUVE reg_code
VI S_PACK

This is a visualisation packet identifier, sent as a header from the CA Engine to the GUI
before sending the visualisation data. This is one of the two protocol functions performed

29/05/2000 118

through vi s_sockf d, the other one being GEN_NO. These two are also the only ones to be
initiated by the CA Engine.

Sender Token Type

CA VI S_PACK req_code
CA | D i nt

CA val si ze i nt

CA m nmax| 2] doubl e[]
CA val ue[val si ze] char[]
GEN_NO

Thisis a generation number identifier, sent from the CA Engine to the GUI after each gen-
eration has been executed. It is followed by the current generation number.

Sender Token Type

CA GEN_NO req_code
CA cpt _generation int
OVER W

This is a specia kind of acknowledgement sent by the CA Engine when files could be
overwritten as aresult of the periodic save. See section 7.5.7 for more details.

BATCH

Thisis not available on the GUI side either. It is used in the CA Engine instead of EVOLVE
when the program is run in standalone mode so that r v() initialises the status of the CA
Engine and exchanges boundaries.

Sender Token Type

Not Transmitted

29/05/2000 119

7.4 | mplementation of GUI Functions

The following are the protocol-related functions contained in the | i bent gui conms li-
brary linked with the GUI. They are all implemented in file gui conms. c; their prototypes
are listed in gui comms. h. The function arguments for functions prefixed r eq_ are to be
transmitted to the other side, except if otherwise stated. All functions return ther eq_code
if finished successfully. Functions receiving an | GNORED acknowledgement return 0. We
discuss them with respect to their context.

7.4.1 Substatereated

* int req_save request (int substate, char *filenane)
The GUI requests that the subst at e valuesfor al cellsin the CA Engine be written to
filefi | ename. The function merely implements the protocol.

* int req_set load (int substate, char *fil enane)
Set the subst at e valuesfor al cellsin the Engineto thoselisted infilefi | enane.

* int req viewstate (int pos[3], int substate,

Cpt St at eType st _type, int *gen, void *val ue)
The pos[] array contains the co-ordinates of the cell, line or plane whose subst at e
data are to be retrieved. The results are returned in the val ue array, which has to be
initialised by the caller function. The generation number of the state is returned in the
gen pointer; no memory alocated for it either. Only pos and subst at e are written to
the CA side. st _t ype is used to calculate the total size of the val ue argument and ac-
cordingly receive data.

* int req_set _state (int pos[3], int substate,
Cpt St at eType st _type, void *val ue)
This requests that the substate of the entity in pos[] be set to val ue. Symmetric to
req_vi ew_st at e, but it does not affect the generation of the CA Engine.

* int req_set_param (int no_of parans, int *param.id,
float *val ue)
This function is concerned with the modification of cadef globa CARPET parame-
ters. Their value can only be of type f | oat . If no_of _par ans parameters are to be
set, their ID is stored in the par am i d array and the corresponding values can be found

29/05/2000 120

in val ue. The size of both arrays is no_of _par ans. After sending no_of _par ans,
the function loops over an index no_of _par ans times and writes the respective values
of par am_ i d and value to the socket.

* int req_get_param (int param.id, float *val ue_ptr)
This function reads the parameter indexed par am_ i d from the CA Engine. The value
of the parameter read is stored in val ue_pt r. If the value read is | GNORED it returns
0, otherwise it returns GET_PARAM The caller function must allocate memory for
val ue_ptr.

7.4.2 Program Flow Management

The PAUSE, LOOP, TERM NATE, EXI TCODE and RESUVE r eq_codes are implemented by
issuing asimplewr i t en call; no specia function has been developed for them. FI NI SHED
is not available to the GUI.

* int req_evolve (int num gens)
The GUI requests the CA Engine evolution for num gens generations. The implemen-
tationistrivia.

®* int req_set_fold (int start_fold, int end_fold)
Thisisafunction to set the starting and finishing active folds of the CA manually. The
implementation is straightforward.

®* int req_set_mnnmax (int substate, double nin, double nax)
This function sets the minimum and maximum values for the given substate so asto be
used on the CA side for the colour-mapping. It implements the protocol.

7.4.3 Visualisation Functions

* int req_add_plane (plane *pl _ptr, int *ID sane)
This is arequest to add a visualisation plane to the CA Engine. The pl ane definition
as well asthe discussion of the function are deferred to section 8.4.

* int req_del _plane (int plane_id)

The GUI requests the deletion of the plane numbered pl ane_i d. The function imple-
mentation is detailed in section 8.5.

29/05/2000 121

7.4.4 Configuration (Project) Related

®* int req_proj_read (char *fil enane)
The function only transmits the length of fi | enane followed by the filename itself
and then blocks for the acknowledgement. f i | enane is used as a root for the files to
be read. The filename construction as well as the CA Engine actions are detailed in the
discussion of serv_proj _read.

®* int req_proj_save (char *fil enane)
Similartoreq_proj _read.

®* int reqg_periodic_save (char *filenane, int period, int *cfs)
Requests the CA Engine to save the state of the system periodically in files whose
name has the given root f i | enanme. The argument is an integer passed by-reference
conveying the result of check_f s() on the macrocell side (see section 7.5.7 for more
details). The implementation of thisfunction istrivial.

7.4.5 Other functions

The rest of the functionsin file gui comms. h are asfollows:

® int consune_vis_pack (void)
® void QU _check_pos (int *)
int QU _get_val _size (const int *)

* int get_max_size (const unsigned int *)
These functions are discussed in section 8.3.

7.5 Implementation of the CA Engine Functions

7.5.1 General Remarks

The following functions are called to serve the corresponding GUI side requests. These
functions are asymmetric to their GUI-side counterparts, in that they are invoked immedi-
ately after the request has been received and read in the necessary data internally from the
communication channel. Thus they have a void argument list. They return the r eq_code
that initiated them if successful, | GNORE if they did not perform a change for the reason
explained previously or a negative error code in other cases. The acknowledgement, where
applicable, is sent by their caller function, r v() (see section 7.5.2).

29/05/2000 122

The functions receiving a filename first read its length through the socket. In order to use
the filename as a character pointer we NULL terminate it. So, memory for an extra character
must be all ocated.

Data which need to be known to al the processes are broadcast to them using the
MPI _Bcast function. Data are scattered or gathered from or to the root process using
MPI _Scatter and MPl _Gat her respectively. The root processin al collective communi-
cationsis process 0.

7.5.2 Functionr v()

The function responsible for request handling on the CA Enginesideis
static int rv (reg_code request)

For each req_code, with the exceptions of EVOLVE, BATCH, LOOP, RESUVE, PAUSE,
FI NI SHED, GEN_NO, OVER_Wand EXI TCODE there is a function on the CA Engine side to
handle the request. The function r v() consists of aswi t ch statement each case of which
calls the appropriate function and then transmits the acknowledgement to the GUI (where
applicable).

The reason why there are specific requests which do not have corresponding functions is
that they only affect the state of the CA Engine and do not require significant computation
or process interaction. The state of the CA Engine is maintained within r v() with the use
of two loca static variables, paused and st art ed. In addition to these, another static
variable, i ni t _gen, denotes whether cpt _gener at i on has been explicitly set by any of
the initialisation functions (e.g. serv_proj _read() discussed in section 7.5.7) and
should thus be preserved. We will describe the implementation of the handling mechanism
for each of these requests. OVER_Wis omitted as it is only used as an acknowledgement for
function ser v_peri odi c_save(), seesection 7.5.7. GEN_NOis not discussed here either
asitisonly transmitted by the CA Engine, see section 7.3.

EVOLVE

Thisis | GNORED if already st art ed and not paused. Otherwise, the number of genera-
tions to be run is read and broadcast to all the processes in the global variable num gens.
When thisis received:

29/05/2000 123

e function set _gen() is called to reset the visualisation generation in all the planesin
thelist (see section 8.3.5.2);

* init_boundaries() iscaled,

e startedisset;

* paused iscleared;

* init_geniscleared.

Returns EVOLVE or | GNORED as discussed above.

BATCH

Therequest is| GNORED if st art ed or paused or if pr ot _sockf d is set. The number of
generations is passed to macrocel | . ¢ by means of the -n argument. Similarly to
EVOLVE:

* set_gen() iscaled,

* init_boundaries() iscaled,
* startedisse;

* paused iscleared;

* init_geniscleared.

BATCH or | GNORED may be returned as usual.
LOOP
The same as EVOLVE, only that there is no number of generations to be read, as this re-

quests an infinite loop.

RESUME
Thisis| GNOREDif paused isnot set. It smply clearspaused andi ni t _gen.

PAUSE

Thisis| GNORED if the Engine has not st ar t ed or if it isaready paused. It sets paused
and returns PAUSED.

FI NI SHED

This pseudo-r eq_code isused by run() to clear the st art ed variable. It is| GNORED if
the Engineisnot st ar t ed.

EXI TCODE

29/05/2000 124

Just returns EXI TCODE.

7.5.3 Fileand Socket I/0
7.5.3.1 DataHandling

Data communicated to the GUI or saved in a file follow the rule that the x dimension
changes fastest, followed by y, followed by z In other words, if the data in question are of
Size xext ent *yext ent *zext ent, the CA Engine will write them looping zext ent
times over yext ent, sending xext ent data each time. Technically, these loops are not
executed when writing, but the effect to the order of the written data is the one described
above. xext ent , yext ent and zext ent are determined by means of an array, pos[3] . If
a co-ordinate of this array is set to O, then the corresponding extent may be
DI MX/ DI My/ DI Mz, except if the dimension is not used, in which case the extent equals 1.
If the co-ordinate is greater than O, then the corresponding extent is equal to 1. This as-
sumes that the GUI enumerates the cells in each dimension starting from 1, contrary to the
CA Engine which enumerates from O.

7.5.3.2 Writing Data

Functions that write to a file or socket contain the temporary data storage variable
t np_dat a of type unsi gned char*. Thisis used to get the data from the CA Engine
part belonging to each process and gather them in the root process. In the general case its
Sizeis CPT_DI MX** DI My* DI MZ*cpt _st at e_si ze[st at ei d] (the number of elements
in each process multiplied by the size of each element of a given substate). On the other
hand, the root process requires an extravariablet np_dat a2 of the same datatype and ade-
quate size (generally DI MX* DI My* DI MZ* cpt _st at e_si ze[st at ei d]) in which to col-
lect the data. All the arrays above contain actua data, stripped of boundary data. Thisis
achieved by means of function get _x_I i ne() which skips the boundaries when travers-
ing the mode!.

The approach in gathering the data to the root process is very different depending on
whether even decomposition is assumed or not. We will describe these cases separately.

2CPT_DI MX[cnt Wor | dRank] in the case of uneven decomposition

29/05/2000 125

7.5.3.2.1 Even Decomposition Data Collection

The data are gathered into the root process using MPl _Gat her . Thedataint np_dat a are
contiguous per process. It would be an error to gather them into the root process using a
simple MPI _Gat her cal. This would mean that the first NPROCS x-lines of process 0
would be considered as one x-line of the model. In order to interleave the process lines
while gathering, we create derived MPI _Dat at ypes, both for sending and for receiving
data. The process of creating these datatypes resembles the rationale of the data decomposi-
tion to folds consisting of strips, as discussed in section 5.4. For the sending datatype, we
create first a vector datatype, send_st ri p_vec, packing DI My* DI MZ blocks of CPT_F_X
contiguous elements. The distance between the first elements of two consecutive contigu-
ous blocks is set to CPT_DI MX elements. This is the MPI way to represent a strip on the
sender. We then create another datatype, send_strip_UB type, using the
MPI _Type_struct cal, to fix the extent of this datatype to CPT_F_X. Thisis atechnica
requirement for MPI and it is achieved by setting the upper bound of the datatype to an
address CPT_F_ X elements away from its beginning.

The receiver end creates a strip vector, recv_stri p_vec, sSmilarly to the sender, only
that the stride between the first elements of two consecutive contiguous blocks is set to
DI MX, i.e. the x-size of the recelving buffer. This is the building block of the
recv_fol d_type derived datatype, naturally consisting of NFOLDS strips. Finaly, we
create a fixed extent datatype recv_f ol d_UB_t ype, in the same manner as above and
with the same extent. MPI _Gather is cadled so that NFOLDS elements of type
send_strip_UB_type are sent from each process and process O receives one element of
typerecv_fol d_UB type from each process. The implementation of this procedure is
shown in Table 10.

[* Type strip */
MPI _Type_vector (DI My*DI Mz, CPT_F X, CPT_DI MX
cpt_state npidt[stateid],
&send_strip_vec);
MPI _Type_comit (&send_strip_vec);

/* Type strip with fixed extent for gather */

types[0] = send_strip_vec;
types[1] = MPI _UB;
di spl acenents[0] = O;

MPI _Address (&(tnp_data[0]), &start_address);
MPI _Address (&(tnp_data] CPT_F X*cpt _state size[stateid]]), &address);
di spl acenent s[1] address-start _address;

bl ock_| engt hs[0]
bl ock_I engt hs[1]

1
1

MPI _Type struct (2, block | engths, displacenents, types,

29/05/2000 126

&send_strip_UB type);
MPI _Type_conmit (&send_strip_UB type);

/* Type strip. Different than send_ in stride since buffer is bigger */
MPI _Type_vector (DI My*DI Mz, CPT_F X, DI MX, cpt_state npidt[stateid],
& ecv_strip_vec);
MPI _Type_commit (& ecv_strip_vec);

[* Type fold */
for (i =0; i < NFOLDS; i++) {
types[i] = recv_strip_vec;

di spl acenents[0] = O;
MPI _Address (&(tnp_data?2[0]), &start_address);

for (i =1; i < NFOLDS; i++) {

MPI _Address(&(tnp_data2[i*CPT_NPROCS*CPT_F_X*cpt _state_size[stateid
11).

&addr ess) ;

di spl acenents[i] = address-start_address;

}

for (i =0; i < NFOLDS; i++) {
bl ock_lengths[i] = 1;
}

MPI _Type_struct (NFOLDS, bl ock_| engths, displacenments, types,
& ecv_fold_type);
MPI _Type_commit (& ecv_fold_type);

/* Type fold with fixed extent for gather */
types[0] = recv_fold_type;
types[1] = MPI _UB;

di spl acenents[0] = O;

MPI _Address (&(tnp_data?2[0]), &start_address);

MPl _Address (&t np_dat a2[CPT_F_X*cpt _state_si ze[stateid]]),
&addr ess) ;

di spl acenent s[1] = address-start_address;

bl ock_| engt hs[0]
bl ock_| engt hs[1]

1;
1;

MPI _Type_struct (2, block_| engths, displacements, types,
&recv_fold _UB type);
MPI _Type_commit (& ecv_fold UB type);

MPI _Gat her (tnp_data, NFOLDS, send_strip_UB type,
tnmp_data2, 1, recv_fold_UB type, 0, cntComConmand);

Table 10: The codefor the derived datatype used for interleaved gathering of datain
theroot process. Taken from functioncnt _write().

It should be noted that this non-trivial and costly procedure introduced in release 1.2 of
CAMELot eliminates the need for the root process to rearrange the data from folds to nor-
mal line representation. However, there are functions, namely tx_vi s_pack() and

29/05/2000 127

serv_vi ew_stat e(), which do not employ this method. The reason is that these func-
tions may need to handle a subset of the substate data, which makes the implementation of
the strategy more complicated.

In order for the aforementioned functions to interleave the process lines while gathering,
we create a derived MPI _Dat at ype called recv_vec. This in turn contains another de-
rived datatype called send_vec. The latter is created using the MPI _Type_vect or com-
mand and it generally contains DI My* DI MZ blocks of elements of a specific datatype, each
having length equal to CPT_DI MX with stride DI MX. In other words, this is a vector which
leaves enough space for the whole x-line of the model (DI MX), yet carries the data of one
process (CPT_DI MX). The recv_vec is then created using the MPI _Type_st ruct func-
tion, as a two-element struct, the former being send_vec and the latter the pseudo
MPI _Datatype MPI_UB. The displacement for the upper bound is set to
CPT_DI MX*st at e_si ze, i.e. enough for the data of one process. The arguments of the
MPI _Gat her call are set in such away, so that the processes send contiguous data which
are rearranged in the receiver process, as shown in Table 11. It should be noted that these
structures are local to each function. A global datatype variable cannot be constructed,
since this depends on the datatype of the data to be transferred. This statement is true for
the other method of data transmission as well.

MPI _Type_vector (ny_y*ny_z, ny_x, ny_x*work_si ze,
cpt_state_npidt[substate], &send_vec);
MPI _Type_commit (&send_vec);

displ[0] = O;
displ[1] = ny_x;
bl ockl engt hs[0]
bl ockl engt hs[1]
types[0] = send_
types[1] = WPl _UB
MPI _Type_struct (2, blocklengths, displ, types, & ecv_vec);
MPI _Type_commit (& ecv_vec);

< I
oarrR

e

MPI _Gather (tnp_data, nmy_x*my_y*my_z, cpt_state_npidt[substate],
tnmp_data2, 1, recv_vec, 0, cnt ConmrKk);

Table 11: Thecodefor the derived datatype used for interleaved gathering of datain
theroot process. Taken from function ser v_vi ew_st at e() . Thiscodeimpliesthe
need to rearrange the data from fold to normal representation before writing them.

The data collected using the above process are fragmented across the x-axis in strip sized
portions because of the folded block-cyclic decomposition and need to be rearranged. We

29/05/2000 128

use the t np_dat a3 array of size equal to that of t np_dat a2, as an argument to function
get _write_ptr() which returns data ready for transmission. It should be noted that
get _write_ptr() isonly executed in the root process. The size of the temporary data
storage variables is of particular importance and is further discussed in section 7.5.3.6.
These data structures are allocated memory in every cal of the functions according to the
requirements and are freed before exiting the function.

7.5.3.2.2 Uneven Decomposition Data Collection

In this case, point-to-point sends and receives are used to communicate the data. The rea-
son is that strips have different sizes and MPI _Gat her and MPI _Gat her v are not flexible
enough to handle interleaving variable lengths of data from multiple processes.

For each process role (send-receive) two types of vectors are needed, a small and a large
one. Recall from the discussion of function cal ¢_x_si zes() in section 5.4.1 that we
decided to distribute extraneous cells to the processes from last to first, and place them in
strips from first to last. As far as the senders are concerned, the x-size of the large strip can
be found in CPT_F_X[cnt Wor | dRank] [0] , whereas the small size will be found in
CPT_F X[cntWorl dRank] [first_small _strip_ind[cnt Worl dRank]]. The proc-
ess may not have different sized strips, and this is easily tested by comparing
first_small _strip_ind[cnm WrldRank]] against its default value, NFOLDS. Note
that thisis not avalid index for thefirst_smal | _strip_i nd array. Similarly with the
above, for the receiver the x-size of the large one can be found in CPT_F_X[1 ast][0],
and the smallest sized strip, isinCPT_F _X[O] [first_small _strip_ind[0]].

All four vector types consist of DI My* DI MZ blocks of contiguous data, with sizes as above.
Similarly to the even decomposition case, send vectors differ from recelve vectors in the
stride, i.e. the distance between the start of two consecutive contiguous blocks. Send vec-
tors have a stride equal to the x-dimension of the process, CPT_DI MX[cnt Wor | dRank] ,
whereas receive vectors have a stride equal to the x-dimension of the model, DI MX.

Data exchange is achieved with immediate receives issued from the root process and stan-
dard sends issued from each process (including the root process for ease of implementa-
tion). The root process issues NFOLDS* CPT_NPROCS receives, and each process issues
NFOLDS sends, one for each strip, with the appropriate sizes. The tags are defined as a se-
guence starting with 0 and incrementing by 1 for each strip encountered when traversing
the original model (e.g. the second tag equalsto 1 and correspondsto strip O of process 1).

29/05/2000 129

A summary of the code used for the case of uneven decomposition is shown in Table 12.
An interesting technical issue has to do with the traversal of the data received on process 0.
This is accomplished with two nested for loops across strips and then across processes. It
should be noted that the order of these loops should not be swapped, otherwise the index,
calculated incrementally, in the receiving array will be miscal culated

/* Send types */
MPl _Type_vector (DI My*DI Mz, CPT_F_X[cnt Wor | dRank] [0],
CPT_DI MX[cnt Wr | dRank], cpt_state_npidt[stateid],
&send_strip_vec_large);
MPI _Type_commit (&send_strip_vec_large);
if (NFOLDS !'= first_small_strip_ind[cmtWrl dRank]) {
WPl _Type_vector (DI My*DI MZ,
CPT_F X[cmtWrldRank] [first_small _strip_ind[cnt Wrl dRank]],
CPT_DI MX[cnt Wor | dRank], cpt_state_npi dt[stateid],
&send_strip_vec_small);
MPI _Type_commit (&send_strip_vec_snmall);
/* End if (first_small _strip_ind[cntWrldRank]) */

/* Receive types. */
MPI _Type_vector (DI My*DIMZ, CPT_F X last][0], DI MX
cpt_state_npidt[stateid], &ecv_strip_vec_large);
MPI _Type_commit (& ecv_strip_vec_large);
if (NFOLDS != first_small _strip_ind[0]) {
MPI _Type_vector (DI My*DI Mz, CPT_F X[O][first_small _strip_ind[0]],
D MX, cpt_state npidt[stateid],
& ecv_strip_vec_small);
MPI _Type_commit (& ecv_strip_vec_small);
/* End if (first_small _strip_ind[0]) */

/* Receive data */
if (0 == cmtWorl dRank) {

/[* First run strip then run processor, so as to traverse tnp_data2
linearly. tnp_data2 contains the data in physical order. Going down
the x-axis one neets first strip O of process 1 and then strip 1 of
process 0 */

i = 0; /* Index to position in tnp_data2[] */
tag = 0; /* Tag for comm and request[] index */

for (strip = 0; strip < NFOLDS; strip++) {
i nt advance; /* Bytes to advance arrays (calc taken out) */

for (proc = 0; proc < CPT_NPRCCS; proc++) {
if (strip < first_small_strip_ind[proc]) {
MPI Irecv (& np_data2[l], 1, recv_strip_vec_large, proc,
tag, cntCormConmand, &request[tag]);
} else {
MPI Irecv (& np_data2[l], 1, recv_strip_vec_small, proc,
tag, cntCormConmand, &request[tag]);
/[* End if strip */
i += CPT_F_X/proc][strip]*cpt_state_size[stateid];
tag++;

} /* End for (proc) */
} /* End for (strip) */
} /* End if (0 == cmtWorldRank) */

/* Send data */

29/05/2000 130

i =0; /* Index to position in tnp_data[] */
for (strip = 0; strip < NFOLDS; strip++) {
tag = strip*CPT_NPRCCS + cnt Wr | dRank;
if (strip < first_small_strip_ind[cmWrldRank]) ({
MPI _Send (& np_datal[i], 1, send_strip_vec_large, O,
tag, cnt ConmConmand) ;
} else {
MPI _Send (& np_datal[i], 1, send_strip_vec_small, O,
tag, cnt ConmConmand) ;
} /[* End if strip */
i += CPT_F_X cmWorldRank][strip]*cpt_state_size[stateid];

} /* End for (strip) */

if (0 == cmtWorl dRank) {
if (MPI_SUCCESS != MPI _Waitall (CPT_NPROCS*NFOLDS, request,
status)) {
fprintf (stderr, "cnt_wite: MPI_Waitall failed\n");
MPI _Abort (cmt CormCommand, -1);
} /* End (MPlI_Waitall) */
} /* End if (0 == cntWorl dRank) */

Table 12: Thecodefor thederived datatype and data gathering in the case of uneven
decomposition. Adapted from functioncnt _wite().

Similarly to the even decomposition case, the functions that may need to handle a subset of
the substate data, tx_vi s_pack() and serv_vi ew_st at e() require complicated im-
plementation. This time we discern between two cases. If the functions handle al of the
data, then we do exactly what we described earlier, as shown in Table 12. Otherwise, we
limit the point-to-point communication between the root process and the process holding
the data; see section 7.5.3.4 for the working process definition. Table 13 summarises the
datatype derivation.

/* Send types. */
MPI _Type_vector (ny_y*ny_z, 1, my_x,
cpt_state_npidt[substate], &send_strip_vec_large);
MPI _Type_commit (&send_strip_vec_large);

/* Receive types. */
MPI _Type_vector (nmy_y*nmy_z, 1, tnp_data2_si ze,
cpt_state_npidt[substate], & ecv_strip_vec_large);
MPI _Type_commit (& ecv_strip_vec_large);

/* Receive data */
if (0 == cmtWorl dRank) {
MPI Irecv (tnp_data2, 1, recv_strip_vec_large, proc,
0, cnt CormConmand, &request[0]);
} /* End if (0 == cntWorl dRank) */

/* Send data */
if (work) {
MPI _Send (tnp_data, 1, send strip vec_large, O,

29/05/2000 131

0, cm ComComrand) ;
} [* End if (work) */

if (0 == cmtWorl dRank) {
MPI _Waitall (1, request, status);
} /* End if (0 == cntWorl dRank) */

Table 13: Thecodefor thederived datatype and gathering of a substate of thedata in
the case of uneven decomposition. Adapted from functionserv_vi ew_state().

7.5.3.3 Reading Data

Similar operations as for writing are used when reading data. The same arrays for data stor-
age are created per process and on process 0, athough what used to serve as areceiver data
store now serves as a sender and vice versa. Function in the even decomposition case is an
exception to the allocation rule, as it only allocates enough space to store data the size of
the x dimension. We will describe the even and uneven decomposition cases separately.

7.5.3.3.1 Even Decomposition Data Distribution

This time the sender (process 0) creates a fixed-extent fold type send_f ol d_UB_t ype
deriving it from a previously derived strip vector. The receivers need only a fixed extent
strip type, called recv_strip_UB_type, yet they receive NFOLDS of them and in the
right order. The code is shown in Table 14 below.

[* Type strip */
MPI _Type_vector (DI My*DI Mz, CPT_F X, DI MX, cpt_state npidt[stateid],
&send_strip_vec);
MPI _Type commit (&send strip_vec);

[* Type fold */

for (i =0; i < NFOLDS; i++) {
types[i] = send_strip_vec;

di spl acenents[0] = O;
MPI _Address (&(tnp_data2[0]), &start_address);
for (i =1; i < NFOLDS; i++) {

MPl _Address(&(tnp_data2[i*CPT_NPROCS*CPT_F _X*cpt _state size[stateid
11).

&addr ess) ;
di spl acenents[i] = address-start_address;
}
for (i =0; i < NFQLDS; i++) {
bl ock_lengths[i] = 1,

29/05/2000 132

}

MPI _Type_struct (NFOLDS, bl ock_| engths, displacements, types,
&send_fol d_type);

MPI _Type_commit (&send_fold_type);

/* Type fold with fixed extent for scatter */

types[0] = send_fold_type;
types[1] = MPI _UB;
di spl acenents[0] = O;

MPl _Address (&(tnp_data2[0]), &start_address);
MPl _Address (&(tnp_data2[CPT_F X*cpt_state_size[stateid]]),

&addr ess) ;
di spl acenent s[1] = address-start_address;
bl ock_l engt hs[0] = 1;
bl ock_l engths[1] = 1;

MPI _Type_struct (2, block_| engths, displacements, types,
&send_fol d_UB_ type);
MPI _Type_commit (&send_fold UB type);

/* Type strip. Different than send_ in stride since buffer is smaller */
MPI _Type_vector (D My*DI Mz, CPT_F_X, CPT_DI M,
cpt_state_npidt[stateid], & ecv_strip_vec);
MPI _Type_commit (& ecv_strip_vec);

[* Type strip with fixed extent for scatter */

types[0] = recv_strip_vec;
types[1] = MPI _UB;
di spl acenents[0] = O;

MPI _Address (&(tnp_data[0]), &start_address);
MPI _Address (&(tnp_data[CPT_F_X*cpt_state_size[stateid]]), &address);
di spl acenent s[1] = address-start_address;

/* The rest are the same as above */

MPI _Type_struct (2, block_|l engths, displacenments, types,
&recv_strip_UB type);
MPI _Type_conmit (& ecv_strip_UB type);

MPI _Scatter (tnp_data2, 1, send_fold_UB type,

tnp_data, NFOLDS, recv_strip_UB type,
0, cm ComrComrand) ;

Table 14: Thecodefor thederived datatype used for scattering data. Taken from func-
tioncnt _read().

Function serv_set _state() does not use derived datatypes for data scattering. This
function is only used when the user changes the value of one substate on one cell, despite
having been implemented to handle any number of elements. In this case, the size of the
allocated buffers is smaller by a factor of yext ent *zext ent because the function does
not involve one-off reads from the root-process, but rather loops over the zext ent and
yext ent to get all the data. As a result the data need to be rearranged on the receivers

29/05/2000 133

side after reception, using function set _x_Ii ne(). The code for scattering the data is
shown in Table 15.

for (z = z_start; z < z_end; z++) {
for (y = y_start; y <y_end; y++) {

cpl
cp2

CA REF (cal, z_disp+z, y_disp+y, x_disp);
CA REF (ca2, z_disp+z, y_disp+y, x_disp);

if (0 == cnmtWorl dRank) {

if (size !'=readn (prot_sockfd, (char *) tnp_data2, size)) {
fprintf (stderr, "serv_set_state: readn error!\n");
MPI _Abort (cmt CormCommand, -1);

} /[* End if readn */

get _scatter_ptr (&scatter_ptr, tnp_data2, tnp_data3,
tnp_dat a2_si ze, cpt_state_size[stateid]);

} /* End if (0 == cntWrl dRank) */

MPI _Scatter (scatter_ptr, ny_x, cpt_state npidt[stateid],
tnp_data, ny_x, cpt_state_npidt[stateid],
0, cm ComrComrand) ;

if (work) {
set_x line (cpl, stateid, tnp_data, my_x);
set_x line (cp2, stateid, tnp_data, my_x);
} /* End if (work) */

} /[* End for(y) */
} /* End for(z) */

Table 15: Thecodefor scattering data without derived datatypesin the case of even

decomposition. Taken from function ser v_set _st at e() . Note the need to rearrange

the data from normal to fold representation before reading them in the CA copies (call to
get _scatter_ptr()).

7.5.3.3.2 Uneven Decomposition Data Distribution

Similarly to the discussion in section 7.5.3.2.2, two sizes of vectors must be defined for the
sender and receivers. This operation is symmetric to the gathering, and the code reflects
this too. The sender’s sizes are calculated exactly like the receiver’s sizes in the case of the
collection and vice versa. The same symmetry appears for the strides of the datatypes. The
point-to-point data communication is effected with CPT_NPROCS* NFOLDS immediate
sends from the root process followed by NFOLDS standard receives from each process.

29/05/2000 134

The summary of the code appearsin Table 16.

/* Send types */
MPI _Type_vector (DI My*DIMZ, CPT_F X[last][0], DI MX
cpt_state_npidt[stateid], &send_strip_vec_large);
MPI _Type_commit (&send_strip_vec_large);
if (NFOLDS != first_small _strip_ind[0]) {
MPI _Type_vector (DI My*DI Mz, CPT_F X[O][first_small _strip_ind[0]],
D MX, cpt_state npidt[stateid],
&send_strip_vec_small);
MPI _Type_commit (&send_strip_vec_small);
/* End if (first_small _strip_ind[0]) */

/* Receive types. These are only inportant on the receiver side */
MPI _Type_vector (D My*Dl Mz, CPT_F_X[cnt Worl dRank] [0],
CPT_DI MX[cnt Wor | dRank] ,
cpt_state npidt[stateid], & ecv_strip_vec_large);
MPI _Type_commit (& ecv_strip_vec_large);
if (NFOLDS !'= first_small_strip_ind[cmtWrl dRank]) {
MPl _Type_vector (DI My*DI MZ,

CPT_F X[cmtWrldRank][first_small _strip_ind[cmt Wrl dRank]],
CPT_DI MX[cnt Wr | dRank], cpt_state_npidt[stateid],
& ecv_strip_vec_small);
MPI _Type_commit (& ecv_strip_vec_small);
/* End if (first_small _strip_ind[cntWrldRank]) */

/* Send data */
if (0 == cmtWrldRank) {

/* First run strip then run processor, so as to traverse tnp_data2
linearly. tnp_data2 contains the data in physical order. Going down
the x-axis one neets first strip O of process 1 and then strip 1 of
process 0 */

i = 0; /* Index to position in tnp_data2[] */
tag = 0; /* Tag for comm and request[] index */

for (strip = 0; strip < NFOLDS; strip++) {
i nt advance; /* Bytes to advance arrays (calc taken out) */

for (proc = 0; proc < CPT_NPRCCS; proc++) {
if (strip < first_small_strip_ind[proc]) {
MPI I send (& np_data?2[i], 1, send_strip_vec_large, proc,
tag, cnt CormConmand, &request[tag]);
} else {
MPI I send (& np_data?2[i], 1, send_strip_vec_small, proc,
tag, cnt CormConmand, &request[tag]);
[* End if strip */
i += CPT_F_X/proc][strip]*cpt_state_size[stateid];

tag++;
} /* End for (proc) */
} /* End for (strip) */
} /* End if (0 == cntWorl dRank) */

/* Receive data */
i = 0; /* Index to position in tnp_data[] */
for (strip = 0; strip < NFOLDS; strip++) {
tag = strip*CPT_NPRCCS + cnt Wr | dRank;
if (strip < first_small_strip_ind[cmWrldRank]) {

29/05/2000 135

MPI _Recv (& np_datal[i], 1, recv_strip_vec_large, O,
tag, cnt CormConmand, &status[cnt Worl dRank]);

} else {
MPI _Recv (& np_datal[i], 1, recv_strip_vec_small, O,
tag, cnt CormConmand, &status[cnt Worl dRank]);
} /[* End if strip */

i += CPT_F_XcmWrldRank][strip]*cpt_state_size[stateid];
} /* End for (strip) */

if (0 == cmtWorldRank) ({
if (MPI_SUCCESS != MPI _Waitall (CPT_NPROCS*NFOLDS, request,
status)) {
fprintf (stderr, "cnt_read: MPI_Waitall failed\n");
MPI _Abort (cmt CormCommand, -1);
} /* End if (MPI_SUCCESS != MPI _Waitall) */
} /[* End if (0 == cntWorl dRank) */

Table 16: Thecodefor thederived datatype used for scattering data in the case of
uneven decomposition. Taken from functioncnt _read() .

The function serv_set _state() may handle a subset of the data. In this case it is as-
sumed that only an x-plane will be distributed, and therefore one process will be reached,
so only one vector datatype is constructed for the sender and one for the receiver. Data is
communicated using and immediate send and a standard receive. The immediate send is
obligatory to avoid a deadlock in the case that the receiver is the root process (which is also
the sender). The sum of the corresponding code is shown in Table 17. In the case that the
whole of the model is distributed to the processes the same code as in Table 16 is used.
Note that up to release 1.3 of CAMELot this function is only used for asingle cell.

/* Send types. */
MPI _Type_vector (ny_y*my_z, 1 , tnp_data2_size,
cpt_state_npidt[stateid], &send_strip_vec_large);
MPI _Type_commit (&send_strip_vec_large);

/* Receive types. */
MPI _Type_vector (ny_y*my_z, 1, ny_Xx,
cpt_state_npidt[stateid], & ecv_strip_vec_large);
MPI _Type_commit (& ecv_strip_vec_large);

/* Send data */
if (0 == cmtWorldRank) ({
MPI I send (tnp_data2, 1, send_strip_vec_large, proc,
0, cnt CormConmand, &request[0]);
} /* End if (0 == cntWorl dRank) */

/* Recv data */
if (proc == cntWorl dRank) {
MPI _Recv (tnp_data, 1, recv_strip_vec_large, O,
0, cnt CormTConmand, &stat us[cnt Worl dRank]);
} /* End if (proc == cmtWorldRank) */

29/05/2000 136

if (0 == cmtWorldRank) {
if (MPI _SUCCESS != MPI_Waitall (1, request, status)) {
fprintf (stderr, "serv_set_state: MPI_VWaitall failed\n");
MPI _Abort (cmt CormCommand, -1);
} /* End if (MPI_SUCCESS != MPI _Waitall) */
} /* End if (0 == cntWorl dRank) */

Table 17: Thecodefor thederived datatype used for scattering a substate of the data
in the case of uneven decomposition. Taken from functionserv_set _state().

7.5.3.4 Working Macrocells and Buffer Sizes

In the case where the spatia entity concerned does not cover the full length of the x-axis,
only some of the processes need to work in order to collect all the necessary data. Given
that the CA Engine only deals with full extent entities, it is understood that these cases
concern set-x entities (e.g. the plane x=1). Therefore, the data belong only to one process.

The identification of the working process is different, depending on whether the even data
distribution code is enabled or not. We discuss the two cases separately.

7.5.3.4.1 Even Decomposition Working Process | dentification and Buffer Allocation

This processisidentified by the fact that its rank equals
((pos[0] -1)/ CPT_F_X) %CPT_NPRCCS) ,

pos[3] being the array denoting the position of the entity. The reason for subtracting 1
from the x co-ordinate is that the CA Engine enumerates the axes starting with 0, whereas
the GUI and thus the user perceive the axes to start with one. Dividing by CPT_F_X we get
the absolute number of the strip, as if the data were not spread among the processes; the
modul o operation maps this to the process where it is assigned.

We will first discuss the case when a subset of data are gathered to the root process. In this
case we introduce a new MPI Communicator, cnmt CormW\r k, local to the function corre-
sponding to the request in question. This communicator consists of the root process so as to
do the I/O and, if the root process is not the working one, another process. If the root proc-
essistheone, t np_dat a,t np_dat a2 andt np_dat a3 all have size

yext ent * zext end* el _si ze,

29/05/2000 137

el _si ze being the natural size of the element; otherwise t np_dat a2 has size 2 times as
much as the above. This is because t np_dat a2 must hold the data in the MPI _Gat her
call and since the root process participates in the communicator as a receiver, it aso par-
ticipates as a sender. It is noted that in this case the data in the first half of t np_dat a2
must be discarded. This is executed in function get _write_ptr(), discussed in section
7.5.3.6. This communicator is used to gather data to the root process; the size of data col-
lected from each participating process equalsthe size of t np_dat a.

In the case that data are scattered to the processes we avoid the overhead of creating and
deleting the new communicator. All the processes receive the data, but each process has
already determined whether the change affects its data set, using the same rule as above,
and only they make the necessary changesto their CA copies.

7.5.3.4.2 Uneven Decomposition Working Process |dentification and Buffer Alloca-
tion

Given that the strips have various x-lengths, the calculation of the working process is not
straightforward in this case. The processes traverse the strips in the model comparing the x
top end of each strip to the value of pos[0] . This calculation is inefficient, but it is com-
bined with the calculation of the x displacement, discussed in section 7.5.3.5.2. The code is
shown in Table 18.

if (1 ==ny_x) {
int top = 1;
int found = O;
strip = 0;
while (strip < NFOLDS) {

proc = O;

while (proc < CPT_NPROCS) ({
top += CPT_F X[proc][strip];
if (pos[0] < top) {

found = 1;

} [* End if (pos[0] < top) */
i f (found) break;

proc++;

} /* End while (proc) */

if (found) {

x_disp += pos[0]-(top-CPT_F X/ proc][strip]);

/* The distance fromthe current strip start */

br eak;
} /* End if (found) */
x_disp += CPT_S X[cntWirl dRank] [strip];
strip++; /* This *nust* be the |ast conmand of the |oop! */

29/05/2000 138

} /* End while (strip) */
if (proc !'= cntWorldRank) ({

work = 0;
} /* End if (proc != cmtWorldRank) */

Table 18: Thecodefor theidentification of the working processin the case of uneven
decomposition.

Because in the case of uneven decomposition no collective communications are used there
is no longer a need for the cnt CommAdr k communicator setup; t x_vi s_pack() isan
exception, because it uses the communicator so as to calculate the minimum and maximum
of the substate to be visualised (see section 8.6.2.1 for more).

Unlike the even decomposition case, tnp_data and tnp_data2 have size yex-

tent *zext end*el _si ze, el _si ze being the natural size of the element and the size of
t np_dat a2 need not vary according to whether process O is a working process or not, be-
cause the data are communicated point-to-point. Calling the functionsget _write_ptr(),
and get _scatter_ptr() isnot necessary either, as discussed in section 7.5.3.2.2, so the
pointer t np_dat a3 isobsolete.

7.5.3.5 Data Access

Accessing the data in each of the processing elements requires knowledge of how they are
stored. In the current implementation data are stored with x fastest as mentioned in section
5.2. Asdiscussed there, halo data are inserted in the following places in the dataset:

* Dbeforethefirst and after the last real element (z-axis);
* between planes (y-axis);

* Dbetween lines (x-axis);

* between strips (folded data).

In the general case, the displacement in the z-axis equals Radi us. This means that in order
to access the first real piece of element we must skip Radi us planes of size CPT_Y* CPT_X
each (i.e. planesincluding the per-line and per-plane haloes). If the entity we want to access
is not the whole model, then we must skip an extra pos[2] - 1 planes; thus, the displace-
ment equals Radi us+pos[2] - 1. The displacement in the y-axisis calculated similarly.

29/05/2000 139

Calculation of the x-axis displacement if we do not want to access the whole x-line is less
easy. The way to do that depends on whether even decomposition is assumed or not.

7.5.3.5.1 Even Decomposition x-Axis Displacement Calculation

Because of the per-strip haloes, the data in the process are not contiguous; and because of
the block-cyclic decomposition, they do not represent contiguous lines in the original
model. In the normal case where the whole of the model is assumed, the displacement
equals Radi us, since only theinitial halo in each strip must be skipped.

We will now consider the case where a subset of the data on the x-axis are concerned. Sup-
posing that the right process is already located from the cnt ConmAbr k communicator
definition, and that the right plane and line are also located using the above rules, we have
to find the correct strip in the process and the correct column in the strip and access them
using a seria pointer. A Radi us displacement will skip the line halo. In order to find the
right strip we add

(pos[0] - 1)/ (DI MX/ NFOLDS) * CPT_S_X,

since DI MX/ NFOLDS"® gives us the rank of the strip and multiplication by CPT_S X takes
us there. In order to find the correct column we add (pos[0] - 1) 4CPT_F_X, which gives
the displacement from the beginning of the strip. In summary, if pos[0] is hot equal to O,
the x-axis displacement equals

Radi us + (pos[0]-1)%CPT_F_X + (pos[0]-1)/ (Dl M NFOLDS)*CPT_S_X

7.5.3.5.2 Uneven Decomposition x-Axis Displacement Calculation

As mentioned in section 7.5.3.4.2, this displacement is calculated at the same time as the
working processes are identified. As shown in Table 18, the corresponding variable
x_di sp isinitialised to Radi us and then for each strip of the process traversed, it isin-
cremented by CPT_S X[cnt Wor | dRank] [stri p], the total size of the strip (including
the halos). However, if the working cell is found, x_di sp isinstead incremented in that
process by the distance from the currently examined strip start (pos[0] - (top-
CPT_F X[proc][strip])).

3 We remind the reader that DI MX is the x size of the model before the decomposition, CPT_S_X is the
total strip x-size including the two per-strip haloesand CPT_F_Xisthe x-size of the strip’s real data.

29/05/2000 140

7.5.3.6 Data Mapping Functions

* void get_ x Iine (CptCell *cp, int substate,
u_char *tnp_data, int ny_x)

This function gets the data from the CA Engine, where they are fragmented because of
the folded representation, and coalesces them into the pointer t np_dat a. This func-
tion assumes that the cell pointer has been initialised to the first element of interest. It
loops over the strips and places the data contiguously in the appropriately initialised
t np_dat a pointer passed to the function as an argument. It is executed by all the pro-
cesses in the communicator when the objective is to gather substate data to the root
process. The argument subst at e is used to identify the size of the elements and is
also passed as an argument to cpt _get _state() so as to return the corresponding
values. The argument ny_x is the number of substate elements and it is used to iden-
tify whether the loop over folds should occur or there is only one element to be re-
turned.

N.B.: This function only removes haloes, it does not re-organise the data so as to be
contiguous for the external, natural representation of the model (see function
fol d2line() for more).

* void set_x_line (CptCell *cp, int substate,
u_char *tnp_data, int ny_x)

This function moves the data for substate subst at e from the pointer t np_dat a to
the CA Engine copy cp, and at the same time it inserts haloes to the folded, yet with-
out haloes data of the t np_dat a pointer. This function assumes that the cell pointer
has been initialised to the first byte to be written. It loops over the strips and places the
data from the t mp_dat a pointer to the appropriate position in cp taking into account
the fold-derived haloes in the latter. It is executed when substate data have been scat-
tered from the root process to all the processes in the communicator. The argument
subst at e, used to identify the size of the elements, is also passed as an argument to
cpt _set _state(). Theargument ny_x is the number of substate elements and it is
used to identify whether the loop over folds should occur or there is only one element
to be set in the CA Engine.

N.B.: This function assumes that the data in t np_dat a have been appropriately or-
ganised in folds (see function | i ne2f ol d()).

The following functions are only used when handling parts of the model in the case of even
decomposition code. Functions concerned with the whole model do not need these, as the

29/05/2000 141

trandation of data from normal lines to folded data and vice versa is incorporated to the
corresponding scatter and gather operations. See also sections 7.5.3.2 and 7.5.3.3.

e void fold2line (const u_char *source, u_char *target,
size_ t e_size)

This function turns the contiguous, yet folded x-line data into a representation suitable
for externa presentation. The data are originally stored in the sour ce unsigned char-
acter pointer and the resulting data are made available through the t ar get pointer.
e_si ze is the size of each of the elements represented as characters. The function
traverses the source array in strides of length NFOLDS*stri p_si ze and writes
stri p_si ze chunks of data contiguously to the t ar get array. This function is only
called by the root process.

e void line2fold (const u_char *source, u_char *target,
size_ t e_size)
This function turns the contiguous, x-line data into folded, internal representation data.
The data are originally stored in the sour ce unsigned character pointer and the result-
ing data are made available through the t ar get pointer. e_si ze isthe size of each of
the elements represented as characters. The function traverses the sour ce array in
strides of length CPT_NPROCS*strip_size and writes strip_size (i.e
CPT_F_X*e_si ze) chunks of data contiguously to the t ar get array, without leaving
gaps for the halo. This function is only called by the root process.

* void get_wite_ptr (u_char *tnp_data2, u_char *tnp_dat a3,

int tnp_data3 _size, int x, int y, int z,

int el _size, int work, int work_size)
This function is a wrapper™ for f ol d2I i ne() . The argument t np_dat a2'® contains
the original datain internal CA Engine format, and t np_dat a3 is the target buffer for
fol d2li ne(). It isassumed that the former has been appropriately initialised to con-
tain folded data, whereas the latter points to an appropriately allocated memory block
of sufficient size to hold data for the whole of the automaton. el _si ze is the natural
size of the elements stored as unsigned characters in t np_dat a2. The variable
t np_dat a3_si ze isthe size of the array t np_dat a3 in the x dimension. The func-
tion loops over z and y in that order and sets x elements of t np_dat a3 each time.
There aretwo casesfor t np_dat a3_si ze:

4 The implementation of this function has changed radically since release 1.0 of the software.
> 1t may help the reader to note that we maintained the naming of the variables of the calling function (see
section 7.5.3.1).

29/05/2000 142

— If tnp_dat a3_si ze equals DI MX then all the processes are working, therefore
fold2line(tnp_data2, tnp_data3, el _size) iscaled;

— If it equals 1, then there is no need for data rearrangement (they are just an element)
el _si ze bytesare copied fromt np_dat a2 tot np_dat a3.

There is a slight complication though, which justifies the existence of the wor k and
wor ksi ze arguments. The former is a flag denoting whether the root process was the
only member or if there was another process in the communicator. In the latter case,
the size of t np_dat a2 is 2 and the data in the first half of t np_dat a2, originating
from the root process, must be discarded since the second process contributed the cor-
rect data. This is achieved by advancing the t np_dat a2 pointer by el _si ze before
entering the loop.

After each iteration, the source and target pointers must be advanced. The argument
wor k_si ze contains the size (number of processes) of the communicator, and the ar-
gument x is the size of each strip. Therefore, after each iteration t np_dat a2 is ad-
vanced by x*work_size*el size bytes and tnp_data3 is advanced by
t np_dat a3_si ze*el _si ze bytes.

When the function exits, the argument t np_dat a3 points to the rearranged data, suit-
able for the external representation of the system.

* void get_scatter_ptr (u_char **scatter_ptr, u_char *tnp_dat a2,
u_char *tnp_data3, int tnp_data2_size,
int el _size)
Similarly to get _write_ptr(), thisfunction is awrapper for | i ne2f ol d() . It re-
turns the pointer scatter _ptr (passed by reference) containing data in internal,
folded representation. The argument t np_dat a2 contains the original datain interna
CA Engine format, and t np_dat a3 is the target buffer for | i ne2f ol d() . el _si ze
is the natural size of the elements stored as unsigned characters in t np_dat a2. Note
that we now use the variable t mp_dat a2_si ze which is the size of the array
t np_dat a2. There are two cases for it, not three (DI MX or 2 or 1) asis the case when
writing data, since when reading data there is no reason to allocate extra space for the
root process, t np_dat a2si ze isthe number of datato be scattered to each process.

29/05/2000 143

— If tnp_dat a2_si ze equals DI MX then al the processes are working and the func-
tion cals line2fold(tnp_data2, tnp_data3, el_size) and assigns
*scatter_ptr topointtot np_dat a3.

— If it equals 1, then there is no reason for data rearrangement (they are just an ele-
ment); *scatter_ptr issettopointtot np_dat a2.

N.B.: get _scatter_ptr() differsfromget _wite_ptr() inthat theformer con-
cerns the whole of the model, whereas the latter is only applied to one x-line only.

7.5.4 Substate Related Functions

* int serv_save_request (void)
This corresponds to ther eq_save_r equest () GUI function which requests that the
subst at e values for al cells in the CA Engine be written to file fi | ename. After
reading subst ate and fi | ename from the socket, the root process broadcasts the
state id to al the cells. The function cnt _wri t e (section 7.5.8.1) is called then, to
perform the write to file.

* int serv_set_l|oad (void)
Set the subst at e values for all cellsin the Engine to those listed in filefi | enane.
This is the inverse function of serv_save_r equest . The same procedures as above
are followed and then the function cnt _r ead (section 7.5.8.1) is caled to read the
data from the file and update the CA copies.

* int serv_view state (void)
This function writes the data of a subset of the model to the socket. The root process
on the CA side readsthe pos[] array containing the co-ordinates of the entity to be re-
trieved as well as the subst at e id through the socket. The array and substate are
broadcast to all the processes which calculate the loop extends as well as the tempo-
rary data storage size as described in section 7.5.3.2. Then the working cells are identi-
fied as described in section 7.5.3.4 and the participating processes allocate the tempo-
rary memory buffers. After the displacement has been calculated the working proc-
esses loop over z and y and the root process gathers and rearranges the data as de-
scribed in section 7.5.3.2 using derived datatypes as shown in Table 11, Table 12 and
Table 13. The pointer is advanced by calling CA_REF after every y iteration, rather
than by advancing the pointer using pointer arithmetic, as is the case when the whole
model is being handled (e.g. in functioncnt _wri t e()). Process O then writes back to
the GUI the current generation and executes onewr i t en cal to write the data to the

29/05/2000 144

socket. After completion of the task, the communicator, the derived datatypes and the
temporary memory buffers are freed.

* int serv_set_state (void)
This handles the request that a substate of the entity in a plane array pos[] be set to
the value transmitted through the socket. The root process reads and disseminates the
details of the entity in question from the socket. The flow of the program differentiates
with respect to whether even decomposition is chosen.

In the case of even decomposition the processes alocate temporary buffers on a per-
line basis. Each process also determines whether it needs to work and defines the loop
extends. In contrast with serv_vi ew_st at e() which needs one in the case of even
decomposition, no communicator is necessary. Inside the nested loop two copies are
accessed. The root process reads the data in x-line portions from the socket and scat-
ters them as shown in Table 15, after calling get _scatter _ptr () to rearrange the
data on a per-line basis. All the processes that need to work call set _x_1i ne() twice
to update their CA array copies. Note that this function callsget _scatter_ptr() as
many times as the loop iterations and set _x_1 i ne() twice as many times. The loops
are shown in Table 15.

In the case of uneven decomposition, memory for data storage is allocated, as de-
scribed in section 7.5.3.4 for the full extent of the data. This effects only one r eadn
cal to read the data from the socket. The send and receive vectors are created as de-
scribed in section 7.5.3.2.2 and shown in Table 16 and Table 17. As shown in Table
15, the data are written to the CA copiesline by line.

In both cases, the temporary buffers are freed in the end.

® int serv_set_param (void)
The root process reads the number of parameters to be set and aborts if the number is
illegal. It then loops over no_of _par ans reading the index and setting the value of
the corresponding parameter. After this is done, the internal parameter array is broad-
cast to dl the cdlls.

7.5.5 Program Flow Management

The PAUSE, LOOP, EVOLVE, FI NI SHED, EXI TCODE and RESUME r eq_codes are imple-
mented inside ther v() function (section 7.5.2).

29/05/2000 145

® int serv_termnate (void)
When TERM NATE is called the visualisation and plane lists are deleted. This is dis-
cussed in the Visualisation section.

* int serv_set _fold (void)

The root process reads the starting and ending active fold index in an integer array
with two elements, which it broadcasts to the other processes. If the specified folds are
invalid (i.e. not in the correct order or not in therange[0, NFOLDS- 1]) the function
returns | GNORED. If the start and end folds are 0 and NFOLDS- 1 respectively, then the
manual folds are terminated and the automatic inactive strip detection mechanism is
set. Otherwise, the mechanism is deactivated and theact i ve_stri p[] interna array
is updated according to the active fold specification.

7.5.6 Visualisation Functions

* int serv_add_plane (void)
* int serv_del _plane (void)

* int serv_set_minmax (void)
The functions concerned with the visualisation are discussed in the Visualisation section.

7.5.7 Configuration (Project) Related Functions

* int serv_proj_read (void)
Thefi | enanme read through the socket is used as a root for the files to be read. The
root process truncates the extension of the filename and does not broadcast it to the
other processes as they do not need it. They al call cnt _read_al | () discussed in
section 7.5.8.1.

* int serv_proj_save (void)
The root process reads the pathname of the files to be written. All processes call
cnt_wite global () and cmt_write(), emulating cnt _write_all () behav-
iour excluding the AV S field file functionality and index keeping. See section 7.5.8 for
more detail s on the functions previously mentioned.

* int serv_periodic_save (void)

29/05/2000 146

The root process reads the pathname of the files to be saved periodically, as well asthe
period, save_st ep. The former is turned into a pathname and a filename stored re-
spectively in the global variables out _di r nane and out _basenane. Thefilenameis
checked against the filesystem, by means of the function check_f s(), looking for al-
ready existing files which could be overwritten. The result of this search is written
back to the GUI, and can be either OVER_W if there are such files, or O (zero) if there
are not. The save_st ep is broadcast to all the processes and used by the r un func-
tion, unlike out _di rnane and out _basenane which are not needed in the other
processes. Periodic saving is handled by function run(), as mentioned in section
51.27.

7.5.8 Auxiliary Functions
7.5.8.1 Filel/Orelated

The following functions return O if execution is correct; otherwise, a negative value is re-
turned.

* int cm_read_global (char *filenane)
The root process reads a binary file containing all global CA information for the cur-
rent generation. The binary file fi | enane. cpj is needed for the function to work. It
contains data concerning the following:

— Thedimension of the automaton;

- Thex,y, zdimensions of the model;

— The current generation;

— The number of states,

— The number of folds;

— The number of global parameters and their values.

The data are collected in an eight element integer array with the exception of the pa-
rameter values which are stored in the appropriate array and are then broadcast to all
the processes. The function checks the correctness of the above values (except for the
generation and parameter values) against the ones already set and sets the generation
(the parameter values are set during the broadcast).

29/05/2000 147

* int cnt_read_all (char *fil enane)
This function calls cnt _read_gl obal (fil enane) in order to read the global pa-
rameters. It then calls cnt _r ead to handle the substate files. Let n be the number of
substates. The CA Engine expects the existence of n binary files named fil e-
name[TLC] . cnt, [TLC] being a three-digit numerical identifier for each of the sub-
states. For example, the first substate will be associated with the file fil e-
nanme000. cnt .

® int cnt_read (char *filename, int substate)

Given that all of the CA Engine data on the substate are to be read from the file, the
temporary data storage structures are allocated maximum memory, as discussed in sec-
tion 7.5.3.2. The root process opens the file designated by fi | ename and reads the
data using only one call of the appropriate function, depending on whether XDR is
used or not (see section 5.2.2 for the use of XDR in CAMELot). The data are then
scattered to the processes using as few MPI calls as possible, as described in section
7.5.3.3 and shown in Table 14. In order for the processes to update their local datatwo
Cpt Cel | pointers are used, pointing to each of the two CA array copies because the
changes should be applied to both of them. The origina displacements are minimum
(Radi us on each axis). The processes loop in paralle over z and y caling
set _x_line() for both copies. After each y loop the CA pointer is advanced by
CPT_X, which is aline including fold and line haloes, and after each z loop it is ad-
vanced by 2* Radi us* CPT_X, which isaplane halo at the end of the current plane and
a plane halo at the beginning of the next plane. The temporary buffers and derived
datatypes are freed on exit from the function.

* int cnm_wite_global (char *fil enane)
The root process writes a binary file containing all global CA information for the cur-
rent generation. The binary filef i | enane. cpj iscreated. The data it contains are the
same as those that cnt _r ead_gl obal () expects to read. Because the data written to
thefile are global, this function performs no MPI communications.

® int cnmi_wite_all (char *dname, char *bnane)
Saves the globa and substate data in files named using an index incremented every
time the function is caled (static variable). It aso updates the related AV S/Express
fieldfile.

The global data are stored in afile named dnane/ [TLC] bnane. cpj, [TLC] being a
three-digit numerical identifier for the index, thus allowing for 1000 consecutive saves

29/05/2000 148

before overwriting the initia file. This is done without warning the user'®. The func-
tioncallscnt _write_gl obal () inorder towrite the global parameters.

The function then loops over the substate ids, callingcnmt _wri t e(), the filename fol-
lowing the above convention for prefixing the filename and the same convention as in
cnt _read() to handle substate files. For example, the first save of the first substate
will be associated with the file di r nane/ 000f i | enane000. cnt .

If the function is called for the first time, cnt _create fl d() iscaled to create the
necessary AV S/Express field files. Thecnt _write_f1d() function isthen caled to
update the contents of the field file. Both these functions are explained below.

® int cnt_wite (char *filenanme, int substate)

The function writes to the file f i | enane the data for state subst at e. Given that all
of the CA Engine data on the substate are to be written to the file, the temporary data
storage structures are alocated maximum memory. The data are accessed through a
pointer to the CA Engine. The original displacements are minimum (Radi us on each
axis). All the processes then loop over z and y executing get _x_1 i ne(), collecting
thedatain t np_dat a. After each y loop the CA pointer is advanced by CPT_X, which
is a line including fold and line haloes, and after each z loop it is advanced by
2* Radi us* CPT_X, which is a plane halo at the end of the current plane and a plane
halo at the beginning of the next plane. After the loop is finished the data are gathered
in the t np_dat a2 pointer of process O (see section 7.5.3.2 for more details on the
gather strategy). The root process writes the data to the file with one call, using XDR
primitives if so selected by the user. The temporary buffers are freed on exit from the
function.

* int cnt_create_fld (char *dname, char *bnane)

This function creates an AV S/Express field file for each datatype of the substates. It
also writes the initial data containing the specification of the simulation (i.e. al the
data appearing before the first line tagged t i me). The format of these files appears in
Table 19. It usesthe variabledt _|i st, of typestate_dt _|i st (seesection5.1.1.4)
to loop over the various datatypes of the substates and create one field file for each of
them. The arguments of this function are used as described in the discussion of
cmt_wite_all().

6 Warning against overwriting existing files is generated when assigning the filename for a periodic
operation. See section 7.5.7 for further details.

29/05/2000 149

Thel abel field lists the names of all the states of a given datatype, expanding array
states (so nyarr[n] is expanded to nyarr[0] nyarr[1] ... nyarr[n]). Be
cause AV'S does not accept the use of brackets ([and]), these are replaced bu under-
scores (the character * ’). Therefore for the example above the expanded list is

myarr_O_ nyarr_1_ ... nyarr_n_. In order to avoid matching the modified
names with those of scalar variables, scalar variable names are postfixed with the un-
derscore character.

e int cnt_wite fld (char *dnane, char *bnane, int tine)
This function loops over the st at et ypes members of dt _| i st and for each of them
it loops over their states. It thus accesses the state type and index for each of the sub-
states and adds the vari abl e entries to the appropriate field files. Using the above
strategy, each field file is opened only once during a call to the function. The argu-
ments of this function are used as described in the discussionof cnmt _write_al | ().

AVS field file
CAMELot generated
nstep = <nunber of expected!’ saves>

ndi m = <nodel di nensi on>
dim = <x-di nensi on>
di M2 = <y-di nensi on>
di nB = <z-di nensi on>

nspace = 3

vecl en = <nunber of associ ated substates>
data = <dat atype of associ ated substates>
field uni form

| abel <nanes of associ ated subst ates>

time value = 1
variable 1 file
variable 2 file

<filenane> fil etype
<filenane> fil etype

bi nary
bi nary

o

time value = 2

Table 19: Format of CAMEL ot Generated AVSFidd Files

Y This could differ from the number of actual savesif the user ends the run prematurely
18 Starting with release 1.3 of the software, the EOT separator appears between blocks of data refering to
consecutive time steps

29/05/2000 150

7.5.8.2 state_dt andstate_dt _|ist Related

* void init_state dt (state_dt *st_dt_ptr, Ml _Datatype data)
This initialises the st at es member of st _dt _ptr to O and the dat a member to
dat a.

* int add_state (state_dt *st_dt_ptr, int stateid)
This adds the substate st at ei d tost _dt _ptr and incrementsitsst at es member. It
also performs checks to st at ei d and its datatype as well asto st at es. If the checks
fail it returns -1, elseit returns 1.

* void init_state dt _list (state_dt _list *st_dt_| _ptr)
This initialises the many member of st _dt _| _ptr to O and loops over the states of
the system calling add_state_dt ().

* int add_state dt (state_dt _list *st_dt_| _ptr, int stateid)
Thisfirst searchesthe st at et ypes[] member of st _dt | _ptr for an element with
the same dat a field as st at ei d. If it does not find one, it calsinit _state_dt ()
augmenting the active range of st at et ypes and increments the many member. It
then calls add_st at e() to add the state to the st at e_dt found. It also performs
checks to st at ei d as well as to many and the return value of add_st at e() . If the
checksfail it returns -1; otherwise, it returns 1.

29/05/2000 151

8. Visualisation

The CA Engine transmits periodically substate data to the GUI. Although the GUI defines
the planes and visualisation steps, this and GEN_NO are the only situations in which the CA
Engine initiates the transmission of data. Although the transmission follows the same pro-
cedure as any output to afile or socket, the implementation of the visualisation functional-
ity required the introduction of various data structures on the GUI and the CA Engine. The
protocol for the maintenance of the visualisation entities is slightly complicated because of
the variety of possible events. Moreover, a colour mapping strategy was devised.

8.1 Data Structures

8.1.1 Plane Definition

A planein the CA context is generally defined by:

Two Cartesian triples defining points in the CA space;

A substate to be visualised;

A visualisation step;

A plane ID, unique to the system (i.e. a plane should be referred to by the same ID in
both the GUI and the CA side).

The convention for the spatia extent of the plane above can denote anything from a cube to
a point in the CA space. We decided to consider 2-D planes as the finest granules of the
visualisation procedure®.

In the initial release of the engine we only implement full extent planes, i.e. 2-dimensional
spaces occupying maximum area. We thus use only one point in space, the co-ordinates of
which should be zero except for one co-ordinate which should be greater than zero and less
than the maximum dimension. For example, (0,3,0) denotes a y-plane in position 3 if the
dimension of y is 3 or more. On the other hand, (-1,0,0) and (1,2,1) are illega (the latter
generally denotes a point).

After the above discussion we introduce the following type definitions.

19 With the exception of 1-D models.

29/05/2000 152

typedef struct {
i nt pos|[3];

} point;

The pos[] array holds the co-ordinates of the point defining the plane. It represents a 3-D
triple and thefirst field holds the x co-ordinate, the second the y and the third the z

typedef struct {
poi nt pt;
int substate;
int vis_step;
int ID
pl ane_cl ass *cl ass_ptr;

} pl ane;

The pt member holds the spatial identity of the entity; subst at e isthe visualised substate
id; vi s_st ep is the period of visualisation for the plane; | D is a unique identifier for in-
ternal plane representation and handling; cl ass_ptr is a pointer to the pl ane_cl ass
structure holding the class information for the plane in question. Plane classes are dis-
cussed next.

8.1.2 Plane Classes

Because of the way the plane was defined, two planes extending in the same area visualis-
ing the same substate will be considered different if they differ in the visualisation step. As
a result, the data for the plane will be sent more than once to the GUI if the current CA
Engine generation is divided by the visualisation steps of more than one plane of the above
described kind.

We therefore introduced the idea of a plane class, linking such planes with the last visuali-
sation performed. To implement this we introduce this type definition:

29/05/2000 153

typedef struct {
i nt no_pl anes;
int |ast_vis;

} plane_cl ass;

The member no_pl anes denotes the number of planesintheclass; | ast _vi s isthelatest
CA Engine iteration when there has been a visualisation of a planein the class. It should be
noted that plane classes are not maintained in the GUI side planes.

8.1.3 Plane Lists

Both sides of the system maintain alist of all the planes visualised. We introduced the fol-
lowing data structure for the purpose.

typedef struct {
pl ane **pl anes;
i nt no_pl anes;
int max_i ndex;
int size_of list;

} plane_list;

The pl anes member is the array of pl ane pointers we want to maintain; no_pl anes is
the number of planes currently in the list; max_i ndex isthe number of planes added to the
list sinceitsinitiaisation; si ze_of _| i st isthe dimension of the pl anes array.

Plane lists play a most important role in the addition and deletion of planes.

8.1.4 Visualisation List

The CA Engine maintains a sorted list of visualisation generations containing exactly one
entry for each plane. This list is used to check whether the state of a plane must be trans-
mitted and to get a handle to this plane. The cells of thislist have the following form:

29/05/2000 154

typedef struct _cell_ {
pl ane *dat a;

i nt generati on;

struct _cell _ *next;
struct _cell_ *prev;
} cell;

The dat a member is a pointer to the plane; gener at i on is the next visualisation genera-
tion of the plane; next and prev are links to the next and previous members in the list.
The list isthen implemented as a type:

typedef struct {
cell *head;
cell *tail;
int size;

} list;

The first two members are pointers to the ends of the list; si ze is the number of elements
in the list. A plane enters this list when introduced to the CA Engine and it is removed
from it when a DEL_ PLANE request isissued with its ID. This data structure plays a central
role in the visualisation process.

8.2 Globhal Variables

8.2.1 CA Engine Global Visualisation Variables

 |ist vis_ |list;
A list of al the visualisation planes, maintained in ascending order with respect to the
CA Engine iteration when each will be visualised next.

e plane_list all_planes;
A list of al the planesin the CA Engine.

29/05/2000 155

doubl e m nmax[Nuntf St at es] [2] ;

The minimum and maximum value for each substate (updated only if the substate is
visualised and only with the union of the data subsets visualised). mi nmax[][0]
holds the minimaand m nmaex[] [1] holds the maxima.

8.2.2 GUI Global Visualisation Variables

i nt nvizw ns
Number of currently-open Visualisation windows.

VI ZW N *vi zwi ns[]

A fixed-size array of pointers to all currently-open Visualisation windows VI ZW N
structures. When a Visualisation window is closed, the memory for the VI ZW N struc-
tureisreleased and the corresponding vi zwi ns[] pointer set to NULL, although the ar-
ray element is not reused until the Simulation window is exited.

VI ZW NLI STNCDE *pl ane2wi n[]

In order to map visualisation planes received from the CA Engine to Visualisation
windows, a linked list of pointers to VI ZW N structures is maintained for every cur-
rently-visualised plane. The head node of each list is pointed to by afixed size array of
pointers (pl ane2wi n[]) indexed by plane ID.

int planerefcnt[]
Used to keep a reference count of windows for each plane. When the reference count
for a plane reaches 0, i.e.., no window now shows this plane, a DEL_PLANE request is
sent to the CA Engine.

plane_list all_planes
Similarly totheal | _pl anes variable in the CA Enginethisisalist to al the planesin
the GUI.

buffer viz_buffer
The buffer for visualisation plane reception.

29/05/2000 156

8.3 Rdevant Files and Functions

8.3.1 Filecommon. h

Contains the declarations of the following (as well as others, not related to visualisation):

* poi nt type and the respective functions (pl ane. c);

* pl ane type and the corresponding functions (pl ane. c);
e plane_list typeandtherelated functions (pl ane. c);
e cell andli st typesandtheir functions(l i st. c);

* buf f er typeand functions (buf f er. c).

8.3.2 Filesgui conmms. h and gui conms. ¢

Contain the declarations and implementations of the visualisation-related functions of the
protocol discussed next. Additionally, the following functions are contained in the files.

® int consune_vis_pack (void)
Consumes visualisation packets from the visualisation socket. It is used to remove ob-
solete visualisation packets when an event which stops normal execution occurs. It is
implemented by means of a loop over sel ect (3C) on the visualisation socket. If
there is avisualisation message, rv_vi s_pack() writes the datato a suitably initial-
ised buf f er (see section 8.6.3.1 for more). This static buffer is alocated memory
once throughout the program life, when consune_vi s_pack() isfirst called.

e void GQJ _check pos (int *pos)
Checks pos against xyzdi ns[] to correct unacceptable values. Correction is done by
setting the coordinate to 0. When the size of a dimension of the model is 1, it sets the
corresponding coefficient to 1 (rather than 0) to prevent identifying planes as cubes.
For example, (0,0,0) in a2-D model will be turned to (0,0,1) which is aplane.

* int QU get val _size (const int *pos)
Returns the number of elements specified by pos[]. This is done by multiplying the
assumed size (originally 1) by the size of the model's dimension if the corresponding
coefficientin pos[] isequa to 0.

29/05/2000 157

® int get_max_size (const unsigned int *pos)
Returns the maximum of the possible products of 3 choose 2 elements of the 3-
element array pos[] . It is used to derive the maximum possible number of elements
for the visualisation buffer, taking as its argument the array xyzdi ns[] . It calculates
the three possible sizes and returns the maximum.

8.3.3 Filenacrocel |l . c

Contains the declarations and implementations of the visualisation-related functions listed
in section 5.1.2.5 and further discussed in this section. It aso contains the following func-
tions:

® static int tx_vis_pack (cell *, char)
® static void colour_nmap (const u_char *, u_char *, int, int,
doubl e, doubl e)

These are discussed later in this section.

® static void check_pos (int *pos)
Same as GUI _check_pos(), only that it checks against DI MX, DI MY, DI Mz, instead
of xyzdi nms[] .

* static void check_plane (plane *pl_ptr)
This function checks and corrects the plane for spatial, substate and visualisation step
consistency. Callscheck_pos() for the array consistency and makes a separate check
if the model is 1-D. If the planeisfound illegal it setsits | D member to | GNORED, oth-
erwiseit setsit to -1.

® static void bcast_plane (plane *pl_ptr, MPI_Comm conm
This function broadcasts the details of the plane as detailed in process 0 of the CA En-
gine to al the processes in the communicator. It does not set up a new datatype con-
taining the 5 integers which are broadcast (i.e., pl _ptr->pt. pos[3],
pl _ptr->substate,pl_ptr->vis_step).

® static int get_val_size (const int *)
Similar to GUI _get _val _si ze().

29/05/2000 158

8.3.4 Filepl ane. c

8.3.4.1 Relatedto poi nt

® void init_point (point *pt_ptr, int x, int y, int z)
Initialises the point passed as an argument by reference with the given coefficients.

* int wite_point (int sockfd, const point *pt_ptr)
Writes the point coefficients to the socket; calls wri t en() only once. Returns O if
wri ten() succeeds, -1 otherwise.

* int read_point (int sockfd, point *pt_ptr)
Similar to the above, only that it reads the point data.

* int ptcnp (const point *cp_ptrl, const point *cp_ptr2)
Loops over the coordinates and compares the coefficients of the two points. Returns O
if they are equal, 1 otherwise.

8.3.4.2 Relatedtopl ane_cl ass

* void init_pl_class (plane_class *cl _ptr)
Setsno_pl anes t0 0, | ast _vi s to-1.

e del _pl_class (plane_class **cl _ptr_ptr)
This decrements the no_pl anes member of the pointer to apl ane_cl ass to be de-
leted, and if this then equals zero, the pointer is freed; thus the reason for passing it by
reference.

8.3.4.3 Related to pl ane

* void init_plane (plane *pl_ptr, const point *pt, int substate,
int vis_step)
Sets the corresponding members of the plane pointed by pl _ptr to those passed as
arguments. Thel Dissetto O and thecl ass_pt r isset to NULL.

* void disc_plane (plane **pl _ptr_ptr)
This function first calls del _pl _cl ass() to delete the cl ass_ptr member of the
pl ane struct and then frees the memory for the pl ane pointer passed to the function
by reference.

29/05/2000 159

* int wite_plane (int sockfd, const plane *pl_ptr)
Cdlswrite_point() andthenwritesthesubst at e and vi s_st ep members of the
plane to the socket. It does not write the | D, or the cl ass_pt r details, which are as-
signed separately on each side during the plane addition process.

* int read_plane (int sockfd, plane *pl _ptr)
Similartowri t e_pl ane() inaction and behaviour.

* int plcnp (const plane *cp_ptrl, const plane *cp_ptr2,
pl ane_class **pl _c_ptr)

The function checks the two planes pointed by the constant pointers for equality of the
substate, vis_step and pt ?° members. Moreover, if the pl _c_ptr plane class
pointer-pointer argument passed to the function is not 0, then the function performs a
check to find which of the two planes already belongs to the plane list and returns a
handle to its plane class through pl _c_ptr. This suggests that the GUI-side caller
function must pass the argument as 0.

The function returns:

- 0O, if thetwo planes are equal;
- 1, if the two planes are in the same class;
- -1, otherwise.

8.34.4 Relatedtopl ane_|i st

* voidinit_plane_list (plane_list *pl_I_ptr)
It allocates space for the MAXPLANES pl ane* elements of the pl anes array member
of the structure. Setssi ze_of _| i st to MAXPLANES, no_pl anes and max_i ndex to
0 and zeroes the pointersin the pl anes member.

* void clear_plane_list (plane_list *pl_I| _ptr)
Removes all planes from apl ane_l i st, without deleting it. It calls di sc_pl ane()
to discard each plane. It zeroes pl anes|[i], max_i ndex and no_pl anes, thus return-
ing the list to the state wherei nit _pl ane_l i st () leavesit.

2|t uses the trivially implemented pt cnp() function to this end.

29/05/2000 160

* int add_plane (plane_list *pl_| _ptr, plane *pl _ptr,
int *I D sane, int ch_class)
* int remplane (plane_list *pl_I| _ptr, int ID)

These are discussed extensively in the paragraphs about plane addition (8.4.2) and deletion
(8.5.2).

8.35 Filelist.c
8.35.1 Reatedtocel |

* voidinit_cell (cell *c_ptr, const plane *pl _ptr,
i nt generation)
This function zeroes the forward and backward pointers (next and pr ev) and sets the
dat a and gener at i on members to those passed as its arguments.

e static void del _cell (cell **c_ptr_ptr)
First callsdi sc_pl ane() to discard the plane in the dat a member and then frees the
memory occupied by the cell. Thisfunction is not publicly available.

8.35.2 Reatedtol i st

e voidinit_list (list *I_ptr)
Zeroesthehead, tai | and| _si ze members.

* void set_gen (list *I _ptr, int gen)
Resets the next visualisation generation of al the cells in the list to gen+1 and sets
| ast _vi s in al the plane classes of the planes in the respective dat a membersto -1.
These two actions cause the planes to be visualised immediately. It is used when re-
starting the CA Engine and it assumes that the CA Engine iteration index is set to gen.

* void clear_list (list *I _ptr)
This function deletes the cells of the list, but assumes that the plane members have al-

ready been deleted. It does not delete the list itself.

e cell *first (list *I)
This function provides a pointer to the head of thelist, or NULL if thelist is empty.

29/05/2000 161

int del _ID (list *I_ptr, int 1D)

This searches the doubly-linked list for the cel | containing the plane with the given
| D. It removes this from the list and then calls del _cel | () to discard the plane and
free the cell's memory. del _I D returns DEL_PLANE if the plane is found or | GNORED
else.

void reorder (list *I _ptr, cell *c_ptr)

This function removes the cel | pointed by its second argument and reinsertsit in as-
cending order with respect to its gener at i on member. After amending the next and
prev pointers of the cell's previous and next neighbours respectively, the function
callsi nsert () for the actua reinsertion.

void insert (list *I _ptr, cell *c_ptr)

The function inserts a cell in the list so as to maintain ascending order of the cells with
respect to their gener at i on member. It makes use of three trivial internal functions,
namely addhead() , addt ai | () and addni ddl e() .

8.3.6 Filebuffer.c

A datatype we have not previously discussed is the buf f er . It is used by the visualisation
functions on the GUI side so as to enable one-off memory allocation for each of the planes
visualised. Its declaration is as follows:

typedef struct {

u_char *dat a;
int size;
} buffer;

There are two functions associated with this structure:

int init_buffer (buffer *buf_ptr, int size)
This function alocates si ze bytes of memory for the member dat a and setsthesi ze
member. It returns-1if mal | oc failsor si ze islessthan 1; otherwise it returns 1.

29/05/2000 162

* int expand_buffer (buffer *buf_ptr, int size)
If the newly defined si ze is greater than the si ze member of the structure it usesr e-
al | oc to expand the dat a member and resets si ze. It returns -1 in case of failure, 1
otherwise.

8.4 Plane Addition

8.4.1 Addition Protocol

Plane addition is initiated by the GUI. It sends the point defining the location of the plane,
substate to be visualised and the visualisation step to the CA Engine (i.e. it transmits a
plane without an ID and a plane class pointer, using thewr i t e_pl ane() library function)
through the communication abstraction. This communication is performed through the
usua pr ot _sockf d socket. The CA Engine replies with the ID of the plane and acknowl-
edges addition. The normal case protocol is shown below:

Sender Token Type

GUI ADD PLANE req_code
GUI pos| 3] int *
GUI substate i nt

GUI vis_step i nt

CA I D i nt

CA ADD PLANE req_code
GUI VI S PACK req_code

As we discuss next, the protocol is more complicated in the cases of adding an aready ex-
isting plane.

8.4.2 The Function add_pl ane() and Other Related Functions

The desired effect is to add the plane pointed by pl _ptr to the plane list pointed by
pl _|I _ptr. The prototype of the function is asfollows:

int add _plane (plane_list *pl | _ptr, plane *pl _ptr, int *ID sane,

int ch_class)

29/05/2000 163

The function is called from the plane addition functions of both the CA Engine and the
GUI. The last two arguments differentiate between the two cases. We note that the GUI-
side caller should pass zeroes (0) in the last two arguments, and defer the discussion for
later in this section. The behaviour of this function describes the plane addition strategy.

The function traverses the plane list searching for a plane which is exactly the same as the
one we want to add or belongs to the same class. In the case of the GUI, because the plane
classes are not maintained, the plane class check is not performed. This is denoted by
means of thech_cl ass flag which should be cancelled if the caller is on the GUI side.

The plane comparison is performed by the function pl cnp. If it returns O, then a NULL
plane pointer is added to the list, occupying the position and index. The I D member of the
plane pointer is updated with the negated value of the ID that the plane would have if it had
been added. Moreover, if the | D_sanme argument is not set to zero (i.e. the caller isthe CA
Engine), then the ID of the plane that was found to be equal in the list is returned through
the argument. In this case the function returns | GNORED, exiting immediately.

If pl cnp() returns 1 or -1, then the search in the list is continued. In the former case the
plane class pointer returned through the pl _c_ptr argument of pl cnp() is stored. On
exiting the list traversal, the function adds the plane to the list and setsits | D field to the
value of the max_i ndex member of thelist. The max_i ndex and no_pl anes members of
the list are then incremented. If thech_cl ass flag is set and no plane in the same class has
been found, a new plane class instance is created. Its no_pl anes member is set to 0, but
its | ast _vi s member is set to —1 by means of the i nit _pl _cl ass function. On the
other hand, if a plane class address has been stored during the traversal, the cl ass_ptr
member of the plane being added to the list is set to what that address points to and the
corresponding no_pl anes member is incremented. The possible combinations of the re-
turn value with pl _pt r - > Dare shown in Table 20.

Case Return ID

Successful addition

(inexisting classor not) ADD PLANE pl _| _ptr->max_i ndex

pl _ptr areadyinlist | GNORED -(pl _I _ptr->max_i ndex)
mal | oc or other failure -1 <Undefined>

Table 20: Combinations of thereturn value of add_pl ane() and thel D of the plane

29/05/2000 164

8.4.3 GUI-Sde Plane Addition

Addition on the GUI sideis handled by the following function:

int req_add_plane (plane *pl _ptr, int *ID sane)

The function implements the protocol, by sending the data of the plane pointed to by
pl _ptr. There are two possibilities for the I D it then reads. If it is | GNORED, then this
means that the plane has been discarded on the CA Engine side. In this case the function
immediately returns the value 0, emulating the behaviour of get _ack() when the latter
receives | GNORED. If the | D is not | GNORED, it can still be negative, in the case that the
plane already existed in the CA Engine. The function calls add_pl ane(), which contains
all the necessary data to seeif the plane already exists. The difference isthat the | D_sane
and ch_cl ass arguments of add_pl ane() must be passed zero, as discussed previously.
The id received through the socket is checked against pl _ptr->I D which is set inside
add_pl ane() to ensure consistency between the two sides. Finally, if add_pl ane() re-
turns | GNORED, | D_sane isread from the socket and O is returned; otherwise, get _ack()
is called with (effectively) ADD_PLANE as an argument and its return value is returned by
req_add_pl ane().

The possible combination of the return value, the id assigned to the plane and the id of the
same plane found in the CA Engine (when applicable) are given in Table 21 below.

Case Return | Dread fromsocket | D_sane (socket)
Successful addition get _ack(ADD_PLANE) >= 0 <not read>

pl _ptr illega 0 | GNORED <not read>

pl _ptr areadyinlist 0 <0 >=0

other failure -1 <Undefined> <not read>

Table 21: Combinations of thereturn value of req_add_pl ane(),thel Dand | D_sane
read from the socket

8.4.4 CA Engine-Sde Plane Addition

Thisis handled by the following function:

29/05/2000 165

int serv_add_pl ane (void)

The root process of the CA Engine reads through the socket the details of the plane to be
added and creates the plane without the ID. Function check_pl ane() usesthel Dfield of
the newly-defined plane to identify an illegal plane by setting it to | GNORED. The other
processes cal bcast _pl ane() to get the details of the plane. The following, with the
exception of the communication with the GUI, happen to all the processes.

If the plane definition is acceptable, add_pl ane() insertsit in the list, setsits | D again,
and also sets | D_sane if the plane already exists. The | D is written back to the GUI in all
the cases and interpreted as shown in the previous paragraph. If the plane already exists in
the CA Engine add_pl ane() returns| GNORED, and | D_san® is also written to the GUI.
Then immediate visualisation of the planeis enforced by callingt x_vi s_pack() with its
f or ce argument set to 1 (see section 8.6.2.1 for more). Finally the CA Engine discards the
plane and the function returns | GNORED. If the plane did not exist in the CA Engine, it is
added to the visualisation list. The function calls send_ack() to acknowledge the addi-
tion and reads VI S_PACK from the socket. It causes immediate visualisation as above and
ADD_PLANE is returned.

N.B.: The acknowledgement in this case is not handled by the calling functionr v() .

The addition to the visuaisation list requires the initialisation of thecel | . Thisis achieved
by the following function:

void init_cell (cell *c_ptr, const plane *pl _ptr, int generation)
This sets the forward and backward links of the cell to zero, and assigns the dat a and
gener at i on members of the cell to those passed to the function as arguments. This func-

tion assumes that the memory for the cell to be initialised has been allocated.

The gener ati on argument is passed equal to the current generation. The cell is then in-
serted in the visualisation list by means of the functioni nsert ().

8.4.5 Why isthe Protocol Complicated?

The devel opers realise that the above protocol is complicated. There are various reasons for
this. The | D_sane token is necessary because the GUI may possibly visualise a plane more

29/05/2000 166

than once, but there is no point in the CA Engine maintaining multiple copies of the same
plane.

The immediate visualisation feature was added to the system in response to a specific re-
quest from users who wanted to be able to visualise a plane even after the evolution of the
automaton had finished [Telford et a. 1999]. Instead of adding another option in the Simu-
lation Window menus we preferred to move the additional complexity to the underlying
protocol, which is invisible to the user. The reason why serv_add_pl ane() cals
send_ack() itself whereas no other function does that, is to ensure that the GUI exits
consune_vi s_pack() (which it aways calls when sending requests so as to prevent race
conditions). If this is not ensured, the immediate visualisation packet is consumed in the
GUI. To thisend, VI S_PACK had to be added to the protocol as an acknowledgement that
consunme_vi s_pack() has been exited.

8.5 Plane Deletion

8.5.1 Deletion Protocol

Plane deletion is initiated by the GUI by sending the ID of the plane to be deleted through
the usua prot _sockf d socket. The CA Engine deletes the plane with the specified 1D
from both its lists and acknowledges the deletion. The protocol is shown below:

Sender Token Type

GUI DEL_PLANE req_code
GUI I D i nt

CA DEL_PLANE req_code

8.5.2 The Functionr em pl ane() and Other Related Functions

The function removes the plane with the given ID from the plane list. The prototype of the
function is asfollows:

int remplane (plane_list *pl | _ptr, int 1D

Given that the pl ane_| i st structure isimplemented as an array, the plane to be removed
istrivially located. A removed planeis signified in the list by a NULL pointer. The function
checksif the | Dislegally defined and if the corresponding pointer points to a plane. If this

29/05/2000 167

IS not true the function returns | GNORED. If the plane is found the pointer is set to NULL
and the no_pl ane member of the pl ane_| i st is decremented. DEL_PLANE is then re-
turned. Note that the function does not deallocate the memory space occupied by the plane.

This is done by the function di sc_pl ane(), which, as explained previoudly in the dis-
cussion of the pl ane and pl ane_cl ass functions, also cals del _pl _cl ass() to free
the only dynamically allocated member of the struct, cl ass_ptr.

8.5.3 GUI-Sde Plane Deletion

Deletion on the GUI sideis handled by the following function:
int req_del _plane (int ID)

This function writes the | D of the plane to be deleted to the GUI, then reads the acknowl-
edgement by means of the get _ack() function. If the acknowledgement is| GNORED, then
get _ack returns 0, in which case the function returns 0 as well. Otherwise, the function
calsdi sc_pl ane() to free the memory and r em pl ane() to remove its entry from the
al | _pl anes list. These must be called in that sequence, because the only handle to the
planeisal | _pl anes. pl anes[| O] ; if we remove it from the list first, we can no longer
access it to free its memory. We then compare the return value of r em pl ane() with that
of get _ack() . If they are not the same then there is an inconsistency between the GUI and
the CA side and the program exits. Otherwise, DEL_PLANE is returned.

8.5.4 CA Engine-Sde Plane Deletion

Thisis handled by the function
int serv_del _plane (void)

The root process of the CA Engine reads through the socket the | D of the plane to be de-
leted and broadcasts it to the other processes. In addition to what the GUI has to do, the CA
Engine must remove the plane from the visualisation list as well.

To do this, it calls the function del _I D() . As mentioned when discussing the list-related
functions, del _I D() returns DEL_PLANE if the plane is found; otherwise it returns
| GNORED. In the former case, rem pl ane() is called to remove the plane from the plane
list and its returned value is returned by ser v_del _pl ane() .

29/05/2000 168

8.6 Plane Visualisation

8.6.1 Visualisation Protocol

The visualisation data transmission is initialised by the CA Engine. The GUI, via X, polls
the dedicated socket vis_sockfd for the code indicating a visualisation packet
(VI S_PACK), then receives the plane ID and the actual data using eng_r x_cal | back()
andrv_vis_pack().

Sender Token Type

CA VI S PACK req_code
CA I D i nt

CA val _si ze i nt

CA m nmax[2] doubl e[]
CA [dat a] u_char[]

8.6.2 CA Sde Visualisation

Suppose that a plane has been added to the visualisation list of the CA Engine. After the
CA Engine runs a generation it checks the visualisation list for planes to be visualised in
this generation. When it istime for a plane to be visualised, it is popped from the visualisa-
tion list. Uniqueness of data transmitted is guaranteed by means of the plane class on the
CA Engine side. After the visualisation, the plane is reinserted with its cell’s gener at i on
member altered to match its next visualisation generation.

8.6.2.1 Functiont x_vi s_pack()

The implementation of the visualisation protocol is handled by the function

int tx vis pack (cell *c_ptr, char force)

The function verifies that the plane in the dat a member of the cel | passed as its argu-
ment has not been visualised in the current step. If the | ast _vi s member of the plane

class of the plane is equal to the current generation and f or ce is not set, the function re-
turns immediately with VI S_PACK asits exit code.

29/05/2000 169

In the general case when the plane is visualised, the processes execute the same steps we
have described in section 7.5.3.4, in order to determine which processes are working, as
well as the buffer and loop sizes and allocate memory accordingly. In addition, an unsigned
character array of size equal to the total extent of the data to be written to the socket (i.e.
the number of elements equals the number of cells in the model and the size of each of
them is that of an unsigned character) is allocated memory and is used for the colour map-
ping of the data as described in the next section (8.6.2.2). In order for the fourth item of the
protocol, namely m nmax|[2] , to be written, this must be first calculated by traversing the
cells which are going to be visualised according to the plane specification seeking the
minimum and maximum values for the substate. Traversal is executed in the same way that
the local CA copies are traversed for writing data on file. After these limits have been cal-
culated in each process, the results are combined with those of the other processes so as to
acquire the global minimum and maximum values for the substate in question. This step is
skipped if the user defines the minimum and maximum values manually, as described in
section 8.6.2.3. The data are colour-mapped in the processes where they reside before being
gathered in process 0, following the same strategy as serv_vi ew_st at e() (see section
7.5.4). The root process writes to the GUI the first four items of the protocol shown in sec-
tion 8.6.1, followed by the data which are transmitted using onewr i t en call.

The function returns VI S_PACK on all cases, since al possible errors (failed write or
mal | oc, for example) are fatal and cause the program to abort.

8.6.2.2 Colour Mapping

As mentioned earlier, the minimum and maximum values for the visualised substates are
stored as double precision numbers globaly in the processes. Their values are updated
every time the substate is visualised and their values are maintained throughout the life of
the program. By doing this we generally make the mapping consistent for the planes
throughout the life of the program and indicate how the substate changes with respect to
time. It is worth noting that, because the granule of visuaisation is the plane, 3-D models
are broken down to planes on the GUI sidein order to visualise them. Therefore, in the first
step of the visualisation the first plane of the cube visualised possibly sets the minimum
and maximum values to something different than the next planes and could be displayed
erroneoudly; in the next visualisation the minimum and maximum values and therefore the
colour mapping, are updated, “converging” to the correct values.

The colour mapping is performed in al the processes before gathering the data at the root
process so as to write them to the socket. It is done by means of the following function:

29/05/2000 170

void colour_map (const u_char *orig_data, u_char *mapped_dat a,
int stateid, int no_data,
doubl e gm n, doubl e gmax)

The first argument contains the data and the second is an array initialised by the caller
function to contain the mapped data. The st at ei d argument of the function is used to
define the type of the datain ori g_dat a and no_dat a is the number of elementsin it.
The minimum value of the substate in ori g_dat a is mapped to 1 and the maximum is
mapped to 255. The intermediate values are linearly projected to the 1-255 interval. Thisis
done using the obvious formula

orig _data[i]—gmin
g max—gmin

254
mapped _data[i] =

+1,if gmin # g max;

1 else.

In order to avoid multiple computations, we calculate 254/(gmax-gmin) at the beginning of
the function; nonetheless we need to compute this every time we call the function, i.e. once
for each process x-line. The above mapping leaves 0 as the background colour for 3-D
visualisations. In the pal ettes distributed with CAMELot, this corresponds to Black.

8.6.2.3 Manua Minimum and Maximum Definition

As described in [Telford et al. 1999], users of the system requested a facility to set the
minimum and maximum values of a substate manually, so as to be able to view a subset of
the visualised substate with greater detalil.

To achieve this we introduced the character array aut o_map[NuntX St at es] , each ele-
ment of which indicates if the user has manually set the limits of the corresponding sub-
state. This can be done using the appropriate menu of the Simulation Window. By means
of the same menu the user can revert to the automatic calculation of the limits, using the
corresponding button.

The protocol request SET_M NVAX on the GUI and the CA Engine is handled by the fol-
lowing functions respectively:

int req_set_mnnmax (int substate, double nmin, double nax)
int serv_set _mnmax (void)

29/05/2000 171

The former writes its arguments to the CA Engine and then calls get _ack() , the value of
which it returns. The latter reads (on process 0) the data the GUI sends and broadcasts them
to the other processes. If the substate is acceptable and the minimum value received is less
than the maximum, the appropriate m nmax[][] eements are updated and that of aut o-
map[] is cancelled. The CA Engine reverts to the automatic mode if the limits read are
both equal to zero, in which case the corresponding element of aut o_map[] is set. It
should be noted that setting the limits manually yields performance benefits because the
corresponding search taking place in each plane visualisation of the substate as part of
t x_vi s_pack() isskipped.

8.6.3 GUI Sde Visualisation

One global visualisation buffer, viz_buffer, is initiaised by means of the
i nit_buffer() function, whendev_run() iscaled. Thisis done when the user presses
the “Run” button and starts the simulation window, and the same buffer is used for all the
planes received.

When a packet is received at the vi s_sockf d socket, X cals eng_rx_cal | back()
which in turn cals eng_rx_packet () which, if the header is VI S_ PACK cals
rv_vis_pack() toreadthedata. Thepl ane2wi n[] list corresponding to the plane ID of
the visualisation packet is then traversed and vi z_r ender _pl ane() called for all win-
dows currently displaying this plane. The “Current Step” field in the Simulation window is
then updated with the generation number in the visualisation packet. The last action is also
taken when a packet with the GEN_NO header is received.

8.6.3.1 Functionrv_vis_pack()

Another function contained in gui conms. ¢ is

int rv_vis_pack (reg_code request, int *ID ptr, double *m nnax,
u_char *value_ptr)

This function is called by the GUI when it detects that the visualisation socket contains a
message. This message is passed to the function as the r equest argument, and is tested
against GEN_NO™ or VI S_PACK, the only acceptable vaues. In the former case it consumes
the generation number following the GEN_NO r eq_code by placing it in the space pointed

2! Thisis an addition from release 1.2 onwards to handle the introduction of the GEN_NOr eq_code.

29/05/2000 172

by the | D_ptr argument and exits. In this case, the return values of the mi nmax and
val ue_pt r by-reference argumentsis undefined. If on the other hand the r equest equals
VI S_PACK, the | D of the plane visualised and the visualisation data are passed in the
| D_ptr, mi nmax and val ue_ptr arguments respectively. As described in the protocol
discussion earlier in this section, the size of the visualised entity is also passed through the
socket; this is used as the nbytes argument of the readn() cal issued to read
val ue_ptr.

The function returns -1 if the request is not GEN_NO or VI S_PACK or if any of the
readn() calsissued fail; otherwiseit returnsr equest .

29/05/2000 173

9. Performance of the CA Engine

In this section we will discuss the results from benchmarking the CA Engine. We will ex-
plain why parallel computing is necessary for COLOMBO and see how well the model
scales. We will aso assess the impact of the homogeneous systems optimisation, discussed
in section 6.2.1. The automatic inactive strip detection optimisation (section 5.6.2) could
not be tested using the bioremediation problem, because the model is not deterministic.

9.1 The Benchmark

We decided to benchmark the performance of the CA Engine on as many power-of-two
processors as possible. Apart from the scaling curve, thistest also gives an idea of thetime
taken for one processor to carry out the job and can yield a conclusion about the necessity
of parallel computers for the task in hand. Because the model is decomposed across the x
axis, the x size of the model defines the amount of parallelisation that can be applied.

The scenario we followed did not involve any visualisation or writing to disk, we were only
interested in testing the throughput of the program in a productive environment. The sys-
tem had to read in the initial configuration, and this time was accounted for in all cases. We
consider this normal, since state initialisation is inevitable overhead. In al cases we ran
100 iterations starting from the initial configuration provided by UNICAL and CRA. The
timings were taken using the built-in timing facility of CAMELot. In the case of multiple
processors, and therefore multiple readings, the comparisons were made using the timing
results of process 0.

For the benchmark we used the Cray T3E-900 based at EPCC. The system hosts 344 450
MHz processors, each with a peak performance of 900 MFlops. Most of these processors
have 128 MBytes of memory or more. It is worth bearing in mind that Cray is a distributed
memory machine and that it does not employ virtual memory; therefore the per element
total size of the executable and the memory dynamically allocated at run-time cannot ex-
ceed the physical memory size of the e ement.

We used two versions of the bioremediation code for the fluid dynamic layer, provided by
UNICAL and CRA. The first oneis a 72x72x13 model with 60 states and 29 parameters.
The total size of the substates is approximately 32 Mbytes. The total size of the executable,
as estimated from the t op command on a Sun running Solaris 2.6 is 83 MBytes. In this
case, 64 processors was the highest power of two that we could use. However, there is no

29/05/2000 174

point in extending the benchmark beyond 16 processors, because then the size of the
boundary data is disproportionate to that of the actual data. For example, in the case of 32
processors, the x-size of the actual data in most processors will be 2, which equals the x-
size of the boundary data. The scaling curve was drawn using the homogeneous system
optimisation, but we also ran the same benchmarks without employing it, so as to judge its
impact.

UNICAL provided another model with dimension 256x128x13. This model allowed to
extend the benchmarking to 32 and 64 processors (again 128 would be overkill). However,
the model was now too large to be accommodated in 1 processor (just the two CA copies
for the 60 states require approximately 410 MBytes of memory).

9.2 Benchmark Results

9.2.1 Scaling Curve
9.21.1 Small Model

The timings follow in Table 22. The Sum field contains the time taken for the update func-
tion, the boundary replication and the steering. The Total field aso includes the time for
the initialisation of the system (building of communicators, memory allocation etc), the
substate initialisation, the update of the read copy after the application of the transition
function etc. A discussion of the timing facility is available from section 3.2.1.1.3.2. Only
two decimal places are quoted in the tables. Speedup is the ratio of Total with 1 processor
over Total with the number of processorsin question.

Processors | Sum(sec) | Total (sec) Speedup Optimum
1 85.86 102.90 1 1
2 42.06 50.88 2.02 2
4 21.44 26.07 3.94 4
8 12.63 15.10 6.81 8
16 8.22 9.59 10.72 14.40

Table 22: Benchmark resultsfor 1-16 processorson the Cray T3E-900

29/05/2000 175

Because the x dimension of the model (72) is not divided by 16, the speedup that can be
gained ideally is not 16, but 72/[72/16|=72/5=14.40. We used the Optimum column in
Table 22 to facilitate comparison with the ideal speedup. The scaling curve which yields
from Table 22 is shown in Figure 29.

15 1 1 1 1 1 1 1 1

16 | -

14 -

12 | -

18 | -

Speedup

2 4 & =] 1@ 1z 14 1g 1z

Frocessors

Figure 29: Speedup (red, diamonds) and optimum speedup (green, crosses) scaling
curvesfor thesmall bioremediation model

9.2.1.2 Large Mode

The size of the model caused some difficulties. Apart from the fact that 1 processor could
not accommodate the problem, in order to test 2 and 4 processor decomposition it was nec-
essary to employ the large (256 Mbytes) memory elements of the system. The processing
element memory size factor was not controlled in the other tests to facilitate scheduling of
the batch jobs. Because running the model on 1 processor was not possible, the baseline for
the speedup was the performance on 2 processors. The results appear on Table 23 and
Figure 30 depicts these timings. Unlike Table 22, the Optimum column in this case ssimply
facilitates the comparison between the performance of each case with the 2-processor base-
line.

29/05/2000 176

Processors | Sum(sec) | Total (sec) Speedup Optimum
2 280.31 332.94 1 1
4 136.31 164.04 2.02 2
8 67.78 81.46 4.08 4
16 35.29 42.56 7.82 8
32 20.42 24.41 13.63 16
64 12.41 14.77 22.54 32

Table 23: Benchmark results of the large model for 2-64 processorson the Cray T3E

T T T
‘speeduptd? ——

28 - -

23 -

e —

Speedup

15 | -

18 | -

1 1 1 1 1 1
1@ f=4s) 28 44 =1t} =15

Frocessors

Figure 30: Speedup (red, diamonds) and optimum speedup (green, crosses) scaling
curvesfor thelarge bioremediation model

9.2.2 Homogeneous Optimisation

In Table 24 we compare the times taken for the boundary copying with and without ena-
bling the homogenous optimisation for the small benchmark. Figure 31 depicts the results

29/05/2000 177

for the boundary exchange. Similar figures were obtained from the large benchmark and
they are not listed as they would not add anything to the discussion.

Processors Boundary Total Boundary Total
Homog (sec) | Homog (sec) | Heterog (sec) | Heterog (sec)

1 4.27 102.90 18.33 11551

2 3.38 50.88 22.95 70.19

4 3.13 26.07 23.17 46.29

8 3.34 15.10 22.45 34.81

16 3.68 9.59 25.82 30.33

Table 24: Benchmark resultsfor the homogeneous optimisation on 1-16 processor s

38 T T T T T

T T
*homog! ——

23 -

&8 - -

15 | -

18 | —

Boundary Replication t(sec?

2 4) 2 1@ 1z 14 16 15
Frocessors

Figure 31: Graph showing the benefit to the performance of boundary replication
when employing the homogeneous optimisation (red, diamonds)

29/05/2000 178

9.2.3 Discussion of the Results
9.2.3.1 Necessity of Parallel Computing

Although CAMELot is agenera CA execution platform, the software was developed so as
to enable bioremediation modelling. The bioremediation code used as benchmark makes it
evident why parallel computing is essential in order to extract modelling results in reason-
able amounts of time.

The bioremediation code has two modes. In the first mode, the program runs until it satis-
fiesaset of conditions, called the equilibrium. When this happens, the program changes to
the second mode where it works directly towards the bioremediation modelling result. This
mode is only maintained for one iteration of the CA Engine, and the system then revertsto
the first mode seeking the equilibrium conditions. Mode switching is controlled by means
of the steering facility.

The number of iterations required in order to reach the equilibrium dominates the running
time of the model. This depends on the conditions set and the required accuracy, but in
general the first equilibrium takes a lot longer than the subsequent ones. In the past EPCC
benchmarked an older version of the bioremediation code. That model was 256x53x5 and
consisted of 59 states. The first equilibrium was reached after 225,546 iterations, whereas
the next one only needed 1,273 iterations. We attempted to reach equilibrium with the large
model discussed in the previous sections. Using 64 processors on the Cray T3E with the
homogeneous optimisation enabled, it ran for 12 hours without reaching equilibrium. Ac-
cording to Table 23, this exceeds 290,000 iterations without reaching equilibrium. In such
cases the periodic state save facility of CAMELot and its ability to initialise its state from
thesefilesareinvaluable.

It is therefore evident that parallel computing is essential for realistic modelling of the bio-
remediation processes.

9.2.3.2 Scaling

The scaling curve in Figure 29 is quite satisfactory. The bioremediation model was only 72
cellslong and as aresult it could not serve as an ideal benchmark. The 25% difference be-
tween the ideal and the actual speedup in the case of 16 processors can be explained by the

29/05/2000 179

fact that the number of actua cells is only 2-2.5 times®? more that the number of the
boundary cells in the macrocell. As it can be seen from Table 24, the boundary exchange
accounts for 38% of the total time taken for the model to run. This, and additionaly the
fact that the curve of the boundary replication time (in the homogeneous case) of Figure 31
is almost flat, indicates that the boundary exchange is the limiting factor. Finaly, the seem-
ingly abnormal speedup of 2.02 in the case of 2 processors can be attributed to better cach-
ing because the memory size of each macrocell isobviously smaller in this case.

Similar results can be extracted by studying Table 23. The superlinear speedup exhibited in
the case of 4 and 8 processors can be attributed to caching again; it would be very interest-
ing to see the results on one processor but this was impossible as mentioned earlier. The
boundary exchange is less of an issue in configurations up to 16 or even 32 processors and
it seems to affect the speedup drastically on 64 processors. However, when running on 64
processors the size of the boundaries per processor is aready half the size of the model
portion on the element and still the execution is 65% faster than with 32 processors.

What has been established from these tests is that other the natural bottleneck of the
boundary exchange, the CA execution scales well as the number of available processors
increases while the size of the per processor datais more than half of the boundary data.

9.2.3.3 Homogeneous Systems Optimisation

This optimisation, discussed in section 6.2.1, has paid off, as it shows on Table 24 and
Figure 31. The curve when not enabling the optimisation appears to be rising as the number
of processing elements increases. Interestingly enough, the homogeneous optimisation
seems to benefit the boundary exchange since the timings appear to be dropping until 8
processors are used athough the timing for 16 processorsis still less than that for 1 proces-
sor. Asfor the times themsel ves, the optimisation appears to save from 77% to 86% for the
boundary exchange.

% This is because the decomposition is uneven in this case and some macrocells have x dimension 4 and
others have 5

29/05/2000 180

10. Benefitsto Project and Open |ssues

The benefits that Workpackage 3 provides to other Workpackages of the project are sum-
marised below.

10.1 Benefitsto Partners

The software deliverable of Workpackage 3, CAMELot, was used for the development of
the bioremediation simulation code, as expected. The partners writing the bioremediation
simulation code for the needs of Workpackage 2 helped in the development by providing
input on the desired features and bug reports. It isfair to claim that CAMELot is tailored to
the bioremediation simulation code, while a the same time it has not attachments to it,
remaining a general CA programming and execution tool. CAMELot aso contains input
from the CABIOR devel opers who were working on Workpackage 4.

CAMELot is also useful to the partners leading the exploitation Workpackage, 6. The ob-
tained results for the performance of the software were highly satisfactory, offering a good
negotiating point in the quest for an exploitation partner. The research publications submit-
ted to various internation conferences also help towards the same goal. Additionally, a
press release from EPCC attracted interest from bioremediation companies and the scien-
tific press. The effort is continuing after the end of the project.

10.2 Open |Issues

The following issues are possible extensions and optimisations to CAMEL ot.

10.2.1 Port to Windows NT

As outlined in [Ironside Farrar 1999], most bioremediation companies interviewed would
be keen on using the CAMELot software, under the condition that no major modifications
or additions to their PC-based computing infrastructure would be necessary. A Linux ver-
sion of CAMELot is available, however even running Linux is probably not desirable for
bioremediation contractors. A more obvious choice would be to run it under an X Window
System environment for Microsoft Windows, such as Hummingbird Exceed, but this
would incur further performance penalties.

29/05/2000 181

Porting the software to run on Windows NT should be possible, given that X-Designer can
produce Windows MFC code and MPI implementations for NT exist. It should be noted
that such a port would benefit substantially the market position of CAMELot, as it would
make it readily available to its target market.

10.2.2 Sngle-Processor Optimisation

CAMELot can be used on single-processor systems, although it has been made evident that
the usual bioremediation problems are too demanding to run on a single processor system
in realistic time. The current implementation employs MPI even in the case of single-
processor runs, which incurs an unnecessary performance penalty. A version of CAMEL ot
stripped of MPI-related calls is expected to perform better than the current one in the sin-
gle-processor case, and should be considered in conjunction with the NT port (section
10.2.1). Extensive modifications are required for this optimisation.

10.2.3 Inactive Strip Detection Enhancements

CAMELot contains an automatic inactive strip detection mechanism, as discussed in sec-
tion 5.6.2. This mechanism could be enhanced in two ways, discussed below.

10.2.3.1 Automatic Fold Setting

In the current implementation the user must select the number of folds at compile time. It
would be useful of they could alter their selection at run time, both interactively and
through an appropriate steering statement. This facility would be quite hard to implement.
A more important but aso more difficult extension, would be to devise an algorithm to set
and adjust the number of folds automatically at run-time. This could use the built-in timing
facility so asto get information about the performance of the system.

10.2.3.2 Switchable Fold Setting

Currently the user must declare the program as deterministic in order for the inactive fold
detection mechanism to take effect (see section 3.3.7). This disables the mechanism in the
case of the bioremediation code, because the update function changes after specific events.
If a piece of code changes arbitrarily, it is impossible to solve the problem. It is possible
however, to enrich the CARPET language with a statement which would denote the start of
a deterministic period of execution and another one to end it. Such a modification would
render the inactive strip detection mechanism useable in cases like the bioremediation
code, when the non-determinism is detectable or caused by the programmer.

29/05/2000 182

10.2.4 Timing Function

As mentioned in section 5.7.1.1, the memory copies at the end of each update are not ac-
counted for in any timer apart from the total one. These should be a part of the update func-
tion timer, but it is not straightforward to implement this because the memory copies take
place after the boundary copies, which in turn follow the updates. Because the order in
which these events happen cannot change, the only way to do thisis to extent the interface
of the timing functions to include a function which starts adding to a given timer without
incrementing the number of calls, and another one to stop this.

10.2.5 Quiescent Substates

In many cases the CARPET programmer may define a set of states which do not change
over time at al. A good example of such use could be a substate describing the porosity of
the ground in a bioremediation field. This quality is local to each cell and cannot therefore
be represented with a global parameter and does not change as the model evolves at any
point. Such astate is called quiescent.

Currently the CA Engine does not discern between quiescent and normal states. This af-
fects the performance of the system in many ways. The arrays which store the CA data are
larger than they could be thus being heavier to communicate in both types of boundary rep-
lication and slower to copy in the read copy update after the CA update rule has been ap-
plied. Caching of the data to processor memory could aso be affected.

This optimisation, suggested quite late in the CAMEL ot development, requires some modi-
fications to the parser, but the CA Engine code will be very drastically affected. It is how-
ever favoured to provide good performance benefits.

10.2.6 Visual cell substate value enquiry

A feature which was requested but could not be implemented within the project timescale
was the ability to ascertain the numerical value of a particular cell’s substate by selecting
the cell visually, using the mouse cursor over a Visualisation window. This would be non-
trivial to implement, and would only be useful when the dimensions of the CA are small
enough to allow individual cellsto be rendered in the Visualisation windows.

29/05/2000 183

11. References

[AVS 1993] AVS User's Guide, CST 912, Manchester Computing Centre, University of
Manchester, January 1993.

[Baracca et al. 199] COLOMBO WP4: Functional Requirements and Software Package
Design, M.C. Baracca, P. Ornelli, G. Spezzano, D. Talia, November 1998.

[Booth et al. 1999] COLOMBO WP3: WP3 Tasks T3.4/3.5 Workplan, S. Booth, L.Clarke,
K. Kavoussanakis, G.Smith, S.Telford, Version 1.1, April 1999.

[Clarke et al. 1998] COLOMBO WP3: Parallel CA programming Environment, Deliver-
able DI3.1.8, L.Clarke, G.Smith, S.Telford, Version 2.0, May 1998.

[Ironside Farrar 1999] COLOMBO WP6: Scotland/United Kingdom Market Survey, Iron-
side Farrar, ref. 5631/M C, October 1999.

[Kavoussanakis et al. 1999] COLOMBO WP3: Performance of CAMELot 0.2, Deliverable
DI3.2.5, K. Kavoussanakis, SD Telford, S P Booth, Version 1.1, February 1999.

[MPIf 1995] MPI: A Message-Passing Interface Sandard, Message Passing Interface Fo-
rum, Version 1.1, June 1995.

[Spezzano& Talia 1995] CABOTO WP3: CAMEL Environment User Manual, Deliverable
D5, G.Spezzano, D.Talia, December 1995.

[Smith 1998] COLOMBO WP3: CABOTO CAMEL Source Code Structure Report, Deliv-
erable DI3.1.3, G.Smith February 1998.

[Spezzano et al. 1995] CABOTO WP3: Design and Specification of CAMEL Extension,
Deliverable D2, G.Spezzano, D.Tdlia, S.Di Gregorio, June 1995.

[Stevens 1990] UNIX Network Programming, W. Richard Stevens, Prentice-Hall Software
Series, 1990.

29/05/2000 184

[Telford et a. 1998] COLOMBO WP3: Design for Portable, Parallel CA Software Envi-
ronment, Deliverable D6, S.Telford, G.Smith, M.C.Baracca, A.Longo, P.Orn€li,
G.Spezzano, D.Talia, May 1998.

[Telford et al. 1999] COLOMBO WP3: Extensions to CAMELot 1.0, Deliverable DI13.4.1,
S.Telford, K. Kavoussanakis, S Booth, Version 1.1, April 1999.

29/05/2000 185

CAMEL ot Release History

1.3 (2000/03/31)

Internal Software Deliverable SI3.6.1 (Software Deliverable S3). Relaxation of the
constraint in the CA Engine on the number of processes, folds and CA x-dimension
size; boundary datatype optimisation for homogeneous multiprocessor systems; pa-
rameter arrays added to CARPET; revised GUI parameter editor dialog; improved
AV Sfile compatibility, plus changes from 1.2.x releases.

SunOS 5.6, IRIX 6.2 (N32 ABI), Red Hat Linux 5.2 and Tru64 UNIX 4.0F binary
release.

1.2.2 (2000/03/15)
Revised SI3.5.1 release: increased default yacc parser stack size to 10000 for Tru64
UNIX, as default sizeistoo small for large CARPET programs.

Tru64 UNIX 4.0F GUI/parser binary released only.

1.2.1 (2000/03/03)
Revised SI3.5.1 release. Added Tru64 UNIX 4.0F (Alpha) support and changes
suggested in COLOMBO WP3 Problem Report 19.

SunOS 5.6, IRIX 6.2 (N32 ABI), Red Hat Linux 5.2 and Tru64 UNIX 4.0F binary
release.

1.2 (1999/12/03)

Internal Software Deliverable SI3.5.1. Several bugfixes and optimisations; XDR-
format data file support; minor GUI improvements, more CARPET compiler warn-
ings; new cpt _save() CARPET steering function; revised C compiler option con-
figuration, plus changes from 1.1.x releases.

SunOS 5.6, IRIX 6.2 (N32 ABI) and Red Hat Linux 5.2 binary release.

1.1.2 (1999/10/20)

29/05/2000 186

Revised SI3.4.2 release: changed user-definable C compiler command line argu-
ments to include - DCPT_I NCLUDE_FI LE= to alow different levels of quote-escaping
required for different MPI implementations (i.e. those with an npi cc shellscript and
those without).

IRIX 6.2 GUI/parser binary released only.

e 1.1.1(1999/10/07)
Revised S13.4.2 release: parser bug fix for problem with incorrect array indexing
when using region reduction functions with array substatesin CARPET programs.

Red Hat Linux 5.2 binary release (with Metro Link Motif 2.1) only.

o 1.1(1999/06/10)
Internal Software Deliverable S13.4.2. Many changes; see Report DI13.4.1. Bug-
fixes: "Parameter” dialog box now gives correct current parameter value, "Edit
Substate” no longer crashes CA Engine. Maor efficiency improvementsin CA En-
gine.

SunOS 5.5.1, IRIX 6.2 and Linux binary release.

* 1.0.1a(1999/06/08)
Revised SI3.3.4 release: Release 1.0.1 with parser recompiled due to buggy version
of yacc being used to build Linux CAMELot 1.0.1.
Linux GUI/parser binary released only.

e 1.0.1(1999/06/07)
Revised SI3.34 release: parser fix to handle greater numbers of substates,
neighbourhoods and parameters, and to detect when the limits on these are ex-
ceeded.
UNOS5.5.1 and Linux GUI/parser binaries released only.

. 1.0(1999/03/08)

29/05/2000 187

Internal Software Deliverable S13.3.4 (Software Deliverable S2). Batch mode
added to CA Engine; bugfixes to CA Engine; memory leaks fixed; increased CA
Engine startup timeout to 20s; optimised visualisation rendering.

SunOS 5.5.1, IRIX 5.3 and Linux binary release.

e 0.2.1(1999/02/16)
Revised SI3.2.4 release: parser bug fix to enable cel | _<substate> access globally
(CAMEL CARPET compatibility); added Di nX, Di n, Di nZ, NPr ocs, NFol ds con-
stants to CARPET; cpt _t hr esh handling and random function bug fixes.

SunOS 5.5.1, IRIX 5.3 and Linux binary release.

e 0.2(1998/12/09)
Internal Software Deliverable SI3.2.4 (Software Deliverable S1). Added 3-plane
isometric visualisation functionality, runtime CA Engine fold control and colour
map bar display. Many bugfixes and optimisations.

SunOS 5.5.1, IRIX 5.3 and Linux binary release.

e 0.1(1998/10/16)
Internal Software Deliverable SI3.2.3. Added runtime CA Engine control, visuali-
sation functionality and CA folds.

SunOS 5.5.1 and IRIX 5.3 binary release.

e 0.0.1(1998/08/04)
Revised S13.2.2 release: Changed "MPI arguments' configuration option to "MPI
run command” - this now allows more of the command line to be specified. Slight
changes to font identifiers needed for IRIX X servers.

SunOS 5.5.1 and IRIX 5.3 binary release.

* 0.0(1998/06/18)
First release, corresponding to Internal Software Deliverable SI3.2.2.

29/05/2000 188

SunOS 5.5.1 and IRIX 5.3 binary release.

29/05/2000 189

II. CAMELot MPI Configuration

CAMELot 1.2 and later releases can be configured for various different implementations of
MPI using the "C compiler command line " and "MPI run command" dialog boxes. Imple-
mentations it has been successfully tested with are listed below:

MPICH 1.1

Thisisthe MPI implementation that CAMEL ot is configured for by default. It is as-
sumed that the environment variable $MPI R_ROOT is set to the root directory of the ap-
propriate MPICH installation.

MPICH 1.2

This requires the following change to the default settings:
C compiler flags. change - DCPT_I NCLUDE_FI LE=\\\"%s\\\" tO -
DCPT_I NCLUDE_FI LE=\ "9\ ".

LAM 6.3

It is assumed that the environment variable $LAVHOME is set to the root directory of the
appropriate LAM installation. The following change to the default settings are aso re-
quired:

C compiler name: change $MPI R_ROOT t0 $LAVHOVE.

C compiler flags: change - DCPT_I NCLUDE_FI LE=\\\ "9\ \\ " tO -

DCPT_I NCLUDE_FI LE=\"9s\ " .

MPI run command: change $MPI R_ROOT t0 $LAMHOME.

SGI MPT 1.3 (IRIX 6)

This requires the following changes to the default settings:

C compiler name: set to cc.

C compiler flags: change - DCPT_I NCLUDE_FI LE=\\\ "9\ \\ " tO -

DCPT_I NCLUDE_FI LE=\ "%\ " and append - n32 if using IRIX 6.2 or earlier.
Clibraries: append - | npi .

MPI run command: changeto npi run -np %.

Sun HPC ClusterTools 3.0

This requires the following changes to the default settings:

C compiler name; settot ncc.

Clibraries: append -1 mpi -1 nsl .

MPI run command: depends on HPC ClusterTools environment (CRE or LSF).

29/05/2000 190

