Software Requirements
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Requirements engineering

e Ihe process of establishing the services that:
« the customer requires from a system and

« the constraints under which it operates and is
developed.

e The requirements are:
« the descriptions of the system services and constraints

* generated during the requirements engineering
process.
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What is a requirement?

e Statements of a service or of a system constraint
from
* high-level (abstract)
« Low-level (mathematical functional specifications)

e This is inevitable as requirements may serve a dual
function

« May be the basis for a bid for a contract
« open to interpretation;

 May be the basis for the contract itself
 must be defined in detail;

« Both these statements may be called requirements.
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Types of requirement

e Userrequirements

« Statements in natural language plus diagrams of the
services the system provides and its operational
constraints.

 Written for customers.

e System requirements

* A structured document setting out detailed descriptions
of the system’s functions, services and operational
constraints.

« define what should be implemented
* may be part of a contract between client and contractor.
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Definitions and specifications
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Functional and non-functional requirements

e Functional requirements
 Describe functionality or system services.
«  What the system should provide
« How the system should react to particular inputs and
 how the system should behave in particular situations.

e Non-functional requirements
 constraints on the services or functions

 E.g. timing constraints, constraints on the development process,
standards, etc.

e Domain requirements
« come from the application domain
» reflect characteristics of that domain.
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Examples of functional requirements

e Some LIBSYS System requirements

» The user shall be able to search either all of the initial set
of databases or select a subset from it.

 The system shall provide appropriate viewers for the user
to read documents in the document store.

« Every order shall be allocated a unique identifier
(ORDER _ID) which the user shall be able to copy to the
account’s permanent storage area.
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Requirements imprecision

e Problems arise when requirements are not
precisely stated.

e Ambiguous requirements may be interpreted in
different ways by developers and users.

e Consider the term ‘appropriate viewers’

« User intention - special purpose viewer for each
different document type;

« Developer interpretation - Provide a text viewer that
shows the contents of the document.
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Requirements completeness and consistency

e Complete

* They should include descriptions of all
facilities required.

e Consistent

 There should be no conflicts or contradictions
In the descriptions of the system facilities.

e In practice, it is impossible to produce a complete
and consistent requirements document.
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Non-functional requirements

e Ihese define system properties and constraints

« e.q. reliability, response time and storage requirements.

« Constraints are I/O device capability, system
representations, etc.

« Process requirements may also be specified mandating a
particular CASE system, programming language or
development method.

e Non-functional requirements may be more critical
than functional requirements.

« If these are not met, the system is useless.
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Non-functional classifications

e Product requirements
 The product must behave in a particular way
« execution speed, reliability, etc.
e Organisational requirements
« consequence of organisational policies and procedures
* e.g. process standards used, implementation requirements, etc.
o External requirements

« arise from factors which are external to the system and
its development process
* e.g. interoperability requirements, legislative requirements, etc.
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Non-functional requirement types
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Non-functional requirements examples

e Product requirement

8.1 The user interface for LIBSYS shall be implemented as simple HTML
without frames or Java applets.

e Organisational requirement

9.3.2 The system development process and deliverable documents shall
conform to the process and deliverables defined in XYZCo-SP-
STAN-95.

e External requirement

7.6.5 The system shall not disclose any personal information about
customers apart from their name and reference number to the
operators of the system.
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Goals and requirements

e Non-functional requirements
 may be very difficult to state precisely
 imprecise requirements may be difficult to verify.

e Goal
A general intention of the user such as ease of use.

e Verifiable non-functional requirement

A statement using some measure that can be objectively
tested.

e Goals are helpful to developers as they convey the
intentions of the system users.
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Examples

e A system goal

« The system should be easy to use by experienced controllers
and should be organised in such a way that user errors are

minimised.
e A verifiable non-functional requirement

« Experienced controllers shall be able to use all the system
functions after a total of two hours training. After this training,
the average number of errors made by experienced users shall

not exceed two per day.
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Requirements interaction

e Conflicts between different non-functional
requirements are common in complex systems.

e Spacecraft system

« To minimise weight, the number of separate chips in
the system should be minimised.

« To minimise power consumption, lower power chips
should be used.

 However, using low power chips may mean that

more chips have to be used. Which is the most
critical requirement?
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Domain requirements

e Derived from the application domain

e Describe system characteristics and features that
reflect the domain.

e Domain requirements:

* new functional requirements
 constraints on existing requirements
 define specific computations.

e |f domain requirements are not satisfied, the
system may be unworkable.
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Train protection system

e [The deceleration of the train shall be computed
as:

Dtrain = Dcontrol + Dgradient
where Dggient 1S 9.81ms?  * compensated
gradient/alpha and where the values of 9.81ms?

/alpha are known for different types of train.
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Domain requirements problems

e Understandability

 Requirements are expressed in the language of the
application domain;

« This is often not understood by software engineers
developing the system.

e Implicitness

 Domain specialists understand the area so well that
they do not think of making the domain requirements
explicit.
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User requirements

e Functional and non-functional requirements

« should be understandable by system users
« who don’t have detailed technical knowledge.

e User requirements are defined using:
« natural language and tables and diagrams
* as these can be understood by all users.
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Problems with natural language

e Lack of clarity

« Precision is difficult without making the document
difficult to read.

¢ Requirements confusion

* Functional and non-functional requirements tend to
be mixed-up.

e Requirements amalgamation

« Several different requirements may be expressed
together.
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Guidelines for writing requirements

e Invent a standard format and use it for all
requirements.

e Use language in a consistent way.
Use shall for mandatory requirements,
should for desirable requirements.

e Use text highlighting to identify key parts of the
requirement.

e Avoid the use of computer jargon.
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System requirements

e More detailed specifications of system functions,
services and constraints than user requirements.

e [They are intended to be a basis for designing the
system.

e They may be incorporated into the system
contract.

e System requirements may be defined or
illustrated using system models.
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Requirements and design

e In principle, requirements should state what the system
should do and the design should describe how it does

this.

e In practice, requirements and design are inseparable
A system architecture may be designed to structure the
requirements;

 The system may inter-operate with other systems that generate
design requirements;

« The use of a specific design may be a domain requirement.
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Problems with NL specification

e Ambiguity
 The readers and writers of the requirement must
interpret the same words in the same way.

* NL is naturally ambiguous so this is very difficult.
e Over-flexibility

 The same thing may be said in a number of different
ways in the specification.

e Lack of modularisation

 NL structures are inadequate to structure system
requirements.
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Structured language specifications

e The freedom of the requirements writer is limited
by a predefined template for requirements.

e All requirements are written in a standard way.

e The terminology used in the description may be
limited.

e [he advantage: the most of the expressiveness
IS maintained

The limitation: a degree of uniformity is imposed on
the specification.
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Structured language specifications

e Form-based specifications
« Definition of the function or entity.
* Description of inputs and where they come from.
« Description of outputs and where they go to.
* Indication of other entities required.
 Pre and post conditions (if appropriate).
 The side effects (if any) of the function.

e Tabular Specification
 Used to supplement natural language.

« Particularly useful when you have to define a number of
possible alternative courses of action.

e Graphical models
 show how state changes

 describe a sequence of actions.
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Form-based node specification
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Tabular specification
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Sequence diagram of ATM withdrawal
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Interface specification

e Most systems must operate with other systems
and the operating interfaces must be specified as

part of the requirements.
e Three types of interface may have to be defined
* Procedural interfaces;
« Data structures that are exchanged;
« Data representations.
e Formal notations are an effective technique for
interface specification.
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PDL interface description
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Requirements engineering processes

e Vary widely depending on:
* the application domain
« the people involved and
* the organisation developing the requirements.

e Generic activities common to all processes
* Requirements elicitation;
* Requirements analysis;
* Requirements validation;
* Requirements management.
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The requirements engineering process
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Feasibility studies

e A feasibility study decides whether or not the
proposed system is worthwhile.

e A short focused study that checks
« If the system contributes to organisational objectives;

« If the system can be engineered using current
technology and within budget;

« If the system can be integrated with other systems
that are used.
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Feasibility study implementation

e Based on information assessment (what is required),
information collection and report writing.

e Questions for people in the organisation

What if the system wasn’t implemented?

What are current process problems?

How will the proposed system help?

What will be the integration problems?

Is new technology needed? What skills?

What facilities must be supported by the proposed system?
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Elicitation and analysis

e Sometimes called requirements elicitation or
requirements discovery.

e Involves technical staff working with customers to find out
about
« the application domain

« the services that the system should provide and
 the system’s operational constraints.

e May involve end-users, managers, engineers involved in
maintenance, domain experts, trade unions, etc.
« These are called stakeholders.
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Problems of requirements analysis

e Stakeholders don’'t know what they really want.
e Stakeholders express requirements in their own terms.
e Different stakeholders may have conflicting requirements.

e Organisational and political factors may influence the
system requirements.

e [he requirements change during the analysis process.
New stakeholders may emerge and the business
environment change.
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Process activities

e Requirements discovery

* Interacting with stakeholders to discover their requirements.
Domain requirements are also discovered at this stage.

e Requirements classification and organisation

Groups related requirements and organises them into coherent
clusters.

e Prioritisation and negotiation
*  Prioritising requirements and resolving requirements conflicts.

e Requirements documentation

 Requirements are documented and input into the next round of
the spiral.
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Viewpoints

e Viewpoints are a way of structuring the
requirements to represent the perspectives of
different stakeholders.

« Stakeholders may be classified under different
viewpoints.

e This multi-perspective analysis is important

« there is no single correct way to analyse system
requirements.
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Types of viewpoint

e Interactor viewpoints
 People or other systems that interact directly with the system.

« E.g.Inan ATM, the customer’s and the account database are
interactor VPs.

e Indirect viewpoints

« Stakeholders who do not use the system themselves but who
influence the requirements.

« E.g. Inan ATM, management and security staff are indirect
viewpoints.
e Domain viewpoints

« Domain characteristics and constraints that influence the
requirements.

« E.g.Inan ATM, an example would be standards for inter-bank
communications.
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Interviewing

e Informal or informal interviewing, the RE team
puts questions to stakeholders about the system
that they use and the system to be developed.

e [here are two types of interview

 Closed interviews where a pre-defined set of
questions are answered.

« Open interviews where there is no pre-defined
agenda and a range of issues are explored with
stakeholders.
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Social and organisational factors

e Software systems are used in a social and
organisational context. This can influence or
even dominate the system requirements.

e Social and organisational factors are not a single
viewpoint but are influences on all viewpoints.

e (Good analysts must be sensitive to these factors
but currently no systematic way to tackle their
analysis.
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Scope of ethnography

e Requirements that are derived from the way that
people actually work rather than the way | which
process definitions suggest that they ought to
work.

e Requirements that are derived from cooperation
and awareness of other people’s activities.
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Scenarios

e Scenarios are real-life examples of how a system
can be used.

e IThey should include

A description of the starting situation;

A description of the normal flow of events;

A description of what can go wrong;

Information about other concurrent activities;

A description of the state when the scenario finishes.
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Use cases

e Use-cases are a scenario based technique in the
UML which identify the actors in an interaction
and which describe the interaction itself.

e A set of use cases should describe all possible
interactions with the system.

e Sequence diagrams may be used to add detail to
use-cases by showing the sequence of event
processing in the system.
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System modelling

e System modelling helps the analyst to understand the
functionality of the system and models are used to
communicate with customers.

e Different models present the system from different
perspectives

« External perspective showing the system’s context or
environment;

 Behavioural perspective showing the behaviour of the system;
«  Structural perspective showing the system or data architecture.
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Model types

e Data processing model showing how the data is
processed at different stages.

e Composition model showing how entities are
composed of other entities.

e Architectural model showing principal sub-
systems.

e Classification model showing how entities have
common characteristics.

e Stimulus/response model showing the system’s
reaction to events.
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Model Types

e Context models are used to illustrate the operational
context of a system

 they show what lies outside the system boundaries.

e Architectural models show the system and its relationship
with other systems.

e Process models show the overall process and the
processes that are supported by the system.

e Data flow models may be used to show the processes
and the flow of information from one process to another.
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Behavioural models

e Behavioural models are used to describe the
overall behaviour of a system.

e [wo types of behavioural model are:

« Data processing models that show how data is
processed as it moves through the system;

« State machine models that show the systems
response to events.

e These models show different perspectives so
both of them are required to describe the
system’s behaviour.
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Data flow diagrams

e DFDs model the system from a functional
perspective.

e [Tracking and documenting how the data
associated with a process is helpful to develop
an overall understanding of the system.

e Data flow diagrams may also be used in showing
the data exchange between a system and other
systems in its environment.
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State machine models

e [These model the behaviour of the system in
response to external and internal events.

e IThey show the system’s responses to stimuli so
are often used for modelling real-time systems.

e State machine models show system states as
nodes and events as arcs between these nodes.
When an event occurs, the system moves from
one state to another.
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Semantic data models

e Used to describe the logical structure of data processed
by the system.

e An entity-relation-attribute model sets out the entities in
the system, the relationships between these entities and
the entity attributes

e Widely used in database design. Can readily be
iImplemented using relational databases.

e No specific notation provided in the UML but objects and
associations can be used.
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Data dictionaries

e Data dictionaries are lists of all of the names
used in the system models. Descriptions of the
entities, relationships and attributes are also

included.
e Advantages
e Support name management and avoid duplication;

« Store of organisational knowledge linking analysis,
design and implementation;

e Many CASE workbenches support data
dictionaries.
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Object models

e ODbject models describe the system in terms of
object classes and their associations.

e An object class is an abstraction over a set of
objects with common attributes and the services
(operations) provided by each object.

e Various object models may be produced
* Inheritance models;
* Aggregation models;
* Interaction models.
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Object models and the UML

e The UML is a standard representation devised by
the developers of widely used object-oriented
analysis and design methods.

e It has become an effective standard for object-
oriented modelling.
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Structured methods

e Structured methods incorporate system
modelling as an inherent part of the method.

e Methods define a set of models, a process for
deriving these models and rules and guidelines
that should apply to the models.

e CASE tools support system modelling as part of
a structured method.
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Method weaknesses

e [They do not model non-functional system
requirements.

e They do not usually include information about
whether a method is appropriate for a given
problem.

e The may produce too much documentation.

e [Ihe system models are sometimes too detailed
and difficult for users to understand.
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Requirements validation

e Concerned with demonstrating that the
requirements define the system that the
customer really wants.

e Requirements error costs are high so validation
IS very important

« Fixing a requirements error after delivery may cost
up to 100 times the cost of fixing an implementation
error.
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Requirements checking

o Validity. Does the system provide the functions which
best support the customer’'s needs?

e Consistency. Are there any requirements conflicts?

e Completeness. Are all functions required by the customer
included?

e Realism. Can the requirements be implemented given
available budget and technology

e Verifiability. Can the requirements be checked?
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Requirements validation techniques

e Requirements reviews
« Systematic manual analysis of the requirements.

e Prototyping

« Using an executable model of the system to check
requirements. Covered in Chapter 17.

e lest-case generation

« Developing tests for requirements to check
testability.
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Review checks

e Verifiability. Is the requirement realistically
testable?

e Comprehensibility. Is the requirement properly
understood?

e [raceability. Is the origin of the requirement
clearly stated?

e Adaptability. Can the requirement be changed
without a large impact on other requirements?
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Requirements management

e Requirements management is the process of managing
changing requirements during the requirements
engineering process and system development.

e Requirements are inevitably incomplete and inconsistent
 New requirements emerge during the process as business
needs change and a better understanding of the system is
developed,;
« Different viewpoints have different requirements and these are
often contradictory.
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Traceability

e [raceability is concerned with the relationships between
requirements, their sources and the system design

e Source traceability

 Links from requirements to stakeholders who proposed these
requirements;

e Requirements traceability
 Links between dependent requirements;

e Design traceability
 Links from the requirements to the design;
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A traceability matrix
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CASE tool support

e Requirements storage

 Requirements should be managed in a secure, managed data
store.

e Change management

« The process of change management is a workflow process
whose stages can be defined and information flow between
these stages partially automated.

e [raceability management
* Automated retrieval of the links between requirements.
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The requirements document

e The requirements document is the official
statement of what is required of the system
developers.

e Should include both a definition of user

requirements and a specification of the system
requirements.

e Itis NOT a design document.

« As far as possible, it should set of WHAT the system
should do rather than HOW it should do it

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 73



Users of a requirements document
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IEEE requirements standard

e Defines a generic structure for a requirements
document that must be instantiated for each
specific system.

* Introduction.

« General description.

« Specific requirements.
 Appendices.
 |Index.
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Requirements document structure

e Preface

e Introduction

e Glossary

e User requirements definition

e System architecture

e System requirements specification
e System models

e System evolution

e Appendices

e Index
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Formal methods

e Based on mathematical representation and analysis
of software.

e Formal methods did not become largely used

« Other software engineering techniques have been
successful

« Market changes (time-to-market vs software with a low
error count)

* Not well-suited to specifying and analysing user interfaces
and user interaction;

« Formal methods are still hard to scale up to large
systems.
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Use of formal methods

e The principal benefits of formal methods
are in reducing the number of faults in
systems.

e The main area of applicabillity is in critical
systems engineering.

* They are cost-effective because high system
failure costs must be avoided.
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Development costs with formal specification
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Specification techniques

e Algebraic specification

 The system is specified in terms of its operations and
their relationships.

e Model-based specification

« The system is specified in terms of a state model
that is constructed using mathematical constructs
such as sets and sequences. Operations are defined
by modifications to the system’s state.
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Formal specification languages
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The structure of an algebraic specification
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Specification components

Introduction

 Defines the sort (the type name) and declares other
specifications that are used.

Description
 Informally describes the operations on the type.

Signature
 Defines the syntax of the operations in the interface and their
parameters.
Axioms

« Defines the operation semantics by defining axioms which
characterise behaviour.
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List specification
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Behavioural specification

e Algebraic specification can be cumbersome when the
object operations are not independent of the object state.

e Model-based specification exposes the system state and
defines the operations in terms of changes to that state.

e The Z notation is a mature technique for model-based
specification. It combines formal and informal description
and uses graphical highlighting when presenting
specifications.
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The structure of a Z schema
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Insulin pump schema
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