
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 1

Software Requirements

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 2

Requirements engineering

● The process of establishing the services that:
• the customer requires from a system and
• the constraints under which it operates and is

developed.
● The requirements are:

• the descriptions of the system services and constraints
• generated during the requirements engineering

process.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 3

What is a requirement?

● Statements of a service or of a system constraint
from
• high-level (abstract)
• Low-level (mathematical functional specifications)

● This is inevitable as requirements may serve a dual
function
• May be the basis for a bid for a contract

• open to interpretation;
• May be the basis for the contract itself

• must be defined in detail;
• Both these statements may be called requirements.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 4

Requirements abstraction (Davis)

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 5

Types of requirement
● User requirements

• Statements in natural language plus diagrams of the
services the system provides and its operational
constraints.

• Written for customers.
● System requirements

• A structured document setting out detailed descriptions
of the system’s functions, services and operational
constraints.

• define what should be implemented
• may be part of a contract between client and contractor.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 6

Definitions and specifications

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 7

Requirements readers

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 8

Functional and non-functional requirements

● Functional requirements
• Describe functionality or system services.
• What the system should provide
• How the system should react to particular inputs and
• how the system should behave in particular situations.

● Non-functional requirements
• constraints on the services or functions
• E.g. timing constraints, constraints on the development process,

standards, etc.
● Domain requirements

• come from the application domain
• reflect characteristics of that domain.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 9

Examples of functional requirements

● Some LIBSYS System requirements
• The user shall be able to search either all of the initial set

of databases or select a subset from it.

• The system shall provide appropriate viewers for the user
to read documents in the document store.

• Every order shall be allocated a unique identifier
(ORDER_ID) which the user shall be able to copy to the
account’s permanent storage area.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 10

Requirements imprecision

● Problems arise when requirements are not
precisely stated.

● Ambiguous requirements may be interpreted in
different ways by developers and users.

● Consider the term ‘appropriate viewers’
• User intention - special purpose viewer for each

different document type;
• Developer interpretation - Provide a text viewer that

shows the contents of the document.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 11

Requirements completeness and consistency

● Complete
• They should include descriptions of all

facilities required.
● Consistent

• There should be no conflicts or contradictions
in the descriptions of the system facilities.

● In practice, it is impossible to produce a complete
and consistent requirements document.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 12

Non-functional requirements

● These define system properties and constraints
• e.g. reliability, response time and storage requirements.
• Constraints are I/O device capability, system

representations, etc.
• Process requirements may also be specified mandating a

particular CASE system, programming language or
development method.

● Non-functional requirements may be more critical
than functional requirements.
• If these are not met, the system is useless.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 13

Non-functional classifications

● Product requirements
• The product must behave in a particular way

• execution speed, reliability, etc.

● Organisational requirements
• consequence of organisational policies and procedures

• e.g. process standards used, implementation requirements, etc.

● External requirements
• arise from factors which are external to the system and

its development process
• e.g. interoperability requirements, legislative requirements, etc.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 14

Non-functional requirement types

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 15

Non-functional requirements examples
● Product requirement

8.1 The user interface for LIBSYS shall be implemented as simple HTML
without frames or Java applets.

● Organisational requirement
9.3.2 The system development process and deliverable documents shall

conform to the process and deliverables defined in XYZCo-SP-
STAN-95.

● External requirement
7.6.5 The system shall not disclose any personal information about

customers apart from their name and reference number to the
operators of the system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 16

Goals and requirements

● Non-functional requirements
• may be very difficult to state precisely
• imprecise requirements may be difficult to verify.

● Goal
• A general intention of the user such as ease of use.

● Verifiable non-functional requirement
• A statement using some measure that can be objectively

tested.

● Goals are helpful to developers as they convey the
intentions of the system users.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 17

Examples

● A system goal
• The system should be easy to use by experienced controllers

and should be organised in such a way that user errors are
minimised.

● A verifiable non-functional requirement
• Experienced controllers shall be able to use all the system

functions after a total of two hours training. After this training,
the average number of errors made by experienced users shall
not exceed two per day.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 18

Requirements measures

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 19

Requirements interaction

● Conflicts between different non-functional
requirements are common in complex systems.

● Spacecraft system
• To minimise weight, the number of separate chips in

the system should be minimised.
• To minimise power consumption, lower power chips

should be used.
• However, using low power chips may mean that

more chips have to be used. Which is the most
critical requirement?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 20

Domain requirements

● Derived from the application domain
● Describe system characteristics and features that

reflect the domain.
● Domain requirements:

• new functional requirements
• constraints on existing requirements
• define specific computations.

● If domain requirements are not satisfied, the
system may be unworkable.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 21

Train protection system

● The deceleration of the train shall be computed
as:
• Dtrain = Dcontrol + Dgradient

where Dgradient is 9.81ms2 * compensated
gradient/alpha and where the values of 9.81ms2

/alpha are known for different types of train.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 22

Domain requirements problems

● Understandability
• Requirements are expressed in the language of the

application domain;
• This is often not understood by software engineers

developing the system.
● Implicitness

• Domain specialists understand the area so well that
they do not think of making the domain requirements
explicit.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 23

User requirements

● Functional and non-functional requirements
• should be understandable by system users

• who don’t have detailed technical knowledge.

● User requirements are defined using:
• natural language and tables and diagrams
• as these can be understood by all users.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 24

Problems with natural language

● Lack of clarity
• Precision is difficult without making the document

difficult to read.
● Requirements confusion

• Functional and non-functional requirements tend to
be mixed-up.

● Requirements amalgamation
• Several different requirements may be expressed

together.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 25

Guidelines for writing requirements

● Invent a standard format and use it for all
requirements.

● Use language in a consistent way.
• Use shall for mandatory requirements,
• should for desirable requirements.

● Use text highlighting to identify key parts of the
requirement.

● Avoid the use of computer jargon.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 26

System requirements

● More detailed specifications of system functions,
services and constraints than user requirements.

● They are intended to be a basis for designing the
system.

● They may be incorporated into the system
contract.

● System requirements may be defined or
illustrated using system models.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 27

Requirements and design

● In principle, requirements should state what the system
should do and the design should describe how it does
this.

● In practice, requirements and design are inseparable
• A system architecture may be designed to structure the

requirements;
• The system may inter-operate with other systems that generate

design requirements;
• The use of a specific design may be a domain requirement.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 28

Problems with NL specification

● Ambiguity
• The readers and writers of the requirement must

interpret the same words in the same way.
• NL is naturally ambiguous so this is very difficult.

● Over-flexibility
• The same thing may be said in a number of different

ways in the specification.
● Lack of modularisation

• NL structures are inadequate to structure system
requirements.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 29

Structured language specifications

● The freedom of the requirements writer is limited
by a predefined template for requirements.

● All requirements are written in a standard way.
● The terminology used in the description may be

limited.
● The advantage: the most of the expressiveness

is maintained
• The limitation: a degree of uniformity is imposed on

the specification.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 30

Structured language specifications

● Form-based specifications
• Definition of the function or entity.
• Description of inputs and where they come from.
• Description of outputs and where they go to.
• Indication of other entities required.
• Pre and post conditions (if appropriate).
• The side effects (if any) of the function.

● Tabular Specification
• Used to supplement natural language.
• Particularly useful when you have to define a number of

possible alternative courses of action.
● Graphical models

• show how state changes
• describe a sequence of actions.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 31

Form-based node specification

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 32

Tabular specification

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 33

Sequence diagram of ATM withdrawal

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 34

Interface specification

● Most systems must operate with other systems
and the operating interfaces must be specified as
part of the requirements.

● Three types of interface may have to be defined
• Procedural interfaces;
• Data structures that are exchanged;
• Data representations.

● Formal notations are an effective technique for
interface specification.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 35

PDL interface description

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 36

Requirements engineering processes

● Vary widely depending on:
• the application domain
• the people involved and
• the organisation developing the requirements.

● Generic activities common to all processes
• Requirements elicitation;
• Requirements analysis;
• Requirements validation;
• Requirements management.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 37

The requirements engineering process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 38

Feasibility studies

● A feasibility study decides whether or not the
proposed system is worthwhile.

● A short focused study that checks
• If the system contributes to organisational objectives;
• If the system can be engineered using current

technology and within budget;
• If the system can be integrated with other systems

that are used.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 39

Feasibility study implementation

● Based on information assessment (what is required),
information collection and report writing.

● Questions for people in the organisation
• What if the system wasn’t implemented?
• What are current process problems?
• How will the proposed system help?
• What will be the integration problems?
• Is new technology needed? What skills?
• What facilities must be supported by the proposed system?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 40

Elicitation and analysis

● Sometimes called requirements elicitation or
requirements discovery.

● Involves technical staff working with customers to find out
about
• the application domain
• the services that the system should provide and
• the system’s operational constraints.

● May involve end-users, managers, engineers involved in
maintenance, domain experts, trade unions, etc.
• These are called stakeholders.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 41

Problems of requirements analysis
● Stakeholders don’t know what they really want.
● Stakeholders express requirements in their own terms.
● Different stakeholders may have conflicting requirements.
● Organisational and political factors may influence the

system requirements.
● The requirements change during the analysis process.

New stakeholders may emerge and the business
environment change.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 42

Process activities

● Requirements discovery
• Interacting with stakeholders to discover their requirements.

Domain requirements are also discovered at this stage.
● Requirements classification and organisation

• Groups related requirements and organises them into coherent
clusters.

● Prioritisation and negotiation
• Prioritising requirements and resolving requirements conflicts.

● Requirements documentation
• Requirements are documented and input into the next round of

the spiral.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 43

The requirements spiral

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 44

Viewpoints

● Viewpoints are a way of structuring the
requirements to represent the perspectives of
different stakeholders.
• Stakeholders may be classified under different

viewpoints.
● This multi-perspective analysis is important

• there is no single correct way to analyse system
requirements.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 45

Types of viewpoint

● Interactor viewpoints
• People or other systems that interact directly with the system.
• E.g. In an ATM, the customer’s and the account database are

interactor VPs.
● Indirect viewpoints

• Stakeholders who do not use the system themselves but who
influence the requirements.

• E.g. In an ATM, management and security staff are indirect
viewpoints.

● Domain viewpoints
• Domain characteristics and constraints that influence the

requirements.
• E.g.In an ATM, an example would be standards for inter-bank

communications.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 46

Interviewing

● In formal or informal interviewing, the RE team
puts questions to stakeholders about the system
that they use and the system to be developed.

● There are two types of interview
• Closed interviews where a pre-defined set of

questions are answered.
• Open interviews where there is no pre-defined

agenda and a range of issues are explored with
stakeholders.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 47

Social and organisational factors

● Software systems are used in a social and
organisational context. This can influence or
even dominate the system requirements.

● Social and organisational factors are not a single
viewpoint but are influences on all viewpoints.

● Good analysts must be sensitive to these factors
but currently no systematic way to tackle their
analysis.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 48

Scope of ethnography

● Requirements that are derived from the way that
people actually work rather than the way I which
process definitions suggest that they ought to
work.

● Requirements that are derived from cooperation
and awareness of other people’s activities.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 49

Scenarios

● Scenarios are real-life examples of how a system
can be used.

● They should include
• A description of the starting situation;
• A description of the normal flow of events;
• A description of what can go wrong;
• Information about other concurrent activities;
• A description of the state when the scenario finishes.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 50

Use cases

● Use-cases are a scenario based technique in the
UML which identify the actors in an interaction
and which describe the interaction itself.

● A set of use cases should describe all possible
interactions with the system.

● Sequence diagrams may be used to add detail to
use-cases by showing the sequence of event
processing in the system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 51

System modelling

● System modelling helps the analyst to understand the
functionality of the system and models are used to
communicate with customers.

● Different models present the system from different
perspectives
• External perspective showing the system’s context or

environment;
• Behavioural perspective showing the behaviour of the system;
• Structural perspective showing the system or data architecture.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 52

Model types

● Data processing model showing how the data is
processed at different stages.

● Composition model showing how entities are
composed of other entities.

● Architectural model showing principal sub-
systems.

● Classification model showing how entities have
common characteristics.

● Stimulus/response model showing the system’s
reaction to events.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 53

Model Types

● Context models are used to illustrate the operational
context of a system
• they show what lies outside the system boundaries.

● Architectural models show the system and its relationship
with other systems.

● Process models show the overall process and the
processes that are supported by the system.

● Data flow models may be used to show the processes
and the flow of information from one process to another.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 54

Behavioural models

● Behavioural models are used to describe the
overall behaviour of a system.

● Two types of behavioural model are:
• Data processing models that show how data is

processed as it moves through the system;
• State machine models that show the systems

response to events.
● These models show different perspectives so

both of them are required to describe the
system’s behaviour.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 55

Data flow diagrams

● DFDs model the system from a functional
perspective.

● Tracking and documenting how the data
associated with a process is helpful to develop
an overall understanding of the system.

● Data flow diagrams may also be used in showing
the data exchange between a system and other
systems in its environment.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 56

Order processing DFD

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 57

State machine models

● These model the behaviour of the system in
response to external and internal events.

● They show the system’s responses to stimuli so
are often used for modelling real-time systems.

● State machine models show system states as
nodes and events as arcs between these nodes.
When an event occurs, the system moves from
one state to another.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 58

Semantic data models

● Used to describe the logical structure of data processed
by the system.

● An entity-relation-attribute model sets out the entities in
the system, the relationships between these entities and
the entity attributes

● Widely used in database design. Can readily be
implemented using relational databases.

● No specific notation provided in the UML but objects and
associations can be used.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 59

Data dictionaries

● Data dictionaries are lists of all of the names
used in the system models. Descriptions of the
entities, relationships and attributes are also
included.

● Advantages
• Support name management and avoid duplication;
• Store of organisational knowledge linking analysis,

design and implementation;
● Many CASE workbenches support data

dictionaries.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 60

Data dictionary entries

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 61

Object models

● Object models describe the system in terms of
object classes and their associations.

● An object class is an abstraction over a set of
objects with common attributes and the services
(operations) provided by each object.

● Various object models may be produced
• Inheritance models;
• Aggregation models;
• Interaction models.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 62

Object models and the UML

● The UML is a standard representation devised by
the developers of widely used object-oriented
analysis and design methods.

● It has become an effective standard for object-
oriented modelling.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 63

Structured methods

● Structured methods incorporate system
modelling as an inherent part of the method.

● Methods define a set of models, a process for
deriving these models and rules and guidelines
that should apply to the models.

● CASE tools support system modelling as part of
a structured method.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 64

Method weaknesses

● They do not model non-functional system
requirements.

● They do not usually include information about
whether a method is appropriate for a given
problem.

● The may produce too much documentation.
● The system models are sometimes too detailed

and difficult for users to understand.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 65

Requirements validation

● Concerned with demonstrating that the
requirements define the system that the
customer really wants.

● Requirements error costs are high so validation
is very important
• Fixing a requirements error after delivery may cost

up to 100 times the cost of fixing an implementation
error.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 66

Requirements checking

● Validity. Does the system provide the functions which
best support the customer’s needs?

● Consistency. Are there any requirements conflicts?
● Completeness. Are all functions required by the customer

included?
● Realism. Can the requirements be implemented given

available budget and technology
● Verifiability. Can the requirements be checked?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 67

Requirements validation techniques
● Requirements reviews

• Systematic manual analysis of the requirements.
● Prototyping

• Using an executable model of the system to check
requirements. Covered in Chapter 17.

● Test-case generation
• Developing tests for requirements to check

testability.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 68

Review checks

● Verifiability. Is the requirement realistically
testable?

● Comprehensibility. Is the requirement properly
understood?

● Traceability. Is the origin of the requirement
clearly stated?

● Adaptability. Can the requirement be changed
without a large impact on other requirements?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 69

Requirements management

● Requirements management is the process of managing
changing requirements during the requirements
engineering process and system development.

● Requirements are inevitably incomplete and inconsistent
• New requirements emerge during the process as business

needs change and a better understanding of the system is
developed;

• Different viewpoints have different requirements and these are
often contradictory.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 70

Traceability

● Traceability is concerned with the relationships between
requirements, their sources and the system design

● Source traceability
• Links from requirements to stakeholders who proposed these

requirements;

● Requirements traceability
• Links between dependent requirements;

● Design traceability
• Links from the requirements to the design;

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 71

A traceability matrix

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 72

CASE tool support

● Requirements storage
• Requirements should be managed in a secure, managed data

store.

● Change management
• The process of change management is a workflow process

whose stages can be defined and information flow between
these stages partially automated.

● Traceability management
• Automated retrieval of the links between requirements.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 73

The requirements document

● The requirements document is the official
statement of what is required of the system
developers.

● Should include both a definition of user
requirements and a specification of the system
requirements.

● It is NOT a design document.
• As far as possible, it should set of WHAT the system

should do rather than HOW it should do it

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 74

Users of a requirements document

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 75

IEEE requirements standard

● Defines a generic structure for a requirements
document that must be instantiated for each
specific system.
• Introduction.
• General description.
• Specific requirements.
• Appendices.
• Index.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 76

Requirements document structure

● Preface
● Introduction
● Glossary
● User requirements definition
● System architecture
● System requirements specification
● System models
● System evolution
● Appendices
● Index

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 77

Formal methods

● Based on mathematical representation and analysis
of software.

● Formal methods did not become largely used
• Other software engineering techniques have been

successful
• Market changes (time-to-market vs software with a low

error count)
• Not well-suited to specifying and analysing user interfaces

and user interaction;
• Formal methods are still hard to scale up to large

systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 78

Use of formal methods

● The principal benefits of formal methods
are in reducing the number of faults in
systems.

● The main area of applicability is in critical
systems engineering.
• They are cost-effective because high system

failure costs must be avoided.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 79

Development costs with formal specification

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 80

Specification techniques

● Algebraic specification
• The system is specified in terms of its operations and

their relationships.
● Model-based specification

• The system is specified in terms of a state model
that is constructed using mathematical constructs
such as sets and sequences. Operations are defined
by modifications to the system’s state.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 81

Formal specification languages

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 82

The structure of an algebraic specification

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 83

Specification components

● Introduction
• Defines the sort (the type name) and declares other

specifications that are used.
● Description

• Informally describes the operations on the type.
● Signature

• Defines the syntax of the operations in the interface and their
parameters.

● Axioms
• Defines the operation semantics by defining axioms which

characterise behaviour.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 84

List specification

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 85

Behavioural specification

● Algebraic specification can be cumbersome when the
object operations are not independent of the object state.

● Model-based specification exposes the system state and
defines the operations in terms of changes to that state.

● The Z notation is a mature technique for model-based
specification. It combines formal and informal description
and uses graphical highlighting when presenting
specifications.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 86

The structure of a Z schema

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6 Slide 87

Insulin pump schema

