Software Design

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 1

Software design and implementation

e The process of converting the system
specification into an executable system.
e Software design
« Design a software structure that realises the
specification;
e Implementation

 Translate this structure into an executable
program;

e The activities of design and implementation
are closely related and may be inter-leaved.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 2

Design process activities

e Architectural design
e Abstract specification
e Interface design

e Component design

e Data structure design
e Algorithm design

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 3

The software design process

¢ Reguisments
specificman

I.*“'.I'-.tht-:ﬂ.ul'

o

Desigr ackities

/ Data
SEruchis
desion

¢ Compenent
dhesign

Inledace

LF|

Systenm Stftvane Intedace Component — Algarithm
architeciue 5 pecilicHon specificlon 5 pecificlion apecificBon specificlon
Design poducts
©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 4

Software architecture

e Architectural design is:
« Sub-systems identification

« Control and communication frameworks
specification

e A description of the software architecture
is the output of this design process.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 5

Advantages of explicit architecture

o Stakeholder communication

« Architecture may be used as a focus of
discussion by system stakeholders.

e System analysis

 Means that analysis of whether the system can
meet its non-functional requirements is possible.

e Large-scale reuse

 The architecture may be reusable across a
range of systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 6

Architecture and system characteristics

e Performance

 Localise critical operations and minimise communications.
Use large rather than fine-grain components.

e Security
 Use a layered architecture with critical assets in the inner
layers.
o Safety
* Localise safety-critical features in a small number of sub-
systems.
e Availability
* Include redundant components and mechanisms for fault
tolerance.

e Maintainability
« Use fine-grain, replaceable components.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 7

System structuring

e Concerned with decomposing the system
into interacting sub-systems.

e [he architectural design is normally
expressed as a block diagram presenting an
overview of the system structure.

e More specific models showing how sub-
systems share data, are distributed and
interface with each other may also be
developed.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 8

Box and line diagrams

e Very abstract - they do not show:
« the nature of component relationships
« the externally visible properties of the sub-systems.

o Useful for communication with stakeholders and
for project planning.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 9

Wsian
Syalem
Object AL Gripgpear
dentiliclion F—= oLl er it el er
Syslem
FatkEing
Sa|ecian
SySLem
-
Facking T T
system ot el
©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 11

Packing robot control system

Slide 10

Architectural design decisions

e Is there a generic application architecture that can
be used?

e How will the system be distributed?

e What architectural styles are appropriate?

e What approach will be used to structure the system?
e How will the system be decomposed into modules?
e What control strategy should be used?

e How will the architectural design be evaluated?

e How should the architecture be documented?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 11

Architectural models

e Used to document an architectural design.

e Static structural model that shows the major system
components.

e Dynamic process model that shows the process
structure of the system.

e Interface model that defines sub-system interfaces.

e Relationships model such as a data-flow model that
shows sub-system relationships.

e Distribution model that shows how sub-systems are
distributed across computers.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 12

System organisation

e Reflects the basic strategy that is used to
structure a system.

e Three organisational styles are widely used:
A shared data repository style;

A shared services and servers style;
 An abstract machine or layered style.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 13

The repository model

e Sub-systems must exchange data.

« Shared data is held in a central database or
repository and may be accessed by all sub-
systems;

 Each sub-system maintains its own database
and passes data explicitly to other sub-systems.
e When large amounts of data are to be
shared, the repository model of sharing is
most commonly used.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 14

Repository model characteristics

e Advantages

- Efficient way to share large amounts of data;

« Sub-systems need not be concerned with how data is
produced Centralised management e.g. backup, security,
etc.

« Sharing model is published as the repository schema.
e Disadvantages

« Sub-systems must agree on a repository data model.
Inevitably a compromise;

« Data evolution is difficult and expensive;
 No scope for specific management policies;
« Difficult to distribute efficiently.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 15

Client-server model

e Distributed system model

 shows how data and processing is distributed
across a range of components.

o Set of stand-alone servers

« provide specific services:
* E.g. printing, data management, etc.

e Set of clients which call on these services.

e Network which allows clients to access
servers.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 16

Client-server characteristics

e Advantages
« Distribution of data is straightforward;

 Makes effective use of networked systems. May require
cheaper hardware;

 Easy to add new servers or upgrade existing servers.

e Disadvantages

 No shared data model so sub-systems use different data
organisation. Data interchange may be inefficient;

 Redundant management in each server;

« No central register of names and services - it may be hard
to find out what servers and services are available.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 17

Abstract machine (layered) model

e Used to model the interfacing of sub-systems.

e Organises the system into a set of layers (or abstract
machines) each of which provide a set of services.

e Supports the incremental development of sub-
systems in different layers.

When a layer interface changes, only the adjacent layer is
affected.

e However, often artificial to structure systems in this
way.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 18

Version management system

Configuration management system layver I
Object management system layer I

Catabase system layer I
Operating system layer I

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 19

Modular decomposition styles

e Styles of decomposing sub-systems into
modules.

e No rigid distinction between system
organisation and modular decomposition.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 20

Sub-systems and modules

e A sub-system is a system in its own right
whose operation is independent of the
services provided by other sub-systems.

e A module is a system component that
provides services to other components but
would not normally be considered as a
separate system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 21

Modular decomposition

Another structural level where sub-systems are
decomposed into modules.

Two modular decomposition models covered

* An object model where the system is decomposed into
interacting object;

« A pipeline or data-flow model where the system is
decomposed into functional modules which transform
iInputs to outputs.

If possible, decisions about concurrency should be
delayed until modules are implemented.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 22

Object models

e Structure the system into a set of loosely
coupled objects with well-defined interfaces.

e Object-oriented decomposition is concerned
with identifying object classes, their attributes
and operations.

e When implemented, objects are created from
these classes and some control model used
to coordinate object operations.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 23

Object model advantages

e Objects are loosely coupled

« their implementation can be modified without
affecting other objects.

e [Ihe objects may reflect real-world entities.

e OO implementation languages are widely
used.

e However, object interface changes may
cause problems and complex entities may be
hard to represent as objects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 24

Function-oriented pipelining

¢ Functional transformations process their
iInputs to produce outputs.

e May be referred to as a pipe and filter model
(as in UNIX shell).

e Variants of this approach are very common.
When transformations are sequential, this is
a batch sequential model which is
extensively used in data processing systems.

e Not really suitable for interactive systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 25

Invoice processing system

lssue
—|-|_. ——— |—|- Fecaipts
¢ Read issued ldentify .
iFrccas P ments
7 Find 7 lssue
B payments - prEyrient g PFemimndars
.."‘u. due ! '-__Hrﬂ_ﬂluuld-:r !
IFraices Payrierits
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 26

Pipeline model advantages

e Supports transformation reuse.

e Intuitive organisation for stakeholder
communication.

e Easy to add new transformations.

e Relatively simple to implement as either a
concurrent or sequential system.

e However, requires a common format for data
transfer along the pipeline and difficult to
support event-based interaction.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 27

Control styles

e Are concerned with the control flow between
sub-systems.

« Distinct from the system decomposition model.
e Centralised control

* One sub-system has overall responsibility for
control and starts and stops other sub-systems.

e Event-based control

 Each sub-system can respond to externally
generated events from other sub-systems or the
system’s environment.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 28

Centralised control

e A control sub-system takes responsibility for
managing the execution of other sub-systems.

e Call-return model

« Top-down subroutine model where control starts at the
top of a subroutine hierarchy and moves downwards.
Applicable to sequential systems.

e Manager model

« Applicable to concurrent systems. One system
component controls the stopping, starting and
coordination of other system processes. Can be
implemented in sequential systems as a case statement.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 29

Event-driven systems

e Driven by externally generated events where the
timing of the event is outwith the control of the sub-
systems which process the event.

e [Two principal event-driven models

« Broadcast models. An event is broadcast to all sub-
systems. Any sub-system which can handle the event
may do so;

* Interrupt-driven models. Used in real-time systems where
Interrupts are detected by an interrupt handler and
passed to some other component for processing.

e Other event driven models include spreadsheets and
production systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 30

Broadcast model

e Effective in integrating sub-systems on different
computers in a network.

e Sub-systems register an interest in specific events.
When these occur, control is transferred to the sub-
system which can handle the event.

e Control policy is not embedded in the event and
message handler. Sub-systems decide on events of
interest to them.

e However, sub-systems don’t know if or when an
event will be handled.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 31

Selective broadcasting

Sub-syEtem Sub-system Sub-SyEtem SuUb-gyEtem
1 2 3 4

Evanit and messge handler

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 32

Interrupt-driven systems

e Used in real-time systems where fast
response to an event is essential.

e [There are known interrupt types with a
handler defined for each type.

e [Each type is associated with a memory
location and a hardware switch causes
transfer to its handler.

e Allows fast response but complex to program
and difficult to validate.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 33

Interrupt-driven control

Intarmipts
Intarrupt
g LG

Hardler Hardler Hardler Harndler

1 2 3 -
I-"'PF'ruEE'.-n-: ¢ Pracass I-"'PF'ruEeszp I-"'PF'rrJI:es:p

1 1 1 F 1 3 1 4

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 34

Architectural models

e Different architectural models may be
produced during the design process

e Each model presents different perspectives
on the architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 35

In the sequel...

e We will focus on:

» Distributed Systems
Architectures

* Object-Oriented Design

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 36

Distributed Systems Architectures

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 37

Distributed systems

e Virtually all large computer-based systems
are now distributed systems.

e Information processing is distributed over
several computers rather than confined to a
single machine.

e Distributed software engineering is therefore
very important for enterprise computing
systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 38

System types

e Personal systems that are not distributed and that
are designed to run on a personal computer or
workstation.

e Embedded systems that run on a single processor
or on an integrated group of processors.

e Distributed systems where the system software runs
on a loosely integrated group of cooperating
processors linked by a network.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 39

Distributed system characteristics

e Resource sharing
« Sharing of hardware and software resources.

e Openness
« Use of equipment and software from different vendors.

e Concurrency
« Concurrent processing to enhance performance.

e Scalability

* Increased throughput by adding new resources.

e Fault tolerance

« The ability to continue in operation after a fault has
occurred.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 40

Distributed system disadvantages

o Complexity

« Typically, distributed systems are more complex
than centralised systems.

e Security
 More susceptible to external attack.

e Manageability

* More effort required for system management.

e Unpredictability

 Unpredictable responses depending on the
system organisation and network load.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 41

Distributed systems architectures

e Client-server architectures

« Distributed services which are called on by
clients. Servers that provide services are treated
differently from clients that use services.

e Distributed object architectures
 No distinction between clients and servers.

 Any object on the system may provide and use
services from other objects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 42

Multiprocessor architectures

e Simplest distributed system model.

e System composed of multiple processes
which may (but need not) execute on
different processors.

e Architectural model of many large real-time
systems.

e Distribution of process to processor may be
pre-ordered or may be under the control of a
dispatcher.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 43

Client-server architectures

e The application is modelled as a set of
services that are provided by servers and a
set of clients that use these services.

e Clients know of servers but servers need not
know of clients.

e Clients and servers are logical processes

e [he mapping of processors to processes is
not necessarily 1 : 1.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 44

Layered application architecture

e Presentation layer

« Concerned with presenting the results of a
computation to system users and with collecting
user inputs.

e Application processing layer

« Concerned with providing application specific
functionality e.g., in a banking system, banking
functions such as open account, close account,
etc.

e Data management layer

« Concerned with managing the system
databases.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 45

Application layers

Presentatiaon layer

Application processing

l&yer

Data managermant
|&yer

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 46

Thin and fat clients

e I hin-client model

« |n a thin-client model, all of the application
processing and data management is carried out
on the server. The client is simply responsible
for running the presentation software.

e Fat-client model

* In this model, the server is only responsible for
data management. The software on the client
implements the application logic and the
interactions with the system user.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 47

Thin client model

e Used when legacy systems are migrated to
client server architectures.

 The legacy system acts as a server in its own
right with a graphical interface implemented on
a client.
e A major disadvantage is that it places a
heavy processing load on both the server
and the network.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 48

Fat client model

e More processing is delegated to the client as
the application processing is locally
executed.

e Most suitable for new C/S systems where the
capabilities of the client system are known in
advance.

e More complex than a thin client model
especially for management. New versions of
the application have to be installed on all
clients.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 49

Three-tier architectures

e In athree-tier architecture, each of the
application architecture layers may execute
on a separate processor.

e Allows for better performance than a thin-
client approach and is simpler to manage
than a fat-client approach.

e A more scalable architecture - as demands
increase, extra servers can be added.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 50

Distributed object architectures

e There is no distinction in a distributed object
architectures between clients and servers.

e Each distributable entity is an object that provides
services to other objects and receives services from
other objects.

e Object communication is through a middleware
system called an object request broker.

e However, distributed object architectures are more
complex to design than C/S systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 51

Distributed object architecture

a1 a2 a3 a4
5 0]) 5 (02 5 (03] 5 (04)
g == g == | g
Object request broker

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 52

Advantages of distributed object architecture

o It allows the system designer to delay decisions on
where and how services should be provided.

e Itis avery open system architecture that allows new
resources to be added to it as required.

e The system is flexible and scaleable.

e Itis possible to reconfigure the system dynamically
with objects migrating across the network as
required.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 53

CORBA

e CORBA is an international standard for an Object
Request Broker - middleware to manage
communications between distributed objects.

e Middleware for distributed computing is required at 2
levels:
At the logical communication level, the middleware allows

objects on different computers to exchange data and
control information;

« At the component level, the middleware provides a basis
for developing compatible components. CORBA
component standards have been defined.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 54

Peer-to-peer architectures

e Peerto peer (p2p) systems are decentralised
systems where computations may be carried
out by any node in the network.

e IThe overall system is designed to take
advantage of the computational power and
storage of a large number of networked
computers.

e Most p2p systems have been personal
systems but there is increasing business use
of this technology.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 55

Decentralised p2p architecture

[A& | o
I E I_..

/\ / \/

N
._//"'--h.:'r.-l:-::.

_nH |

YL o

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 56

Semi-centralised p2p architecture

Discavery
S Ef

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 57

Service-oriented architectures

e Based around the notion of externally
provided services (web services).

e A web service is a standard approach to
making a reusable component available and
accessible across the web

« A tax filing service could provide support for
users to fill in their tax forms and submit these

to the tax authorities.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 58

Services standards

e Services are based on agreed, XML-based
standards so can be provided on any
platform and written in any programming
language.

e Key standards

« SOAP - Simple Object Access Protocol;
« WSDL - Web Services Description Language;

« UDDI - Universal Description, Discovery and
Integration.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 59

Object-oriented Design

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 60

Object-oriented development

e Object-Oriented Analysis, Design and
Programming are related but distinct.

e OOA: developing an object model of the
application domain.

e OOD: developing an object-oriented system
model to implement requirements.

e OOP: realising an OOD using an OO
programming language such as Java or C++.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 61

Characteristics of OOD

e Objects are abstractions of real-world or system
entities and manage themselves.

e Objects are independent and encapsulate state and
representation information.

e System functionality is expressed in terms of object
services.

e Shared data areas are eliminated. Objects
communicate by message passing.

e Objects may be distributed and may execute
sequentially or in parallel.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 62

Advantages of OOD

e Easier maintenance

« Objects may be understood as stand-alone
entities.

e Reusability
« Objects are potentially reusable components.

e Natural Metaphor

 There may be an obvious mapping from real
world entities to system objects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 63

Objects and object classes

e Objects are entities in a software system
which represent instances of real-world and
system entities.

e ODbject classes are templates for objects.
They may be used to create objects.

e ODbject classes may inherit attributes and
services from other object classes.

e OOL have important modelling features
Aggregation, Inheritance, Polymorphism, ...

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 64

Concurrent objects

e [Ihe nature of objects as self-contained
entities make them suitable for concurrent
Implementation.

e [he message-passing model of object
communication can be implemented directly
If objects are running on separate processors
in a distributed system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 65

Servers and active objects

e Servers.
« The object is implemented as a parallel process
(server)

with entry points corresponding to object
operations. If no

calls are made to it, the object suspends itself
and waits for further requests for service.

e Active objects

« Objects are implemented as parallel processes
and the
iInternal object state may be changed by the
object itself and not simply by external calls.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 66

The Unified Modeling Language

e Several different notations for describing object-

oriented designs were proposed in the 1980s and
1990s.

e The Unified Modeling Language is an integration of
these notations.

e It describes notations for a number of different
models that may be produced during OO analysis
and design.

e Itis now a de facto standard for OO modelling.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 67

An object-oriented design process

e Structured design processes involve
developing a number of different system
models.

e They require a lot of effort for development
and maintenance of these models and, for
small systems, this may not be cost-
effective.

e However, for large systems developed by
different groups design models are an
essential communication mechanism.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 68

Process stages

e Highlights key activities without being tied to
any proprietary process such as the RUP.

Define the context and modes of use of the
system;

Design the system architecture;
|dentify the principal system objects;
Develop design models;

Specify object interfaces.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 69

System context and models of use

e Develop an understanding of the relationships
between the software being designed and its
external environment

e System context

« A static model that describes other systems in the
environment. Use a subsystem model to show other
systems. Following slide shows the systems around the
weather station system.

e Model of system use

A dynamic model that describes how the system interacts
with its environment. Use use-cases to show interactions

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 70

Layered architecture

acSulEy s te e
Data display

wSulbEsy stere
Data arcbavireg

aSulDEay S Te e
Data processing

whulbsy starme
Data collectan

Data dsplay |i3ﬁ'l:1‘ where gbjects are
concerned wit regaring and
pr&&uﬂlmP the data in a human-
rasdable Torm

Data i':l"-ih'a'ir'lﬂ apar where objects
are cancerned with stoning the data
Far Tulure processing

Data processing layer whare abjects
are cancermed with checking and
integrating the callected data

Data callectian Eyer where obigects
are cancermed with acouiring data
Iraem remole Sources

©lan Sommerville 2004

Software Engineering, 7th edition. Chapter 11

Slide 71

Subsystems in the weather mapping system

aSUlgy SLe e
Data I'."-:'I-lllttf.llilr'1 wsubrs Shearms
Data display
— —
|':'EIS'=r'-f-Er Satelite 1
Llser I'-'Ial.l
I_im intedace display
1
Weather — a Flap
siation Ballesn H prifter
Uy S La e wSubray stems
Data processing Data archivirg
1
1 | Data
Data Data Storage
checking INtegratan
[Map siore | [Data store
©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 72

Use-cases for the weather station

Bratup

Ehutdown

‘ i Hapor j

Calibrate 5

Taxt i

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 73

Use-case description

Hgalam Hnniles siniinn

Han-mman T

] Einnilis Hnin snlinsiins sgsines, Binsils sinlins

Hnln Hlls munilis sislisn seulls 5 sy ol s mesils Ssis sl Bex Been
1 1 1 171 5 - /71 7 ']
snlinnliss sgainm. Bils Hsis ionl o s el sislesss =l =g
prannll il s Eegeeiee, s sebees, sisleses =l sags sl
i, s melees, mislesss il meegs misl sgesil, s nisl
sninlsll il Min minll Baslize 5 somgisll ol | slesls Inlsssls.

Hlmins iz munils Bnin snlissiiss sgsises neislilsies & uliaes Ball miill s
munilis sislisn sull mpessis Eessslssins ul lis Bein.

Heagemnn Hiln susssslsnll el Ix sesd in s mesllis Sxis snlisslias sgaies

Heesmesls Easils sislizs: su sieslly sl in gl susn g Bees el B

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 74

Architectural design

e Once interactions between the system and
its environment have been understood, you
use this information for designing the system
architecture.

e [There should normally be no more than 7
entities in an architectural model.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 75

Weather station architecture

Weather statian

1

wSUDSY S Te e
Intedace

1

Manages all

axlerma
CoOmMmunicatians

wSubsy S Te e
Data callectan

1

Codlects ard

SUMParises
wegther data

aGLIDEY 5 De i
nstrurments

Fackage of

mstrurre@nts for raw
data eollections

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 11

Slide 76

Object identification

e ldentifying objects (or object classes) is the
most difficult part of object oriented design.

e Thereis no 'magic formula' for object

identification.

It relies on the skill, experience
and domain knowledge of system designers.

e Object identification is an iterative process.
You are unlikely to get it right first time.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 77

Approaches to identification

e Use a grammatical approach based on a natural
language description of the system (used in Hood
OOD method).

e Base the identification on tangible things in the
application domain.

e Use a behavioural approach and identify objects
based on what participates in what behaviour.

e Use a scenario-based analysis. The objects,
attributes and methods in each scenario are
identified.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 78

Design models

e Design models show the objects and
object classes and relationships
between these entities.

« Static models describe the static

structure of the system in terms of object
classes and relationships.

* Dynamic models describe the dynamic
interactions between objects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 79

Examples of design models

e Sub-system models that show logical
groupings of objects into coherent
subsystems.

e Sequence models that show the sequence of
object interactions.

e State machine models that show how
individual objects change their state in
response to events.

e Other models include use-case models,
aggregation models, generalisation models,
etc.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 80

Subsystem models

e Shows how the design is organised into
logically related groups of objects.

e Inthe UML, these are shown using packages
- an encapsulation construct. This is a logical
model. The actual organisation of objects in
the system may be different.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 81

Weather station subsystems

wsubsystene wsubaystame
Intadacea Data callectman
CorrrmsContraller wWaatherData
Irls_'.'url'erll.
WWeatherStatian Stavus

wSUbEy e e
Instrurmants
Air
Lharmometar RanGauge Anermameler
Ground y " e
tharmamatas Barometers i rdvana

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 82

Sequence models

e Sequence models show the sequence of
object interactions that take place
« Objects are arranged horizontally across the
top;
 Time is represented vertically so models are
read top to bottom;

* Interactions are represented by labelled arrows,
Different styles of arrow represent different
types of interaction;

« A thin rectangle in an object lifeline represents
the time when the object is the controlling object
In the system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 83

Data collection sequence

“CammsCantedl|er WeEatharstatean WeEathearData

>0

request (repa)
-

Acknowledge [)

1
1
1
1
1
1
1
1
1
1
-
1

L

I_. repot |}

SUMMErise ¢)

Jearyd | regal |

reply (repot)

acknowledge ()

L EL L L PP EPEEEEEEEEEY

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 84

Statecharts

e Show how objects respond to different service
requests and the state transitions triggered by these

requests
« If object state is Shutdown then it responds to a Startup()
message;
* In the waiting state the object is waiting for further
messages;
« If reportWeather () then system moves to summarising
state;

« |If calibrate () the system moves to a calibrating state;

* A collecting state is entered when a clock signal is
received.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 85

Weather station state diagram

Qperation calibrate () e ™y
| Calibrating
I \
' st STy sty .
| Shutdewn | e - Waiting .'I—lﬂ_ Tsting .-r'J
y . y .

* ghutdown |}

o ",
; ¥ 1 . | SUMMArsng

calibration QK

} * transmission dane l 1est camplete

N S
- Y
| Trarsmitting |
ek collEction .‘-.—A-"II
dane reponiather |
wedther summary

Cormphe e

©lan Sommerville 2004

Software Engineering, 7th edition. Chapter 11

Slide 86

Object interface specification

e Object interfaces have to be specified so that the
objects and other components can be designed in
parallel.

e Designers should avoid designing the interface
representation but should hide this in the object
itself.

e Objects may have several interfaces which are
viewpoints on the methods provided.

e The UML uses class diagrams for interface
specification but Java may also be used.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 87

Weather station interface

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 88

In the sequel...

e We will se more about OOD
« Structured Development methods
* Agile Development methods
* Design Patterns

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 89

