
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 1

Software Design

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 2

Software design and implementation

● The process of converting the system
specification into an executable system.

● Software design
• Design a software structure that realises the

specification;
● Implementation

• Translate this structure into an executable
program;

● The activities of design and implementation
are closely related and may be inter-leaved.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 3

Design process activities

● Architectural design
● Abstract specification
● Interface design
● Component design
● Data structure design
● Algorithm design

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 4

The software design process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 5

Software architecture

● Architectural design is:
• Sub-systems identification
• Control and communication frameworks

specification
● A description of the software architecture

is the output of this design process.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 6

Advantages of explicit architecture

● Stakeholder communication
• Architecture may be used as a focus of

discussion by system stakeholders.
● System analysis

• Means that analysis of whether the system can
meet its non-functional requirements is possible.

● Large-scale reuse
• The architecture may be reusable across a

range of systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 7

Architecture and system characteristics

● Performance
• Localise critical operations and minimise communications.

Use large rather than fine-grain components.
● Security

• Use a layered architecture with critical assets in the inner
layers.

● Safety
• Localise safety-critical features in a small number of sub-

systems.
● Availability

• Include redundant components and mechanisms for fault
tolerance.

● Maintainability
• Use fine-grain, replaceable components.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 8

System structuring

● Concerned with decomposing the system
into interacting sub-systems.

● The architectural design is normally
expressed as a block diagram presenting an
overview of the system structure.

● More specific models showing how sub-
systems share data, are distributed and
interface with each other may also be
developed.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 9

Box and line diagrams

● Very abstract - they do not show:
• the nature of component relationships
• the externally visible properties of the sub-systems.

● Useful for communication with stakeholders and
for project planning.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 10

Packing robot control system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 11

Architectural design decisions

● Is there a generic application architecture that can
be used?

● How will the system be distributed?
● What architectural styles are appropriate?
● What approach will be used to structure the system?
● How will the system be decomposed into modules?
● What control strategy should be used?
● How will the architectural design be evaluated?
● How should the architecture be documented?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 12

Architectural models

● Used to document an architectural design.
● Static structural model that shows the major system

components.
● Dynamic process model that shows the process

structure of the system.
● Interface model that defines sub-system interfaces.
● Relationships model such as a data-flow model that

shows sub-system relationships.
● Distribution model that shows how sub-systems are

distributed across computers.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 13

System organisation

● Reflects the basic strategy that is used to
structure a system.

● Three organisational styles are widely used:
• A shared data repository style;
• A shared services and servers style;
• An abstract machine or layered style.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 14

The repository model

● Sub-systems must exchange data.
• Shared data is held in a central database or

repository and may be accessed by all sub-
systems;

• Each sub-system maintains its own database
and passes data explicitly to other sub-systems.

● When large amounts of data are to be
shared, the repository model of sharing is
most commonly used.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 15

Repository model characteristics

● Advantages
• Efficient way to share large amounts of data;
• Sub-systems need not be concerned with how data is

produced Centralised management e.g. backup, security,
etc.

• Sharing model is published as the repository schema.
● Disadvantages

• Sub-systems must agree on a repository data model.
Inevitably a compromise;

• Data evolution is difficult and expensive;
• No scope for specific management policies;
• Difficult to distribute efficiently.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 16

Client-server model

● Distributed system model
• shows how data and processing is distributed

across a range of components.
● Set of stand-alone servers

• provide specific services:
• E.g. printing, data management, etc.

● Set of clients which call on these services.
● Network which allows clients to access

servers.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 17

Client-server characteristics

● Advantages
• Distribution of data is straightforward;
• Makes effective use of networked systems. May require

cheaper hardware;
• Easy to add new servers or upgrade existing servers.

● Disadvantages
• No shared data model so sub-systems use different data

organisation. Data interchange may be inefficient;
• Redundant management in each server;
• No central register of names and services - it may be hard

to find out what servers and services are available.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 18

Abstract machine (layered) model

● Used to model the interfacing of sub-systems.
● Organises the system into a set of layers (or abstract

machines) each of which provide a set of services.
● Supports the incremental development of sub-

systems in different layers.
• When a layer interface changes, only the adjacent layer is

affected.

● However, often artificial to structure systems in this
way.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 19

Version management system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 20

Modular decomposition styles

● Styles of decomposing sub-systems into
modules.

● No rigid distinction between system
organisation and modular decomposition.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 21

Sub-systems and modules

● A sub-system is a system in its own right
whose operation is independent of the
services provided by other sub-systems.

● A module is a system component that
provides services to other components but
would not normally be considered as a
separate system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 22

Modular decomposition

● Another structural level where sub-systems are
decomposed into modules.

● Two modular decomposition models covered
• An object model where the system is decomposed into

interacting object;
• A pipeline or data-flow model where the system is

decomposed into functional modules which transform
inputs to outputs.

● If possible, decisions about concurrency should be
delayed until modules are implemented.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 23

Object models

● Structure the system into a set of loosely
coupled objects with well-defined interfaces.

● Object-oriented decomposition is concerned
with identifying object classes, their attributes
and operations.

● When implemented, objects are created from
these classes and some control model used
to coordinate object operations.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 24

Object model advantages

● Objects are loosely coupled
• their implementation can be modified without

affecting other objects.
● The objects may reflect real-world entities.
● OO implementation languages are widely

used.
● However, object interface changes may

cause problems and complex entities may be
hard to represent as objects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 25

Function-oriented pipelining

● Functional transformations process their
inputs to produce outputs.

● May be referred to as a pipe and filter model
(as in UNIX shell).

● Variants of this approach are very common.
When transformations are sequential, this is
a batch sequential model which is
extensively used in data processing systems.

● Not really suitable for interactive systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 26

Invoice processing system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 27

Pipeline model advantages

● Supports transformation reuse.
● Intuitive organisation for stakeholder

communication.
● Easy to add new transformations.
● Relatively simple to implement as either a

concurrent or sequential system.
● However, requires a common format for data

transfer along the pipeline and difficult to
support event-based interaction.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 28

Control styles

● Are concerned with the control flow between
sub-systems.
• Distinct from the system decomposition model.

● Centralised control
• One sub-system has overall responsibility for

control and starts and stops other sub-systems.
● Event-based control

• Each sub-system can respond to externally
generated events from other sub-systems or the
system’s environment.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 29

Centralised control

● A control sub-system takes responsibility for
managing the execution of other sub-systems.

● Call-return model
• Top-down subroutine model where control starts at the

top of a subroutine hierarchy and moves downwards.
Applicable to sequential systems.

● Manager model
• Applicable to concurrent systems. One system

component controls the stopping, starting and
coordination of other system processes. Can be
implemented in sequential systems as a case statement.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 30

Event-driven systems

● Driven by externally generated events where the
timing of the event is outwith the control of the sub-
systems which process the event.

● Two principal event-driven models
• Broadcast models. An event is broadcast to all sub-

systems. Any sub-system which can handle the event
may do so;

• Interrupt-driven models. Used in real-time systems where
interrupts are detected by an interrupt handler and
passed to some other component for processing.

● Other event driven models include spreadsheets and
production systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 31

Broadcast model

● Effective in integrating sub-systems on different
computers in a network.

● Sub-systems register an interest in specific events.
When these occur, control is transferred to the sub-
system which can handle the event.

● Control policy is not embedded in the event and
message handler. Sub-systems decide on events of
interest to them.

● However, sub-systems don’t know if or when an
event will be handled.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 32

Selective broadcasting

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 33

Interrupt-driven systems

● Used in real-time systems where fast
response to an event is essential.

● There are known interrupt types with a
handler defined for each type.

● Each type is associated with a memory
location and a hardware switch causes
transfer to its handler.

● Allows fast response but complex to program
and difficult to validate.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 34

Interrupt-driven control

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 35

Architectural models

● Different architectural models may be
produced during the design process

● Each model presents different perspectives
on the architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 36

In the sequel…

● We will focus on:
• Distributed Systems

Architectures
• Object-Oriented Design

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 37

Distributed Systems Architectures

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 38

Distributed systems

● Virtually all large computer-based systems
are now distributed systems.

● Information processing is distributed over
several computers rather than confined to a
single machine.

● Distributed software engineering is therefore
very important for enterprise computing
systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 39

System types

● Personal systems that are not distributed and that
are designed to run on a personal computer or
workstation.

● Embedded systems that run on a single processor
or on an integrated group of processors.

● Distributed systems where the system software runs
on a loosely integrated group of cooperating
processors linked by a network.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 40

Distributed system characteristics

● Resource sharing
• Sharing of hardware and software resources.

● Openness
• Use of equipment and software from different vendors.

● Concurrency
• Concurrent processing to enhance performance.

● Scalability
• Increased throughput by adding new resources.

● Fault tolerance
• The ability to continue in operation after a fault has

occurred.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 41

Distributed system disadvantages

● Complexity
• Typically, distributed systems are more complex

than centralised systems.
● Security

• More susceptible to external attack.
● Manageability

• More effort required for system management.
● Unpredictability

• Unpredictable responses depending on the
system organisation and network load.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 42

Distributed systems architectures

● Client-server architectures
• Distributed services which are called on by

clients. Servers that provide services are treated
differently from clients that use services.

● Distributed object architectures
• No distinction between clients and servers.
• Any object on the system may provide and use

services from other objects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 43

Multiprocessor architectures

● Simplest distributed system model.
● System composed of multiple processes

which may (but need not) execute on
different processors.

● Architectural model of many large real-time
systems.

● Distribution of process to processor may be
pre-ordered or may be under the control of a
dispatcher.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 44

Client-server architectures

● The application is modelled as a set of
services that are provided by servers and a
set of clients that use these services.

● Clients know of servers but servers need not
know of clients.

● Clients and servers are logical processes
● The mapping of processors to processes is

not necessarily 1 : 1.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 45

Layered application architecture

● Presentation layer
• Concerned with presenting the results of a

computation to system users and with collecting
user inputs.

● Application processing layer
• Concerned with providing application specific

functionality e.g., in a banking system, banking
functions such as open account, close account,
etc.

● Data management layer
• Concerned with managing the system

databases.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 46

Application layers

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 47

Thin and fat clients

● Thin-client model
• In a thin-client model, all of the application

processing and data management is carried out
on the server. The client is simply responsible
for running the presentation software.

● Fat-client model
• In this model, the server is only responsible for

data management. The software on the client
implements the application logic and the
interactions with the system user.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 48

Thin client model

● Used when legacy systems are migrated to
client server architectures.
• The legacy system acts as a server in its own

right with a graphical interface implemented on
a client.

● A major disadvantage is that it places a
heavy processing load on both the server
and the network.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 49

Fat client model

● More processing is delegated to the client as
the application processing is locally
executed.

● Most suitable for new C/S systems where the
capabilities of the client system are known in
advance.

● More complex than a thin client model
especially for management. New versions of
the application have to be installed on all
clients.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 50

Three-tier architectures

● In a three-tier architecture, each of the
application architecture layers may execute
on a separate processor.

● Allows for better performance than a thin-
client approach and is simpler to manage
than a fat-client approach.

● A more scalable architecture - as demands
increase, extra servers can be added.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 51

Distributed object architectures

● There is no distinction in a distributed object
architectures between clients and servers.

● Each distributable entity is an object that provides
services to other objects and receives services from
other objects.

● Object communication is through a middleware
system called an object request broker.

● However, distributed object architectures are more
complex to design than C/S systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 52

Distributed object architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 53

Advantages of distributed object architecture

● It allows the system designer to delay decisions on
where and how services should be provided.

● It is a very open system architecture that allows new
resources to be added to it as required.

● The system is flexible and scaleable.
● It is possible to reconfigure the system dynamically

with objects migrating across the network as
required.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 54

CORBA

● CORBA is an international standard for an Object
Request Broker - middleware to manage
communications between distributed objects.

● Middleware for distributed computing is required at 2
levels:
• At the logical communication level, the middleware allows

objects on different computers to exchange data and
control information;

• At the component level, the middleware provides a basis
for developing compatible components. CORBA
component standards have been defined.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 55

Peer-to-peer architectures

● Peer to peer (p2p) systems are decentralised
systems where computations may be carried
out by any node in the network.

● The overall system is designed to take
advantage of the computational power and
storage of a large number of networked
computers.

● Most p2p systems have been personal
systems but there is increasing business use
of this technology.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 56

Decentralised p2p architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 57

Semi-centralised p2p architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 58

Service-oriented architectures

● Based around the notion of externally
provided services (web services).

● A web service is a standard approach to
making a reusable component available and
accessible across the web
• A tax filing service could provide support for

users to fill in their tax forms and submit these
to the tax authorities.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 59

Services standards

● Services are based on agreed, XML-based
standards so can be provided on any
platform and written in any programming
language.

● Key standards
• SOAP - Simple Object Access Protocol;
• WSDL - Web Services Description Language;
• UDDI - Universal Description, Discovery and

Integration.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 60

Object-oriented Design

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 61

Object-oriented development

● Object-Oriented Analysis, Design and
Programming are related but distinct.

● OOA: developing an object model of the
application domain.

● OOD: developing an object-oriented system
model to implement requirements.

● OOP: realising an OOD using an OO
programming language such as Java or C++.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 62

Characteristics of OOD

● Objects are abstractions of real-world or system
entities and manage themselves.

● Objects are independent and encapsulate state and
representation information.

● System functionality is expressed in terms of object
services.

● Shared data areas are eliminated. Objects
communicate by message passing.

● Objects may be distributed and may execute
sequentially or in parallel.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 63

Advantages of OOD

● Easier maintenance
• Objects may be understood as stand-alone

entities.
● Reusability

• Objects are potentially reusable components.
● Natural Metaphor

• There may be an obvious mapping from real
world entities to system objects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 64

Objects and object classes

● Objects are entities in a software system
which represent instances of real-world and
system entities.

● Object classes are templates for objects.
They may be used to create objects.

● Object classes may inherit attributes and
services from other object classes.

● OOL have important modelling features
• Aggregation, Inheritance, Polymorphism, …

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 65

Concurrent objects

● The nature of objects as self-contained
entities make them suitable for concurrent
implementation.

● The message-passing model of object
communication can be implemented directly
if objects are running on separate processors
in a distributed system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 66

Servers and active objects

● Servers.
• The object is implemented as a parallel process

(server)
with entry points corresponding to object
operations. If no
calls are made to it, the object suspends itself
and waits for further requests for service.

● Active objects
• Objects are implemented as parallel processes

and the
internal object state may be changed by the
object itself and not simply by external calls.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 67

The Unified Modeling Language

● Several different notations for describing object-
oriented designs were proposed in the 1980s and
1990s.

● The Unified Modeling Language is an integration of
these notations.

● It describes notations for a number of different
models that may be produced during OO analysis
and design.

● It is now a de facto standard for OO modelling.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 68

An object-oriented design process

● Structured design processes involve
developing a number of different system
models.

● They require a lot of effort for development
and maintenance of these models and, for
small systems, this may not be cost-
effective.

● However, for large systems developed by
different groups design models are an
essential communication mechanism.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 69

Process stages

● Highlights key activities without being tied to
any proprietary process such as the RUP.
• Define the context and modes of use of the

system;
• Design the system architecture;
• Identify the principal system objects;
• Develop design models;
• Specify object interfaces.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 70

System context and models of use

● Develop an understanding of the relationships
between the software being designed and its
external environment

● System context
• A static model that describes other systems in the

environment. Use a subsystem model to show other
systems. Following slide shows the systems around the
weather station system.

● Model of system use
• A dynamic model that describes how the system interacts

with its environment. Use use-cases to show interactions

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 71

Layered architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 72

Subsystems in the weather mapping system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 73

Use-cases for the weather station

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 74

Use-case description

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 75

Architectural design

● Once interactions between the system and
its environment have been understood, you
use this information for designing the system
architecture.

● There should normally be no more than 7
entities in an architectural model.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 76

Weather station architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 77

Object identification

● Identifying objects (or object classes) is the
most difficult part of object oriented design.

● There is no 'magic formula' for object
identification.
• It relies on the skill, experience

and domain knowledge of system designers.
● Object identification is an iterative process.

You are unlikely to get it right first time.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 78

Approaches to identification

● Use a grammatical approach based on a natural
language description of the system (used in Hood
OOD method).

● Base the identification on tangible things in the
application domain.

● Use a behavioural approach and identify objects
based on what participates in what behaviour.

● Use a scenario-based analysis. The objects,
attributes and methods in each scenario are
identified.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 79

Design models

● Design models show the objects and
object classes and relationships
between these entities.
• Static models describe the static

structure of the system in terms of object
classes and relationships.

• Dynamic models describe the dynamic
interactions between objects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 80

Examples of design models

● Sub-system models that show logical
groupings of objects into coherent
subsystems.

● Sequence models that show the sequence of
object interactions.

● State machine models that show how
individual objects change their state in
response to events.

● Other models include use-case models,
aggregation models, generalisation models,
etc.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 81

Subsystem models

● Shows how the design is organised into
logically related groups of objects.

● In the UML, these are shown using packages
- an encapsulation construct. This is a logical
model. The actual organisation of objects in
the system may be different.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 82

Weather station subsystems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 83

Sequence models

● Sequence models show the sequence of
object interactions that take place
• Objects are arranged horizontally across the

top;
• Time is represented vertically so models are

read top to bottom;
• Interactions are represented by labelled arrows,

Different styles of arrow represent different
types of interaction;

• A thin rectangle in an object lifeline represents
the time when the object is the controlling object
in the system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 84

Data collection sequence

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 85

Statecharts

● Show how objects respond to different service
requests and the state transitions triggered by these
requests
• If object state is Shutdown then it responds to a Startup()

message;
• In the waiting state the object is waiting for further

messages;
• If reportWeather () then system moves to summarising

state;
• If calibrate () the system moves to a calibrating state;
• A collecting state is entered when a clock signal is

received.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 86

Weather station state diagram

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 87

Object interface specification

● Object interfaces have to be specified so that the
objects and other components can be designed in
parallel.

● Designers should avoid designing the interface
representation but should hide this in the object
itself.

● Objects may have several interfaces which are
viewpoints on the methods provided.

● The UML uses class diagrams for interface
specification but Java may also be used.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 88

Weather station interface

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 89

In the sequel…

● We will se more about OOD
• Structured Development methods
• Agile Development methods
• Design Patterns
• ….

