Software Design
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Software design and implementation

e The process of converting the system
specification into an executable system.
e Software design
« Design a software structure that realises the
specification;
e Implementation

 Translate this structure into an executable
program;

e The activities of design and implementation
are closely related and may be inter-leaved.
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Design process activities

e Architectural design
e Abstract specification
e Interface design

e Component design

e Data structure design
e Algorithm design
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Software architecture

e Architectural design is:
« Sub-systems identification

« Control and communication frameworks
specification

e A description of the software architecture
is the output of this design process.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 5



Advantages of explicit architecture

o Stakeholder communication

« Architecture may be used as a focus of
discussion by system stakeholders.

e System analysis

 Means that analysis of whether the system can
meet its non-functional requirements is possible.

e Large-scale reuse

 The architecture may be reusable across a
range of systems.
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Architecture and system characteristics

e Performance

 Localise critical operations and minimise communications.
Use large rather than fine-grain components.

e Security
 Use a layered architecture with critical assets in the inner
layers.
o Safety
* Localise safety-critical features in a small number of sub-
systems.
e Availability
* Include redundant components and mechanisms for fault
tolerance.

e Maintainability
« Use fine-grain, replaceable components.
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System structuring

e Concerned with decomposing the system
into interacting sub-systems.

e [he architectural design is normally
expressed as a block diagram presenting an
overview of the system structure.

e More specific models showing how sub-
systems share data, are distributed and
interface with each other may also be
developed.
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Box and line diagrams

e Very abstract - they do not show:
« the nature of component relationships
« the externally visible properties of the sub-systems.

o Useful for communication with stakeholders and
for project planning.
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Architectural design decisions

e Is there a generic application architecture that can
be used?

e How will the system be distributed?

e What architectural styles are appropriate?

e What approach will be used to structure the system?
e How will the system be decomposed into modules?
e What control strategy should be used?

e How will the architectural design be evaluated?

e How should the architecture be documented?
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Architectural models

e Used to document an architectural design.

e Static structural model that shows the major system
components.

e Dynamic process model that shows the process
structure of the system.

e Interface model that defines sub-system interfaces.

e Relationships model such as a data-flow model that
shows sub-system relationships.

e Distribution model that shows how sub-systems are
distributed across computers.
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System organisation

e Reflects the basic strategy that is used to
structure a system.

e Three organisational styles are widely used:
A shared data repository style;

A shared services and servers style;
 An abstract machine or layered style.
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The repository model

e Sub-systems must exchange data.

« Shared data is held in a central database or
repository and may be accessed by all sub-
systems;

 Each sub-system maintains its own database
and passes data explicitly to other sub-systems.
e When large amounts of data are to be
shared, the repository model of sharing is
most commonly used.
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Repository model characteristics

e Advantages

- Efficient way to share large amounts of data;

«  Sub-systems need not be concerned with how data is
produced Centralised management e.g. backup, security,
etc.

« Sharing model is published as the repository schema.
e Disadvantages

« Sub-systems must agree on a repository data model.
Inevitably a compromise;

« Data evolution is difficult and expensive;
 No scope for specific management policies;
« Difficult to distribute efficiently.
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Client-server model

e Distributed system model

 shows how data and processing is distributed
across a range of components.

o Set of stand-alone servers

« provide specific services:
* E.g. printing, data management, etc.

e Set of clients which call on these services.

e Network which allows clients to access
servers.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 16



Client-server characteristics

e Advantages
« Distribution of data is straightforward;

 Makes effective use of networked systems. May require
cheaper hardware;

 Easy to add new servers or upgrade existing servers.

e Disadvantages

 No shared data model so sub-systems use different data
organisation. Data interchange may be inefficient;

 Redundant management in each server;

« No central register of names and services - it may be hard
to find out what servers and services are available.
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Abstract machine (layered) model

e Used to model the interfacing of sub-systems.

e Organises the system into a set of layers (or abstract
machines) each of which provide a set of services.

e Supports the incremental development of sub-
systems in different layers.

When a layer interface changes, only the adjacent layer is
affected.

e However, often artificial to structure systems in this
way.
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Version management system

Configuration management system layver I
Object management system layer I

Catabase system layer I
Operating system layer I
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Modular decomposition styles

e Styles of decomposing sub-systems into
modules.

e No rigid distinction between system
organisation and modular decomposition.
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Sub-systems and modules

e A sub-system is a system in its own right
whose operation is independent of the
services provided by other sub-systems.

e A module is a system component that
provides services to other components but
would not normally be considered as a
separate system.
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Modular decomposition

Another structural level where sub-systems are
decomposed into modules.

Two modular decomposition models covered

* An object model where the system is decomposed into
interacting object;

« A pipeline or data-flow model where the system is
decomposed into functional modules which transform
iInputs to outputs.

If possible, decisions about concurrency should be
delayed until modules are implemented.
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Object models

e Structure the system into a set of loosely
coupled objects with well-defined interfaces.

e Object-oriented decomposition is concerned
with identifying object classes, their attributes
and operations.

e When implemented, objects are created from
these classes and some control model used
to coordinate object operations.
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Object model advantages

e Objects are loosely coupled

« their implementation can be modified without
affecting other objects.

e [Ihe objects may reflect real-world entities.

e OO implementation languages are widely
used.

e However, object interface changes may
cause problems and complex entities may be
hard to represent as objects.
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Function-oriented pipelining

¢ Functional transformations process their
iInputs to produce outputs.

e May be referred to as a pipe and filter model
(as in UNIX shell).

e Variants of this approach are very common.
When transformations are sequential, this is
a batch sequential model which is
extensively used in data processing systems.

e Not really suitable for interactive systems.
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Pipeline model advantages

e Supports transformation reuse.

e Intuitive organisation for stakeholder
communication.

e Easy to add new transformations.

e Relatively simple to implement as either a
concurrent or sequential system.

e However, requires a common format for data
transfer along the pipeline and difficult to
support event-based interaction.
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Control styles

e Are concerned with the control flow between
sub-systems.

« Distinct from the system decomposition model.
e Centralised control

* One sub-system has overall responsibility for
control and starts and stops other sub-systems.

e Event-based control

 Each sub-system can respond to externally
generated events from other sub-systems or the
system’s environment.
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Centralised control

e A control sub-system takes responsibility for
managing the execution of other sub-systems.

e Call-return model

« Top-down subroutine model where control starts at the
top of a subroutine hierarchy and moves downwards.
Applicable to sequential systems.

e Manager model

« Applicable to concurrent systems. One system
component controls the stopping, starting and
coordination of other system processes. Can be
implemented in sequential systems as a case statement.
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Event-driven systems

e Driven by externally generated events where the
timing of the event is outwith the control of the sub-
systems which process the event.

e [Two principal event-driven models

« Broadcast models. An event is broadcast to all sub-
systems. Any sub-system which can handle the event
may do so;

* Interrupt-driven models. Used in real-time systems where
Interrupts are detected by an interrupt handler and
passed to some other component for processing.

e Other event driven models include spreadsheets and
production systems.
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Broadcast model

e Effective in integrating sub-systems on different
computers in a network.

e Sub-systems register an interest in specific events.
When these occur, control is transferred to the sub-
system which can handle the event.

e Control policy is not embedded in the event and
message handler. Sub-systems decide on events of
interest to them.

e However, sub-systems don’t know if or when an
event will be handled.
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Interrupt-driven systems

e Used in real-time systems where fast
response to an event is essential.

e [There are known interrupt types with a
handler defined for each type.

e [Each type is associated with a memory
location and a hardware switch causes
transfer to its handler.

e Allows fast response but complex to program
and difficult to validate.
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Architectural models

e Different architectural models may be
produced during the design process

e Each model presents different perspectives
on the architecture
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In the sequel...

e We will focus on:

» Distributed Systems
Architectures

* Object-Oriented Design
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Distributed Systems Architectures
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Distributed systems

e Virtually all large computer-based systems
are now distributed systems.

e Information processing is distributed over
several computers rather than confined to a
single machine.

e Distributed software engineering is therefore
very important for enterprise computing
systems.
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System types

e Personal systems that are not distributed and that
are designed to run on a personal computer or
workstation.

e Embedded systems that run on a single processor
or on an integrated group of processors.

e Distributed systems where the system software runs
on a loosely integrated group of cooperating
processors linked by a network.
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Distributed system characteristics

e Resource sharing
« Sharing of hardware and software resources.

e Openness
« Use of equipment and software from different vendors.

e Concurrency
«  Concurrent processing to enhance performance.

e Scalability

* Increased throughput by adding new resources.

e Fault tolerance

« The ability to continue in operation after a fault has
occurred.
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Distributed system disadvantages

o Complexity

« Typically, distributed systems are more complex
than centralised systems.

e Security
 More susceptible to external attack.

e Manageability

* More effort required for system management.

e Unpredictability

 Unpredictable responses depending on the
system organisation and network load.
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Distributed systems architectures

e Client-server architectures

« Distributed services which are called on by
clients. Servers that provide services are treated
differently from clients that use services.

e Distributed object architectures
 No distinction between clients and servers.

 Any object on the system may provide and use
services from other objects.
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Multiprocessor architectures

e Simplest distributed system model.

e System composed of multiple processes
which may (but need not) execute on
different processors.

e Architectural model of many large real-time
systems.

e Distribution of process to processor may be
pre-ordered or may be under the control of a
dispatcher.
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Client-server architectures

e The application is modelled as a set of
services that are provided by servers and a
set of clients that use these services.

e Clients know of servers but servers need not
know of clients.

e Clients and servers are logical processes

e [he mapping of processors to processes is
not necessarily 1 : 1.
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Layered application architecture

e Presentation layer

« Concerned with presenting the results of a
computation to system users and with collecting
user inputs.

e Application processing layer

« Concerned with providing application specific
functionality e.g., in a banking system, banking
functions such as open account, close account,
etc.

e Data management layer

« Concerned with managing the system
databases.
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Thin and fat clients

e I hin-client model

« |n a thin-client model, all of the application
processing and data management is carried out
on the server. The client is simply responsible
for running the presentation software.

e Fat-client model

* In this model, the server is only responsible for
data management. The software on the client
implements the application logic and the
interactions with the system user.
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Thin client model

e Used when legacy systems are migrated to
client server architectures.

 The legacy system acts as a server in its own
right with a graphical interface implemented on
a client.
e A major disadvantage is that it places a
heavy processing load on both the server
and the network.
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Fat client model

e More processing is delegated to the client as
the application processing is locally
executed.

e Most suitable for new C/S systems where the
capabilities of the client system are known in
advance.

e More complex than a thin client model
especially for management. New versions of
the application have to be installed on all
clients.
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Three-tier architectures

e In athree-tier architecture, each of the
application architecture layers may execute
on a separate processor.

e Allows for better performance than a thin-
client approach and is simpler to manage
than a fat-client approach.

e A more scalable architecture - as demands
increase, extra servers can be added.
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Distributed object architectures

e There is no distinction in a distributed object
architectures between clients and servers.

e Each distributable entity is an object that provides
services to other objects and receives services from
other objects.

e Object communication is through a middleware
system called an object request broker.

e However, distributed object architectures are more
complex to design than C/S systems.
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Advantages of distributed object architecture

o It allows the system designer to delay decisions on
where and how services should be provided.

e Itis avery open system architecture that allows new
resources to be added to it as required.

e The system is flexible and scaleable.

e Itis possible to reconfigure the system dynamically
with objects migrating across the network as
required.
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CORBA

e CORBA is an international standard for an Object
Request Broker - middleware to manage
communications between distributed objects.

e Middleware for distributed computing is required at 2
levels:
At the logical communication level, the middleware allows

objects on different computers to exchange data and
control information;

« At the component level, the middleware provides a basis
for developing compatible components. CORBA
component standards have been defined.
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Peer-to-peer architectures

e Peerto peer (p2p) systems are decentralised
systems where computations may be carried
out by any node in the network.

e IThe overall system is designed to take
advantage of the computational power and
storage of a large number of networked
computers.

e Most p2p systems have been personal
systems but there is increasing business use
of this technology.
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Semi-centralised p2p architecture
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Service-oriented architectures

e Based around the notion of externally
provided services (web services).

e A web service is a standard approach to
making a reusable component available and
accessible across the web

« A tax filing service could provide support for
users to fill in their tax forms and submit these

to the tax authorities.
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Services standards

e Services are based on agreed, XML-based
standards so can be provided on any
platform and written in any programming
language.

e Key standards

« SOAP - Simple Object Access Protocol;
« WSDL - Web Services Description Language;

« UDDI - Universal Description, Discovery and
Integration.
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Object-oriented Design
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Object-oriented development

e Object-Oriented Analysis, Design and
Programming are related but distinct.

e OOA: developing an object model of the
application domain.

e OOD: developing an object-oriented system
model to implement requirements.

e OOP: realising an OOD using an OO
programming language such as Java or C++.
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Characteristics of OOD

e Objects are abstractions of real-world or system
entities and manage themselves.

e Objects are independent and encapsulate state and
representation information.

e System functionality is expressed in terms of object
services.

e Shared data areas are eliminated. Objects
communicate by message passing.

e Objects may be distributed and may execute
sequentially or in parallel.
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Advantages of OOD

e Easier maintenance

« Objects may be understood as stand-alone
entities.

e Reusability
« Objects are potentially reusable components.

e Natural Metaphor

 There may be an obvious mapping from real
world entities to system objects.
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Objects and object classes

e Objects are entities in a software system
which represent instances of real-world and
system entities.

e ODbject classes are templates for objects.
They may be used to create objects.

e ODbject classes may inherit attributes and
services from other object classes.

e OOL have important modelling features
Aggregation, Inheritance, Polymorphism, ...
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Concurrent objects

e [Ihe nature of objects as self-contained
entities make them suitable for concurrent
Implementation.

e [he message-passing model of object
communication can be implemented directly
If objects are running on separate processors
in a distributed system.
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Servers and active objects

e Servers.
« The object is implemented as a parallel process
(server)

with entry points corresponding to object
operations. If no

calls are made to it, the object suspends itself
and waits for further requests for service.

e Active objects

« Objects are implemented as parallel processes
and the
iInternal object state may be changed by the
object itself and not simply by external calls.
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The Unified Modeling Language

e Several different notations for describing object-

oriented designs were proposed in the 1980s and
1990s.

e The Unified Modeling Language is an integration of
these notations.

e It describes notations for a number of different
models that may be produced during OO analysis
and design.

e Itis now a de facto standard for OO modelling.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 67



An object-oriented design process

e Structured design processes involve
developing a number of different system
models.

e They require a lot of effort for development
and maintenance of these models and, for
small systems, this may not be cost-
effective.

e However, for large systems developed by
different groups design models are an
essential communication mechanism.
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Process stages

e Highlights key activities without being tied to
any proprietary process such as the RUP.

Define the context and modes of use of the
system;

Design the system architecture;
|dentify the principal system objects;
Develop design models;

Specify object interfaces.
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System context and models of use

e Develop an understanding of the relationships
between the software being designed and its
external environment

e System context

« A static model that describes other systems in the
environment. Use a subsystem model to show other
systems. Following slide shows the systems around the
weather station system.

e Model of system use

A dynamic model that describes how the system interacts
with its environment. Use use-cases to show interactions

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 11 Slide 70



Layered architecture
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Subsystems in the weather mapping system
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Use-cases for the weather station
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Use-case description
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Architectural design

e Once interactions between the system and
its environment have been understood, you
use this information for designing the system
architecture.

e [There should normally be no more than 7
entities in an architectural model.
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Weather station architecture
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Object identification

e ldentifying objects (or object classes) is the
most difficult part of object oriented design.

e Thereis no 'magic formula' for object

identification.

It relies on the skill, experience
and domain knowledge of system designers.

e Object identification is an iterative process.
You are unlikely to get it right first time.
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Approaches to identification

e Use a grammatical approach based on a natural
language description of the system (used in Hood
OOD method).

e Base the identification on tangible things in the
application domain.

e Use a behavioural approach and identify objects
based on what participates in what behaviour.

e Use a scenario-based analysis. The objects,
attributes and methods in each scenario are
identified.
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Design models

e Design models show the objects and
object classes and relationships
between these entities.

« Static models describe the static

structure of the system in terms of object
classes and relationships.

* Dynamic models describe the dynamic
interactions between objects.
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Examples of design models

e Sub-system models that show logical
groupings of objects into coherent
subsystems.

e Sequence models that show the sequence of
object interactions.

e State machine models that show how
individual objects change their state in
response to events.

e Other models include use-case models,
aggregation models, generalisation models,
etc.
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Subsystem models

e Shows how the design is organised into
logically related groups of objects.

e Inthe UML, these are shown using packages
- an encapsulation construct. This is a logical
model. The actual organisation of objects in
the system may be different.
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Weather station subsystems
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Sequence models

e Sequence models show the sequence of
object interactions that take place
« Objects are arranged horizontally across the
top;
 Time is represented vertically so models are
read top to bottom;

* Interactions are represented by labelled arrows,
Different styles of arrow represent different
types of interaction;

« A thin rectangle in an object lifeline represents
the time when the object is the controlling object
In the system.
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Data collection sequence
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Statecharts

e Show how objects respond to different service
requests and the state transitions triggered by these

requests
« If object state is Shutdown then it responds to a Startup()
message;
* In the waiting state the object is waiting for further
messages;
« If reportWeather () then system moves to summarising
state;

« |If calibrate () the system moves to a calibrating state;

* A collecting state is entered when a clock signal is
received.
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Weather station state diagram
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Object interface specification

e Object interfaces have to be specified so that the
objects and other components can be designed in
parallel.

e Designers should avoid designing the interface
representation but should hide this in the object
itself.

e Objects may have several interfaces which are
viewpoints on the methods provided.

e The UML uses class diagrams for interface
specification but Java may also be used.
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Weather station interface
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In the sequel...

e We will se more about OOD
« Structured Development methods
* Agile Development methods
* Design Patterns
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