
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 1

Software Development

Basic principles

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 2

Outline

● Rapid Software Development
● Component-based development
● Structured Software Development
● Software Reuse Principles
● Software evolution Principles

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 3

Rapid software development

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 4

Rapid software development

● Rapidly changing business
environments

● Businesses may be willing to accept
lower quality software if rapid delivery
of essential functionality is possible.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 5

Requirements

● Because of the changing environment, it is
often impossible to arrive at a stable,
consistent set of system requirements.

● A waterfall model of development is
impractical

● Iterative specification and delivery is the only
way to deliver software quickly.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 6

Characteristics of RAD processes

● The processes of specification, design and
implementation are concurrent.

● There is no detailed specification and design
documentation is minimized.

● The system is developed in a series of increments.
End users evaluate each increment and make
proposals for later increments.

● System user interfaces are usually developed using
an interactive development system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 7

An iterative development process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 8

Advantages of incremental development

● Accelerated delivery of customer services.
Each increment delivers the highest priority
functionality to the customer.

● User engagement with the system. Users
have to be involved in the development
which means the system is more likely to
meet their requirements and the users are
more committed to the system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 9

Problems with incremental development

● Management problems
• Progress can be hard to judge and problems hard to find

because there is no documentation to demonstrate what
has been done.

● Contractual problems
• The normal contract may include a specification; without a

specification, different forms of contract have to be used.
● Validation problems

• Without a specification, what is the system being tested
against?

● Maintenance problems
• Continual change tends to corrupt software structure

making it more expensive to change and evolve to meet
new requirements.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 10

Incremental development and prototyping

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 11

Conflicting objectives

● The objective of incremental development is
to deliver a working system to end-users.
The development starts with those
requirements which are best understood.

● The objective of throw-away prototyping is to
validate or derive the system requirements.
The prototyping process starts with those
requirements which are poorly understood.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 12

Software prototyping

● A prototype is an initial version of a system
used to demonstrate concepts and try out
design options.

● A prototype can be used in:
• The requirements engineering process to help

with requirements elicitation and validation;
• In design processes to explore options and

develop a UI design;
• In the testing process to run back-to-back tests.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 13

The prototyping process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 14

Throw-away prototypes

● Prototypes should be discarded after
development as they are not a good basis for
a production system:
• It may be impossible to tune the system to meet

non-functional requirements;
• Prototypes are normally undocumented;
• The prototype structure is usually degraded

through rapid change;
• The prototype probably will not meet normal

organisational quality standards.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 15

Agile methods

● Dissatisfaction with the overheads involved in design
methods led to the creation of agile methods. These
methods:
• Focus on the code rather than the design;
• Are based on an iterative approach to software

development;
• Are intended to deliver working software quickly and

evolve this quickly to meet changing requirements.

● Agile methods are probably best suited to
small/medium-sized business systems or PC
products.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 16

Principles of agile methods

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 17

Problems with agile methods

● It can be difficult to keep the interest of customers
who are involved in the process.

● Team members may be unsuited to the intense
involvement that characterises agile methods.

● Prioritising changes can be difficult where there are
multiple stakeholders.

● Maintaining simplicity requires extra work.
● Contracts may be a problem as with other

approaches to iterative development.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 18

Extreme programming

● Perhaps the best-known and most widely
used agile method.

● Extreme Programming (XP) takes an
‘extreme’ approach to iterative development.
• New versions may be built several times per

day;
• Increments are delivered to customers every 2

weeks;
• All tests must be run for every build and the

build is only accepted if tests run successfully.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 19

The XP release cycle

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 20

Extreme programming practices 1

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 21

Extreme programming practices 2

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 22

Requirements scenarios

● In XP, user requirements are expressed as
scenarios or user stories.
• written on cards
• break down into implementation tasks.

• These tasks are the basis of schedule and cost
estimates.

● The customer chooses the stories for
inclusion in the next release based on their
priorities and the schedule estimates.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 23

Story card for document downloading

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 24

Testing in XP

● Test-first development.
● Incremental test development from

scenarios.
● User involvement in test development and

validation.
● Automated test harnesses are used to run all

component tests each time that a new
release is built.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 25

Task cards for document downloading

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 26

Test case description

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 27

Test-first development

● Writing tests before code clarifies the
requirements to be implemented.

● Tests are written as programs
• can be executed automatically.

● All previous and new tests are
automatically run when new
functionality is added.
• Thus checking that the new functionality

has not introduced errors.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 28

Pair programming

● In XP, programmers work in pairs, sitting together to
develop code.

● This helps develop common ownership of code and
spreads knowledge across the team.

● It serves as an informal review process as each line
of code is looked at by more than 1 person.

● It encourages refactoring as the whole team can
benefit from this.

● Measurements suggest that development
productivity with pair programming is similar to that
of two people working independently.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 29

RAD environments

● RAD are designed to develop data-
intensive business applications and
rely on programming and presenting
information from a database.

● Tools
• Database programming language
• Interface generator
• Links to office applications
• Report generators

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 30

A RAD environment

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 31

COTS reuse

● An effective approach to rapid development
is to configure and link existing off the shelf
systems.

● For example, a requirements management
system could be built by using:
• A database to store requirements;
• A word processor to capture requirements and

format reports;
• A spreadsheet for traceability management;

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 32

Component-based development

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 33

Component-based development

● Component-based software engineering
(CBSE) is an approach to software
development that relies on software reuse.

● It emerged from the failure of object-oriented
development to support effective reuse.
Single object classes are too detailed and
specific.

● Components are more abstract than object
classes and can be considered to be stand-
alone service providers.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 34

CBSE essentials

● Independent components specified by their
interfaces.

● Component standards to facilitate
component integration.

● Middleware that provides support for
component inter-operability.

● A development process that is geared to
reuse.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 35

CBSE and design principles

● Apart from the benefits of reuse, CBSE is
based on sound software engineering design
principles:
• Components are independent so do not

interfere with each other;
• Component implementations are hidden;
• Communication is through well-defined

interfaces;
• Component platforms are shared and reduce

development costs.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 36

Components

● Components provide a service without
regard to where the component is executing
or its programming language
• A component is an independent executable

entity that can be made up of one or more
executable objects;

• The component interface is published and all
interactions are through the published interface;

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 37

Component interfaces

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 38

A data collector component

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 39

Components and objects

● Components are deployable entities.
● Components do not define types.
● Component implementations are opaque.
● Components are language-independent.
● Components are standardised.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 40

Component models

● A component model is a definition of standards for
component implementation, documentation and
deployment.

● Examples of component models
• EJB model (Enterprise Java Beans)
• COM+ model (.NET model)
• Corba Component Model

● The component model specifies how interfaces
should be defined and the elements that should be
included in an interface definition.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 41

The CBSE process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 42

Software Reuse

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 43

Software reuse

● Systems are often designed by composing
existing components that have been used in
other systems.

● Systematic software reuse may achieve
better software, more quickly and at lower
cost.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 44

Reuse-based software
engineering

● Application system reuse
• The whole of an application system may be reused either by

incorporating it without change into other systems (COTS
reuse) or by developing application families.

● Component reuse
• Components of an application from sub-systems to single

objects may be reused. Covered in Chapter 19.
● Object and function reuse

• Software components that implement a single well-defined
object or function may be reused.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 45

The reuse landscape

● There are many different approaches
to reuse that may be used.

● Reuse is possible at a range of levels
• from simple functions to complete

application systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 46

The reuse landscape

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 47

Reuse approaches 1

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 48

Reuse approaches 2

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 49

Concept reuse

● Follow the design decisions made by
the original developer of the
component.

● Main approaches:
• Design patterns;
• Generative programming.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 50

Design patterns

● A design pattern is a way of reusing abstract
knowledge about a problem and its solution.

● A pattern is a description of the problem and
the essence of its solution.

● It should be sufficiently abstract to be reused
in different settings.

● Patterns often rely on object characteristics
such as inheritance and polymorphism.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 51

Pattern elements

● Name
• A meaningful pattern identifier.

● Problem description.
● Solution description.

• Not a concrete design but a template for a
design solution that can be instantiated in
different ways.

● Consequences
• The results and trade-offs of applying the

pattern.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 52

The Observer pattern

● Name
• Observer.

● Description
• Separates the display of object state from the object itself.

● Problem description
• Used when multiple displays of state are needed.

● Solution description
• See slide with UML description.

● Consequences
• Optimisations to enhance display performance are impractical.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 53

The Observer pattern

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 54

Types of program generator

● Program generators involve the reuse of
standard patterns and algorithms.

• A program is then automatically generated.
● Types of program generator

• Application generators for business data processing;
• Parser and lexical analyser generators for language

processing;
• Code generators in CASE tools.

● Generator-based reuse is
• very cost-effective
• applicability is limited to a small number of appl. domains.
• easier for end-users (w.r.t. component-based

approaches)

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 55

Reuse through program generation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 56

Application frameworks

● Frameworks are a sub-system design made
up of a collection of abstract and concrete
classes and the interfaces between them.

● The sub-system is implemented by adding
components to fill in parts of the design and
by instantiating the abstract classes in the
framework.

● Frameworks are moderately large entities
that can be reused.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 57

Model-view controller

● System infrastructure framework for GUI
design.

● Allows for multiple presentations of an object
and separate interactions with these
presentations.

● MVC framework involves the instantiation of
a number of patterns (as discussed earlier
under concept reuse).

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 58

Model-view-controller

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 59

Application system reuse

● Involves the reuse of entire application
systems
• by configuring a system
• by integrating two or more systems

● Two approaches covered here:
• COTS product integration;
• Product line development.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 60

COTS product reuse

● COTS - Commercial Off-The-Shelf systems.
● COTS systems are usually complete application

systems that offer an API (Application
Programming Interface).

● Building large systems by integrating COTS
systems is now a viable development strategy for
some types of system such as E-commerce
systems.

● The key benefit is faster application development
and, usually, lower development costs.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 61

COTS system integration problems
● Lack of control over functionality and performance

• COTS systems may be less effective than they
appear

● Problems with COTS system inter-operability
• Different COTS systems may make different

assumptions that means integration is difficult
● No control over system evolution

• COTS vendors not system users control evolution
● Support from COTS vendors

• COTS vendors may not offer support over the
lifetime of the product

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 62

Software product lines

● Software product lines or application
families
are applications with generic functionality
• can be adapted and configured

● Adaptation may involve:
• Component and system configuration;
• Adding new components to the system;
• Selecting from a library of existing components;
• Modifying components to meet new requirements.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 63

ERP systems

● An Enterprise Resource Planning (ERP)
system is a generic system that supports
common business processes such as
ordering and invoicing, manufacturing, etc.

● These are very widely used in large
companies - they represent probably the
most common form of software reuse.

● The generic core is adapted by including
modules and by incorporating knowledge of
business processes and rules.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 64

Software evolution

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 65

Software change

● Software change is inevitable
• New requirements emerge when the software is used;
• The business environment changes;
• Errors must be repaired;
• New computers and equipment is added to the system;
• The performance or reliability of the system may have to

be improved.

● A key problem for organisations is implementing and
managing change to their existing software systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 66

Spiral model of evolution

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 67

● Program evolution dynamics is the study of the
processes of system change.

● Lehman and Belady proposed a number of ‘laws’
• Deducted after major empirical studies
• Applied to all systems as they evolved.
• There are sensible observations rather than laws.
• Applicable to large systems developed by large

organisations. Perhaps less applicable in other cases.

Program evolution dynamics

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 68

Lehman’s laws

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 69

● Modifying a program after it has been put into use.
● Maintenance does not normally involve major

changes to the system’s architecture.
● Changes are implemented by modifying existing

components and adding new components to the
system.

● Maintenance is inevitable
• The environment is changing => requirements change
• Systems MUST be maintained therefore if they

are to remain useful in an environment.

Software maintenance

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 70

Distribution of maintenance effort

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 71

● Team stability
• Maintenance costs are reduced if the same staff are

involved with them for some time.
● Contractual responsibility

• The developers of a system may have no contractual
responsibility for maintenance so there is no incentive to
design for future change.

● Staff skills
• Maintenance staff are often inexperienced and have limited

domain knowledge.
● Program age and structure

• As programs age, their structure is degraded and they
become harder to understand and change.

Maintenance cost factors

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 72

Development/maintenance costs

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 73

Evolution processes

● Evolution processes depend on
• The type of software being maintained;
• The development processes used;
• The skills and experience of the people

involved.
● Proposals for change are the driver for

system evolution. Change identification and
evolution continue throughout the system
lifetime.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 74

The system evolution process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 75

System re-engineering

● Re-structuring or re-writing part or all of a
legacy system without changing its
functionality.

● Applicable where some but not all sub-systems
of a larger system require frequent
maintenance.

● Re-engineering involves adding effort to make
them easier to maintain. The system may be re-
structured and re-documented.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 76

Advantages of reengineering

● Reduced risk
• There is a high risk in new software

development. There may be development
problems, staffing problems and specification
problems.

● Reduced cost
• The cost of re-engineering is often significantly

less than the costs of developing new software.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 77

Forward and re-engineering

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 78

Reengineering process activities

● Source code translation
• Convert code to a new language.

● Reverse engineering
• Analyse the program to understand it;

● Program structure improvement
• Restructure automatically for understandability;

● Program modularisation
• Reorganise the program structure;

● Data reengineering
• Clean-up and restructure system data.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 79

Re-engineering approaches

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 80

Legacy system evolution

● Organisations that rely on legacy systems must
choose a strategy for evolving these systems
• Scrap the system completely and modify business

processes so that it is no longer required;
• Continue maintaining the system;
• Transform the system by re-engineering to improve its

maintainability;
• Replace the system with a new system.

● The strategy chosen should depend on the system
quality and its business value.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 81

Legacy system categories

● Low quality, low business value
• These systems should be scrapped.

● Low-quality, high-business value
• These make an important business contribution but are

expensive to maintain. Should be re-engineered or
replaced if a suitable system is available.

● High-quality, low-business value
• Replace with COTS, scrap completely or maintain.

● High-quality, high business value
• Continue in operation using normal system maintenance.

